Archivo de la etiqueta: producto interior

Álgebra Lineal II: Proceso de Gram-Schmidt en espacios euclideanos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior recordamos algunas de las aplicaciones que pueden tener las bases ortogonales y ortonormales. Esto nos da la pista de que siempre es bueno intentar conseguir una base ortonormal. ¿Es esto siempre posible? En el primer curso de Álgebra Lineal vimos que si tenemos en espacio euclideano, entonces sí. Esto está explicado a detalle en la entrada del Proceso de Gram-Schmidt.

Esta entrada está escrita únicamente en formato de recordatorio. Enunciamos los resultados principales, pero las demostraciones y más ejemplos se encuentran en otras entradas.

Teorema de Gram-Schmidt

El teorema de Gram-Schmidt asegura que dado un conjunto de vectores linealmente independientes en un espacio vectorial real con un producto interior dado, podemos encontrar otros vectores que ahora sean ortonormales, que generen lo mismo y que además «apunten hacia un lado similar» a los vectores originales. Además, asegura que estos vectores son únicos. El resultado concreto es el siguiente.

Teorema. Sea $V$ un espacio vectorial real con producto interior $\langle \cdot, \cdot \rangle$. Sean $v_1,\ldots,v_d$ vectores linealmente independientes. Entonces, existen únicos vectores ortonormales $e_1,\ldots,e_d$ tales que para toda $k\in\{1,2,\ldots,d\}$ se tiene que $$\text{span}(e_1,\ldots,e_k)= \text{span}(v_1,\ldots,v_k)$$ y $\langle e_k, v_k \rangle >0$.

Muy a grandes rasgos, esta forma de escribir el teorema permite hacer inducción en $d$. Al pasar a un nuevo $d$, podemos usar hipótesis inductiva para construir $e_1,\ldots,e_{d-1}$. Así, sólo hay que ver cómo construir $e_d$ para que sea ortogonal a todos los anteriores y para que tenga norma $1$. Para encontra a un buen candidato, se debe poner a $e_d$ en términos de los $e_1,\ldots,e_{d-1}$ y $v_d$, y se debe suponer que cumple lo deseado. Al hacer algunos productos interiores esto nos dice que $e_d$ forzosamente se construye definiendo

$$f_d=v_d-\sum_{i=1}^{d-1}\langle v_d, e_i\rangle e_i$$

y tomando $e_d=\frac{f_d}{\norm{f_d}}$.

En los detalles de la prueba se ve que este $e_d$ en efecto cumple todo lo deseado.

Si estamos en un espacio euclideano, entonces tenemos una base finita. Podemos usar esta en la hipótesis del teorema de Gram-Schmidt para concluir lo siguiente.

Corolario. Todo espacio euclideano tiene una base ortonormal.

Algoritmo de Gram-Schmidt

La demostración del teorema de Gram-Schmidt a su vez da un algorimo para encontrar de manera explícita la base ortonormal buscada. Es un algoritmo que poco a poco va contruyendo los vectores. Supongamos que nos dan los vectores $v_1,\ldots,v_n$.

Para empezar, normalizamos $v_1$ para obtener $e_1=\frac{v_1}{\norm{v_1}}$. De aquí en adelante procedemos recursivamente. Si ya construimos $e_1,\ldots,e_k$, entonces podemos construir $e_{k+1}$ a través de la fórmula que pusimos, es decir, primero definimos

$$f_{k+1}=v_{k+1}-\sum_{i=1}^{k}\langle v_{k+1}, e_i\rangle e_i,$$

para luego tomar $e_{k+1}$ como la normalización de $f_{k+1}$, es decir, como $\frac{e_{k+1}}{\norm{e_{k+1}}.$ Seguimos de esta manera hasta terminar.

El siguiente diagrama da una idea un poco más visual de cómo vamos haciendo las operaciones. Comenzamos con los vectores $v_1,\ldots,v_d$ de la fila superior. Luego, vamos construyendo a los $e_i$ y $f_i$ en el orden indicado por las flechas: $e_1,f_2,e_2,\ldots,f_{d-1},e_{d-1},f_d,e_d$. Para construir un $f_i$ usamos la fórmula con productos interiores. Para construir el $e_i$ correspondiente, normalizamos.

Intuición geométrica

Ya tenemos el lenguaje para entender mucho mejor el proceso de Gram-Schmidt. Si te das cuenta, cuando tomamos $$f_{k+1}=v_{k+1}-\sum_{i=1}^{k}\langle v_{k+1}, e_i\rangle e_i$$ justamente estamos aprovechando la descomposición

$$v_{k+1}= \left(\sum_{i=1}^{k}\langle v_{k+1}\right)+ f_{k+1}$$

de $v_{k+1}$ como suma de un elemento en espacio generado por $e_1,\ldots, e_k$ y uno en su ortogonal. El elemento del espacio generado lo obtenemos a través de la fórmula que sale de la descomposición de Fourier que vimos en la entrada anterior. El hecho de que $f_{k+1}$ esté en el ortogonal es lo que hace que cada nuevo vector sea ortogonal a los anteriores. Al final hay que normalizar $f_{k+1}$ para que la base sea ortonormal y no sólo ortogonal. Habría dos formas de hacerlo. Una es tomar $\frac{f_{k+1}}{\norm{f_{k+1}}}$. La otra es tomar $-\frac{f_{k+1}}{\norm{f_{k+1}}}$. El producto escalar positivo que pedimos es lo que nos da la unicidad.

Ejemplo de aplicación del algoritmo de Gram-Schmidt

Hagamos un ejemplo muy sencillo. Será sólo de práctica y como recordatorio. Hay ejemplos más interesantes en la entrada Problemas de bases ortogonales, Fourier y proceso de Gram-Schmidt.

Es sencillo verificar que $\langle (a,b,c), (x,y,z)\rangle =4ax+3by+2cz$ es un producto interior en $\mathbb{R}^3$. Vamos a ortonormalizar la base $(1,1,1)$, $(0,1,1)$, $(0,0,1)$.

En la notación del algoritmo, tenemos entonces $v_1=(1,1,1)$, $v_2=(0,1,1)$ y $v_3=(0,0,1)$. El primer paso es tomar $e_1=\frac{v_1}{\norm{v_1}}$. La norma de $v_1$ con este producto interior es $\sqrt{4+3+2}=3$. De este modo, $e_1=\left(\frac{1}{3}, \frac{1}{3} , \frac{1}{3} \right)$.

