Archivo de la etiqueta: bases

Álgebra Superior I: Los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$

Por Eduardo García Caballero

Introducción

A lo largo de esta unidad nos hemos enfocado en estudiar los vectores, las operaciones entre estos y sus propiedades. Sin embargo, hasta ahora solo hemos ocupado una definición provisional de vectores —listas ordenadas con entradas reales—, pero no hemos dado una definición formal de estos. En esta entrada definiremos qué es un espacio vectorial y exploraremos algunas de las propiedades de dos ejemplos importantes de espacios vectoriales: $\mathbb{R}^2$ y $\mathbb{R}^3$-

Las propiedades de espacio vectorial

En entradas anteriores demostramos que los pares ordenados con entradas reales (es decir, los elementos de $\mathbb{R}^2$), en conjunto con la suma entrada a entrada y el producto escalar, cumplen las siguientes propiedades:

1. La suma es asociativa:
\begin{align*}
(u+v)+w &= ((u_1,u_2) + (v_1,v_2)) + (w_1,w_2) \\
&= (u_1,u_2) + ((v_1,v_2) + (w_1,w_2)) \\
&= u+(v+w).\end{align*}

2. La suma es conmutativa:
\begin{align*}u+v &= (u_1,u_2) + (v_1,v_2) \\&= (v_1,v_2) + (u_1,u_2) \\&= v+u.\end{align*}

3. Existe un elemento neutro para la suma:
\begin{align*}
u + 0 &= (u_1,u_2) + (0,0) \\&= (0,0) + (u_1,u_2) \\&= (u_1,u_2) \\&= u.
\end{align*}

4. Para cada par ordenado existe un elemento inverso:
\begin{align*}
u + (-u) &= (u_1,u_2) + (-u_1,-u_2) \\&= (-u_1,-u_2) + (u_1,u_2) \\&= (0,0) \\&= 0.
\end{align*}

5. La suma escalar se distribuye bajo el producto:
\begin{align*}
(r+s)u &= (r+s)(u_1,u_2) \\&= r(u_1,u_2) + s(u_1,u_2) \\&= ru + su.
\end{align*}

6. La suma de pares ordenados se distribuye bajo el producto escalar:
\begin{align*}
r(u + v) &= r((u_1,u_2) + (v_1,v_2)) \\&= r(u_1,u_2) + r(v_1,v_2) \\&= ru + rv.
\end{align*}

7. El producto escalar es compatible con el producto de reales:
\[
(rs)u = (rs)(u_1,u_2) = r(s(u_1,u_2)) = r(su).
\]

8. Existe un elemento neutro para el producto escalar, que justo es el neutro del producto de reales:
\[
1u = 1(u_1,u_2) = (u_1,u_2) = u.
\]

Cuando una colección de objetos matemáticos, en conjunto con una operación de suma y otra operación de producto, cumple las ocho propiedades anteriormente mencionadas, decimos que dicha colección forma un espacio vectorial. Teniendo esto en consideración, los objetos matemáticos que pertenecen a la colección que forma el espacio vectorial los llamaremos vectores.

Así, podemos ver que los pares ordenados con entradas reales, en conjunto con la suma entrada a entrada y el producto escalar, forman un espacio vectorial, al cual solemos denominar $\mathbb{R}^2$. De este modo, los vectores del espacio vectorial $\mathbb{R}^2$ son exactamente los pares ordenados con entradas reales.

Como recordarás, anteriormente también demostramos que las ternas ordenadas con entradas reales, en conjunto con su respectiva suma entrada a entrada y producto escalar, cumplen las ocho propiedades antes mencionadas (¿puedes verificarlo?). Esto nos indica que $\mathbb{R}^3$ también es un espacio vectorial, y sus vectores son las ternas ordenadas con entradas reales. En general, el que un objeto matemático se pueda considerar o no como vector dependerá de si este es elemento de un espacio vectorial.

Como seguramente sospecharás, para valores de $n$ distintos de 2 y de 3 también se cumple que $\mathbb{R}^n$ forma un espacio vectorial. Sin embargo los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$ son muy importantes pues podemos visualizarlos como el plano y el espacio, logrando así describir muchas de sus propiedades. Por esta razón, en esta entrada exploraremos algunas de las principales propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$.

Observación. Basándonos en la definición, el hecho de que una colección de elementos se pueda considerar o no como espacio vectorial depende también a las operaciones de suma y producto. Por esta razón, es común (y probablemente más conveniente) encontrar denotado el espacio vectorial $\mathbb{R}^2$ como $(\mathbb{R}^2,+,\cdot)$. Más aún, a veces será importante destacar a los elementos escalares y neutros, encontrando el mismo espacio denotado como $(\mathbb{R}^2, \mathbb{R}, +, \cdot, 0, 1)$. Esto lo veremos de manera más frecuente cuando trabajamos con más de un espacio vectorial, sin embargo, cuando el contexto nos permite saber con qué operaciones (y elementos) se está trabajando, podemos omitir ser explícitos y denotar el espacio vectorial simplemente como $\mathbb{R}^2$ o $\mathbb{R}^3$.

Combinaciones lineales

Como vimos en entradas anteriores, la suma de vectores en $\mathbb{R}^2$ la podemos visualizar en el plano como el resultado de poner una flecha seguida de otra, mientras que el producto escalar lo podemos ver como redimensionar y/o cambiar de dirección una flecha.

En el caso de $\mathbb{R}^3$, la intuición es la misma, pero esta vez en el espacio.

Si tenemos varios vectores, podemos sumar múltiplos escalares de ellos para obtener otros vectores. Esto nos lleva a la siguiente definición.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos una combinación lineal de estos vectores como el resultado de la operación
\[
r_1v_1 + r_2v_2 + \cdots + r_nv_n,
\]
donde $r_1, \ldots, r_n$ son escalares.

Ejemplo. En $\mathbb{R}^2$, las siguientes son combinaciones lineales:
\begin{align*}
4(9,-5) + 7(-1,0) + 3(-4,2) &= (17,-14), \\[10pt]
5(1,0) + 4(-1,-1) &= (1,-4), \\[10pt]
-1(1,0) + 0(-1,-1) &= (-1,0), \\[10pt]
5(3,2) &= (15,10).
\end{align*}
De este modo podemos decir que $(17,-14)$ es combinación lineal de los vectores $(9,-5)$, $(-1,0)$ y $(-4,2)$; los vectores $(1,-4)$ y $(-1,0)$ son ambos combinación lineal de los vectores $(1,0)$ y $(-1,-1)$; y $(15,10)$ es combinación lineal de $(3,2)$.

Las combinaciones lineales también tienen un significado geométrico. Por ejemplo, la siguiente figura muestra cómo se vería que $(1,-4)$ es combinación lineal de $(1,0)$ y $(-1,-1)$:

$\triangle$

Ejemplo. En el caso de $\mathbb{R}^3$, observamos que $(7,13,-22)$ es combinación lineal de los vectores $(8,1,-5)$, $(1,0,2)$ y $(9,-3,2)$, pues
\[
4(8,1,-5) + 2(1,0,2) + (-3)(9,-3,2) = (7,13,-22).
\]

$\triangle$

Espacio generado

La figura de la sección anterior nos sugiere cómo entender a una combinación lineal de ciertos vectores dados. Sin embargo, una pregunta natural que surge de esto es cómo se ve la colección de todas las posibles combinaciones lineales de una colección de vectores dados.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos al espacio generado por ellos como el conjunto de todas sus posibles combinaciones lineales. Al espacio generado por estos vectores podemos encontrarlo denotado como $\operatorname{span}(v_1, \ldots, v_n)$ o $\langle v_1, \ldots, v_n \rangle$ (aunque esta última notación a veces se suele dejar para otra operación del álgebra lineal).

¿Cómo puede verse el espacio generado por algunos vectores? Puede demostrarse que en el caso de $\mathbb{R}^2$ tenemos los siguientes casos.

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de 0 y todos los vectores se encuentran alineados. La recta será precisamente aquella formada por los múltiplos escalares de $u$.
  • Todo $\mathbb{R}^2$: esto sucede si al menos dos vectores $u$ y $v$ de nuestro conjunto no son cero y además no están alineados. Intenta convencerte que en efecto en este caso puedes llegar a cualquier vector del plano sumando un múltiplo de $u$ y uno de $v$.

