Archivo de la etiqueta: valor extremo

Seminario de Resolución de Problemas: Problemas de cálculo variados

Introducción

En las entradas anteriores ya tratamos varios temas de cálculo y cómo se combinan con heurísticas para resolver problemas de cálculo. Veremos ahora otros problemas para repasar las técnicas que hemos aprendido hasta ahora y explorar algunas nuevas ideas.

Los primeros dos ejemplos son del libro Problem Solving through Problems de Loren Larson. Los últimos dos son de un concurso universitario: la Competencia Iberoamericana Interuniversitaria de Matemáticas.

El método del factor de integración

Para resolver problemas de cálculo, también es útil tener algunas ideas de ecuaciones diferenciales. Un método muy útil en la resolución de problemas es el método de factor de integración, que ayuda a resolver ecuaciones diferenciales de la forma

    \[y'+a(x)y=b(x).\]

La idea para resolver esta ecuación diferencial en y (es decir, despejar a y en términos de a y b) es multiplicar ambos lados de la ecuación por I(x)=e^{\int a(x)\, dx y observar que por regla de la cadena, la regla del producto y el teorema fundamental del cálculo, tenemos la ecuación diferencial equivalente

    \[(yI(x))' =I(x)b(x).\]

De aquí, podemos integrar de ambos lados en un intervalo [c,x]. Por el teorema fundamental del cálculo, existe una constante C tal que

    \[yI(x)=\int_{c}^x I(t) b(t)\, dt + C,\]

y ya de aquí podemos despejar

    \[y=I(x)^{-1}\left( \int_{c}^x I(t) b(t)\, dt + C\right).\]

A I(x) se le conoce como el factor de integración.

Problema. Sea f:(0,\infty)\to \mathbb{R} una función diferenciable y supongamos que

    \[\lim_{x\to \infty} f(x)+f'(x) = 0.\]

Muestra que

    \[\lim_{x\to 0} f(x) = 0.\]

Sugerencia pre-solución. Define g(x)=f(x)+f'(x) y usando el método de integración «despeja» a f en términos de g.

Solución. Definamos g(x)=f(x)+f'(x). La hipótesis dice que \lim_{x\to 0} g(x) = 0, así que para obtener información de f en términos de g, podemos usar el método de factor de integración. Por la discusión antes de este párrafo, tenemos que

    \[f(x)=e^{-x}\int_a^x e^t g(t) \,dt + Ce^{-x}.\]

Tomemos un \epsilon>0. Como g(x)\to 0 cuando x\to \infty, podemos tomar un a tal que |g(x)|<\epsilon para todo x>a. Usando desigualdad del triángulo en sumas e integrales, tenemos que para x>a

    \begin{align*}|f(x)|&\leq e^{-x}\left|\int_a^x e^t g(t)\right|+|Ce^{-x}|\\&\leq e^{-x}\int_a^x e^t|g(t)|\, dt + |C|e^{-x}\\&\leq \epsilon e^{-x}\int e^t\, dt + |C|e^{-x}\\&=\epsilon e^{-x}(e^x-e^a)+|C|e^{-x}\\&=\epsilon(1-e^{a-x})+|C|e^{-x}\end{align*}

Tenemos que \lim_{x\to \infty} e^{a-x} = 0 y que \lim_{x\to \infty} e^{-x}=0, de modo que si x es suficientemente grande, la expresión anterior nos dice |f(x)|<2\epsilon. En otras palabras, f(x)\to 0 cuando x\to \infty, como queríamos.

\square

Una integral con doble derivada

Problema. Sea f:[0,1]\to \mathbb{R} una función dos veces diferenciable que cumple f(0)=f(1)=0 y tal que f(x)>0 para x en (0,1). Muestra que

    \[\int_0^1 \left| \frac{f''(x)}{f(x)}  \, dx \right|  > 4.\]

Sugerencia pre-solución. Tenemos ya varias técnicas para evaluar o estimar integrales. Si con un método llegas a una pared, intenta usar otro método. Necesitarás el teorema del valor extremo, el teorema del valor medio y el teorema fundamental del cálculo.

Solución. Por el teorema del valor extremo, existe un valor c en (0,1) tal que y=f(c) es un máximo de f. Por el teorema del valor medio, existen puntos a en (0,c) y b en (c,1) tales que

    \[f'(a)=\frac{f(c)-f(0)}{c}=\frac{y}{c}\]

y

    \[f'(b)=\frac{f(1)-f(c)}{1-c}=\frac{-y}{1-c}.\]

Usando que f alcanza su máximo y en c

    \begin{align*}\int_0^1 \left| \frac{f''(x)}{f(x)} \, dx  \right|&\geq  \int_a^b \left| \frac{f''(x)}{f(x)} \, dx \right|  \\&\geq \frac{1}{y}  \int_a^b \left| f''(x)  \, dx \right|,\end{align*}

de modo que aplicando el teorema fundamental del cálculo a la última integral, obtenemos que

    \begin{align*} \int_0^1 \left| \frac{f''(x)}{f(x)}  \, dx \right| &\geq \frac{1}{y} \int_0^1 \frac{1}{y}|f'(b)-f'(a)|\\&=\frac{1}{y} \left|\frac{-y}{1-c}-\frac{y}{c}\right|\\&=\left|\frac{1}{c(1-c)}\right|.\end{align*}

Para terminar, notamos que la función h(x)=x(1-x) es diferenciable en (0,1) y continua en [0,1], de modo que alcanza su máximo en 0, en 1 o en donde la derivada h'(x)=1-2x es 0, es decir, en 1/2. Tenemos que h(1/2)=1/4 y que h(0)=h(1)=0, de modo que el máximo es 1/4. Con esto, concluimos que

    \[\left|\frac{1}{c(1-c)}\right| \geq 4,\]

de donde se completa la cadena de desigualdades que queremos.

