Archivo de la etiqueta: bases

Álgebra Lineal II: Adjunta de una transformación lineal

Por Ayax Calderón

Introducción

En esta tercera unidad estudiaremos algunos aspectos geométricos de transformaciones lineales. Para ello, lo primero que haremos será introducir la noción de la adjunta de una transformación lineal. Esto nos permitirá más adelante poder hablar de varias transformaciones especiales: normales, simétricas, antisimétricas, ortogonales. De entrada, las definiciones para cada uno de estos conceptos parecerán simplemente un juego algebraico. Sin embargo, poco a poco descubriremos que pidiendo a las transformaciones lineales cierta propiedad con respecto a su adjunta, podemos recuperar muchas propiedades geométricas bonitas que satisfacen.

Un ejemplo de esto serán las transformaciones ortogonales. Estas serán las transformaciones que, a grandes rasgos, no cambian la norma. Daremos un teorema de clasificación para este tipo de transformaciones: veremos que sólo son reflexiones o rotaciones en ciertos ejes. Después estudiaremos las transformaciones simétricas y veremos un resultado fantástico: el teorema espectral. Este teorema nos garantizará que toda transformación simétrica en $\mathbb{R}$ puede ser diagonalizada, y de hecho a través de una transformación ortogonal.

El párrafo anterior nos dice que las transformaciones ortogonales y las simétricas serán «fáciles de entender» en algún sentido. Esto parece limitado a unas familias muy particulares de transformaciones. Sin embargo, cerraremos la unidad con un teorema muy importante: el teorema de descomposición polar. Gracias a él lograremos entender lo que hace cualquier transformación lineal. Tenemos un camino muy interesante por recorrer. Comencemos entonces con la idea de la adjunta de una transformación lineal.

La adjunta de una transformación lineal

Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Tomemos una transformación lineal $T:V \to V$. Para cada $y\in V$, la transformación $x\mapsto \langle T(x),y\rangle$ es una forma lineal. Del teorema de representación de Riesz se sigue que existe un único vector $T^*(y)\in V$ tal que
$$\langle T(x),y\rangle=\langle T^*(y),x\rangle =\langle x, T^*(y)\rangle \hspace{2mm} \forall x\in V.$$

Esta asignación de este vector $T^\ast$ es lineal, ya que al vector $ry_1+y_2$ para $r$ escalar y $y_1,y_2$ en $V$ se le asigna la forma lineal $x\mapsto \langle T(x),ry_1+y_2\rangle=r\langle(T(x),y_1\rangle + \langle (T(x),y_2)$, que se puede verificar que le corresponde en la representación de Riesz el vector $rT^\ast(y_1)+T^\ast(y_2)$.

De esta manera, podemos correctamente enunciar la siguiente definición.

Definición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$. Sea $T:V\to V$ una transformación lineal. Definimos a la adjunta de $T$, como la única transformación lineal $T^\ast:V\to V$ que cumple la siguiente condición para todos $x,y$ en $V$:

$$\langle T(x),y\rangle =\langle x, T^*(y)\rangle$$

Notemos que para cualesquiera $x,y\in V$ tenemos que
$$\langle y,T(x)\rangle=\langle T(x),y\rangle=\langle x,T^* (y)\rangle=\langle T^*(y),x\rangle =\langle y, (T^*)^*(x)\rangle.$$

Restando el último término del primero, se sigue que $T(x)-(T^*)^*(x)=0$, de manera que $$(T^*)^*=T,$$ por lo cual simplemente escribiremos $$T^{**}=T.$$

Por lo tanto, la asignación $T\mapsto T^*$ es una transformación auto-inversa sobre $V$.

La matriz de la transformación adjunta

Tenemos que $T^{**}=T$. Esto debería recordarnos a la transposición de matrices. En efecto, en cierto sentido podemos pensar a la transformación $T^\ast$ algo así como la transpuesta de la transformación (por lo menos en el caso real, para espacios sobre $\mathbb{C}$ será algo ligeramente distinto).

La siguiente proposición nos ayudará a reforzar esta intuición.

Proposición. Sea $V$ un espacio euclidiano y producto interior $\langle \cdot, \cdot \rangle$ y $T:V\to V$ una transformación lineal. Sea $\mathcal{B}=(e_1,\dots, e_n)$ una base otronormal de $V$. Se tiene que $$\text{Mat}_{\mathcal{B}}(T^\ast)={}^t\text{Mat}_{\mathcal{B}}(T).$$

En palabras, bajo una base ortonormal, la adjunta de una transformación tiene como matriz a la transpuesta de la transformación original.