En $\mathbb{R}^3$, puede mostrarse que el espacio generado se ve como alguna de las siguientes posibilidades:

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de $0$ y todos los vectores se encuentran alineados con $u$. La recta consiste precisamente de los reescalamientos de $u$.
  • Un plano: esto sucede si al menos dos vectores $u$ y $v$ no son cero y no están alineados, y además todos los demás están en el plano generado por $u$ y $v$ estos dos vectores.
  • Todo $\mathbb{R}^3$: esto sucede si hay tres vectores $u$, $v$ y $w$ que cumplan que ninguno es el vector cero, no hay dos de ellos alineados, y además el tercero no está en el plano generado por los otros dos.

Muchas veces no sólo nos interesa conocer la forma del espacio generado, sino también obtener una expresión que nos permita conocer qué vectores pertenecen a este. Una forma en la que podemos hacer esto es mediante ecuaciones.

Ejemplo. Por ejemplo, observemos que el espacio generado el vector $(3,2)$ en $\mathbb{R}^2$ corresponde a los vectores $(x,y)$ que son de la forma
\[
(x,y) = r(2,3),
\]
donde $r \in \mathbb{R}$ es algún escalar. Esto se cumple si y sólo si
\[
(x,y) = (2r,3r),
\]
lo cual a su vez se cumple si y sólo si $x$ y $y$ satisfacen el sistema de ecuaciones
\[
\begin{cases}
x = 2r \\
y = 3r
\end{cases}.
\]
Si despejamos $r$ en ambas ecuaciones y las igualamos, llegamos a que
\[
\frac{x}{2} = \frac{y}{3},
\]
de donde podemos expresar la ecuación de la recta en su forma homogénea:
\[
\frac{1}{2}x – \frac{1}{3}y = 0;
\]
o bien en como función de $y$:
\[
y = \frac{3}{2}x.
\]

$\triangle$

La estrategia anterior no funciona para todos los casos, y tenemos que ser un poco más cuidadosos.

Ejemplo. El espacio generado por $(0,4)$ corresponde a todos los vectores $(x,y)$ tales que existe $r \in \mathbb{R}$ que cumple
\begin{align*}
(x,y) &= r(0,4) \\
(x,y) &= (0,4r),
\end{align*}
es decir,
\[
\begin{cases}
x = 0 \\
y = 4r
\end{cases}.
\]
En este caso, la única recta que satisface ambas ecuaciones es la recta $x = 0$, la cual no podemos expresar como función de $y$.

En la siguiente entrada veremos otras estrategias para describir de manera analítica el espacio generado.

$\triangle$

El saber si un vector está o no en el espacio generado por otros es una pregunta que se puede resolver con un sistema de ecuaciones lineales.

Ejemplo. ¿Será que el vector $(4,1,2)$ está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$? Para que esto suceda, necesitamos que existan reales $r$ y $s$ tales que $r(2,3,1)+s(1,1,1)=(4,1,2)$. Haciendo las operaciones vectoriales, esto quiere decir que $(2r+s,3r+s,r+s)=(4,1,2)$, de donde tenemos el siguiente sistema de ecuaciones:

$$\left\{\begin{matrix} 2r+s &=4 \\ 3r+s&=1 \\ r+s &= 2.\end{matrix}\right.$$

Este sistema no tiene solución. Veamos por qué. Restando la primera igualdad a la segunda, obtendríamos $r=1-4=-3$. Restando la tercera igualdad a la primera, obtendríamos $r=2-4=-2$. Así, si hubiera solución tendríamos la contradicción $-2=r=-3$. De este modo no hay solución.

Así, el vector $(4,1,2)$ no está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$. Geométricamente, $(4,1,2)$ no está en el plano en $\mathbb{R}^3$ generado por los vectores $(2,3,1)$ y $(1,1,1)$.

$\triangle$

Si las preguntas de espacio generado tienen que ver con sistemas de ecuaciones lineales, entonces seguramente estarás pensando que todo lo que hemos aprendido de sistemas de ecuaciones lineales nos servirá. Tienes toda la razón. Veamos un ejemplo importante.

Ejemplo. Mostraremos que cualquier vector en $\mathbb{R}^2$ está en el espacio generado por los vectores $(1,2)$ y $(3,-1)$. Para ello, tomemos el vector $(x,y)$ que nosotros querramos. Nos gustaría (fijando $x$ y $y$) poder encontrar reales $r$ y $s$ tales que $r(1,2)+s(3,-1)=(x,y)$. Esto se traduce al sistema de ecuaciones

$$\left \{ \begin{matrix} r+3s&=x\\2r-s&=y. \end{matrix} \right.$$

En forma matricial, este sistema es $$\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Como la matriz $\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$ tiene determinante $1(-1)-(3)(2)=-7$, entonces es invertible. ¡Entonces el sistema siempre tiene solución única en $r$ y $s$ sin importar el valor de $x$ y $y$! Hemos con ello demostrado que cualquier vector $(x,y)$ es combinación lineal de $(1,2)$ y $(3,-1)$ y que entonces el espacio generado por ambos es todo $\mathbb{R}^2$.

$\triangle$

Independencia lineal

Mientras platicábamos en la sección anterior de las posibilidades que podía tener el espcio generado de un conjunto de vectores en $\mathbb{R}^2$ y $\mathbb{R}^3$, fuimos haciendo ciertas precisiones: «que ningún vector sea cero», «que nos vectores no estén alineados», «que ningún vector esté en los planos por los otros dos», etc. La intuición es que si pasaba lo contrario a alguna de estas cosas, entonces los vectores no podían generar «todo lo posible». Si sí se cumplían esas restricciones, entonces cierta cantidad de vectores sí tenía un espacio generado de la dimensión correspondiente (por ejemplo, $2$ vectores de $\mathbb{R}^3$ no cero y no alineados sí generan un plano, algo de dimensión $2$). Resulta que todas estas restricciones se pueden resumir en una definición muy importante.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), diremos que son linealmente independientes si es imposible escribir al vector $0$ como combinación lineal de ellos, a menos que todos los coeficientes de la combinación lineal sean iguales a $0$. En otras palabras, si sucede que $$r_1v_1 + r_2v_2 + \cdots + r_nv_n=0,$$ entonces forzosamente fue porque $r_1=r_2=\ldots=r_n=0$.

Puede mostrarse que si un conjunto de vectores es linealmente independiente, entonces ninguno de ellos se puede escribir como combinación lineal del resto de vectores en el conjunto. Así, la intuición de que «generan todo lo que pueden generar» se puede justificar como sigue: como el primero no es cero, genera una línea. Luego, como el segundo no es múltiplo del primero, entre los dos generarán un plano. Y si estamos en $\mathbb{R}^3$, un tercer vector quedará fuera de ese plano (por no ser combinación lineal de los anteriores) y entonces generarán entre los tres a todo el espacio.

La independencia lineal también se puede estudiar mediante sistemas de ecuaciones lineales.

Ejemplo. ¿Serán los vectores $(3,-1,-1)$, $(4,2,1)$ y $(0,-10,-7)$ linealmente independientes? Para determinar esto, queremos saber si existen escalares $r,s,t$ tales que $r(3,-1,-1)+s(4,2,1)+t(0,-10,-7)=(0,0,0)$ en donde al menos alguno de ellos no es el cero. Esto se traduce a entender las soluciones del siguiente sistema de ecuaciones:

$$\left\{ \begin{array} 33r + 4s &= 0 \\ -r +2s -10t &= 0 \\ -r + s -7t &= 0.\end{array} \right. $$

Podemos entender todas las soluciones usando reducción Gaussiana en la siguiente matriz:

$$\begin{pmatrix} 3 & 4 & 0 & 0 \\ -1 & 2 & -10 & 0 \\ -1 & 1 & -7 & 0 \end{pmatrix}.$$

Tras hacer esto, obtenemos la siguiente matriz:

$$\begin{pmatrix}1 & 0 & 4 & 0\\0 & 1 & -3 & 0\\0 & 0 & 0 & 0 \end{pmatrix}.$$

Así, este sistema de ecuaciones tiene a $t$ como variable libre, que puede valer lo que sea. De aquí, $s=3t$ y $r=-4t$ nos dan una solución. Así, este sistema tiene una infinidad de soluciones. Tomando por ejemplo $t=1$, tenemos $s=3$ y $r=-4$. Entonces hemos encontrado una combinación lineal de los vectores que nos da el vector $(0,0,0)$. Puedes verificar que, en efecto, $$(-4)(3,-1,-1)+3(4,2,1)+(0,-10,-7)=(0,0,0).$$

Concluimos que los vectores no son linealmente independientes.