\square

En el problema anterior usamos el teorema del valor medio como paso intermedio. Es recomendable que pienses qué hubiera pasado si nos hubiéramos saltado este paso y hubiéramos usado el mínimo directamente, sin limitarnos primero al intervalo [a,b]. En los problemas de cálculo a veces es muy importante el orden en el que se hacen las cosas.

Dos problemas de cálculo de competencias

Veamos ahora algunos problemas de cálculo que han aparecido en concursos a nivel universitario. El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2015, como Problema 4.

Problema. Sea f:\mathbb{R}\to \mathbb{R} una función continua y \alpha un número real. Sabemos que \lim_{x\to \infty} f(x) = \lim_{x\to -\infty} = \alpha. Muestra que para cualquier real positivo r existen reales x y y tales que y-x=r y f(x)=f(y).

Sugerencia pre-solución. Modifica el problema, construyendo una función que te ayude a resolverlo. Necesitarás el teorema del valor intermedio. También, una parte de la solución necesita que se use inducción.

Solución. Tomemos cualquier valor r y consideremos la función h(x)=f(x+r)-f(x). Como f es continua, la función h es continua. Si h(x)>0 para todo real, entonces podemos mostrar inductivamente que para cualesquiera enteros positivos m y n tenemos que

    \[f(x-mr)<f(x)<f(x+r)<f(x+nr).\]

Haciendo n y m ir a infinito, tendríamos que

    \[\alpha\leq f(x) < f(x+r) \leq \alpha,\]

lo cual es una contradicción.

Así, h(x) toma valores menores o iguales a 0. De modo similar, podemos mostrar que h(x) toma valores mayores o iguales a 0. Como h es continua, por el teorema del valor intermedio debe tomar el valor 0 para algún c, de modo que f(c+r)-f(c)=h(c)=0 y así, tomando x=c y y=c+r tenemos y-x=r y

    \[f(y)=f(c+r)=f(c)=f(x).\]

\square

El siguiente problema apareció en la Competencia Iberoamericana Interuniversitaria de Matemáticas, en 2010, como Problema 4.

Problema. Sea f:[0,1]\to [0,1] una función continua, creciente, diferenciable en [0,1] y tal que f'(x)<1 en cada punto. La sucesión de conjuntos A_1, A_2, \ldots se define recursivamente como A_1=f([0,1]) y para n\geq 2, A_n=f(A_{n-1}). Muestra que el diámetro de A_n converge a 0 conforme n\to \infty.

El diámetro de un conjunto X es \sup_{x,y \in X} |x-y|}.

Sugerencia pre-solución. Para una primer parte del problema que te ayudará a entender a los A_i, necesitarás el teorema del valor intermedio y el principio de inducción. Luego, necesitarás usar el teorema del valor medio y que las funciones continuas preservan límites de sucesiones convergentes.

Solución. Por conveniencia, nombramos A_0=[0,1]. Sea d_n el diámetro de A_n. Tenemos d_0=1. Como f es creciente, tenemos que f(0)<f(1) y que no hay ningún valor fuera del intervalo [f(0),f(1)] que se tome. Como f es continua, se toman todos esos valores. Así, A_1=[f(0),f(1)] y su diámetro es d_1=f(1)-f(0). Inductivamente, podemos mostrar que A_n= [f^n(0),f^n(1)] y que d_n=f^{n}(1)-f^{n}(0).

Notemos que la sucesión f^{n}(0) es creciente y acotada, de modo que converge a un real a. Como f es contínua, tenemos que

    \begin{align*}f(a)&=f(\lim_{n\to \infty} f^{n}(0)) \\&= \lim_{n\to \infty} f^{n+1}(0) \\&= a.\end{align*}

Análogamente, f^n(1) converge a un real b tal que f(b)=b. Como f^n(0)\leq f^n(1), tenemos que a\leq b. Afirmamos que a=b. Si no, por el teorema del valor medio existiría un c\in[a,b] tal que

    \[f'(c)=\frac{f(b)-f(a)}{b-a}=\frac{b-a}{b-a}=1,\]

contradiciendo la hipótesis de la cota de la derivada.

Esto muestra que a=b, y por lo tanto

    \begin{align*}\lim_{n\to \infty} d_n &=  \lim_{n\to \infty} f^n(1)-f^n(0)  \\&=b-a\\&= 0.\end{align*}

\square

En este problema es muy importante primero mostrar que los extremos de los intervalos convergen a puntos fijos de f y después usar el teorema del valor intermedio. Podría ser tentador usar el teorema del valor intermedio en cada intervalo [f^n(0),f^n(1)], pero con ello no se llega al resultado deseado.

Más problemas

En todas estas entradas hemos platicado acerca de problemas de temas de cálculo. Se pueden encontrar muchos más problemas de este tema en el Capítulo 6 del libro Problem Solving through Problems de Loren Larson.

Además, puedes encontrar otros problemas resueltos en la sección de Material para practicar de este blog, que ayuda a prepararse para competencias internacionales de matemáticas a nivel universitario.