Teniendo $e_1$, podemos definir $f_2$ con la fórmula dada:

\begin{align*}
f_2&=v_2-\langle v_2, e_1 \rangle e_1\\
&=(0,1,1)-\left(4\cdot 0\cdot \frac{1}{3}+3\cdot 1 \cdot \frac{1}{3} + 2 \cdot 1 \cdot \frac{1}{3}\right)\left(\frac{1}{3},\frac{1}{3},\frac{1}{3} \right)\\
&=(0,1,1)-\frac{5}{3} \left(\frac{1}{3},\frac{1}{3},\frac{1}{3} \right)\\
&=\left(-\frac{5}{9},\frac{4}{9},\frac{4}{9}\right).
\end{align*}

De aquí, debemos normalizar $f_2$. Su norma es $$\sqrt{ \frac{100}{81}+\frac{48}{81}+\frac{32}{81} } = \frac{\sqrt{180}}{9}=\frac{2\sqrt{5}}{3}=\frac{10}{3\sqrt{5}}.$$ De este modo, $$e_2=\left(-\frac{\sqrt{5}}{6},\frac{2\sqrt{5}}{15},\frac{2\sqrt{5}}{15}\right)$$

Teniendo $e_1$ y $e_2$, podemos definir $f_3$ con la fórmula dada:

\begin{align*}
f_3&=v_3-\langle v_3, e_1 \rangle e_1 – \langle v_3, e_2 \rangle e_2\\
&=(0,0,1)-\frac{2}{3} \left(\frac{1}{3}, \frac{1}{3} , \frac{1}{3} \right) – \frac{4\sqrt{5}}{15} \left(-\frac{\sqrt{5}}{6},\frac{2\sqrt{5}}{15},\frac{2\sqrt{5}}{15}\right)\\
&=(0,0,1)-\left(\frac{2}{9}, \frac{2}{9} , \frac{2}{9} \right)-\left(-\frac{2}{9},\frac{8}{45},\frac{8}{45}\right)\\
&=\left(0, -\frac{2}{5},\frac{3}{5}\right).
\end{align*}

De aquí, debemos normalizar $f_3$. Su norma es $$\sqrt{\frac{12}{25}+\frac{18}{25}}=\frac{\sqrt{6}}{\sqrt{5}}=\frac{6}{\sqrt{30}}.$$ De este modo, $$e_3=\left( 0, -\frac{\sqrt{30}}{15}, \frac{\sqrt{30}}{10}\right).$$

Hemos encontrado la base ortonormal buscada $e_1,e_2,e_3$.

$\square$

Más adelante…

Con esta entrada-recordatorio terminamos la segunda unidad del curso. A partir de ahora es importante que recuerdes que todo espacio euclideano tiene una base ortonormal. También es útil que recuerdes cómo se obtiene, así que asegúrate de practicar el proceso de Gram-Schmidt.

Todo lo que hemos mencionado tiene su análogo en espacios vectoriales sobre los complejos con un producto interior hermitiano. Asegúrate de entender las diferencias y de realizar los ejercicios que te permitirán entender los resultados correspondientes.

En la siguiente unidad desarrollaremos la teoría necesaria para poder enunciar y demostrar tanto el teorema espectral real, como el teorema espectral complejo.

Tarea moral

  1. Haz la demostración del teorema de Gram-Schmidt a partir del esquema comentado en la entrada. En caso de que se te dificulte, revisa los detalles en la entrada de blog correspondiente.
  2. Para verificar que todo esté en orden, verifica que los vectores $e_1,e_2,e_3$ del ejemplo en efecto son una base ortonormal con el producto interior dado.
  3. En el teorema de Gram-Schmidt, ¿es importante el orden en el que elijamos $v_1$ hasta $v_n$? ¿Cambia el conjunto resultante si cambiamos el orden? ¿Es conveniente tomar algún otro orden para simplificar las cuentas?
  4. Aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,1,1,1)\\ (0,1,1,1)\\ (0,0,1,1)\\ (0,0,0,1)\end{align*} en $\mathbb{R}^4$ con el producto interior canónico (el producto punto).
  5. Enuncia y demuestra un teorema de Gram-Schmidt para espacios vectoriales sobre $\mathbb{C}$ con un producto interior hermitiano. Obtén el corolario correspondiente para los espacios hermitianos. Aplica este proceso a los vectores $(1+i,1+i,1+i),(0,1+i,1+i),(0,0,1+i)$ de $\mathbb{C}^3$ con el producto hermitiano canónico para obtener una base ortonormal.

Entradas relacionadas

Álgebra Lineal II: Espacios hermitianos y bases ortogonales complejas

Por Diego Ligani Rodríguez Trejo

En la entrada anterior nos dedicamos a revisar una serie de resultados relacionados con bases ortogonales, ortonormales y el proceso de Gram-Schmidt, como ya habrás notado la forma de operar de este curso indica que terminemos revisando estos conceptos aplicados a espacios vectoriales complejos, veremos rápidamente las demostraciones que sean idénticas al caso real para enfocarnos un poco más a las que tengan cambios importantes.

Como es de esperarse de la entrada final, juntaremos la gran parte de los conceptos vistos en esta unidad y los resultados vistos en las últimas dos entradas, pero ahora enfocándonos en espacios hermitianos, de los que daremos también su definición.

Bases ortonormales complejas

Definición

Sea $V$ un espacio vectorial complejo, diremos que $V$ es un espacio hermitiano si $V$ es de dimensión finita y con un producto interno hermitiano $\langle , \rangle$, es decir, una forma sesquilineal hermitiana $\langle , \rangle : V \times V \rightarrow \mathbb{C}$ tal que $\langle x, x \rangle > 0$ para cualquier vector $x$ no cero.

Con esto diremos que dos vectores son ortogonales en $V$ si $\langle x, y \rangle =0$-

Las definiciones de familia y base ortogonal/ortonormal son análogas al caso real.

En adelante consideremos a $V$ un espacio hermitiano.

Ejemplo

Si $V= \mathbb{C}^n$ su base canónica $\{ e_1, \cdots , e_n \}$ es una base ortonormal y $\{ 2e_1, \cdots , 2e_n \}$ es una base ortogonal. Además, con el producto interno canónico
\begin{align*} \langle x, y \rangle= \sum_{i=1}^n\overline{x_i}y_i\end{align*}
V es un espacio hermitiano.

Como en la entrada anterior, nuestra primera proposición será:

Proposición

Sea $V$, cualquier familia ortogonal $(v_i)_{i \in I} \subseteq V$ de vectores no cero es linealmente independiente.

Demostración

Sean $\{v_1, \cdots , v_n\}$ y $\{\alpha_1, \cdots , \alpha_n\}$ tal que
\begin{align*} 0=v=\sum_{i=1}^n \alpha_nv_n\end{align*}
Tomando $j$ tal que $1 \leq j \leq n$, calculando $\langle v, v_j \rangle$ tenemos que esto es $0$ ya que $v=0$ además utilizando la linealidad conjugada en la primera entrada
tenemos que
\begin{align*}0=\langle v, v_j \rangle=\sum_{i=1}^n \overline{\alpha_i}\langle v_i, v_j \rangle \end{align*}
Notemos que por la ortogonalidad $\langle v_i, v_j \rangle=0$ excepto cuando $i=j$, utilizando esto
\begin{align*}0=\langle v, v_j \rangle= \overline{\alpha_j}\langle v_j, v_j \rangle \end{align*}
Además, sabemos que $\langle v_j, v_j \rangle > 0$ por como definimos el producto interno, en particular esto implica que $\langle v_j, v_j \rangle \neq 0$ por lo que
\begin{align*} \overline{\alpha_j} = 0 \end{align*}
Lo que implica a su vez que $\alpha_j=0$, repitiendo este proceso para cada $\alpha_i$ obtendremos la independencia lineal.