$\triangle$

Si la única solución que hubiéramos obtenido es la $r=s=t=0$, entonces la conclusión hubiera sido que sí, que los vectores son linealmente independientes. También podemos usar lo que hemos aprendido de matrices y determinantes en algunos casos para poder decir cosas sobre la independencia lineal.

Ejemplo. Mostraremos que los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. ¿Qué sucede si una combinación lineal de ellos fuera el vector cero? Tendríamos que $r(2,3,1)+s(0,5,2)+t(0,0,1)=(0,0,0)$, que se traduce en el sistema de ecuaciones $$\left\{ \begin{array} 2r &= 0 \\ 3r + 5s &= 0 \\ r + 2s + t &= 0. \end{array}\right.$$

La matriz asociada a este sistema de ecuaciones es $\begin{pmatrix} 2 & 0 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & 1 \end{pmatrix}$, que por ser triangular inferior tiene determinante $2\cdot 5 \cdot 1 = 10\neq 0$. Así, es una matriz invertible, de modo que el sistema de ecuaciones tiene una única solución. Como $r=s=t$ sí es una solución, esta debe ser la única posible. Así, los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. Geométricamente, ninguno de ellos está en el plano hecho por los otros dos.

$\triangle$

Bases

Como vimos anteriormente, existen casos en los que el espacio generado por vectores en $\mathbb{R}^2$ (o $\mathbb{R}^3$) no genera a todo el plano (o al espacio). Por ejemplo, en ambos espacios vectoriales, el espacio generado por únicamente un vector es una recta. Esto también puede pasar aunque tengamos muchos vectores. Si todos ellos están alineados con el vector $0$, entonces su espacio generado sigue siendo una recta también. En la sección anterior platicamos que intuitivamente el problema es que los vectores no son linealmente independientes. Así, a veces unos vectores no generan todo el espacio que pueden generar.

Hay otras ocasiones en las que unos vectores sí generan todo el espacio que pueden generar, pero lo hacen de «manera redundante», en el sentido de que uno o más vectores se pueden poner de más de una forma como combinación lineal de los vectores dados.

Ejemplo. Si consideramos los vectores $(2,1)$, $(1,0)$ y $(2,3)$, observamos que el vector $(2,3)$ se puede escribir como
\[
0(2,1)+3(1,0) + 2(2,3) = (7,6)
\]
o
\[
3(2,2) + 1(1,0) + 0(2,3)= (7,6),
\]
siendo ambas combinaciones lineales del mismo conjunto de vectores.

$\triangle$

Uno de los tipos de conjuntos de vectores más importantes en el álgebra lineal son aquellos conocidos como bases, que evitan los dos problemas de arriba. Por un lado, sí generan a todo el espacio. Por otro lado, lo hacen sin tener redundancias.

Definición. Diremos que un conjunto de vectores es base de $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) si su espacio generado es todo $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) y además son linealmente independientes.

El ejemplo de base más inmediato es el conocido como base canónica.

Ejemplo. En el caso de $\mathbb{R}^2$, la base canónica es $(1,0)$ y $(0,1)$. En \mathbb{R}^3$ la base canónica es $(1,0,0)$, $(0,1,0)$ y $(0,0,1)$.

Partiendo de las definiciones dadas anteriormente, vamos que cualquier vector $(a,b)$ en $\mathbb{R}$ se puede escribir como $a(1,0) + b(0,1)$; y cualquier vector $(a,b,c)$ en $\mathbb{R}^3$ se puede escribir como $a(1,0,0) + b(0,1,0) + c(0,0,1)$.

Más aún, es claro que los vectores $(1,0)$ y $(0,1)$ no están alineados con el origen. Y también es claro que $(1,0,0),(0,1,0),(0,0,1)$ son linealmente idependientes, pues la combinación lineal $r(1,0,0)+s(0,1,0)+t(0,0,1)=(0,0,0)$ implica directamente $r=s=t=0$.

$\triangle$

Veamos otros ejemplos.

Ejemplo. Se tiene lo siguiente:

  • Los vectores $(3,4)$ y $(-2,0)$ son base de $\mathbb{R}^2$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^2$.
  • Los vectores $(8,5,-1)$, $(2,2,7)$ y $(-1,0,9)$ son base de $\mathbb{R}^3$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^3$.

¡Ya tienes todo lo necesario para demostrar las afirmaciones anteriores! Inténtalo y haz dibujos en $\mathbb{R}^2$ y $\mathbb{R}^3$ de dónde se encuentran estos vectores.

$\triangle$

Como podemos observar, las bases de un espacio vectorial no son únicas, sin embargo, las bases que mencionamos para $\mathbb{R}^2$ coinciden en tener dos vectores, mientras que las bases para $\mathbb{R}^3$ coinciden en tener tres vectores. ¿Será cierto que todas las bases para un mismo espacio vectorial tienen la misma cantidad de vectores?

Más adelante…

En esta entrada revisamos qué propiedades debe cumplir una colección de objetos matemáticos para que sea considerado un espacio vectorial, además de que analizamos con más detalle los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$.

Como seguramente sospecharás, para otros valores de $n$ también se cumple que $\mathbb{R}^n$, en conjunto con sus respectivas suma entrada a entrada y producto escalar, forman un espacio vectorial. Sin embargo, en contraste con los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$, este espacio es más difícil de visualizar. En la siguiente entrada generalizaremos para $\mathbb{R}^n$ varias de las propiedades que aprendimos en esta entrada.

Tarea moral

  1. Realiza lo siguiente:
    • De entre los siguientes vectores, encuentra dos que sean linealmente independientes: $(10,16),(-5,-8),(24,15),(10,16),(15,24),(-20,-32)$.
    • Encuentra un vector de $\mathbb{R}^2$ que genere a la recta $2x+3y=0$.
    • Determina qué es el espacio generado por los vectores $(1,2,3)$ y $(3,2,1)$ de $\mathbb{R}^3$.
    • Da un vector $(x,y,z)$ tal que $(4,0,1)$, $(2,1,0)$ y $(x,y,z)$ sean una base de $\mathbb{R}^3$.
  2. Demuestra que $(0,0)$ es el único vector $w$ en $\mathbb{R}^2$ tal que para todo vector $v$ de $\mathbb{R}^2$ se cumple que $v+w=v=w+v$.
  3. Prueba las siguientes dos afirmaciones:
    • Tres o más vectores en $\mathbb{R}^2$ nunca son linealmente independientes.
    • Dos o menos vectores en $\mathbb{R}^3$ nunca son un conjunto generador.
  4. Sean $u$ y $v$ vectores en $\mathbb{R}^2$ distintos del vector cero. Demuestra que $u$ y $v$ son linealmente independientes si y sólo si $v$ no está en la línea generada por $u$.
  5. Encuentra todas las bases de $\mathbb{R}^3$ en donde las entradas de cada uno de los vectores de cada base sean iguales a $0$ ó a $1$.

Entradas relacionadas

Álgebra Lineal II: Adjunta de una transformación lineal

Por Ayax Calderón

Introducción

En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales. De entrada, las definiciones para cada uno de estos conceptos parecerán simplemente un juego algebraico. Sin embargo, poco a poco descubriremos que pidiendo a las transformaciones lineales cierta propiedad con respecto a su adjunta, podemos recuperar muchas propiedades geométricas bonitas que satisfacen.

Un ejemplo de esto serán las transformaciones ortogonales. Estas serán las transformaciones que, a grandes rasgos, no cambian la norma. Daremos un teorema de clasificación para este tipo de transformaciones: veremos que sólo son reflexiones o rotaciones en ciertos ejes. Después estudiaremos las transformaciones simétricas y veremos un resultado fantástico: el teorema espectral. Este teorema nos garantizará que toda transformación simétrica en $\mathbb{R}$ puede ser diagonalizada, y de hecho a través de una transformación ortogonal.