Seminario de Resolución de Problemas: Funciones diferenciables y la derivada

Introducción

En entradas anteriores hemos platicado acerca de funciones continuas. A partir de ahí, platicamos de dos teoremas importantes para esta clase de funciones: el teorema del valor intermedio y el teorema del valor extremo. La siguiente clase de funciones que nos interesa es la de funciones diferenciables. Hablaremos de esta clase de funciones y de la derivada.

Como recordatorio, si A\subset \mathbb{R} y a es un punto en el interior de A, decimos que f:A\to \mathbb{R} es diferenciable en a si el límite

    \[\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}\]

existe y es finito.

En ese caso, llamamos f'(a) al valor de ese límite. Cuando A es abierto y f es diferenciable en todo punto a de A, entonces simplemente decimos qur f es diferenciable y podemos definir a la derivada f' de f como la función f':A\to \mathbb{R} tal que a cada punto lo manda al límite anterior.

Mencionaremos algunas propiedades básicas de funciones diferenciables y cómo se pueden usar para resolver problemas. Como en ocasiones anteriores, no hacemos mucho énfasis en la demostración de las propiedades básicas, pues se pueden encontrar en libros de texto, como el Cálculo de Spivak.

Propiedades básicas de funciones diferenciables

En la definición de diferenciabilidad, se calcula el límite

    \[\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}.\]

Sin embargo, en algunas ocasiones es más sencillo calcular el límite

    \[\lim_{y\to x} \frac{f(x)-f(y)}{x-y}.\]

Estos dos límites son equivalentes, pues sólo difieren en el cambio de variable y=x+h. Dependiendo del problema que se esté estudiando, a veces conviene usar una notación u otra para simplificar las cuentas.

Como en el caso de la continuidad, la diferenciabilidad se comporta bien con las operaciones básicas.

Proposición. Si f:(a,b)\to \mathbb{R} y g:(a,b)\to \mathbb{R} son diferenciables, entonces f+g, f-g y fg son diferenciables. Tenemos que sus derivadas son

    \begin{align*}(f+g)'=f'+g'\\(f-g)'=f'-g'\\ (fg)'=f'g+fg'.\end{align*}

Si g(x)\neq 0, entonces f/g también es diferenciable en x, con derivada

    \[(f/g)'=\frac{f'g-fg'}{g^2}.\]

La proposición anterior se puede probar directamente de las definiciones. Se demuestra en un curso usual de cálculo, pero es un ejercicio recomendable hacer las demostraciones de nuevo.

La tercera igualdad se llama la regla del producto y la última la regla del cociente. En la regla del producto tenemos simetría, así que no importa cuál función derivamos primero. En la regla del cociente sí importa que derivemos primero a f en el numerador. Para acordarse de ello, es fácil acordarse que g va «al cuadrado» y como va al cuadrado, es «más fuerte», y «no se deja derivar primero».

Las funciones diferenciables son continuas, en el sentido de la siguiente proposición.

Proposición. Si f:A\to \mathbb{R} es una función diferenciable en x, entonces es continua en x.

Demostración. En efecto,

    \begin{align*}\lim_{h\to 0}& f(a+h)-f(a) \\= &\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \cdot h\\=&\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} \cdot \lim_{h\to 0} h\\= &f'(a)\cdot 0 = 0,\end{align*}

de modo que

    \[\lim_{h\to 0}f(a+h) = f(a),\]

en otras palabras,

    \[\lim_{x\to a} f(x)=f(a),\]

así que f es continua en a.

\square

Una propiedad más es que las funciones diferenciables alcanzan su máximo en puntos en donde la derivada se anula. Damos un esbozo de la demostración de una parte de la proposición, pero recomendamos completar con cuidado el resto de la prueba, sobre todo cuidando que al pasar términos negativos multiplicando o dividiendo, se invierta la desigualdad correctamente.

Proposición. Si f:(a,b)\to \mathbb{R} tiene un máximo o un mínimo en x, entonces f'(x)=0.

Sugerencia pre-demostración. Supón que f'(x)\neq 0. Divide en casos de acuerdo a si f'(x)>0 ó f'(x)<0. También, haz una figura que te ayude a entender lo que está sucediendo: si la derivada existe y es mayor que 0 en un punto x, entonces cerca de x la función se ve como si «tuviera pendiente positiva» y entonces tantito a la derecha crece y tantito a la izquierda decrece.

Esbozo de demostración. Procedemos por contradicción. Si f'(x)=c>0, entonces para h>0 suficientemente pequeño tenemos que

    \[\left|\frac{f(x+h)-f(x)}{h}-c\right|<c/2,\]

de modo que \frac{f(x+h)-f(x)}{h}>c/2, de donde f(x+h)>f(x)+\frac{hc}{2}>f(x), lo que muestra que x no es un máximo.

Del mismo modo, tomando h<0 suficientemente cercano a 0, tenemos que x no es un mínimo. Los casos en los que f'(x)=c<0 son parecidos.

\square

La proposición anterior nos permite usar la derivada para estudiar los valores extremos de una función, aunque no esté definida en un intervalo abierto. Si f:[a,b]\to \mathbb{R} es diferenciable en (a,b) y es continua en [a,b], entonces sus valores extremos forzosamente están o bien en los extremos del intervalo (en a o b), o bien en un punto x\in (a,b) en donde la derivada es 0. Esta es la estrategia que usaremos para mostrar los teoremas de Rolle y del valor medio.