$\square$

Más aún, si $n=dim(V)$ y tenemos $\beta$ una familia ortonormal de $n$ vectores no nulos contenida en $V$ esta es linealmente independiente, lo que a su vez implica que es una base de $V$, incluso más, como $\beta$ ya era ortonormal tenemos que $\beta$ es una base ortonormal.

Un par de detalles que es importante notar, este resultado no nos asegura la existencia de una base ortonormal en algún espacio, simplemente nos brinda un camino para encontrarla (encontrar un conjunto de vectores ortonormales con $dim(V)$ elementos).

Proposición

Sea $V$, $\beta = \{u_1, \cdots , u_n\} $ una base ortonormal y $x=\sum_{i=1}^nu_ix_i$, $y=\sum_{i=1}^nu_iy_i$ dos vectores en $V$, prueba que
\begin{align*} \langle x,y \rangle =\sum_{i=1}^n\overline{x_i}y_i. \end{align*}
Demostración
Calculemos directamente $\langle x,y \rangle$,
\begin{align*} \langle x,y \rangle =\langle \sum_{i=1}^n x_iu_i, y \rangle \end{align*}
Utilizando que $\langle , \rangle$ es lineal conjugada en la primera entrada
\begin{align*} \langle x,y \rangle =\sum_{i=1}^n \overline{x_i} \langle u_i, y \rangle \end{align*}
Haciendo un proceso análogo en la segunda entrada
\begin{align*} \langle x,y \rangle =\sum_{i,j=1}^n \overline{x_i}y_j \langle u_i, u_j \rangle \end{align*}
Ahora, utilizando la ortogonalidad, el producto $\langle u_i, u_j \rangle$ será cero excepto cuando $i=j$ por lo que
\begin{align*} \langle x,y \rangle =\sum_{i=1}^n \overline{x_i}y_i \langle u_i, u_i \rangle \end{align*}
Finalmente, utilizando la normalidad, tenemos que $\langle u_i, u_i \rangle=||u_i||^2=1 $ por lo tanto
\begin{align*} \langle x,y \rangle =\sum_{i=1}^n \overline{x_i}y_i. \end{align*}

$\square$

Este último resultado es una motivación más para encontrar bases ortonormales, así enfoquémonos en esa búsqueda, siguiendo el camino del caso real, demos un análogo al teorema de Gram-Schmidt.

Proposición (Teorema de Gram-Schmidt)

Sean $v_1,v_2,\cdots,v_d$ vectores linealmente independientes en $V$ un espacio vectorial complejo (no necesariamente de dimensión finita), con producto interior $\langle \cdot , \cdot \rangle$. Existe una única familia de vectores ortonormales $e_1,e_2,\ldots,e_d$ en $V$ tales que para todo $k=1,2, \ldots, d$
\begin{align*} span(e_1,e_2,\cdots,e_k)&=span(v_1,v_2,\cdots,v_k). \end{align*}
La demostración detallada la puedes encontrar aquí (Proceso de Gram-Schmidt) por lo que no la revisaremos, algo que si vale la pena observar es que el teorema tiene dos diferencias con la versión anterior.

Primero, nuestra versión está escrita para un espacio vectorial complejo, pero para nuestra suerte la demostración anterior no requiere ninguna propiedad de los números reales que no posean los complejos, también una gran diferencia es que nuestra versión puede parecer un tanto más débil al remover que $\langle e_k,v_k \rangle > 0$ para cualquier $k \in \{1, \cdots, d\}$, esto sucede debido a que no podemos traspasar el mismo orden que teníamos en los reales al conjunto de los complejos que recordemos es el contradominio de $\langle , \rangle$.

Mencionando esto vale la pena preguntar, ¿Por qué cuando se definió espacio hermitiano hablamos de orden entonces? ¿Podrías dar una versión de este teorema únicamente para espacios hermitianos donde aún tengamos que $\langle e_k,v_k \rangle > 0$ para cualquier $k \in \{1, \cdots, d\}$?

Concluyamos esta sección con uno de los resultados más importantes y que curiosamente será nada más que un corolario.

Proposición

Todo espacio hermitiano tiene una base ortonormal.

Bases ortonormales y ortogonalidad

Empecemos revisando que si tomamos un conjunto ortonormal podemos obtener una base ortonormal a partir de este.

Proposición

Sea $\beta$ una familia ortonormal del $V$ esta puede ser completada a una base ortonormal de $V$.

Demostración

Ya que $\beta$ es una familia ortonormal, en particular es ortogonal, esto nos asegura por la primer proposición de esta entrada que es linealmente independiente, sabemos que $span(\beta) \subset V$ (si fueran iguales entonces $\beta$ ya sería una base ortonormal por lo que no sería necesario completarla) de esta manera sabemos que existe $x \in V$ tal que $x \in V \setminus span(\beta)$ a su vez esto sucede si y solo si $\beta_1= \{x\} \cup \beta$ es linealmente independiente.

Nuevamente, si $V \setminus \beta_1 = \emptyset$ tenemos entonces que $\beta_1$ ya es una base, finalmente el proceso de Gram-Schmidt nos arroja una base ortonormal $\beta_1’$y eligiendo a $x$ como el último vector a ortonormalizar nos asegura que el proceso no afectará a los vectores de $\beta$ ya que estos ya eran ortonormales desde el principio, con esto $\beta_1’$ es la completación que buscábamos.

Si en cambio tenemos que existe $y \in V \setminus \beta_1$ ortonormalicemos como arriba y repitamos el proceso, nombrando $\beta_2=\{y\} \cup \beta_1$.

Notemos que este proceso es finito, ya que lo tendremos que repetir a lo más $dim(V)-|\beta|$ veces, ya que al hacerlo terminaríamos encontrando un conjunto ortonormal con $dim(V)$ vectores, lo que sabemos que es una base de $V$.

De esta manera, repitiendo este proceso la cantidad necesaria de veces, tenemos que $\beta_k’$ es la completación buscada (con $k=dim(V)-|\beta|$).

$\square$

Cabe observar que, con un par de argumentos extra (como garantizar la existencia de algún conjunto ortonormal), esta proposición sirve para probar el corolario previo.

Finalicemos con un resultado acerca de ortogonalidad.

Proposición

Sea $W$ un subespacio de $V$ y $\{w_1, \cdots, w_k \}$ una base ortonormal de este entonces
\begin{align*} W \oplus W^{\perp} =V. \end{align*}
Demostración