El párrafo anterior nos dice que las transformaciones ortogonales y las simétricas serán «fáciles de entender» en algún sentido. Esto parece limitado a unas familias muy particulares de transformaciones. Sin embargo, cerraremos la unidad con un teorema muy importante: el teorema de descomposición polar. Gracias a él lograremos entender lo que hace cualquier transformación lineal. Tenemos un camino muy interesante por recorrer. Comencemos entonces con la idea de la adjunta de una transformación lineal.

La adjunta de una transformación lineal

Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Tomemos una transformación lineal $T:V \to V$. Para cada $y\in V$, la transformación $x\mapsto \langle T(x),y\rangle$ es una forma lineal. Del teorema de representación de Riesz se sigue que existe un único vector $T^*(y)\in V$ tal que
$$\langle T(x),y\rangle=\langle T^*(y),x\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x\in V.$$

Esta asignación de este vector $T^\ast$ es lineal, ya que al vector $ry_1+y_2$ para $r$ escalar y $y_1,y_2$ en $V$ se le asigna la forma lineal $x\mapsto \langle T(x),ry_1+y_2\rangle=r\langle(T(x),y_1\rangle + \langle (T(x),y_2)$, que se puede verificar que le corresponde en la representación de Riesz el vector $rT^\ast(y_1)+T^\ast(y_2)$.

De esta manera, podemos correctamente enunciar la siguiente definición.

Definición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

Notemos que para cualesquiera $x,y\in V$ tenemos que
$$\langle y,T(x)\rangle=\langle T(x),y\rangle=\langle x,T^* (y)\rangle=\langle T^*(y),x\rangle =\langle y, (T^*)^*(x)\rangle.$$

Restando el último término del primero, se sigue que $T(x)-(T^*)^*(x)=0$, de manera que $$(T^*)^*=T,$$ por lo cual simplemente escribiremos $$T^{**}=T.$$

Por lo tanto, la asignación $T\mapsto T^*$ es una transformación auto-inversa sobre $V$.

La matriz de la transformación adjunta

Tenemos que $T^{**}=T$. Esto debería recordarnos a la transposición de matrices. En efecto, en cierto sentido podemos pensar a la transformación $T^\ast$ algo así como la transpuesta de la transformación (por lo menos en el caso real, para espacios sobre $\mathbb{C}$ será algo ligeramente distinto).

La siguiente proposición nos ayudará a reforzar esta intuición.

Proposición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$ y $T:V\to V$ una transformación lineal. Sea $\mathcal{B}=(e_1,\dots, e_n)$ una base otronormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)={}^t\text{Mat}_{\mathcal{B}}(T).$$

En palabras, bajo una base ortonormal, la adjunta de una transformación tiene como matriz a la transpuesta de la transformación original.

Solución. Sea $A=\text{Mat}_{\mathcal{B}}(T)$ y $B=[B_{ij}]$ la matriz asociada a $T^*$ con respecto a $\mathcal{B}$. Para cada $i\in\{1,\ldots,n\}$ se tiene
$$T^*(e_i)=\displaystyle\sum_{k=1}^n b_{ki}e_k.$$

En vista de que $$T(e_i)=\displaystyle\sum _{k=1}^n a_{ki}e_k$$ y de que la base $\mathcal{B}$ es ortonormal, se tiene que $$\langle T(e_i),e_j\rangle=\displaystyle\sum_{k=1}^n a_{ki}\langle e_k,e_j\rangle=a_{ji}$$ y
$$\langle e_i,T^*(e_j)\rangle=\displaystyle\sum_{k=1}^n b_{kj}\langle e_i,e_k \rangle = b_{ij}.$$

Como, por definición de transformación adjunta, se tiene que
$$\langle T(e_i),e_j\rangle =\langle e_i, T^*(e_j)\rangle,$$ entonces $b_{ij}=a_{ji}$ para cada $i,j$ en $\{1,\ldots, n\}$, que precisamente significa que $B= {}^tA$.

$\square$

Ejemplos de encontrar una adjunción

La proposición de la sección anterior nos da una manera práctica de encontrar la adjunción para transformaciones lineales.

Ejemplo. Encontraremos la transformación adjunta a la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T((x,y))=(y-x,y+2x)$. Por la proposición de la sección anterior, basta expresar a $T$ en una base ortonormal y transponer. Usemos la base canónica de $\mathbb{R}^2$. En esta base, la matriz que representa a $T$ es $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$. Por ello, la matriz que representa a $T^\ast$ es la transpuesta, es decir $\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$. De este modo, concluimos que $T^\ast((x,y)) = (-x+2y,x+y)$.

Podemos verificar que en efecto esta transformación satisface la definición de adjunción. Por un lado,

$$\langle T((a,b)), (c,d) \rangle = (b-a,b+2a)\cdot (c,d)= bc-ac+bd+2ad,$$

y por otro

$$ \langle (a,b), T((c,d)) \rangle = (a,b) \cdot (-c+2d,c+d) = -ac +2ad + bc +bd.$$

Ambas expresiones en efecto son iguales.

$\triangle$

Problema. Demuestra que una transformación lineal $T$ en un espacio euclideano de dimensión finita y la adjunta $T^\ast$ de $T$ tienen el mismo determinante.

Solución. El determinante de una transformación es igual al determinante de cualquiera de las matrices que la represente. Así, si $A$ es la forma matricial de $T$ bajo una base ortonormal, se tiene que $\det(A)=\det(T)$. Por la proposición de la sección anterior, $^tA$ es la forma matricial de $T^\ast$ en esa misma base, de modo que $\det({}^tA)=\det(T^\ast)$. Pero una matriz y su transpuesta tienen el mismo determinante, de modo que $$\det(T^\ast)=\det({}^tA)=\det(A)=\det(T).$$

$\square$

Más adelante…

La noción de transformación adjunta es nuestra primera noción fundamental para poder definir más adelante transformaciones que cumplen propiedades geométricas especiales. Con ella, en la siguiente entrada hablaremos de transformaciones simétricas, antisimétricas y normales.

Toma en cuenta que las definiciones que hemos dado hasta ahora son para espacios euclideanos, es decir, para el caso real. Cuando hablamos de espacios hermitianos, es decir, del caso complejo, los resultados cambian un poco. La transformación adjunta se define igual. Pero, por ejemplo, si la matriz que representa a una transformación es $A$, entonces la que representará a su adjunta no será la transpuesta, sino más bien la transpuesta conjugada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Encuentra la transformación adjunta para las siguientes tranformaciones lineales:
    • $T:\mathbb{R}^2\to \mathbb{R}^2 $ dada por $T(x,y)=(2y-x,2x+y)$.
    • $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $T(x,y,z)=(x+y+z,y+z,z)$.
    • $T:\mathbb{R}^n \to \mathbb{R}^n$ tal que para la base canónica $e_1,\ldots,e_n$ cumple que $T(e_i)=e_{i+1}$ para $i=1,\ldots,n-1$ y $T(e_n)=0$.
  2. Considera el espacio vectorial $M_n(\mathbb{R})$. En este espacio, la operación transponer es una transformación lineal. ¿Cuál es su transformación adjunta?
  3. Completa los detalles de que $T^\ast$ es en efecto una transformación lineal.
  4. Demuestra que si $T$ es una transformación lineal sobre un espacio euclidiano y $\lambda$ es un eigenvalor de $T$, entonces $\lambda$ también es un eigenvalor de $T^\ast$. De manera más general, demuestra que $T$ y $T^\ast$ tienen el mismo polinomio característico.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$. ¿Es cierto que para todo polinomio $p$ se cumple que $p(T)^\ast=p(T^\ast)$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Proceso de Gram-Schmidt

Por Blanca Radillo

Introducción

Durante esta semana hemos introducido el concepto de bases ortogonales y ortonormales, así como algunas propiedades especiales. Para poder aplicar los resultados que hemos visto, es necesario insistir en que las bases sean de este tipo (ortonormales). Ahora veremos cómo encontrar bases ortonormales usando algo llamado el proceso de Gram-Schmidt.

Recordando todos los problemas anteriores de este curso, decíamos que una base es un conjunto de vectores linealmente independientes y que el número de vectores coincide con la dimensión del espacio. Pero hasta este momento no nos interesó determinar si las bases eran ortonormales o no. Si nos pusiéramos a ver si lo eran, es probable que muy pocas lo sean. Entonces surgen dos preguntas, ¿será difícil encontrar una base ortonormal de un espacio vectorial? y ¿habrá alguna manera de construir una base ortonormal?