Problemas resueltos de funciones diferenciables

Veamos algunos problemas en los que podemos aplicar las propiedades anteriores de funciones diferenciables.

Problema. Supongamos que la función xf(x) es diferenciable en un punto x_0\neq 0 y que la función f es continua en x_0. Muestra que f es diferenciable en x_0.

Sugerencia pre-solución. Para mostrar que la expresión es diferenciable, usa la definición de diferenciabilidad con límite x\to x_0. En vez de tratar de encontrar el límite del cociente directamente, cambia el problema multiplicando y dividiendo por xx_0.

Solución. Primero, como xf(x) es diferenciable en x_0, tenemos que el siguiente límite existe y es finito

    \[A:=\lim_{x\to x_0}\frac{xf(x)-x_0f(x_0)}{x-x_0}.\]

Tenemos que mostrar que el límite

    \[\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}\]

existe. Para ello tomamos una x suficientemente cerca de x_0, de modo que x\neq 0, y multiplicamos el numerador y denominador por xx_0, y luego sumamos y restamos x_0^2f(x_0) en el numerador para obtener lo siguiente:

    \begin{align*}&\frac{f(x)-f(x_0)}{x-x_0} &\\= &\frac{xx_0 f(x)-xx_0 f(x_0)}{xx_0 (x-x_0)}\\=&\frac{xx_0 f(x)-x_0^2f(x_0)-xx_0 f(x_0)+x_0^2f(x_0)}{xx_0 (x-x_0)}\\=&\frac{1}{x}\left(\frac{xf(x)-x_0f(x_0)}{x-x_0}\right) -\frac{f(x_0)}{x}.\end{align*}

Tomando el límite cuando x\to x_0, tenemos que el primer sumando converge a \frac{A}{x_0}, por la diferenciabilidad de xf(x) y que el segundo sumando converge a \frac{f(x_0)}{x_0}. De esta forma, f es diferenciable en x_0.

\square

Problema. Sea n un entero positivo y a_1,\ldots, a_n números reales. Consideremos la función

    \[f(x)=a_1\sin x + a_2\sin 2x + \ldots + a_n \sin nx.\]

Muestra que si |f(x)|\leq |\sin x| para todos los reales x, entonces

    \[|a_1+2a_2+\ldots+na_n|\leq 1.\]

Sugerencia pre-solución. Se puede hacer una prueba por inducción. Intenta hacerlo así. Luego, intenta modificar el problema poniendo a la expresión final del enunciado en términos de la derivada de f en algún valor específico.

Solución. La derivada de f es

    \[a_1\cos x+ 2a_2\cos 2x + \ldots + n a_n\cos nx,\]

que en 0 es

    \[a_1+2a_2+\ldots+na_n,\]

que es precisamente el lado izquierdo de la desigualdad que queremos.

Por definición de derivada, tenemos que

    \begin{align*}|f'(0)|&=\lim_{x\to 0}\left|\frac{f(x)-f(0)}{x-0}\right|\\&=\lim_{x\to 0} \left|\frac{f(x)}{x}\right|.\end{align*}

Por la hipótesis del problema, la última expresión dentro del límite es menor o igual a \left|\frac{\sin x}{x}\right |. Como el límite de \frac{\sin x}{x} cuando x \to 0 es 1, tenemos que

    \[|f'(0)|\leq 1,\]

como queríamos.

\square

Problema. Supongamos que f:\mathbb{R}\to \mathbb{R} es una función que satisface la ecuación funcional f(x+y)=f(x)+f(y) para todo x y y en \mathbb{R} y que f es diferenciable en 0. Muestra que f es una función de la forma f(x)=cx para c un real.

Sugerencia pre-solución. Usa como paso intermedio para el problema mostrar que f es diferenciable en todo real. Recuerda que una función que satisface la ecuación funcional del problema debe satisfacer que f(x)=f(1)x para todo racional x. Esto se probaba con división por casos e inducción. Usa propiedades de funciones continuas.

Solución. Tomando x=y=0, tenemos que f(0)=2f(0), de modo que f(0)=0. Mostremos que f es diferenciable en todo real.

Como f es diferenciable en 0, tenemos que

    \[L:=\lim_{h\to 0} \frac{f(h)-f(0)}{h}=\lim_{h\to 0} \frac{f(h)}{h}\]

existe y es finito. Tomemos ahora cualquier real r. Por la ecuación funcional, tenemos que

    \begin{align*}f(r+h)-f(r)&=f(r)+f(h)-f(h)\\&=f(r),\end{align*}


de modo que

    \[\lim_{h\to 0} \frac{f(r+h)-f(r)}{h}=\lim_{h\to 0} f(h)=L.\]

Así, f es diferenciable en todo real r. Por lo tanto, f es contínua en todo real.

Anteriormente, cuando hablamos de inducción y de división por casos, vimos que una función que satisface la ecuación funcional f(x+y)=f(x)+f(y) debe satisfacer que f(x)=f(1) x para todo número racional x. Para cualquier real r podemos encontrar una sucesión de racionales \{x_n\} que convergen a r. Como f es continua, tenemos que

    \begin{align*}f(r)&=\lim_{n\to \infty} f(x_n) \\&= \lim_{n\to \infty} f(1) x_n \\&= f(1) r.\end{align*}

Esto muestra lo que queremos.