Comencemos tomando a $\{w_1, \cdots, w_k \}$ que sabemos es un conjunto ortonormal, por la proposición anterior tenemos que este puede ser completado a una base ortonormal de $V$ sea esta $\{w_1, \cdots, w_k, \cdots w_n \}$ y dada esta tenemos que para cualquier $v \in V$
\begin{align*} v= \sum_{i=1}^nv_iw_i.\end{align*}
Por otro lado, definamos la siguiente función $P: V \rightarrow V$ como sigue
\begin{align*} P(v)= \sum_{j=1}^k\langle v, w_j \rangle w_j \end{align*}
Primero probemos que $P(v) \in W$ para todo $v \in V$, para esto fijemos a $j$ y veamos que pasa con $\langle v, w_j \rangle w_j$. Por lo discutido en el párrafo anterior sabemos que $v= \sum_{i=1}^nv_iw_i$ así
\begin{align*}\langle v, w_j \rangle w_j = \langle \sum_{i=1}^nv_iw_i , w_j \rangle w_j \end{align*}
Utilizando la linealidad en la primer entrada tenemos que
\begin{align*}\langle v, w_j \rangle w_j = \sum_{i=1}^n \overline{v_i} \langle w_i , w_j \rangle w_j \end{align*}
Más aún recordar que $\{w_1, \cdots, w_k, \cdots w_n \}$ es ortonormal nos arroja que $\langle w_i, w_j \rangle =0 $ si $i \neq j$ y $\langle w_i, w_j \rangle =1 $ en caso contrario, por lo que
\begin{align*}\langle v, w_j \rangle w_j = \overline{v_j} w_j \end{align*}
Con esto, sustituyendo en $P(v)$
\begin{align*} P(v)= \sum_{j=1}^k v_j w_j \end{align*}
Que notemos es una combinación lineal de $\{w_1, \cdots, w_k \}$ por lo que es un elemento de $W$-

Continuando un poco aparte, veamos que sucede con $\langle w_j, v-P(v)\rangle $ para cualquier $w_j \in \{w_1, \cdots, w_k \}$ y cualquier $v \in V$
\begin{align*} \langle w_j, v-P(v)\rangle = \langle w_j, v \rangle – \langle w_j, P(v)\rangle \end{align*}
Utilizando lo hecho arriba, tenemos que
\begin{align*} \langle w_j, v-P(v)\rangle = \langle w_j, \sum_{i=1}^nw_iv_i \rangle – \langle w_j, \sum_{j=1}^kw_jv_j\rangle \end{align*}
De nuevo utilizando la ortonormalidad en ambos productos concluimos que
\begin{align*} \langle w_j, v-P(v)\rangle = v_j – v_j =0. \end{align*}
Por lo que $v-P(v)$ es ortogonal a cada $w_j \in \{w_1, \cdots, w_k \}$ lo que a su vez nos arroja que $v-P(v) \in W^{\perp}$ ya que al ser ortogonal a toto $w_j \in \{w_1, \cdots, w_k \}$, entonces $v-P(v)$ es ortogonal a todo elemento de $W$.
Finalmente, tenemos que para cualquier $v \in V$
\begin{align*} v= P(v) + ( v- P(v) )\end{align*}
Con $P(v) \in W $ y $v- P(v) \in W^{\perp}$ de donde se sigue que
\begin{align*} V = W + W^{\perp}. \end{align*}
Más aún en entradas anteriores hemos mostrado que $W \cap W^{\perp} = \{0\}$.

Por lo tanto
\begin{align*} V = W \oplus W^{\perp}. \end{align*}

$\square$

Más adelante

Finalmente con esta entrada concluimos la segunda unidad de nuestro curso, podemos ver que el análisis de formas bilineales y cuadráticas y sus análogos complejos, formas sesquilineales y hermitianas dio paso a una gran cantidad de teoría bastante interesante y en particular da origen a un tema sumamente importante que es el producto interno y esto a su vez nos permitió generalizar propiedades que ya teníamos esta vez a espacios vectoriales complejos.

Sin embargo, algo en lo que no abundamos fue el comportamiento de matrices adjuntas ( transpuestas conjugadas ) ni en el comportamiento de sus matrices asociadas, de esto nos encargaremos en la siguiente entrada, que a su vez es el inicio de la siguiente unidad en este curso.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Con la notación de la segunda proposición, demuestra que
    \begin{align*} ||x||^2 = \sum_{i=1}^n |x_i|^2.\end{align*}
  2. Por que al definir espacio hermitiano mencionamos $\langle x,x \rangle >0$ si aunque $\langle x,x \rangle \in \mathbb{C}$.
  3. Escribe con todo detalle la prueba del teorema de Gram-Schmidt y el algoritmo para espacios vectoriales complejos.
  4. Sea $\mathbb{C}^3$ un espacio vectorial sobre $\mathbb{C}$ con el producto interno canónico, prueba que es un espacio hermitiano y aplica el proceso de Gram-Schmidt al conjunto $\{ (i, 0, 1), (-1, i, 1), (0, -1, i+1) \}$.
  5. En otra literatura podrías encontrar forma sesquilineal definida de manera que la primera entrada es lineal y la segunda debe ser lineal conjugada, ¿Esto afecta los resultados obtenidos en esta unidad? ¿Podrías desarrollar la misma teoría utilizando esta definición alterna?

Entradas relacionadas

Álgebra Lineal II: Dualidad y representación de Riesz en espacios euclideanos

Por Diego Ligani Rodríguez Trejo

Introducción

En Álgebra Lineal I introdujimos el concepto de espacio dual. A grandes rasgos, era un espacio vectorial en donde estaban todas las formas lineales de un espacio hacia el campo en donde estaba definido. Por otro lado, en entradas recientes hicimos un recordatorio de qué era un producto interior. Lo que haremos ahora es relacionar ambos conceptos. Esta relación no debería ser tan inesperada, pues finalmente un producto interior es una forma bilineal, y al fijar una entrada de una forma bilineal obtenemos una forma lineal.

Lo primero que haremos es ver cómo conectar la matiz que representa a una forma bilineal con una matriz que envía vectores a formas lineales. Después, veremos una versión particular de un resultado profundo: el teorema de representación de Riesz. Veremos que, en espacios euclideanos, toda forma lineal se puede pensar «como hacer producto interior con algún vector».

Nos enfocaremos únicamente a los resultados en el caso lineal. Los casos en el caso complejo son muy parecidos, y se exploran en los ejercicios.

La matriz de una transformación que «crea» formas lineales

Sea $V$ un espacio vectorial real con una forma bilineal $b$. A partir de $b$ podemos construir muchas formas lineales, a través de la función $\varphi_b:V\to V^\ast$ que asigna a cada vector $y$ de $V$ a la forma lineal $\varphi_b(y):=b(\cdot,y)$.

Podemos pensar a $\varphi_b$ como «una maquinita que genera formas lineales» que depende del vector $b$. Claramente $\varphi_b(y)$ es lineal, pues $b$ es lineal en su primera entrada. Y también claramente $\varphi_b$ es lineal, pues $b$ es lineal en su segunda entrada. En cierto sentido, la matriz correspondiente a la forma bilineal $b$ coincide con la matriz correspondiente a $\varphi_b$.

Proposición. Sea $\beta$ una base de un espacio vectorial $V$ de dimensión finita sobre los reales. Sea $\beta^\ast$ su base dual. Tomemos $b$ una forma bilineal en $V$. La matriz de $\varphi_b$ con respecto a las bases $\beta$ y $\beta’$ es igual a la matriz de $b$ con respecto a la base $\beta$.

Demostración. Llamemos a los elementos de la base $\beta$ como $u_1,\ldots,u_n$ y a los de la base $\beta^ \ast$ como $l_1,\ldots,l_n$. Para encontrar la $j$-ésima columna de la matriz de $\varphi_b$ con respecto a $\beta$ y $\beta^\ast$, debemos expresar a cada $\varphi_b(u_j)$ como combinación lineal de los elementos $l_1,\ldots,l_n$. Para hacer esto, es más sencillo ver cómo es $\varphi_b(u_j)(x)$ para cada $x\in V$ y usar que los $l_i$ «leen» las coordenadas en la base $\beta$.