Proceso de Gram-Schmidt

La respuesta a la primera pregunta es «no, no es difícil», y justo la respuesta de la segunda pregunta es la justificación. Dada una base cualquiera del espacio vectorial, podemos construir una base ortonormal de ese mismo espacio gracias al siguiente teorema.

Teorema (Gram-Schmidt). Sean $v_1,v_2,\cdots,v_d$ vectores linealmente independientes en un espacio vectorial $V$ sobre $\mathbb{R}$ (no necesariamente de dimensión finita), con producto interior $\langle \cdot , \cdot \rangle$. Entonces existe una única familia de vectores ortonormales $e_1,e_2,\ldots,e_d$ en $V$ con la propiedad de que para todo $k=1,2,\ldots,d$, tenemos que

\begin{align*}
\text{span}(e_1,e_2,\cdots,e_k)&=\text{span}(v_1,v_2,\cdots,v_k), \quad \text{y} \quad\\
\langle e_k,v_k \rangle&>0.
\end{align*}

Demostración. Lo haremos por inducción sobre $d$, la cantidad de vectores con la que empezamos.

La base inductiva es cuando $d=1$. Tomamos un vector $e_1\in \text{span}(v_1)$, entonces podemos escribirlo como $e_1=\lambda v_1$ para cierta $\lambda$. Si queremos que $0<\langle e_1,v_1 \rangle=\lambda\norm{v_1}^2$, entonces $\lambda>0$. Además queremos que $e_1$ tenga norma igual a 1, entonces $$1=\norm{e_1}^2=\langle e_1,e_1 \rangle=\lambda^2\norm{v_1}^2,$$ lo cual es posible si $\lambda=\frac{1}{\norm{v_1}}$. Como $e_1$ es un múltiplo escalar de $v_1$, se tiene que $\text{span}(e_1)=\text{span}(v_1)$. Además, la construcción forzó a que $e_1=\frac{1}{\norm{v_1}} v_1$ sea el único vector que satisface las condiciones del teorema.

Hagamos ahora el paso inductivo. Tomemos un entero $d\geq 2$, y supongamos que el teorema es cierto para $d-1$. Sean $v_1,v_2,\cdots,v_d$ vectores en $V$ linelmente independientes. Por hipótesis, sabemos que existe una única familia de vectores ortonormales $e_1,\cdots,e_{d-1}$ que satisfacen las condiciones del teorema respecto a la familia $v_1,\cdots,v_{d-1}$. Es suficiente con probar que existe un único vector $e_d$ tal que $e_1,\cdots,e_d$ satisface el teorema con respecto a $v_1,\cdots,v_d$, esto es
\begin{align*}
\norm{e_d}&=1,\\
\langle e_d,e_i \rangle&=0 \quad \forall 1\leq i\leq d-1,\\
\langle e_d, v_d \rangle &> 0,
\end{align*}

y

$\text{span}(e_1,\cdots,e_d)=\text{span}(v_1,\cdots,v_d),$

ya que, por hipótesis, los casos de $k<d$ se cumplen.

La idea para construir $e_d$ es tomarlo de $\text{span}(v_1,\cdots,v_d)$, expresarlo como combinación lineal de estos y encontrar condiciones necesarias y suficientes sobre los coeficientes de $e_d$ para que satisfaga las conclusiones del teorema. Hagamos esto.

Sea $e_d$ un vector tal que $e_d\in\text{span}(v_1,\cdots,v_d)$. Por ser linealmente independientes y por hipótesis $$\text{span}(v_1,\cdots,v_d)=\text{span}(e_1,\cdots,e_{d-1})+\text{span}(v_d),$$ entonces podemos escribir $e_d$ como

$e_d=\lambda v_d +\sum_{i=1}^{d-1} a_i e_i$

para algunos $\lambda,a_1,\cdots,a_{d-1}$. Si resulta que $\lambda\neq 0$, esto también implicará que $\text{span}(e_1,\cdots,e_d)=\text{span}(v_1,\cdots,v_d)$.

Ahora, dado que $e_d$ debe formar una familia ortonormal con el resto de los vectores, para todo $j=1,\cdots,d-1$, tenemos que


\begin{align*}
0&=\langle e_d,e_j \rangle\\
&=\lambda\langle v_d,e_j\rangle + \sum_{i=1}^{d-1} a_i\langle e_i,e_j \rangle\\
&=\lambda\langle v_d,e_j \rangle +a_j,
\end{align*}

entonces $a_j=-\lambda\langle v_d,e_j \rangle$. Si logramos mostrar que hay un único $\lambda$ con el que se pueda satisfacer la conclusión del teorema, el argumento anterior muestra que también hay únicos $a_1,\ldots,a_{d-1}$ y por lo tanto que hay un único vector $e_d$ que satisface el teorema.

Sustituyendo los coeficientes anteriores, obtenemos que

$e_d=\lambda\left(v_d-\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i \right).$

Notemos que si $z:=v_d-\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i$ es cero, $v_d$ estaría en $$\text{span}(e_1,\cdots,e_{d-1}) = \text{span}(v_1,\cdots,v_{d-1}),$$ contradiciendo que los vectores $v_i$’s son linealmente independientes, entonces $z\neq 0$.

Ahora como queremos que $1=\norm{e_d}=|\lambda| \norm{z}$, esto implica que $|\lambda|=\frac{1}{\norm{z}}$.

Como además queremos que $\langle e_d,v_d \rangle >0$ y

$\langle e_d,v_d\rangle =\left\langle e_d,\frac{e_d}{\lambda}+\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i \right\rangle=\frac{1}{\lambda},$

se deduce que $\lambda$ es único y está determinado por $\lambda=\frac{1}{\norm{z}}.$ Por lo tanto existe (y es único) el vector $e_d$ que satisface el teorema.

$\square$

Este proceso de construcción es mejor conocido como el proceso de Gram-Schmidt. La demostración da a la vez un algoritmo que nos permite encontrar bases ortogonales (y de hecho ortonormales). Veremos ejemplos de esto en la siguiente sección. Antes de eso, enunciaremos formalmente una de las conclusiones más importantes del teorema anterior.

Recuerda que un espacio Euclideano es un espacio vectorial de dimensión finita sobre $\mathbb{R}$ y con un producto interior. Podemos aplicar el proceso de Gram-Schmidt a cualquier base $v_1,\ldots,v_d$ de un espacio Euclideano $V$ y al final obtendremos una familia $e_1,\ldots,e_d$ de vectores ortonormales. Como sabemos que las familias de vectores ortonormales son linealmente independientes, y tenemos $d$ vectores, concluimos que $e_1,\ldots,e_d$ es una base ortonormal. En resumen, tenemos el siguiente resultado.

Corolario. Todo espacio Euclideano tiene una base ortonormal.

Ejemplos de aplicación del proceso de Gram-Schmidt

A continuación veremos algunos ejemplos que nos ayuden a clarificar más este algoritmo.

Ejemplo 1. Sean $v_1,v_2,v_3$ vectores en $\mathbb{R}^3$ (con el producto interior estándar) definidos por

$v_1=(1, 1, 0), \quad v_2=( 1, 1, 1), \quad v_3=( 1, 0, 1)$.

Es fácil ver que estos vectores son linealmente independientes. Entonces construyamos según el proceso de Gram-Schmidt la familia ortonormal de vectores $e_1,e_2,e_3$. Tenemos que

$e_1=\frac{v_1}{\norm{v_1}}=\frac{v_1}{\sqrt{2}}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$.