\square

Más problemas

Hay más ejemplos de problemas relacionados con la derivada en la Sección 6.3 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: El teorema del valor extremo

Introducción

En una entrada anterior, acerca de funciones continuas, mencionamos dos teoremas fundamentales que estas funciones satisfacen: el teorema del valor intermedio y el teorema del valor extremo. Ya hablamos acerca del teorema del valor intermedio en una entrada anterior. El objetivo de esta entrada es mencionar aplicaciones del teorema del valor extremo.

Como recordatorio, el teorema del valor extremo o teorema de los valores extremos nos dice que si una función f(x) es continua en un intervalo cerrado [a, b], entonces existen valores c y d en [a, b] tales que f(c) \leq f(x) \leq f(d) para toda x en el intervalo [a, b].

En otras palabras, lo que nos dice el teorema es que si una función es continua en un intervalo cerrado, tenemos que la función debe alcanzar un valor máximo y un valor mínimo dentro del intervalo.

Dos teoremas para funciones derivables

Aprovecharemos para mencionar dos teoremas importantes que se ocuparán más adelante. Las demostraciones de dichos teoremas tienen que ver con la aplicación del teorema del valor extremo, estos teoremas son el teorema de Rolle y el teorema del valor medio (no confundir con el teorema del valor intermedio).

Teorema de Rolle. Sean a<b reales y f:[a,b]\to\mathbb{R} una función continua en el intervalo [a, b] y derivable en (a, b). Se tiene que si f(a)=f(b), entonces existe c en (a, b) tal que f^\prime(c)=0.

Sugerencia pre-demostración. Por el teorema del valor extremo, la función debe alcanzar un máximo y un mínimo en el intervalo. Divide en casos de acuerdo a dónde están estos valores, si en los extremos o no.

Demostración: Como f(x) es una función continua en [a, b], por el teorema del valor extremo tenemos que f(x) alcanza un valor máximo y un valor mínimo en el intervalo [a, b]. Tenemos entonces los siguientes casos.

  • Caso i: Si el valor máximo y mínimo se encuentran en los extremos del intervalo, tenemos que la función f(x) tiene que ser constante dado que f(a)=f(b). y se tiene que f^\prime(c)=0 para todo c en [a, b].
  • Caso ii: Si el valor mínimo o máximo no están en los extremos. Sean c_1 y c_2 en (a, b), los valores en los que la función alcanza su mínimo y máximo respectivamente. Alguno de estos no está en los extremos. Como f(x) es derivable en (a, b), tenemos que también va a ser derivable en alguno de los puntos c_1 y c_2, teniendo que f^\prime(c_1)=0 o f^\prime(c_2)=0, así que basta con tomar c=c_1 o c=c_2.

\square

Teorema del valor medio. Sean a<b reales y f:[a,b]\to\mathbb{R} una función continua en [a, b] y diferenciable en (a, b). Entonces existe un número c en (a, b) tal que

\frac{f(b)-f(a)}{b-a}=f^\prime(c).

Demostración: Consideremos la siguiente función auxiliar:

g(x)=(f(b)-f(a))x-(b-a)f(x)

Tenemos que g(x) es continua en [a, b] y además es derivable en (a,b). La derivada de g(x) está dada por

g^\prime(x)=f(b)-f(a)-(b-a)f^\prime(x)

Como g(x) es continua en [a, b], tenemos que por el teorema del valor extremo, la función alcanza un máximo y un mínimo en el intervalo [a, b]. Haciendo las cuentas, g(a)=g(b), de modo que si el máximo y mínimo ocurren en los extremos, entonces g es constante y toda c\in (a,b) satisface g'(c)=0

En otro caso, sea c\in(a, b) el valor en donde g(x) alcanza su mínimo o su máximo. Tenemos que g^\prime(c)=0.

Así, como g^\prime(c)=f(b)-f(a)-(b-a)f^\prime(c), tenemos que:

0=f(b)-f(a)-(b-a)f^\prime(c)

(b-a)f^\prime(c)=f(b)-f(a)

f^\prime(c)=\frac{f(b)-f(a)}{b-a}

\square

Alternativamente, en la función anterior pudimos haber aplicado el teorema de Rolle directamente a la función g. En las siguientes entradas veremos aplicaciones de estos resultados a problemas concretos.

Aplicación del teorema del valor extremo a un problema

Problema. Se tiene un circulo de radio r, y una tangente L que pasa por un punto P de la circunferencia. De un punto cualquiera R en la circunferencia se traza una paralela a L que corta a la circunferencia en Q. Determina el área máxima que puede tener el triángulo PQR.

Sugerencia pre-solución. Antes que nada, haz una figura. Usa el teorema del valor extremo para asegurar la existencia del valor máximo. Para ello, necesitarás construir una función continua cuyo valor sea el área buscada. Puedes usar argumentos de simetría para conjeturar cuándo se alcanza el valor máximo.

Solución. Hacemos el siguiente diagrama para entender mejor el problema.

Diagrama del enunciado del problema

Fijémonos que las condiciones de la altura y la base del triángulo PQR se pueden describir mediante la siguiente figura:

Condiciones para la altura y base del triángulo

Notemos que la altura del triángulo está dada por r+h, donde h puede variar entre -r y r. Este dibujo también nos es de ayuda para determinar el valor de la base. Por el teorema de Pitágoras y sabiendo que la distancia del centro C a los puntos R y Q es igual a r, tenemos que la base del triángulo es igual a 2\sqrt{r^2-h^2}.

Así, el área del triángulo está dada por (\sqrt{r^2-h^2})(r+h), pero como h varía, nos conviene ver el área en función de h.