Para ello, tomemos $x=\sum_{i=1}^nu_ix_i$. Tenemos lo siguiente:

\begin{align*}
\varphi_b(u_j)(x)&=b(\sum_{i=1}^nu_ix_i,u_j)\\
&= \sum_{i=1}^nx_ib(u_i,u_j)\\
&= \sum_{i=1}^n l_i(x) b(u_i,u_j).
\end{align*}

Como esto sucede para cada vector $x$, tenemos entonces que $$\varphi_b(u_j)=\sum_{i=1}^n b(u_i,u_j) l_i.$$

Pero esto es justo lo que queremos. Las entradas de la $j$-ésima columna de la matriz que representa a $\varphi_b$ son entonces los coeficientes $b(u_1,u_j),b(u_2,u_j),\ldots,b(u_n,u_j)$. Pero esas son justo las entradas de la $j$-ésima columna de la matriz que representa a $b$ en la base $\beta$.

$\square$

Teorema de representación de Riesz

La sección anterior explica cómo de una forma bilineal $b$ podemos obtener una «máquinita» que genera formas lineales $\varphi_b$. Si $b$ es mucho más especial (un producto interior), entonces esta maquinita es «más potente», en el sentido de que puede generar cualquier forma lineal del espacio. A este resultado se le conoce como el teorema de representación de Riesz. Aunque sus versiones más generales incluyen ciertos espacios de dimensión infinita, y el enunciado dice algo más general, en este curso nos limitaremos a enunciar y demostrar la versión en espacios vectoriales de dimensión finita.

Teorema (teorema de representación de Riesz). Sea $V$ un espacio euclidiano con producto interno $\langle \cdot, \cdot \rangle$. La función $\varphi_{\langle \cdot, \cdot \rangle}: V \rightarrow V^\ast$ es un isomorfismo.

Demostración. Debemos probar que $\varphi_{\langle \cdot, \cdot \rangle}$ es una transformación lineal biyectiva hacia $V^\ast$. Como mencionamos en la sección anterior, cada $\varphi_{\langle \cdot, \cdot \rangle}(y)$ es una forma lineal pues el producto interior es lineal en su primera entrada. Además, $\varphi_{\langle \cdot, \cdot \rangle}$ es una transformación lineal pues el producto interior es lineal en su segunda entrada.

Por los resultados que se vieron en el curso de Álgebra Lineal I, se tiene que $\dim V = \dim V^\ast$. De esta manera, basta ver que $\varphi_{\langle\cdot,\cdot \rangle}$ es inyectiva. Y para ello, basta ver que el único vector $y$ tal que $\varphi_{\langle \cdot, \cdot \rangle}(y)$ es la forma lineal cero es $y=0$.

Supongamos entonces que $\varphi_{\langle \cdot, \cdot \rangle}(y)$ es la forma lineal cero. Si este es el caso, entonces para cualquier $x$ en $V$ tendríamos que $\langle x, y \rangle = 0$. En particular, esto sería cierto para $x=y$, de modo que $\langle y, y \rangle =0$. Pero como el producto interior es positivo definido, esto implica que $y=0$.

Esto muestra que $\varphi_{\langle \cdot, \cdot \rangle}$ es inyectiva. Como es transformación lineal entre espacios de la misma dimensión, entonces es biyectiva.

$\square$

Ejemplo de representación de Riesz

Las operaciones que se hacen para calcular una forma lineal no siempre son sencillas. Lo que nos dice el teorema de representación de Riesz es que podemos tomar un «vector representante» de una forma lineal para que evaluarla corresponda «simplemente» a hacer un producto interior. Si es fácil hacer ese producto interior, entonces podemos simplificar la evaluación de la forma lineal.

Ejemplo. Tomemos $V$ el espacio vectorial de polinomios con coeficientes reales y grado a lo más $2$. Hemos visto con anterioridad que $\langle \cdot, \cdot \rangle: V\times V \to \mathbb{R}$ dado por: $$\langle p, q \rangle = p(0)q(0)+p(1)q(1)+p(2)q(2) $$ es un producto interior.

Hemos visto también que $I:V\to \mathbb{R}$ dada por $I(p)=\int_0^1 p(x)\, dx$ es una forma lineal. El teorema de representación de Riesz nos garantiza que $I$, que es una integral definida, debería poder de «representarse» como el producto interior con un polinomio especial $q$. Esto parecen ser buenas noticias: para $I(p)$ necesitamos hacer una integral. Para hacer el producto interior, sólo son unas multiplicaciones y sumas.

El polinomio «mágico» que funciona en este caso es el polinomio $q(x)=-\frac{x^2}{2}+\frac{3}{4}x+\frac{5}{12}$. Puedes verificar que:

\begin{align*}
q(0)&=\frac{5}{12}\\
q(1)&=\frac{2}{3}\\
q(2)&=-\frac{1}{12}.
\end{align*}

De esta manera, si hacemos el producto interior con cualquier otro polinomio $p(x)=ax^2+bx+c$ obtenemos:

\begin{align*}
\langle p, q \rangle &= p(0)q(0) + p(1)q(1)+p(2)q(2)\\
&= c\cdot \frac{5}{12} + (a+b+c)\cdot \frac{2}{3} + (4a+2b+c) \cdot \left(-\frac{1}{12}\right)\\
&=\frac{a}{3}+\frac{b}{2}+c.
\end{align*}

Si por otro lado hacemos la integral, obtenemos:

\begin{align*}
\int_0^1 ax^2 + bx + c \, dx &= \left. \left(\frac{ax^3}{3}+\frac{bx^2}{2}+cx \right)\right|_0^1\\
&=\frac{a}{3}+\frac{b}{2}+c.
\end{align*}

En ambos casos se obtiene lo mismo.

$\square$

Se podría tener una discusión más profunda para explicar cómo se obtuvo el polinomio $q$ del ejemplo anterior. Sin embargo, dejaremos la experimentación de esto para los ejercicios. Por ahora, la mayor ventaja que le encontraremos al teorema de representación de Riesz es la garantía teórica de que dicho vector que representa a una forma lineal dado un producto interior siempre existe en los espacios euclideanos.

Más adelante…

Hemos enunciado y demostrado una versión del teorema de Riesz para espacios euclieanos. Este teorema tiene versiones más generales en el contexto de espacios de Hilbert. Así mismo, una versión más extensa del teorema de Riesz nos dice cómo es la norma del vector que representa a un producto interior. Estos resultados son muy interesantes, pero quedan fuera del alcance de este curso. Es posible que los estudies si llevas un curso de análisis funcional.