Solución. Sea $A=\text{Mat}_{\mathcal{B}}(T)$ y $B=[B_{ij}]$ la matriz asociada a $T^*$ con respecto a $\mathcal{B}$. Para cada $i\in\{1,\ldots,n\}$ se tiene
$$T^*(e_i)=\displaystyle\sum_{k=1}^n b_{ki}e_k.$$

En vista de que $$T(e_i)=\displaystyle\sum _{k=1}^n a_{ki}e_k$$ y de que la base $\mathcal{B}$ es ortonormal, se tiene que $$\langle T(e_i),e_j\rangle=\displaystyle\sum_{k=1}^n a_{ki}\langle e_k,e_j\rangle=a_{ji}$$ y
$$\langle e_i,T^*(e_j)\rangle=\displaystyle\sum_{k=1}^n b_{kj}\langle e_i,e_k \rangle = b_{ij}.$$

Como, por definición de transformación adjunta, se tiene que
$$\langle T(e_i),e_j\rangle =\langle e_i, T^*(e_j)\rangle,$$ entonces $b_{ij}=a_{ji}$ para cada $i,j$ en $\{1,\ldots, n\}$, que precisamente significa que $B= {}^tA$.

$\square$

Ejemplos de encontrar una adjunción

La proposición de la sección anterior nos da una manera práctica de encontrar la adjunción para transformaciones lineales.

Ejemplo. Encontraremos la transformación adjunta a la transformación lineal $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T((x,y))=(y-x,y+2x)$. Por la proposición de la sección anterior, basta expresar a $T$ en una base ortonormal y transponer. Usemos la base canónica de $\mathbb{R}^2$. En esta base, la matriz que representa a $T$ es $\begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}$. Por ello, la matriz que representa a $T^\ast$ es la transpuesta, es decir $\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$. De este modo, concluimos que $T^\ast((x,y)) = (-x+2y,x+y)$.

Podemos verificar que en efecto esta transformación satisface la definición de adjunción. Por un lado,

$$\langle T((a,b)), (c,d) \rangle = (b-a,b+2a)\cdot (c,d)= bc-ac+bd+2ad,$$

y por otro

$$ \langle (a,b), T((c,d)) \rangle = (a,b) \cdot (-c+2d,c+d) = -ac +2ad + bc +bd.$$

Ambas expresiones en efecto son iguales.

$\triangle$

Problema. Demuestra que una transformación lineal $T$ en un espacio euclideano de dimensión finita y la adjunta $T^\ast$ de $T$ tienen el mismo determinante.

Solución. El determinante de una transformación es igual al determinante de cualquiera de las matrices que la represente. Así, si $A$ es la forma matricial de $T$ bajo una base ortonormal, se tiene que $\det(A)=\det(T)$. Por la proposición de la sección anterior, $^tA$ es la forma matricial de $T^\ast$ en esa misma base, de modo que $\det({}^tA)=\det(T^\ast)$. Pero una matriz y su transpuesta tienen el mismo determinante, de modo que $$\det(T^\ast)=\det({}^tA)=\det(A)=\det(T).$$

$\square$

Más adelante…

La noción de transformación adjunta es nuestra primera noción fundamental para poder definir más adelante transformaciones que cumplen propiedades geométricas especiales. Con ella, en la siguiente entrada hablaremos de transformaciones simétricas, antisimétricas y normales.

Toma en cuenta que las definiciones que hemos dado hasta ahora son para espacios euclideanos, es decir, para el caso real. Cuando hablamos de espacios hermitianos, es decir, del caso complejo, los resultados cambian un poco. La transformación adjunta se define igual. Pero, por ejemplo, si la matriz que representa a una transformación es $A$, entonces la que representará a su adjunta no será la transpuesta, sino más bien la transpuesta conjugada.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más a profundidad la teoría vista.

  1. Encuentra la transformación adjunta para las siguientes tranformaciones lineales:
    • $T:\mathbb{R}^2\to \mathbb{R}^2 $ dada por $T(x,y)=(2y-x,2x+y)$.
    • $T:\mathbb{R}^3\to \mathbb{R}^3$ dada por $T(x,y,z)=(x+y+z,y+z,z)$.
    • $T:\mathbb{R}^n \to \mathbb{R}^n$ tal que para la base canónica $e_1,\ldots,e_n$ cumple que $T(e_i)=e_{i+1}$ para $i=1,\ldots,n-1$ y $T(e_n)=0$.
  2. Considera el espacio vectorial $M_n(\mathbb{R})$. En este espacio, la operación transponer es una transformación lineal. ¿Cuál es su tranformación adjunta?
  3. Completa los detalles de que $T^\ast$ es en efecto una transformación lineal.
  4. Demuestra que si $T$ es una transformación lineal sobre un espacio euclidiano y $\lambda$ es un eigenvalor de $T$, entonces $\lambda$ también es un eigenvalor de $T^\ast$. De manera más general, demuestra que $T$ y $T^\ast$ tienen el mismo polinomio característico.
  5. Sea $V$ un espacio euclidiano y $T:V\to V$. ¿Es cierto que para todo polinomio $p$ se cumple que $p(T)^\ast=p(T^\ast)$?