A(h)=\sqrt{r^2-h^2}(r+h),

La función A(h) es una función continua en el intervalo [-r, r].

Notemos que cuando h toma los valores de -r y r, el valor del área es nulo, es decir que en estos valores alcanza el mínimo, lo cual quiere decir que por el teorema del valor extremo, el valor máximo lo alcanza en algún valor en (-r, r).

Si derivamos la función A(h), tenemos

A^\prime(h)=\frac{r^2-rh-2h^2}{\sqrt{r^2-h^2}}.

Como sabemos que hay un máximo en el intervalo (-r, r) y la derivada en este punto máximo debe ser igual a cero, hacemos A^\prime(h)=0.

Así,

\frac{r^2-rh-2h^2}{\sqrt{r^2-h^2}}=0.

Resolviendo la ecuación tenemos que

h=\frac{r}{2}.

Así, el área máxima del triángulo PQR es

    \[A=\sqrt{r^2-\left(\frac{r}{2}\right)^2}\left(r+\frac{r}{2}\right)=\frac{3\sqrt{3}r^2}{4}.\]

\square

Más ejemplos

Se pueden encontrar más problemas de aplicación del teorema del vaalor extremo en la Sección 6.4 del libro Problem Solving through Problems de Loren Larson.

Seminario de Resolución de Problemas: Funciones continuas

Introducción

En entradas anteriores platicamos de propiedades aritméticas de los números enteros, del anillo de enteros módulo n y de los números complejos. Vimos cómo pueden ser de utilidad para resolver problemas de matemáticas de distintos tipos. Ahora veremos temas de funciones continuas.

En esta entrada, y las subsecuentes, entraremos al mundo del cálculo y de la continuidad. En el transcurso de diez entradas veremos cómo aprovechar distintas herramientas de continuidad, cálculo diferencial e integral.

Seguiremos con la costumbre de no demostrar los teoremas principales que usemos, pero podemos recomendar al lector las siguientes fuentes para consultar los fundamentos

El orden de presentación de los temas viene del libro Problem Solving Strategies de Loren Larson.

Recordatorio de límites y continuidad

Sea A un subconjunto de \mathbb{R} y f:A\to \mathbb{R} una función. Intuitivamente, el límite de f(x) cuando x tiende a a es c si al acercarnos a x en A tenemos que f(x) se acerca a c.

De manera formal, tenemos que

    \[\lim_{x\to a} f(x) = c\]

si para todo \epsilon>0 tenemos que existe un \delta >0 tal que si x\in A y |x-a|<\delta, entonces |f(x)-c|<\epsilon. Esta es la definición épsilon-delta. Otra forma de denotar lo mismo es decir que f(x)\to c cuando x\to a. Los límites se comportan bien con las operaciones.

Proposición. Sean f:A\to \mathbb{R} y g:A\to \mathbb{R} funciones. Sea a\in A. Si f(x)\to c y g(x)\to d cuando x\to a, entonces

  • f(x)+g(x)\to c+d cuando x\to a
  • f(x)g(x)\to cd cuando x\to a
  • Si d\neq 0, f(x)/g(x)\to c/d cuando x\to a

Definición. Sea f:A\to \mathbb{R} una función real y a\in A. Decimos que f es continua

  • en a si f(x)\to f(a) cuando x\to a.
  • en S\subset A si es continua en todo a\in S.

Si f es continua en A, simplemente decimos que es continua.

Como los límites se comportan bien con las operaciones, tenemos que las funciones continuas también se comportan bien con las operaciones.

Proposición. Sean f:A\to \mathbb{R} y g:A\to \mathbb{R} funciones. Sea a\in A. Si f y g son continuas en a, entonces

  • f+g es continua en a
  • fg es continua en a
  • Si g(a)\neq 0, f/g es continua en a

Ejercicio. Muestra que \frac{x^2+3x+1}{x+1} es continua para todo x\neq -1.

Sugerencia. No uses la definición épsilon-delta directamente en la función, pues será complicado. Demuestra que f(x)=x es continua con la definición epsilon-delta y de ahí usa las demás propiedades enunciadas en las proposiciones.

Funciones continuas y sucesiones

Las funciones continuas y las sucesiones están cercanamente relacionadas. Recuerda que una sucesión de reales es un conjunto ordenado de reales, uno por cada entero positivo, al cual denotaremos así:

    \[\{x_n\}=\{x_1,x_2,x_3,x_4,\ldots\}.\]

Decimos que la sucesión \{x_n\} converge a c, en símbolos

    \[\lim_{n\to \infty} x_n = c\]

si para cada \epsilon >0 existe un natural N tal que si n\geq N, entonces |x_n-c|<\epsilon. También decimos esto como x_n\to c cuando n\to \infty, o simplemente x_n\to c.

Teorema. La función f:A\to \mathbb{R} es continua en a\in A si y sólo si para toda sucesión de reales \{x_n\} en A tal que \{x_n\}\to a se tiene que f(x_n)\to f(a).

Este teorema tiene múltiples usos. Nos dice que para verificar que una sucesión sea continua en un punto a, nos basta ver qué le hace a todas las sucesiones que convergen a a. Si alguna de ellas no converge a f(a), entonces la función no es continua. Si todas ellas convergen a f(a), entonces la función sí es continua. Veamos un ejemplo de su aplicación

Problema. Considera la función f:[0,1]\to \mathbb{R} la función tal que a cada irracional le asigna 0 y a cada racional p/q (expresado con p y q positivos y primos relativos) le asigna 1/q. Estudia la continuidad de esta función.