Un poco más adelante, en la Unidad 3, usaremos el teorema de representación de Riesz para definir a las transformaciones adjuntas, a las simétricas y a las ortogonales. Por ahora, nos enfocaremos en estudiar más definiciones y propiedades en espacios euclideanos. La siguiente definición que repasaremos es la de ortogonalidad para vectores y para espacios vectoriales. Es un concepto que se estudia por encima en Álgebra Lineal I, pero ahora tenemos herramientas para poder decir más.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. ¿Podemos definir a $\varphi_b: V \rightarrow V^*$ en la otra entrada? Es decir, como la función tal que $\varphi_b(x)=b(x,\cdot)$? Si hacemos esto, ¿cambian en algo los resultados que vimos?
  2. Considera el espacio vectorial de matrices en $M_n(\mathbb{R})$. Anteriormente vimos que $b(A,B)=\text{tr}(\text{ }^t A B)$ es un producto interior y que sacar traza es una forma lineal. De acuerdo al teorema de representación de Riesz, debe haber una matriz $T$ que representa a la traza, es decir, tal que $\text{tr}(A)=b(A,T)$. ¿Quién es esta matriz $T$? Ahora, si tomamos la transformación que manda una matriz $A$ a la suma de las entradas en su antidiagonal, esto también es una forma lineal. ¿Quién es la matriz que representa a esta forma lineal con el producto interior dado?
  3. Enuncia y demuestra un teorema de igualdad de formas matriciales para el caso de formas sesquilineales. ¿Necesitas alguna hipótesis adicional?
  4. Enuncia y demuestra un teorema de representación de Riesz para espacios hermitianos. Deberás tener cuidado, pues el vector que representa a una forma lineal tendrá que estar en la coordenada que conjuga escalares. ¿Por qué?
  5. ¿Será cierto el teorema de representación de Riesz si la forma bilineal no es un producto interior? Identifica dónde falla la prueba que dimos. Luego, construye un contraejemplo para ver que la hipótesis de que $b$ sea positiva definida es fundamental. Es decir, encuentra un espacio vectorial $V$ real con una forma bilineal simétrica y positiva $b$, en donde exista una forma lineal $l$ tal que sea imposible encontrar un vector $y$ tal que para todo $x$ en $V$ se tenga que $l(x)=b(x,y)$. Sugerencia. Parace que hay muchos cuantificadores. Intenta dar un contraejemplo lo más sencillo posible, por ejemplo, en $\mathbb{R}^2$.

Entradas relacionadas

Álgebra Lineal II: Espacios euclideanos y espacios hermitianos

Por Diego Ligani Rodríguez Trejo

Introducción

Hasta ahora hemos hablado de las formas bilineales, las formas bilineales simétricas, las formas cuadráticas y todos sus análogos complejos. Vimos también cómo podemos representar mediante matrices a estas formas.

Una de las aplicaciones más últiles de estos conceptos es que nos permitirán hablar de espacios vectoriales «con geometría». Este concepto ya lo exploramos en el primer curso de Álgebra Lineal, cuando hablamos de producto interior y de espacios euclideanos.

Por un lado, en esta entrada haremos un breve recordatorio de estos temas. Por otro lado, hablaremos de cómo dar los análogos complejos. Esto nos llevará al concepto de espacios hermitianos.

Un acuerdo sobre el mundo real y complejo

Como hemos visto anteriormente, los resultados relacionados con formas bilineales tienen frecuentemente sus análogos en el mundo complejo. A veces hay algunas diferencias importantes, pero la mayoría de los casos son mínimas. Por esta razón, a partir de ahora dejaremos varias de las demostraciones de los casos complejos como ejercicios. En caso de ser necesario, haremos el énfasis pertinente en las diferencias entre el caso real y el complejo.

Formas positivas

Para poder «tener geometría» en un espacio vectorial, es necesario que tenga una forma bilineal un poco más especial que las que hemos estudiado. En el caso real requerimos lo siguiente.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Tomemos una forma bilineal $b: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

En el caso complejo hay que ser un poco más cuidadosos. Si $\varphi$ es una forma sesquilineal, podría suceder que $\varphi(x,x)$ no sea un número real y entonces no pueda establecerse una desigualdad entre $\varphi(x,x)$ y $0$. Sin embargo, bajo la hipótesis adicional de que $\varphi$ sea hermitiana, vimos que $\varphi(x,x)$ sí es real.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$. Tomemos una forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{R}$.

  • Diremos que $\varphi$ es positiva si $\varphi(x,x)\geq 0$ para todo $x\in V$.
  • Diremos que $\varphi$ es positiva definida si $\varphi(x,x)>0$ para todo $x\in V$ con $x\neq 0$.

Adicionalmente, diremos que una forma cuadrática de un espacio vectorial sobre $\mathbb{R}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida). Y diremos que una forma cuadrática hermitiana de un espacio vectorial sobre $\mathbb{C}$ es positiva (resp. positiva definida) si su forma polar es positiva (resp. positiva definida).

Desigualdades de Cauchy-Schwarz real y compleja

Una de las consecuencias de tener formas positivas es que se cumple una desigualdad entre las evaluaciones de una forma cuadrática (o cuadrática hermitiana) y su forma polar. A continuación enunciamos la versión real que demostramos en el primer curso.

Teorema (desigualdad de Cauchy-Schwarz real). Sea $q: V \rightarrow \mathbb{R}$ una forma cuadrática y $b$ su forma polar.

  • Si $b$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} b(x,y)^2 \leq q(x)q(y). \end{align*}
  • Más aún, si $b$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

La versión compleja es casi análoga, pero hay que tener el cuidado de usar la norma al evaluar la forma sesquilineal para obtener un número real que podamos comparar con otro.

Teorema (desigualdad de Cauchy-Schwarz compleja). Sea $\Phi: V \rightarrow \mathbb{R}$ una forma cuadrática hermitiana y $\varphi$ su forma polar.

  • Si $\varphi$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} |\varphi(x,y)|^2 \leq \Phi(x)\Phi(y). \end{align*}
  • Más aún, si $\varphi$ es positiva definida, entonces la igualdad del inciso anterior se da si y sólo si $x$ y $y$ son linealmente dependientes.

$\square$

La demostración es muy parecida a la del caso real, y queda como ejercicio.

Espacios euclideanos y hermitianos

La sección anterior da la pista de que hay sutiles diferencias entre tener formas positivas y positivas definidas. La noción de que una forma sea positiva definida es más restrictiva, y por ello deberíamos esperar que un espacio vectorial (real o complejo) con una forma positiva definida tenga más propiedades.

Definición. Un producto interior para un espacio vectorial $V$ sobre los reales es una forma bilineal, simétrica y positiva definida.

Definición. Un producto interior hermitiano para un espacio vectorial $V$ sobre los complejos es una forma sesquilineal, hermitiana y positiva definida.

Típicamente se usa una notación especial para los productos interiores (o interiores hermitianos). En vez de referirnos a ellos con expresiones del estilo $b(x,y)$ (o $\varphi(x,y)$), más bien usamos expresiones del estilo $\langle x, y \rangle$. Cuando no queremos poner los argumentos, usualmente dejamos sólo unos puntos, así: $\langle \cdot, \cdot \rangle$.

Si el espacio vectorial además tiene dimensión finita, entonces estamos en un tipo de espacios muy especiales, en los que podremos probar varios resultados. Estos espacios son tan especiales que tienen su propio nombre.

Definición. Un espacio euclideano es un espacio vectorial sobre $\mathbb{R}$, de dimensión finita, y con un producto interior $\langle \cdot, \cdot \rangle$.