Entradas relacionadas

Álgebra Lineal I: Proceso de Gram-Schmidt

Por Blanca Radillo

Introducción

Durante esta semana hemos introducido el concepto de bases ortogonales y ortonormales, así como algunas propiedades especiales. Para poder aplicar los resultados que hemos visto, es necesario insistir en que las bases sean de este tipo (ortonormales). Ahora veremos cómo encontrar bases ortonormales usando algo llamado el proceso de Gram-Schmidt.

Recordando todos los problemas anteriores de este curso, decíamos que una base es un conjunto de vectores linealmente independientes y que el número de vectores coincide con la dimensión del espacio. Pero hasta este momento no nos interesó determinar si las bases eran ortonormales o no. Si nos pusiéramos a ver si lo eran, es probable que muy pocas lo sean. Entonces surgen dos preguntas, ¿será difícil encontrar una base ortonormal de un espacio vectorial? y ¿habrá alguna manera de construir una base ortonormal?

Proceso de Gram-Schmidt

La respuesta a la primera pregunta es «no, no es difícil», y justo la respuesta de la segunda pregunta es la justificación. Dada una base cualquiera del espacio vectorial, podemos construir una base ortonormal de ese mismo espacio gracias al siguiente teorema.

Teorema (Gram-Schmidt). Sean $v_1,v_2,\cdots,v_d$ vectores linealmente independientes en un espacio vectorial $V$ sobre $\mathbb{R}$ (no necesariamente de dimensión finita), con producto interior $\langle \cdot , \cdot \rangle$. Entonces existe una única familia de vectores ortonormales $e_1,e_2,\ldots,e_d$ en $V$ con la propiedad de que para todo $k=1,2,\ldots,d$, tenemos que

\begin{align*}
\text{span}(e_1,e_2,\cdots,e_k)&=\text{span}(v_1,v_2,\cdots,v_k), \quad \text{y} \quad\\
\langle e_k,v_k \rangle&>0.
\end{align*}

Demostración. Lo haremos por inducción sobre $d$, la cantidad de vectores con la que empezamos.

La base inductiva es cuando $d=1$. Tomamos un vector $e_1\in \text{span}(v_1)$, entonces podemos escribirlo como $e_1=\lambda v_1$ para cierta $\lambda$. Si queremos que $0<\langle e_1,v_1 \rangle=\lambda\norm{v_1}^2$, entonces $\lambda>0$. Además queremos que $e_1$ tenga norma igual a 1, entonces $$1=\norm{e_1}^2=\langle e_1,e_1 \rangle=\lambda^2\norm{v_1}^2,$$ lo cual es posible si $\lambda=\frac{1}{\norm{v_1}}$. Como $e_1$ es un múltiplo escalar de $v_1$, se tiene que $\text{span}(e_1)=\text{span}(v_1)$. Además, la construcción forzó a que $e_1=\frac{1}{\norm{v_1}} v_1$ sea el único vector que satisface las condiciones del teorema.

Hagamos ahora el paso inductivo. Tomemos un entero $d\geq 2$, y supongamos que el teorema es cierto para $d-1$. Sean $v_1,v_2,\cdots,v_d$ vectores en $V$ linelmente independientes. Por hipótesis, sabemos que existe una única familia de vectores ortonormales $e_1,\cdots,e_{d-1}$ que satisfacen las condiciones del teorema respecto a la familia $v_1,\cdots,v_{d-1}$. Es suficiente con probar que existe un único vector $e_d$ tal que $e_1,\cdots,e_d$ satisface el teorema con respecto a $v_1,\cdots,v_d$, esto es
\begin{align*}
\norm{e_d}&=1,\\
\langle e_d,e_i \rangle&=0 \quad \forall 1\leq i\leq d-1,\\
\langle e_d, v_d \rangle &> 0,
\end{align*}

y

$\text{span}(e_1,\cdots,e_d)=\text{span}(v_1,\cdots,v_d),$

ya que, por hipótesis, los casos de $k<d$ se cumplen.

La idea para construir $e_d$ es tomarlo de $\text{span}(v_1,\cdots,v_d)$, expresarlo como combinación lineal de estos y encontrar condiciones necesarias y suficientes sobre los coeficientes de $e_d$ para que satisfaga las conclusiones del teorema. Hagamos esto.

Sea $e_d$ un vector tal que $e_d\in\text{span}(v_1,\cdots,v_d)$. Por ser linealmente independientes y por hipótesis $$\text{span}(v_1,\cdots,v_d)=\text{span}(e_1,\cdots,e_{d-1})+\text{span}(v_d),$$ entonces podemos escribir $e_d$ como

$e_d=\lambda v_d +\sum_{i=1}^{d-1} a_i e_i$

para algunos $\lambda,a_1,\cdots,a_{d-1}$. Si resulta que $\lambda\neq 0$, esto también implicará que $\text{span}(e_1,\cdots,e_d)=\text{span}(v_1,\cdots,v_d)$.