Ahora, tomando $z_2=v_2-\langle v_2,e_1\rangle e_1$, tenemos que $e_2$ está definido como $\frac{z_2}{\norm{z_2}}$, entonces

\begin{align*}
z_2&=(1,1,1)-\left[(1,1,1)\cdot \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)\right]\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) \\
&=(1,1,1)-\left[\frac{2}{\sqrt{2}}\right]\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) \\
&=(1,1,1)-(2/2,2/2,0)\\
&=(1,1,1)-(1,1,0)=(0,0,1).
\end{align*}

Esto implica que $e_2=\frac{1}{1}(0,0,1)=(0,0,1)$. Finalmente tomando $z_3=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2$, sabemos que $e_3=\frac{z_3}{\norm{z_3}}$. Entonces

\begin{align*}
z_3&=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2 \\
&=(1,0,1)-\left(\frac{1}{2},\frac{1}{2},0\right)-(0,0,1) \\
&=\left(\frac{1}{2},-\frac{1}{2},0\right).
\end{align*}

Por lo tanto

$e_3=\frac{1}{\sqrt{1/2}}\left(\frac{1}{2}, -\frac{1}{2},0\right)=\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},0\right).$

$\triangle$

Ejemplo 2. Sea $V$ el espacio de polinomios en $[0,1]$ con coeficientes reales de grado a lo más 2, con el producto interior

$\langle p,q \rangle =\int_0^1 p(x)q(x) dx.$

Sean $v_1=1$, $v_2=1+x$, $v_3=1+x^2$ vectores en $V$ que claramente son linealmente independientes. Encontraremos los vectores que nos da el proceso de Gram-Schmidt.

Primero calculemos

$\norm{v_1}^2=\int_0^1 1 dx= 1$,

entonces $e_1=\frac{v_1}{\norm{v_1}}=v_1=1$. Ahora calculemos $z_2$:

\begin{align*}
z_2&=v_2-\langle v_2,e_1 \rangle e_1 \\
&=1+x- \int_0^1 (1+x)dx=1+x-\left(1+\frac{1}{2}\right) \\
&=x-\frac{1}{2}.
\end{align*}

Haciendo la integral $$\int_0^1 \left(x-\frac{1}{2}\right)^2 dx$$ se obtiene que $\norm{z_2}=\sqrt{\frac{1}{12}}$, entonces $e_2=\sqrt{12}\left(x-\frac{1}{2}\right)$.

Por último, hay que calcular $z_3$ así como su norma. Primero,

\begin{align*}
z_3&=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2 \\
&=(1+x^2)-\int_0^1 (1+x^2)dx – 12\left(x-\frac{1}{2}\right)\int_0^1 (1+x^2)\left(x-\frac{1}{2}\right)dx \\
&=1+x^2-\left(1+\frac{1}{3}\right)-12\left(x-\frac{1}{2}\right)\left(\frac{1}{12}\right) \\
&=x^2-\frac{1}{3}-x+\frac{1}{2} \\
&=x^2-x+\frac{1}{6},
\end{align*}

y luego, con la integral $$\int_0^1 \left(x^2-x+\frac{1}{6}\right)^2 dx$$ se calcula que $\norm{z_3}=\frac{1}{6\sqrt{5}}$, por lo tanto $e_3=6\sqrt{5}\left(x^2-x+\frac{1}{6}\right)$.

$\triangle$

Aunque no es un proceso muy eficiente, nos garantiza que podemos encontrar una base ortonormal para cualquier espacio vectorial (con producto interior). Ya con una base ortonormal, podemos usar la descomposición de Fourier de la cual hablamos la entrada anterior y con ella todas las consecuencias que tiene.

Si quieres ver muchos más ejemplos del proceso en $\mathbb{R}^n$, puedes usar una herramienta en línea que te permite ver el proceso paso a paso en el conjunto de vectores que tu elijas. Una posible página es el Gram-Schmid Calculator de eMathHelp.

Más adelante…

En esta última entrada teórica de la unidad 3, vimos el método de Gram-Schmidt para construir una base ortonormal, que es un proceso algorítmico que parte de tener una base de un espacio y al final calcula una base ortonormal. También se vieron algunos ejemplos de la aplicación de este proceso para espacios vectoriales finitos como $\mathbb{R}^3$ y el espacio de polinomios en [0,1] de grado a lo más 2. Aunque no es una manera muy eficaz para encontrar una base ortonormal, sí te garantiza que lo que construye es una.

En la próxima entrada veremos ejercicios resueltos de los temas que hemos estado estudiando a lo largo de esta semana. 

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifica que con el valor $\lambda$ que se encontró en la demostración del teorema de Gram-Schmidt en efecto se obtiene un vector $e_d$ que satisface todas las conclusiones que se desean.
  • Revisa que los vectores que se obtuvieron en los ejemplos de aplicación del proceso de Gram-Schmidt en efecto son bases ortogonales de los espacios correspondientes.
  • Aplica el proceso de Gram-Schmidt a los polinomios $1$, $x$, $x^2$ en el espacio Euclideano de los polinomios reales de grado a lo más dos y producto interior $$\langle p, q \rangle = p(0)q(0)+p(1)q(1)+p(2)q(2).$$
  • Aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,1,1,1)\\ (0,1,1,1)\\ (0,0,1,1)\\ (0,0,0,1)\end{align*} de $\mathbb{R}^4$ con el producto interior canónico (el producto punto).
  • Usa el Gram-Schmidt Calculator de eMathHelp para ver paso a paso cómo se aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,2,1,1,-1)\\ (0,0,1,0,0)\\ (2,0,0,1,1)\\ (0,2,0,0,1)\\ (-3,0,0,1,0)\end{align*} de $\mathbb{R}^5$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases ortogonales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial $V$ con producto interior, entonces podemos definir varias nociones geométricas en $V$, como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.

Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.

En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre $\mathbb{R}$ con un producto interior $\langle \cdot,\cdot \rangle$.

Conjuntos ortogonales y ortonormales

Comenzamos con la siguiente definición. Recuerda que $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior, así que induce una norma $\Vert \cdot \Vert$.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Ortogonal si cualquier par de vectores distintos de $S$ es ortogonal, es decir, si para todo $v,w$ en $S$, con $v\neq w$ se tiene que $$\langle v, w \rangle = 0.$$
  • Ortonormal si es ortogonal, y además todo vector de $S$ tiene norma $1$.

En otras palabras, $S$ es ortonormal si para todo $v$ en $S$ se tiene $\langle v, v\rangle =1$ y para $v$ y $w$ en $S$ distintos se tiene $\langle v, w\rangle =0$.

Ejemplo. Si tomamos a $\mathbb{R}^n$ con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, $e_i\cdot e_i = 1$ y para $i\neq j$ se tiene $e_i\cdot e_j = 0$.

Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en $\mathbb{R}^2$ es el conjunto que sólo tiene al vector $\left(\frac{3}{5},\frac{4}{5}\right)$, pues este es un vector de norma $1$.

Los vectores $(1,1,0)$, $(1,-1,0)$ y $(0,0,1)$ forman otro conjunto ortogonal en $\mathbb{R}^3$, pues en efecto
\begin{align*}
(1,1,0)\cdot (1,-1,0)&=1-1=0\\
(1,-1,0)\cdot (0,0,1)&=0\\
(0,0,1)\cdot (1,1,0)&=0.
\end{align*}

Sin embargo, este no es un conjunto ortonormal, pues la norma de $(1,1,0)$ es $\sqrt{2}\neq 1$. Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales $\left(1/\sqrt{2},1/\sqrt{2},0\right)$, $\left(1/\sqrt{2},-1/\sqrt{2},0\right)$ y $(0,0,1)$.

$\triangle$

Propiedades de conjuntos ortogonales y ortonormales

Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si $S$ es un conjunto de vectores distintos de $0$, entonces $$S’=\left\{\frac{v}{\Vert v \Vert}: v\in S\right\}$$ es un conjunto ortonormal.

Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.

Proposición. Si $S$ es un conjunto ortogonal de vectores no nulos, entonces los elementos de $V$ son linealmente independientes.

Demostración. Tomemos $v_1,\ldots,v_n$ elementos de $S$ y supongamos que existen $\alpha_1,\ldots,\alpha_n$ escalares tales que $$v:=\sum_{i=1}^n \alpha_i v_i =0.$$

Tomemos un índice $j$ en $1,\ldots,n$ y hagamos el producto interior $\langle v, v_j\rangle$. Por un lado, como $v=0$, este produto es $0$. Por otro lado, por linealidad es $$\sum_{i=1}^n \alpha_i \langle v_i,v_j\rangle.$$

Cuando $i\neq j$, el sumando correspondiente es igual a $0$. De este modo, el único sumando no cero es cuando $i=j$, el cual es $\alpha_j \langle v_j,v_j\rangle$. De estos argumentos, deducimos que $$\alpha_j\langle v_j,v_j\rangle =0.$$ Como los vectores son no nulos, se tiene que $\langle v_j,v_j\rangle \neq 0$. Así, $\alpha_j=0$ para todo $j=1,\ldots,n$, lo cual muestra que los vectores son linealmente independientes.