Definición. Un espacio hermitiano es un espacio vectorial sobre $\mathbb{C}$, de dimensión finita, y con un producto interior hermitiano $\langle \cdot, \cdot \rangle$.

Ejemplo. Tomemos $\mathbb{C}^n$ y la función $\langle \cdot, \cdot \rangle: \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ dada por $$ \langle x, y\rangle = \sum_{i=1}^n \overline{x_i}y_i.$$

Se puede verificar que $\langle \cdot, \cdot \rangle$ es una forma sesquilineal, hermitiana y positiva definida. De este modo, $\mathbb{C}^n$ con este producto interior hermitiano es un espacio hermitiano.

$\square$

Normas, distancias y ángulos

Si tenemos un espacio vectorial con producto interior (o producto interior hermitiano), entonces ahora sí podemos introducir varias nociones geométricas: la de norma, la de distancia y la de ángulos. Además, estas nociones tendrán las propiedades geométricas que esperamos.

En las siguientes definiciones tenemos que $V$ es un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$.

Definición. Para $x\in V$, definimos la norma de $x$ como $$\norm{x}:=\sqrt{\langle x,x \rangle}.$$

Definición. Para $x, y\in V$, definimos la distancia de $x$ a $y$ como $$d(x,y):=\norm{x-y}.$$

Definición. Para $x, y\in V$, definimos el ángulo entre $x$ y $y$ como $$\text{ang}(x,y)=\cos^{-1}\left(\frac{|\langle x,y\rangle|}{\norm{x}\norm{y}}\right).$$

En esta última definición, las barras indican el valor absoluto en el caso real y la norma en el caso complejo. Observa que implícitamente estamos usando la desigualdad de Cauchy-Schwarz para asegurarnos de que el argumento de $\cos^{-1}$ en efecto es un número entre $0$ y $1$.

A continuación tenemos dos proposiciones clave que nos dicen que la norma y la distancia que definimos sí tienen todas las propiedades «que deben tener» una norma y una distancia.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entonces, la función norma $\norm{\cdot}:V\to \mathbb{R}$ cumple lo siguiente:

  • Para todo $x\in V$, se tiene que $\norm{x}$ es un número real, con $\norm{x}\geq 0$ y $\norm{x}=0$ si y sólo si $x=0$.
  • Para todo $x\in V$ y $c$ en $\mathbb{R}$ (o $\mathbb{C}$), se tiene que $\norm{cx}=|c|\norm{x}$.
  • Desigualdad del triángulo. Para cualesquiera $x,y \in V$, se tiene que $$\norm{x+y}\leq \norm{x}+\norm{y}.$$

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ (o sobre $\mathbb{C}$) con un producto interior (o producto interior hermitiano, respectivamente) $\langle \cdot, \cdot \rangle$. Entones, la función distancia $d:V\times V \to \mathbb{R}$ cumple lo siguiente:

  • Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)$ es un número real, con $d(x,y)\geq 0$ y $d(x,y)=0$ si y sólo si $x=y$.
  • Simetría. Para cualesquiera $x,y$ en $V$, se tiene que $d(x,y)=d(y,x)$.
  • Desigualdad del triángulo. Para cualesquiera $x,y,z \in V$, se tiene que $$d(x,z)\leq d(x,y)+d(y,z).$$

La última proposición puede también resumirse como que $V$ con la función $d$ es un espacio métrico. Una métrica en un conjunto permite establecer una topología. Así, en un espacio con producto interior (o producto interior hermitiano), es posible establecer nociones de continuidad, convergencia, cálculo, etc. Es interesante saber que se pueden tomar estos caminos, pero queda fuera de los alcances de nuestro curso.

Más adelante…

Con esto concluimos nuestro pequeño repaso de producto interior y espacios euclideanos. Así mismo, con esto establecemos las bases de los productos interiores hermitianos y de los espacios hermitianos. Como puedes ver, ambas nociones están muy relacionadas entre sí. Los conceptos de norma y distancia dan pie a un sin fin de teoría muy interesante. Es útil poder llegar a ellos desde un enfoque puramente algebraico, y nos muestra el poder que tiene este campo de estudio.

¿Cómo se ven las nociones de positividad y positividad definida en términos de matrices? Esto es algo que estudiaremos en la siguiente entrada.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{R}^3$ espacio vectorial sobre $\mathbb{R}$ y definamos $q: V \rightarrow \mathbb{R}$ como sigue:
    \begin{align*} q(x,y,z)= x^2+y^2+z^2-xy-yz-xz. \end{align*}
    ¿Es $q$ positiva? ¿Es positiva definida?
  2. Sea $n$ un entero positivo y $V$ el espacio de polinomios con coeficientes reales cuyos grados no excedan $n$. Prueba que
    \begin{align*} \langle P, Q\rangle :=\sum_{i=0}^nP(i)Q(i) \end{align*}
    es un producto interno en $V$. ¿Cómo construirías un producto interno hermitiano análogo en el caso de $W$ el espacio de polinomios con coeficientes complejos cuyos grados no excedan $n$?
  3. Revisa la demostración de la desigualdad de Cauchy-Schwarz en los espacios reales. Usa esto para dar una demostración para la versión análoga compleja. Recuerda también demostrar cuándo se da la igualdad si el producto interno hermitiano es positivo definido.
  4. Con la misma notación del ejercicio anterior, prueba la desigualdad de Minkowski, es decir, para todos $x,y \in V$
    \begin{align*} \sqrt{\Phi(x+y)} \leq \sqrt{\Phi(x)} + \sqrt{\Phi(y)}. \end{align*}
  5. Revisa la demostración de las propiedades de la norma y de la distancia para el caso real. Tomando esto como base, realiza la demostración para el caso complejo.

Entradas relacionadas

Álgebra Lineal II: Formas cuadráticas hermitianas

Por Diego Ligani Rodríguez Trejo

Introducción

El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades.

Al final enunciaremos una versión compleja del teorema de Gauss.

Formas cuadráticas hermitianas

Definición Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\varphi$ una forma sesquilineal hermitiana de $V$. La forma cuadrática hermitiana correspondiente a $\varphi$ es la función $\Phi: V\to \mathbb{C}$ tal que para cualquier $x$ en $V$ se tiene que

\begin{align*} \Phi(x)=\varphi (x,x) \end{align*}

Observa que aquí, de entrada, estamos pidiendo que $\varphi$ sea sesquilineal. Esto entra en contraste con el caso real, en donde no nos importaba si la forma bilineal que tomábamos inicialmente era simétrica o no. Como veremos un poco más abajo, dada la forma cuadrática hermitiana $\Phi$, hay una única forma sesquilineal hermitiana de la que viene. Por esta razón, llamaremos a la función $\varphi$ la forma polar de $\Phi$.

Problema. Sea $V=\mathbb{C}^n$ y $\Phi : V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(x_1, \ldots, x_n)= |x_1|^2 + \cdots + |x_n|^2.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. Recordemos que para cualquier $z \in \mathbb{C}$ se tiene $|z|^2=z \overline{z}$. Así propongamos $\varphi$ como sigue:

\begin{align*}
\varphi(x,y):= (\overline{x_1})(y_1) + \cdots + (\overline{x_n})(y_n).
\end{align*}

Es sencillo mostrar que $\varphi$ así definida es una forma sesquilineal hermitiana, y queda como ejercicio.