Ahora, dado que $e_d$ debe formar una familia ortonormal con el resto de los vectores, para todo $j=1,\cdots,d-1$, tenemos que


\begin{align*}
0&=\langle e_d,e_j \rangle\\
&=\lambda\langle v_d,e_j\rangle + \sum_{i=1}^{d-1} a_i\langle e_i,e_j \rangle\\
&=\lambda\langle v_d,e_j \rangle +a_j,
\end{align*}

entonces $a_j=-\lambda\langle v_d,e_j \rangle$. Si logramos mostrar que hay un único $\lambda$ con el que se pueda satisfacer la conclusión del teorema, el argumento anterior muestra que también hay únicos $a_1,\ldots,a_{d-1}$ y por lo tanto que hay un único vector $e_d$ que satisface el teorema.

Sustituyendo los coeficientes anteriores, obtenemos que

$e_d=\lambda\left(v_d-\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i \right).$

Notemos que si $z:=v_d-\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i$ es cero, $v_d$ estaría en $$\text{span}(e_1,\cdots,e_{d-1}) = \text{span}(v_1,\cdots,v_{d-1}),$$ contradiciendo que los vectores $v_i$’s son linealmente independientes, entonces $z\neq 0$.

Ahora como queremos que $1=\norm{e_d}=|\lambda| \norm{z}$, esto implica que $|\lambda|=\frac{1}{\norm{z}}$.

Como además queremos que $\langle e_d,v_d \rangle >0$ y

$\langle e_d,v_d\rangle =\left\langle e_d,\frac{e_d}{\lambda}+\sum_{i=1}^{d-1} \langle v_d,e_i\rangle e_i \right\rangle=\frac{1}{\lambda},$

se deduce que $\lambda$ es único y está determinado por $\lambda=\frac{1}{\norm{z}}.$ Por lo tanto existe (y es único) el vector $e_d$ que satisface el teorema.

$\square$

Este proceso de construcción es mejor conocido como el proceso de Gram-Schmidt. La demostración da a la vez un algoritmo que nos permite encontrar bases ortogonales (y de hecho ortonormales). Veremos ejemplos de esto en la siguiente sección. Antes de eso, enunciaremos formalmente una de las conclusiones más importantes del teorema anterior.

Recuerda que un espacio Euclideano es un espacio vectorial de dimensión finita sobre $\mathbb{R}$ y con un producto interior. Podemos aplicar el proceso de Gram-Schmidt a cualquier base $v_1,\ldots,v_d$ de un espacio Euclideano $V$ y al final obtendremos una familia $e_1,\ldots,e_d$ de vectores ortonormales. Como sabemos que las familias de vectores ortonormales son linealmente independientes, y tenemos $d$ vectores, concluimos que $e_1,\ldots,e_d$ es una base ortonormal. En resumen, tenemos el siguiente resultado.

Corolario. Todo espacio Euclideano tiene una base ortonormal.

Ejemplos de aplicación del proceso de Gram-Schmidt

A continuación veremos algunos ejemplos que nos ayuden a clarificar más este algoritmo.

Ejemplo 1. Sean $v_1,v_2,v_3$ vectores en $\mathbb{R}^3$ (con el producto interior estándar) definidos por

$v_1=(1, 1, 0), \quad v_2=( 1, 1, 1), \quad v_3=( 1, 0, 1)$.

Es fácil ver que estos vectores son linealmente independientes. Entonces construyamos según el proceso de Gram-Schmidt la familia ortonormal de vectores $e_1,e_2,e_3$. Tenemos que

$e_1=\frac{v_1}{\norm{v_1}}=\frac{v_1}{\sqrt{2}}=\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)$.

Ahora, tomando $z_2=v_2-\langle v_2,e_1\rangle e_1$, tenemos que $e_2$ está definido como $\frac{z_2}{\norm{z_2}}$, entonces

\begin{align*}
z_2&=(1,1,1)-\left[(1,1,1)\cdot \left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right)\right]\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) \\
&=(1,1,1)-\left[\frac{2}{\sqrt{2}}\right]\left(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0\right) \\
&=(1,1,1)-(2/2,2/2,0)\\
&=(1,1,1)-(1,1,0)=(0,0,1).
\end{align*}

Esto implica que $e_2=\frac{1}{1}(0,0,1)=(0,0,1)$. Finalmente tomando $z_3=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2$, sabemos que $e_3=\frac{z_3}{\norm{z_3}}$. Entonces

\begin{align*}
z_3&=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2 \\
&=(1,0,1)-\left(\frac{1}{2},\frac{1}{2},0\right)-(0,0,1) \\
&=\left(\frac{1}{2},-\frac{1}{2},0\right).
\end{align*}

Por lo tanto

$e_3=\frac{1}{\sqrt{1/2}}\left(\frac{1}{2}, -\frac{1}{2},0\right)=\left(\frac{1}{\sqrt{2}},\frac{-1}{\sqrt{2}},0\right).$

$\square$

Ejemplo 2. Sea $V$ el espacio de polinomios en $[0,1]$ con coeficientes reales de grado a lo más 2, con el producto interior

$\langle p,q \rangle =\int_0^1 p(x)q(x) dx.$

Sean $v_1=1$, $v_2=1+x$, $v_3=1+x^2$ vectores en $V$ que claramente son linealmente independientes. Encontraremos los vectores que nos da el proceso de Gram-Schmidt.