Sugerencia pre-solución. La continuidad de la función se comporta distinto para los racionales y para los irracionales. Para ver qué sucede en los racionales, acércate con una sucesión de irracionales.

Solución. Demostraremos que f es continua en los irracionales y no es continua en los racionales.

Tomemos un racional r=p/q<1. Observa que la sucesión x_n=r+\frac{\sqrt{3}}{n} para n suficientemente grande cae en [0,1] y x_n\to r. Cada término de la sucesión es irracional. Así, f(x_n)=0 para todo término, de modo que f(x_n)\to 0\neq 1/q = f(r). Esto muestra que f no es continua en r. Para r=1 podemos hacer el mismo truco con x_n=r-\frac{\sqrt{3}}{n} para ver que no es continua.

Tomemos ahora un número irracional r\in[0,1]. Tenemos que f(r)=0. Mostraremos que para toda sucesión \{x_n\} tal que x_n\to r, tenemos que f(x_n)\to 0. Tomemos M un entero positivo. Consideremos el conjunto A_M de todos los números racionales en [0,1] con denominador a lo más M.

Como r es irracional, las distancias de r a los números de A_M son todas positivas, así que su mínimo es un real positivo \epsilon. Como x_n\to r, existe un N tal que si n\geq N, entonces |x_n-r|<\epsilon. Así, para n\geq N, no se puede que x_n esté en A_M. De este modo, para n\geq N tenemos que |f(x_n)|<1/M. Esto muestra que f(x_n)\to 0. Así, f es continua en los irracionales.

\square

Por supuesto, algunas veces es útil regresar a la definición epsilon-delta para funciones continuas.

Problema. Sea f:\mathbb{R}\to\mathbb{R} una función inyectiva y continua tal que f(2x-f(x))=x y tal que tiene por lo menos un punto fijo. Muestra que f(x)=x para todo x\in \mathbb{R}.

Sugerencia pre-solución. Antes de intentar cualquier idea de cálculo, hay que demostrar que si se cumple f(y)=y+r, entonces f(y+nr)=(y+nr)+r. Para demostrar esto para n negativa, usa inducción. Para n positiva necesitarás jugar un poco con la hipótesis. Aplica la hipótesis f(2x-f(x))=x para x=f(z) y usa la inyectividad. De ahí obtendrás una igualdad que te servirá para encontrar f(y+nr) para n positivas.

Solución. La primera observación es que el conjunto de puntos fijos de una función continua es cerrado, pues si \{x_n\} es una sucesión de puntos fijos que converge a un punto c, entonces por un lado \{f(x_n)\}=\{x_n\} también converge a c, y por otro por continuidad converge a f(c). Como los límites, cuando existen, son únicos, tenemos que f(c)=c.

Si f(y)\neq y para alguna y\in \mathbb{R}, entonces tendremos f(y)=y+r para alguna r\neq 0. Mostraremos que f(y+nr)=(y+nr)+r para todo entero n. Aplicando la hipótesis f(2x-f(x))=x para x=y, obtenemos que f(y-r)=y=(y-r)+r, de modo que inductivamente tenemos f(y-nr)=(y-nr)+r para n entero positivo.

Aplicando la hipótesis f(2x-f(x))=x para x=f(x) obtenemos f(2f(z)-f(f(z)))=f(z), de modo que por inyectividad tenemos 2f(z)-f(f(z))=z. Usando esta ecuación para z=y obtenemos que 2f(y)-f(f(y))=y, de donde f(y+r)=2(y+r)-y=(y+r)+r, y de aquí inductivamente f(y+nr)=(y+nr)+r para n enteros positivos. De esta forma, f(y+nr)=(y+nr)+r para todo entero.

Ahora sí viene la parte en la que usamos la continuidad. Supongamos que f(x)\neq x. Sea \epsilon=|f(x)-x|>0. Como f es continua en x, existe un \delta>0 que podemos suponer menor a \frac{\epsilon}{4} tal que si |z-x|<\delta, entonces |f(z)-f(x)|<\frac{\epsilon}{4}.

Sea x_0 un punto frontera del conjunto de puntos fijos. Como f es continua en x_0, podemos encontrar un \alpha>0 y \alpha<\delta tal que si |w-x_0|<\alpha, entonces |f(w)-f(x_0)|<\delta. Como el conjunto de puntos fijos es cerrado, x_0 está en él. Ya que x_0 es punto frontera, existe un y tal que f(y)\neq y y |x_0-y|\leq \alpha. Para este y tenemos por las cotas que hemos encontrado y la desigualdad del triángulo que

    \[|f(y)-y|\leq |f(y)-f(x_0)|+|x_0-y|\leq \delta +\alpha <2\delta.\]

Así, r=f(y)-y es un número de norma entre 0 y 2\delta, de modo que existe una n para la cual y+nr \in (x-\delta,x+\delta). Por lo que probamos previamente, f(y+nr)=(y+nr)+r. A partir de todo esto concluimos que:

    \begin{align*}\epsilon&=|f(x)-x|\\&\leq |f(x)-f(y+nr)|+|f(y+nr)-x|\\&<\frac{\epsilon}{4}+|(y+nr)-x|+|r|\\&<\frac{\epsilon}{4}+3\delta\\&<\frac{\epsilon}{4}+\frac{3\epsilon}{4}=\epsilon.\end{align*}

Esto es una contradicción, así que todos los reales deben ser puntos fijos de f.