$\square$

Como cada elemento de un conjunto ortonormal tiene norma $1$, entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.

Corolario. En un espacio Euclideano de dimensión $d$, los conjuntos ortogonales sin vectores nulos tienen a lo más $d$ elementos.

Bases ortogonales y ortonormales

Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Una base ortogonal si $S$ es una base de $V$ y es un conjunto ortogonal.
  • Una base ortonormal si $S$ una base de $V$ y es un conjunto ortonormal.

Ejemplo. En $\mathbb{R}^n$ la base canónica es una base ortonormal.

En $\mathbb{R}^2$ el conjunto $S=\{(2,3),(9,-6)\}$ es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, $S$ es una base ortogonal.

Sin embargo, $S$ no es una base ortonormal pues el primero de ellos tiene norma $\sqrt{2^2+3^2}=\sqrt{13}$. Si quisiéramos convertir a $S$ en una base ortonormal, podemos normalizar a cada uno de sus elementos.

$\triangle$

En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.

Corolario. En un espacio Euclideano de dimensión $n$, un conjunto ortonormal de $n$ vectores es una base ortonormal.

La importancia de las bases ortogonales yace en que dada una base ortonormal $B$ y un vector $v$, podemos encontrar varias propiedades de $v$ en términos de $B$ fácilmente. Por ejemplo, veremos más adelante que:

  • Las coordenadas de $v$ con respecto a la base $B$ son sencillas.
  • Hay una fórmula simple para la norma de $v$ en términos de sus coordenadas en la base $B.$
  • Si $B$ es una base de un subespacio $W$ de $V$, entonces es fácil encontrar la distancia de $v$ a $W.$

Mejor aún, las bases ortonormales siempre existen.

Teorema. Todo espacio Euclideano tiene una base ortonormal.

Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.

Ejemplo de bases ortogonales en polinomios

Ejemplo. Tomemos $\mathbb{R}_n[x]$ el espacio de polinomios de grado a lo más $n$ con coeficientes reales. Además, tomemos números reales distintos $x_0,\ldots,x_n$. A partir de estos reales podemos definir la operación $$\langle P, Q \rangle = \sum_{j=0}^n P(x_j)Q(x_j),$$ la cual es claramente bilineal y simétrica.

Tenemos que $\langle P,P\rangle$ es una suma de cuadrados, y por lo tanto es no negativa. Además, si $\langle P, P\rangle =0$, es porque $$\sum_{j=0}^n P(x_j)^2=0,$$ y como estamos trabajando en $\mathbb{R}$ esto implica que cada sumando debe ser cero. Pero las igualdades $$P(x_0)=\ldots=P(x_n)=0$$ dicen que los $n+1$ reales distintos $x_i$ son raíces de $P$, y como $P$ es de grado a lo más $n$, tenemos que $P$ es el polinomio $0$. En resumen, $\langle \cdot, \cdot \rangle$ es un producto interior en $\mathbb{R}_n[x]$. Vamos a dar una base ortogonal con respecto a este producto interior.

Para $i=0,\ldots,n$, consideremos los polinomios $$L_i(x)=\prod_{0\leq k \leq n, k\neq i} \frac{x-x_k}{x_i-x_k}.$$ Observa que $L_j(x_j)=1$ y si $j\neq i$, tenemos $L_i(x_j)=0$. Afirmamos que $$B=\{L_j:j=0,\ldots,n+1\}$$ es una base ortonormal de $\mathbb{R}_n[x]$ con el producto interior que definimos. Como consiste de $n+1$ polinomios y $\dim(\mathbb{R}_n[x])=n+1$, basta con que veamos que es un conjunto ortonormal.

Primero, notemos que
\begin{align*}
\langle L_i,L_i \rangle = \sum_{j=0}^n L_i(x_j)^2 = L_i(x_i)^2=1,
\end{align*}

de modo que cada $L_i$ tiene norma $1$.

Luego, notemos que si $i\neq j$, entonces $L_i(x_k)L_j(x_k)=0$ pues $x_k$ no puede ser simultáneamente $x_i$ y $x_j$. De este modo,

\begin{align*}
\langle L_i,L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k)=0.
\end{align*}

Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que $B$ es base ortonormal.

$\square$

Ejemplo de conjuntos ortogonales en funciones periódicas

Ejemplo. Consideremos $V$ el conjunto de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$. Definimos $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx.$$ Se puede mostrar que $\langle \cdot, \cdot \rangle$ así definido es un producto interior en $V$.

Para cada entero positivo $n$, definimos
\begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*}

Además, definimos $C_0(x)=\frac{1}{\sqrt{2\pi}}$. Afirmamos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ es un conjunto ortonormal de vectores. Mostremos esto.

Para empezar, notamos que $$\Vert C_0\Vert ^2 = \int_{-\pi}^{\pi} \frac{1}{2\pi}\, dx =1.$$

Luego, tenemos que para $n\geq 1$ que
\begin{align*}
\Vert C_n\Vert ^2 &= \int_{-\pi}^\pi \frac{1}{\pi} \cos^2(nx)\, dx\\
&= \int_{-\pi}^\pi \frac{1+\cos(2nx)}{2\pi}\, dx\\
&= 1,
\end{align*}

ya que para todo entero $m\neq 0$ se tiene que $$\int_{-\pi}^\pi \cos(mx) \, dx=0.$$ De manera similar, usando la identidad $$\sin^2(nx)=\frac{1-\cos(nx)}{2},$$ se puede ver que la norma de $S_n$ es $1$.

Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos $n\geq 1$, el resultado para $\langle C_0,C_n\rangle$ ó $\langle C_0,S_n\rangle$ se deduce de que
$$\int_{-\pi}^\pi \cos(mx)\, dx=\int_{-\pi}^\pi \sin(mx)\, dx=0$$ para todo entero $m\neq 0$.

Si tomamos dos $C_i$’s distintos, dos $S_i’s$ distintos o un $C_i$ y un $S_i$, el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.

$\square$

Más adelante…

En esta entrada combinamos las nociones de bases y el producto interior, estudiadas en entradas anteriores, para definir a las bases ortogonales. Vimos algunas propiedades de conjuntos ortogonales y ortonormales, para extenderlos a bases ortogonales y ortonormales. Vimos unos ejemplos de bases ortogonales de los polinomios y otros ejemplos de conjuntos ortogonales en funciones periódicas.

En la siguiente entrada veremos aplicaciones de estos conceptos, culminando en una descomposición de Fourier.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un conjunto ortogonal de vectores en $\mathbb{R}^4$ tal que ninguna de las entradas de ninguno de sus vectores sea igual a $0$.
  • Escribe las demostraciones de los corolarios enunciados en esta entrada.
  • Muestra que $\langle \cdot, \cdot \rangle$ definido en el ejemplo de funciones periódicas es un producto interior.
  • Termina de mostrar que la familia $\mathcal{F}$ del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de transformaciones transpuestas y formas bilineales

Por Ayax Calderón

Introducción

En la entrada del miércoles pasado se definió el concepto de la transpuesta de una transformación lineal. Así mismo, se probó el impresionante y muy útil hecho de que si $A$ es la matriz asociada a la transformación $T$ con respecto a ciertas bases, entonces $^tA$ es la matriz asociada de la transformación $^tT$ con respecto a las bases duales. Comenzamos esta entrada con problemas de transformaciones transpuestas. Los problemas 1 y 2 de esta entrada nos servirán para repasar la teoría vista en esa clase.

Por otra parte, en la entrada del viernes pasado comenzamos con el estudio de las formas bilineales y también se definió la forma cuadrática asociada a una forma bilineal. Además, se presentó la identidad de polarización, la cuál dada una forma cuadrática $q$ nos recupera la única forma bilineal simétrica de la cuál viene $q$.

Para repasar esta teoría, en esta entrada se encuentran los problemas 3 y 4. El problema 4 es interesante porque introduce de manera sencilla los espacios de funciones $l_p$ , de los cuáles se hace un estudio mucho más profundo en un primer curso de análisis matemático. Además, para este problema hacemos uso de herramientas de convergencia de series.