Primero calculemos

$\norm{v_1}^2=\int_0^1 1 dx= 1$,

entonces $e_1=\frac{v_1}{\norm{v_1}}=v_1=1$. Ahora calculemos $z_2$:

\begin{align*}
z_2&=v_2-\langle v_2,e_1 \rangle e_1 \\
&=1+x- \int_0^1 (1+x)dx=1+x-\left(1+\frac{1}{2}\right) \\
&=x-\frac{1}{2}.
\end{align*}

Haciendo la integral $$\int_0^1 \left(x-\frac{1}{2}\right)^2 dx$$ se obtiene que $\norm{z_2}=\sqrt{\frac{1}{12}}$, entonces $e_2=\sqrt{12}\left(x-\frac{1}{2}\right)$.

Por último, hay que calcular $z_3$ así como su norma. Primero,

\begin{align*}
z_3&=v_3-\langle v_3,e_1 \rangle e_1 – \langle v_3,e_2 \rangle e_2 \\
&=(1+x^2)-\int_0^1 (1+x^2)dx – 12\left(x-\frac{1}{2}\right)\int_0^1 (1+x^2)\left(x-\frac{1}{2}\right)dx \\
&=1+x^2-\left(1+\frac{1}{3}\right)-12\left(x-\frac{1}{2}\right)\left(\frac{1}{12}\right) \\
&=x^2-\frac{1}{3}-x+\frac{1}{2} \\
&=x^2-x+\frac{1}{6},
\end{align*}

y luego, con la integral $$\int_0^1 \left(x^2-x+\frac{1}{6}\right)^2 dx$$ se calcula que $\norm{z_3}=\frac{1}{6\sqrt{5}}$, por lo tanto $e_3=6\sqrt{5}\left(x^2-x+\frac{1}{6}\right)$.

$\square$

Aunque no es un proceso muy eficiente, nos garantiza que podemos encontrar una base ortonormal para cualquier espacio vectorial (con producto interior). Ya con una base ortonormal, podemos usar la descomposición de Fourier de la cual hablamos la entrada anterior y con ella todas las consecuencias que tiene.

Si quieres ver muchos más ejemplos del proceso en $\mathbb{R}^n$, puedes usar una herramienta en línea que te permite ver el proceso paso a paso en el conjunto de vectores que tu elijas. Una posible página es el Gram-Schmid Calculator de eMathHelp.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifica que con el valor $\lambda$ que se encontró en la demostración del teorema de Gram-Schmidt en efecto se obtiene un vector $e_d$ que satisface todas las conclusiones que se desean.
  • Revisa que los vectores que se obtuvieron en los ejemplos de aplicación del proceso de Gram-Schmidt en efecto son bases ortogonales de los espacios correspondientes.
  • Aplica el proceso de Gram-Schmidt a los polinomios $1$, $x$, $x^2$ en el espacio Euclideano de los polinomios reales de grado a lo más dos y producto interior $$\langle p, q \rangle = p(0)q(0)+p(1)q(1)+p(2)q(2).$$
  • Aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,1,1,1)\\ (0,1,1,1)\\ (0,0,1,1)\\ (0,0,0,1)\end{align*} de $\mathbb{R}^4$ con el producto interior canónico (el producto punto).
  • Usa el Gram-Schmidt Calculator de eMathHelp para ver paso a paso cómo se aplica el proceso de Gram-Schmidt a los vectores \begin{align*}(1,2,1,1,-1)\\ (0,0,1,0,0)\\ (2,0,0,1,1)\\ (0,2,0,0,1)\\ (-3,0,0,1,0)\end{align*} de $\mathbb{R}^5$.

Más adelante…

En esta última entrada teórica de la unidad 3, vimos el método de Gram-Schmidt para construir una base ortonormal, que es un proceso algorítmico que parte de tener una base de un espacio y al final calcula una base ortonormal. También se vieron algunos ejemplos de la aplicación de este proceso para espacios vectoriales finitos como $\mathbb{R}^3$ y el espacio de polinomios en [0,1] de grado a lo más 2. Aunque no es una manera muy eficaz para encontrar una base ortonormal, sí te garantiza que lo que construye es una.

En la próxima entrada veremos ejercicios resueltos de los temas que hemos estado estudiando a lo largo de esta semana. 

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases ortogonales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Como ya discutimos en las entradas anteriores, si tenemos un espacio vectorial $V$ con producto interior, entonces podemos definir varias nociones geométricas en $V$, como ángulos, norma y distancia. Ahora vamos a definir una noción muy útil en álgebra lineal: la de bases ortogonales. Para ello, combinaremos las nociones de bases y producto interior.