\square

Dos teoremas importantes de continuidad

Las funciones continuas satisfacen dos propiedades muy importantes.

Teorema (teorema del valor intermedio). Sea f:[a,b]\to \mathbb{R} una función continua. Entonces para todo y entre f(a) y f(b) existe un real c \in [a,b] tal que f(c)=y.

Aquí, si f(a)\leq f(b) entonces «entre f(a) y f(b)» quiere decir en el intervalo [f(a),f(b)] y si f(b)\leq f(a), quiere decir en el intervalo [f(b),f(a)]. Dicho en otras palabras, si una función continua toma dos valores, entonces toma todos los valores entre ellos.

Teorema (teorema del valor extremo). Sea f:[a,b] \to \mathbb{R} una función continua. Entonces existen números c y d en [a,b] para los cuales f(c)\leq f(x) \leq f(d) para todos los x en [a,b].

Dicho de otra forma, una función continua definida en un intervalo cerrado «alcanza su máximo y su mínimo».

En siguientes entradas hablaremos de aplicaciones de estos teoremas. Por el momento sólo los enunciamos, y en la siguiente sección demostraremos uno de ellos.

El método de la bisección de intervalos

Una de las herramientas más útiles para trabajar con reales y con funciones continuas es el método de la bisección de intervalos. Se trata a grandes rasgos de lo siguiente:

  • Se comienza con un intervalo [a,b]. Definimos a_0=a y b_0=b.
  • Partimos ese intervalo por su punto medio m_0=m en dos intervalos [a,m] y [m,b]. En alguno de esos dos pasa algo especial. Si es en el primero, definimos a_1=a, b_1=m. Si es en el segundo, definimos a_1=m, b_1=b, para conseguir un intervalo [a_1,b_1]\subset [a_0,b_0] especial.
  • Continuamos recursivamente. Ya que definimos al intervalo [a_n,b_n], consideramos a su punto medio m_n. De entre los intervalos [a_n,m_n] y [m_n,b_n] elegimos a uno de ellos que sea «especial» para definir [a_{n+1},b_{n+1}].

Los a_i forman una sucesión no decreciente acotada superiormente por b y los b_i una sucesión no creciente acotada inferiormente por a. De esta forma, ambas sucesiones tienen un límite. Además, notemos que |b_n-a_n|=|b-a|/2^n, de modo que |b_n-a_n|\to 0, por lo que ambas situaciones convergen al mismo límite L, y este límite está en todos los intervalos [a_n,b_n]. Si elegimos a los intervalos [a_n,b_n] de manera correcta, podemos hacer que este límite L tenga propiedades especiales.

Veamos cómo aplicar esta idea para demostrar el teorema del valor extremo.

Demostración (teorema del valor extremo). Comenzamos con una función contínua f:[a,b]\to \mathbb{R}. Basta con probar que f alcanza su máximo, pues para ver que alcanza su mínimo basta aplicar las siguientes ideas a -f.

Usaremos el método de bisección de intervalos. Definimos a_0=a y b_0=b. Suponiendo que ya definimos a_n y b_n, consideremos el punto medio m_n del intervalo [a_n,b_n].

  • Si algún x en [a_n,m_n] cumple que f(x)\geq f(y) para todo y\in [m_n,b_n], elegimos a_{n+1}=a_n y b_{n+1}=m_n.
  • En otro caso, para todo x en [a_n,m_n] tenemos algún y\in [m_n,b_n] que cumple f(x)<f(y) y elegimos a_{n+1}=m_n y b_{n+1}=b_n.

En cualquier caso, notemos que se cumple que «para cualquier x en el intervalo no elegido hay una y en el intervalo sí elegido tal que f(y)\geq f(x)«.

Como discutimos anteriormente, las sucesiones \{a_n\} y \{b_n\} convergen a un mismo límite d. Afirmamos que f(d)\geq f(x) para todo x en [a,b]. Si x=d, esto es claro. Si no, x\neq d y definimos x_0=x.

Vamos a definir recursivamente una sucesión \{x_n\} para la cual

    \[f(x_0)\leq f(x_1)\leq f(x_2)\leq f(x_3)\leq \ldots\]

mediante un proceso que haremos mientras x_n\neq d.

Ya que definimos x_n tal que x_n\neq d, notemos que d y x_n están en el mismo intervalo [a_0,b_0], pero como son distintos existe un primer m\geq 1 tal que en el intervalo [a_m,b_m] está d pero x_n no. Como es la menor m, sí están ambos en el intervalo [a_{m-1},b_{m-1}].

Por cómo definimos la elección de intervalos, hay un y en el intervalo [a_m,b_m] tal que f(y)\geq f(x_n). Si y=d, terminamos (por la cadena de desigualdades). Si no, definimos x_{n+1} como este y. Así, cuando el proceso se detiene, terminamos por la cadena de desigualdades. Si el proceso no se detiene, tenemos una sucesión infinita \{x_n\} que converge a d, de modo que f(d)=\lim{f(x_n)}\geq f(x_0)=f(x), pues cada término es mayor o igual a f(x_0). Esto muestra la desigualdad f(d)\geq f(x) que queríamos.

\square

Más problemas

Se pueden encontrar más problemas de este tema en la Sección 6.1 del libro Problem Solving through Problems de Loren Larson.