Problemas resueltos

Veamos dos problemas de transformaciones transpuestas

Problema 1. Considera la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por $$T(x,y,z)=(x+3y, x+y-z).$$
Sea $\mathcal{B}^*=\{e_1^*, e_2^*\}$ la base dual canónica de $\mathbb{R}^2$.
Calcula $^tT(e_1^*+e_2^*)$ y $^tT(e_1^*-e_2^*)$ en términos de la base dual canónica $\{f_1^\ast, f_2^\ast, f_3^\ast\}$ de $\mathbb{R}^3$.

Solución. Primero observemos que para un vector cualquiera de $\mathbb{R}^2$ se tiene que
\begin{align*}
e_1^*(x,y)&=x\\
e_2^*(x,y)&=y.
\end{align*}

entonces
\begin{align*}
(e_1^* + e_2^* )(x,y)&=x+y\\
(e_1^* – e_2^* )(x,y)&=x-y.
\end{align*}

Así,

\begin{align*}
(^tT(e_1^*&+e_2^*))(x,y,z)\\=&(e_1^* + e_2^*)(T(x,y,z))\\
=&(e_1^* + e_2^*)(x+3y, x+y-z)\\=&x+3y+x+y-z\\
=&2x+4y-z.
\end{align*}

Esto nos dice que $^tT(e_1^*+e_2^*)=2f_1^\ast+4f_2^\ast – f_3^\ast$.

Por otro lado,

\begin{align*}
(^tT(e_1^*&-e_2^*))(x,y,z)\\
=&(e_1^* – e_2^*)(T(x,y,z))\\
=&(e_1^* – e_2^*)(x+3y, x+y-z)\\
=&x+3y-x-y+z\\
=&2y+z.
\end{align*}

Por lo tanto, $ ^tT(e_1^*-e_2^*)) =2f_2^\ast+f_3^\ast.$

$\triangle$

Problema 2. Encuentra la matriz de $^tT$ con respecto a la base canónica de $\mathbb{R}^3$ sabiendo que

$T(x,y,z)=(x+y, y-z,x+2y-3z).$

Solución. Recordemos que para calcular la matriz asociada a una transformación con respecto a una base canónica sólo hace falta poner en la $i$-ésima columna la imagen del $i$-ésimo vector canónico. Por esto, calculamos los siguientes valores

$T(e_1)=T(1,0,0)=(1,0,1)$
$T(e_2)=T(0,1,0)=(1,1,2)$
$T(e_3)=(0,0,1)=(0,-1,-3).$

Entonces la matriz asociada a $T$ es

$A=\begin{pmatrix}
1 & 1 & 0\\
0 & 1 & -1\\
1 & 2 & -3\end{pmatrix}.$

Así, por Teorema 2 visto en la entrada de ortogonalidad y transformación transpuesta, sabemos que la matriz asociada a $^tT$ es justamente la matriz

$^tA=\begin{pmatrix}
1 & 0 & 1\\
1 & 1 & 2\\
0 & -1 & -3\end{pmatrix}$.

$\triangle$

Problemas de formas bilineales y cuadráticas

Problema 1. Demuestra que la transformación

$b:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$
$b((x,y),(z,t))=xt-yz$

es una forma bilineal sobre $\mathbb{R}^2$. Describe la forma cuadrática asociada.

Demostración. Sea $(x,y)\in \mathbb{R}^2$ fijo. Queremos ver que

$b((x,y), \cdot):\mathbb{R}^2 \to \mathbb{R}$
definida por
$(u,v)\mapsto b((x,y),(u,v))$
es lineal.

Sean $(u,v),(z,t)\in \mathbb{R}^2$.

\begin{align*}
b(&(x,y),(u,v)+(z,t))\\&=b((x,y),(u+z, v+t))\\&=x(v+t)-y(u+z)\\&=(xv-yu)+(xt-yz)\\
&=b((x,y),(u,v))+b((x,y),(z,t)).
\end{align*}

Sea $k \in \mathbb{R}$.
\begin{align*}
b((x,y),k(u,v))&=b((x,y),(ku,kv))\\
&=kxv-kyu\\
&=k(xv-yu)\\
&=kb((x,y),(u,v)).
\end{align*}

Así, $(u,v)\mapsto b((x,y),(u,v))$ es lineal.

Ahora veamos que dado $(u,v)\in\mathbb{R}^2$ fijo, la transformación $(x,y)\mapsto b((x,y),(u,v))$ es lineal.

Sean $(x,y),(z,t)\in\mathbb{R}^2$ y $k\in \mathbb{R}$. Tenemos que
\begin{align*}
b((x&,y)+k(z,t),(u,v))\\
=&b((x+kz,y+kt),(u,v))\\
=&(x+kz)v – (y+kt)u\\
=& xv-kzv-yu-ktu\\
=&(xv-yu)+k(zv-tu)\\
=&b((x,y),(u,v))+kb((z,t),(u,v)).
\end{align*}

Así, $(x,y)\mapsto b((x,y),(u,v))$ es lineal y por consiguiente $b$ es una forma bilineal.

Ahora, tomemos $q:\mathbb{R}^2\to \mathbb{R}$ definida por $$q(x,y)=b((x,y),(x,y)).$$
Entonces $q(x,y)=xy-yx=0$. Así, la forma cuadrática cero es la forma cuadrática asociada a la forma bilineal $b$.

$\square$

Problema 2. Para un real $p\geq 0$, definimos el espacio $$l_p:=\left\{(x_n)_{n\in\mathbb{N}} : x_n\in\mathbb{R} \forall n\in \mathbb{N} ; \displaystyle\sum_{i\in \mathbb{N}}|x_i| ^p < \infty \right\}.$$

Notemos que para $p\in[1,\infty)$, $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas de manera natural. La demostración no es totalmente trivial, pues hay que mostrar que este espacio es cerrado bajo la suma, y esto requiere de la desigualdad del triángulo para la norma $|\cdot |_p$. Puedes intentar demostrar esto por tu cuenta como tarea moral.

Ahora, considera $H:l_2\times l_2 \to\mathbb{R}$ definida por

$H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})=\displaystyle\sum_{n\in\mathbb{N}}x_ny_n$.


Demuestra que $H$ es una forma bilineal simétrica sobre $l_2$.

Demostración. Lo primero que haremos es mostrar que la forma bilineal que definimos en efecto tiene valores reales. Para ello, tenemos que ver que converge.

Observemos que para cada $n\in\mathbb{N}$ se tiene que

$0\leq(|x_n|- |y_n|)^2.$

Entonces ,
\begin{align*}
0&\leq |x_n| ^2 -2|x_ny_n|+ |y_n |^2\\
|x_n y_n|&\leq \frac{1}{2}(|x_n|^2 + |y_n|^2).
\end{align*}


Por consiguiente,

$\displaystyle\sum_{n\in\mathbb{N}}|x_n y_n|\leq \frac{1}{2}\left (\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 + \displaystyle\sum_{n\in\mathbb{N}}|y_n|^2 \right ) < \infty$.

Lo anterior se debe a que

$\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 < \infty$ ya que $(x_n)_{n\in \mathbb{N}}\in l_2$

y análogamente para $(y_n)_{n\in \mathbb{N}}$.

Así, $\displaystyle\sum_{n\in\mathbb{N}}x_n y_n < \infty$, pues converge absolutamente, y por lo tanto $H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ siempre cae en $\mathbb{R}$.

Ahora veamos que $H$ es bilineal. Sea $x=(x_n)_{n\in \mathbb{N}}\in l_2$ fija. Queremos ver que $$(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$$ es lineal.

Sean $y=(y_n)_{n\in \mathbb{N}},z=(z_n)_{n\in \mathbb{N}}\in l_2$ y $k\in \mathbb{R}$.

Entonces

\begin{align*}
H(x,&y+kz)\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n +kx_nz_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n + k\displaystyle\sum_{n\in\mathbb{N}}x_n z_n\\
&= H(x,y) + k H(x,z).
\end{align*}

Así, $(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

De manera análoga se ve que si $(y_n)_{n\in \mathbb{N}} \in l_2$ fija, entonces $(x_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

Además
\begin{align*}
H(x,y)&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}y_n x_n \\
&= H(y,x).
\end{align*}

Por lo tanto, $H$ es una forma bilineal simétrica sobre $l_2$.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que en efecto $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas entrada a entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»