Las bases ortogonales no sólo tienen aplicaciones en álgebra lineal. También son el punto de partida de muchos conceptos matemáticos avanzados. Un primer ejemplo es el análisis de Fourier, que estudia cómo aproximar funciones mediante funciones trigonométricas y que tiene aplicaciones en el mundo real en análisis de señales. Otro ejemplo es la vasta teoría de polinomios ortogonales, con aplicaciones en el mundo real en aproximación e integración numérica.

En estas entradas de bases ortogonales tomaremos espacios vectoriales sobre $\mathbb{R}$ con un producto interior $\langle \cdot,\cdot \rangle$.

Conjuntos ortogonales y ortonormales

Comenzamos con la siguiente definición. Recuerda que $V$ es un espacio vectorial sobre $\mathbb{R}$ con producto interior, así que induce una norma $\Vert \cdot \Vert$.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Ortogonal si cualquier par de vectores distintos de $S$ es ortogonal, es decir, si para todo $v,w$ en $S$, con $v\neq w$ se tiene que $$\langle v, w \rangle = 0.$$
  • Ortonormal si es ortogonal, y además todo vector de $S$ tiene norma $1$.

En otras palabras, $S$ es ortonormal si para todo $v$ en $S$ se tiene $\langle v, v\rangle =1$ y para $v$ y $w$ en $S$ distintos se tiene $\langle v, w\rangle =0$.

Ejemplo. Si tomamos a $\mathbb{R}^n$ con el producto punto, entonces la base canónica es un conjunto ortonormal pues, en efecto, $e_i\cdot e_i = 1$ y para $i\neq j$ se tiene $e_i\cdot e_j = 0$.

Todo conjunto de un sólo elemento es ortogonal, pues no hay nada que probar. Otro conjunto ortonormal en $\mathbb{R}^2$ es el conjunto que sólo tiene al vector $\left(\frac{3}{5},\frac{4}{5}\right)$, pues este es un vector de norma $1$.

Los vectores $(1,1,0)$, $(1,-1,0)$ y $(0,0,1)$ forman otro conjunto ortogonal en $\mathbb{R}^3$, pues en efecto
\begin{align*}
(1,1,0)\cdot (1,-1,0)&=1-1=0\\
(1,-1,0)\cdot (0,0,1)&=0\\
(0,0,1)\cdot (1,1,0)&=0.
\end{align*}

Sin embargo, este no es un conjunto ortonormal, pues la norma de $(1,1,0)$ es $\sqrt{2}\neq 1$. Si normalizamos a cada vector, es decir, si lo dividimos entre su norma, entonces obtenemos los vectores ortonormales $\left(1/\sqrt{2},1/\sqrt{2},0\right)$, $\left(1/\sqrt{2},-1/\sqrt{2},0\right)$ y $(0,0,1)$.

$\square$

Propiedades de conjuntos ortogonales y ortonormales

Todo conjunto ortogonal de vectores no nulos se puede normalizar como en el ejemplo de la sección anterior para obtener un conjunto ortonormal. Es decir, si $S$ es un conjunto de vectores distintos de $0$, entonces $$S’=\left\{\frac{v}{\Vert v \Vert}: v\in S\right\}$$ es un conjunto ortonormal.

Una propiedad fundamental de los conjuntos ortonormales de vectores es que son linealmente independientes. Se puede probar algo un poco más general.

Proposición. Si $S$ es un conjunto ortogonal de vectores no nulos, entonces los elementos de $V$ son linealmente independientes.

Demostración. Tomemos $v_1,\ldots,v_n$ elementos de $S$ y supongamos que existen $\alpha_1,\ldots,\alpha_n$ escalares tales que $$v:=\sum_{i=1}^n \alpha_i v_i =0.$$

Tomemos un índice $j$ en $1,\ldots,n$ y hagamos el producto interior $\langle v, v_j\rangle$. Por un lado, como $v=0$, este produto es $0$. Por otro lado, por linealidad es $$\sum_{i=1}^n \alpha_i \langle v_i,v_j\rangle.$$

Cuando $i\neq j$, el sumando correspondiente es igual a $0$. De este modo, el único sumando no cero es cuando $i=j$, el cual es $\alpha_j \langle v_j,v_j\rangle$. De estos argumentos, deducimos que $$\alpha_j\langle v_j,v_j\rangle =0.$$ Como los vectores son no nulos, se tiene que $\langle v_j,v_j\rangle \neq 0$. Así, $\alpha_j=0$ para todo $j=1,\ldots,n$, lo cual muestra que los vectores son linealmente independientes.

$\square$

Como cada elemento de un conjunto ortonormal tiene norma $1$, entonces no puede ser nulo, así que como corolario de la proposición anterior, todo conjunto ortonormal es linealmente independiente. Otro corolario es el siguiente.

Corolario. En un espacio Euclideano de dimensión $d$, los conjuntos ortogonales sin vectores nulos tienen a lo más $d$ elementos.

Bases ortogonales y ortonormales

Cuando una base de un espacio vectorial es ortogonal (o bien, ortonormal), pasan varias cosas buenas. Esto amerita una definición por separado.