$\square$

Problema. Sea $V$ el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{C}$ y $\Phi: V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(f)= \int_0^1|f(t)|^2 dt.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. La solución es muy parecida. Proponemos $\varphi$ como sigue:

\begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt \end{align*}

Es sencillo mostrar que $\varphi(f,f)=\Phi(f)$ y que $\varphi$ es forma sesquilineal hermitiana. Ambas cosas quedan como ejercicio.

$\square$

Propiedades básicas de formas cuadráticas hermitianas

Veamos algunas propiedades de las formas cuadráticas hermitianas.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$, $\varphi$ una forma sesquilinear hermitiana y $\Phi(x)$ su forma cuadrática asociada.

  1. Para todo $x\in V$, se tiene que $\Phi(x)=\varphi(x,x)$ siempre es un número real.
  2. Para todo $x\in V$ y $a\in \mathbb{C}$ se tiene que $\Phi(ax)=|a|\Phi(x)$.
  3. Para cualesquiera $x,y$ en $V$ se tiene que $\Phi(x+y)=\Phi(x)+\Phi(y)+2\text{Re}(\varphi(x,y))$.

Demostración. Los incisos 1) y 2) son consecuencia inmediata de los ejercicios de la entrada anterior. Para el inciso 3) usamos que la suma de un número con su conjugado es el doble de su parte real para obtener la siguiente cadena de igualdades:

\begin{align*}
\Phi(x+y)&=\varphi(x+y,x+y)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\varphi(y,x)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\overline{\varphi(x,y)}\\
&=\Phi(x) + \Phi(y) + 2\text{Re}(\varphi(x,y)).
\end{align*}

$\square$

Identidad de polarización compleja

Para demostrar que una función es una forma cuadrática hermitiana, usualmente necesitamos a una función que sea la candidata a ser la forma sesquilineal hermitiana que la induzca. Es decir, necesitamos un método para proponer la forma polar. Podemos hacer esto mediante la identidad de polarización compleja.

Proposición (Identidad de polarización). Sea $\Phi: V \rightarrow \mathbb{C}$ una forma cuadrática hermitiana. Existe una única forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{C}$ tal que $\Phi(x)=\varphi(x,x)$ para todo $x \in V$.

Más aún, ésta se puede encontrar de la siguiente manera:

\begin{align*} \varphi(x,y)=\frac{ \Phi (y+x) – \Phi (y-x) + i [ \Phi(y+xi) – \Phi(y-ix)]}{4}.\end{align*}

Demostración. Por definición, como $\Phi$ es una forma cuadrática hermitiana, existe $s:V\times V\to \mathbb{C}$ una forma sesquilineal hermitiana tal que $\Phi(x)=s(x,x)$. Veamos que la fórmula propuesta en el enunciado coincide con $s$. La definición en el enunciado es la siguiente:

\begin{align*} \varphi(x,y)=\frac{ \Phi (y+x) – \Phi (y-x) + i [ \Phi(y+xi) – \Phi(y-ix)]}{4} \end{align*}

Como $\Phi(x)=s(x,x)$ podemos calcular $\varphi$ como sigue
\begin{align*} \varphi(x,y)=\frac{ s(y+x,y+x) – s(y-x,y-x) + i [ s(y+xi,y+xi) – s(y-ix,y-xi)]}{4} \end{align*}

Desarrollando los primeros dos sumandos tenemos que

\begin{align*} s(y+x,y+x) – s(y-x,y-x) =2s(y,x) + 2s(x,y)\end{align*}

Desarrollemos los últimos dos sumandos tenemos que

\begin{align*} i [ s(y+xi,y+xi) – s(y-ix,y-ix)]= 2s(x,y) – 2s(y,x) \end{align*}

Sustituyendo esto en la definición original de $\varphi$ tenemos que

\begin{align*} \varphi(x,y)=\frac{ 2s(y,x) + 2s(x,y) + 2s(x,y) – 2s(y,x) }{4}=s(x,y). \end{align*}

De esta igualdad podemos concluir que $\varphi = s$, por lo que 1) $\varphi$ es forma sesquilineal hermitiana y 2) la forma cuadrática hermitiana de $\varphi$ es $\Phi$. Esta forma debe ser única pues si hubiera otra forma sesquilineal hermitiana tal que $s'(x,x)=\Phi(x)$, los pasos anteriores darían $s'(x,x)=\varphi(x,y)$ nuevamente.

$\square$

En particular, esta identidad nos dice que formas sesquilineales hermitianas distintas van a formas cuadráticas hermitianas distintas. Es por ello que podemos llamar a la función $\varphi$ dada por la fórmula en el enunciado la forma polar de $\Phi$.

Teorema de Gauss complejo

Enunciamos a continuación la versión compleja del teorema de Gauss.

Teorema. Sea $\Phi$ una función cuadrática hermitiana $\mathbb{C}^n$. Existen $\alpha_1, \cdots , \alpha_r$ números complejos y formas lineales $l_1, \cdots l_r$ linealmente independiente de $\mathbb{C}^n$ tales que para todo $x$ en $\mathbb{C}^n$ se tiene:

\begin{align*} \Phi(x_1, \cdots , x_n ) = \sum_{i=1}^r \alpha_i |l_i(x)|^2. \end{align*}

Observa que en la expresión de la derecha no tenemos directamente a las formas lineales, sino a las normas de éstas.

Más adelante…

Ya hablamos de formas bilineales y de formas sesquilineales. ¿Habrá una forma alternativa de representarlas? Cuando teníamos transformaciones lineales entre espacios vectoriales, podíamos representarlas por matrices. Resulta que a las formas bilineales también podemos representarlas por matrices. Veremos cómo hacer esto (y cuáles son las ventajas de hacer eso) en las siguientes dos entradas. En una veremos los resultados correspondientes a formas bilineales y en la otra los resultados correspondientes a formas sesquilineales.

Un poco más adelante aprovecharemos esta representación matricial para retomar el estudio de los productos interiores.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{C}^n$ y definamos $\varphi:V\times V \to \mathbb{C}$ como sigue:
    \begin{align*} \varphi(x,y)= \overline{x_1}y_1 + \cdots + \overline{x_n}y_n, \end{align*}
    para cualquier par $x,y \in V$ con $x=(x_1, \cdots x_n)$ y $y=(y_1, \cdots y_n)$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  2. Sea $V$ el espacio de funciones continuas del intevalo $[0,1]$ a $\mathbb{C}$ y $\varphi: V\times V \to \mathbb{C}$ definida como sigue:
    \begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt,\end{align*}
    para cualquier par $f_1, f_2 \in V$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  3. Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\Phi$ una forma cuadrática hermitiana. Prueba la siguiente identidad (identidad del paralelogramo)
    \begin{align*} \Phi(x+y) + \Phi(x-y) = 2(\Phi(x) + \Phi(y)).\end{align*} ¿Cómo se compara con la identidad del paralelogramo real?
  4. Compara la identidad de polarización real con la identidad de polarización compleja. ¿Por qué son tan distintas entre sí?
  5. Demuestra el Teorema de Gauss para formas cuadráticas hermitianas.

Entradas relacionadas