Definición. Sea $S$ un conjunto de vectores en $V$. Decimos que $S$ es

  • Una base ortogonal si $S$ es una base de $V$ y es un conjunto ortogonal.
  • Una base ortonormal si $S$ una base de $V$ y es un conjunto ortonormal.

Ejemplo. En $\mathbb{R}^n$ la base canónica es una base ortonormal.

En $\mathbb{R}^2$ el conjunto $S=\{(2,3),(9,-6)\}$ es un conjunto ortogonal. Además, se puede verificar fácilmente que son dos vectores linealmente independientes. De este modo, $S$ es una base ortogonal.

Sin embargo, $S$ no es una base ortonormal pues el primero de ellos tiene norma $\sqrt{2^2+3^2}=\sqrt{13}$. Si quisiéramos convertir a $S$ en una base ortonormal, podemos normalizar a cada uno de sus elementos.

$\square$

En la sección anterior vimos que los conjuntos ortonormales son linealmente independientes. Otro corolario de este resultado es lo siguiente.

Corolario. En un espacio Euclideano de dimensión $n$, un conjunto ortonormal de $n$ vectores es una base ortonormal.

La importancia de las bases ortogonales yace en que dada una base ortonormal $B$ y un vector $v$, podemos encontrar varias propiedades de $v$ en términos de $B$ fácilmente. Por ejemplo, veremos más adelante que:

  • Las coordenadas de $v$ con respecto a la base $B$ son sencillas.
  • Hay una fórmula simple para la norma de $v$ en términos de sus coordenadas en la base $B.$
  • Si $B$ es una base de un subespacio $W$ de $V$, entonces es fácil encontrar la distancia de $v$ a $W.$

Mejor aún, las bases ortonormales siempre existen.

Teorema. Todo espacio Euclideano tiene una base ortonormal.

Es decir, sin importar qué espacio vectorial real de dimensión finita tomemos, y sin importar qué producto punto le pongamos, podemos dar una base ortogonal. De hecho, veremos un resultado un poco más fuerte, que nos dará un procedimiento para encontrar dicha base, incluso imponiendo restricciones adicionales.

Ejemplo de bases ortogonales en polinomios

Ejemplo. Tomemos $\mathbb{R}_n[x]$ el espacio de polinomios de grado a lo más $n$ con coeficientes reales. Además, tomemos números reales distintos $x_0,\ldots,x_n$. A partir de estos reales podemos definir la operación $$\langle P, Q \rangle = \sum_{j=0}^n P(x_j)Q(x_j),$$ la cual es claramente bilineal y simétrica.

Tenemos que $\langle P,P\rangle$ es una suma de cuadrados, y por lo tanto es no negativa. Además, si $\langle P, P\rangle =0$, es porque $$\sum_{j=0}^n P(x_j)^2=0,$$ y como estamos trabajando en $\mathbb{R}$ esto implica que cada sumando debe ser cero. Pero las igualdades $$P(x_0)=\ldots=P(x_n)=0$$ dicen que los $n+1$ reales distintos $x_i$ son raíces de $P$, y como $P$ es de grado a lo más $n$, tenemos que $P$ es el polinomio $0$. En resumen, $\langle \cdot, \cdot \rangle$ es un producto interior en $\mathbb{R}_n[x]$. Vamos a dar una base ortogonal con respecto a este producto interior.

Para $i=0,\ldots,n$, consideremos los polinomios $$L_i(x)=\prod_{0\leq k \leq n, k\neq i} \frac{x-x_k}{x_i-x_k}.$$ Observa que $L_j(x_j)=1$ y si $j\neq i$, tenemos $L_i(x_j)=0$. Afirmamos que $$B=\{L_j:j=0,\ldots,n+1\}$$ es una base ortonormal de $\mathbb{R}_n[x]$ con el producto interior que definimos. Como consiste de $n+1$ polinomios y $\dim(\mathbb{R}_n[x])=n+1$, basta con que veamos que es un conjunto ortonormal.

Primero, notemos que
\begin{align*}
\langle L_i,L_i \rangle = \sum_{j=0}^n L_i(x_j)^2 = L_i(x_i)^2=1,
\end{align*}

de modo que cada $L_i$ tiene norma $1$.

Luego, notemos que si $i\neq j$, entonces $L_i(x_k)L_j(x_k)=0$ pues $x_k$ no puede ser simultáneamente $x_i$ y $x_j$. De este modo,

\begin{align*}
\langle L_i,L_j \rangle = \sum_{k=0}^n L_i(x_k)L_j(x_k)=0.
\end{align*}

Con esto mostramos que cada par de polinomios distintos es ortogonal. Esto termina la demostración de que $B$ es base ortonormal.

$\square$

Ejemplo de conjuntos ortogonales en funciones periódicas

Ejemplo. Consideremos $V$ el conjunto de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$. Definimos $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx.$$ Se puede mostrar que $\langle \cdot, \cdot \rangle$ así definido es un producto interior en $V$.

Para cada entero positivo $n$, definimos
\begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*}

Además, definimos $C_0(x)=\frac{1}{\sqrt{2\pi}}$. Afirmamos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ es un conjunto ortonormal de vectores. Mostremos esto.

Para empezar, notamos que $$\Vert C_0\Vert ^2 = \int_{-\pi}^{\pi} \frac{1}{2\pi}\, dx =1.$$

Luego, tenemos que para $n\geq 1$ que
\begin{align*}
\Vert C_n\Vert ^2 &= \int_{-\pi}^\pi \frac{1}{\pi} \cos^2(nx)\, dx\\
&= \int_{-\pi}^\pi \frac{1+\cos(2nx)}{2\pi}\, dx\\
&= 1,
\end{align*}

ya que para todo entero $m\neq 0$ se tiene que $$\int_{-\pi}^\pi \cos(mx) \, dx=0.$$ De manera similar, usando la identidad $$\sin^2(nx)=\frac{1-\cos(nx)}{2},$$ se puede ver que la norma de $S_n$ es $1$.

Para ver que las parejas de elementos distintas son ortogonales, tenemos varios casos. Si tomamos $n\geq 1$, el resultado para $\langle C_0,C_n\rangle$ ó $\langle C_0,S_n\rangle$ se deduce de que
$$\int_{-\pi}^\pi \cos(mx)\, dx=\int_{-\pi}^\pi \sin(mx)\, dx=0$$ para todo entero $m\neq 0$.

Si tomamos dos $C_i$’s distintos, dos $S_i’s$ distintos o un $C_i$ y un $S_i$, el resultado se deduce de las fórmulas «producto a suma» de las funciones trigonométricas.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Encuentra un conjunto ortogonal de vectores en $\mathbb{R}^4$ tal que ninguna de las entradas de ninguno de sus vectores sea igual a $0$.
  • Escribe las demostraciones de los corolarios enunciados en esta entrada.
  • Muestra que $\langle \cdot, \cdot \rangle$ definido en el ejemplo de funciones periódicas es un producto interior.
  • Termina de mostrar que la familia $\mathcal{F}$ del ejemplo de funciones periódicas es ortonormal. Sugerencia: Usa identidades de suma y resta de ángulos para poner el producto de senos (o cosenos o mixto) como una suma de senos y/o cosenos.

Más adelante…

En esta entrada combinamos las nociones de bases y el producto interior, estudiadas en entradas anteriores, para definir a las bases ortogonales. Vimos algunas propiedades de conjuntos ortogonales y ortonormales, para extenderlos a bases ortogonales y ortonormales. Vimos unos ejemplos de bases ortogonales de los polinomios y otros ejemplos de conjuntos ortogonales en funciones periódicas.

En la siguiente entrada veremos aplicaciones de estos conceptos, culminando en una descomposición de Fourier.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de transformaciones transpuestas y formas bilineales

Por Ayax Calderón

Introducción

En la entrada del miércoles pasado se definió el concepto de la transpuesta de una transformación lineal. Así mismo, se probó el impresionante y muy útil hecho de que si $A$ es la matriz asociada a la transformación $T$ con respecto a ciertas bases, entonces $^tA$ es la matriz asociada de la transformación $^tT$ con respecto a las bases duales. Comenzamos esta entrada con problemas de transformaciones transpuestas. Los problemas 1 y 2 de esta entrada nos servirán para repasar la teoría vista en esa clase.

Por otra parte, en la entrada del viernes pasado comenzamos con el estudio de las formas bilineales y también se definió la forma cuadrática asociada a una forma bilineal. Además, se presentó la identidad de polarización, la cuál dada una forma cuadrática $q$ nos recupera la única forma bilineal simétrica de la cuál viene $q$.

Para repasar esta teoría, en esta entrada se encuentran los problemas 3 y 4. El problema 4 es interesante porque introduce de manera sencilla los espacios de funciones $l_p$ , de los cuáles se hace un estudio mucho más profundo en un primer curso de análisis matemático. Además, para este problema hacemos uso de herramientas de convergencia de series.

Problemas resueltos

Veamos dos problemas de transformaciones transpuestas

Problema. Considera la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por $$T(x,y,z)=(x+3y, x+y-z).$$
Sea $\mathcal{B}^*=\{e_1^*, e_2^*\}$ la base dual canónica de $\mathbb{R}^2$.
Calcula $^tT(e_1^*+e_2^*)$ y $^tT(e_1^*-e_2^*)$ en términos de la base dual canónica $\{f_1^\ast, f_2^\ast, f_3^\ast\}$ de $\mathbb{R}^3$.

Solución. Primero observemos que para un vector cualquiera de $\mathbb{R}^2$ se tiene que
\begin{align*}
e_1^*(x,y)&=x\\
e_2^*(x,y)&=y.
\end{align*}

entonces
\begin{align*}
(e_1^* + e_2^* )(x,y)&=x+y\\
(e_1^* – e_2^* )(x,y)&=x-y.
\end{align*}

Así,

\begin{align*}
(^tT(e_1^*&+e_2^*))(x,y,z)\\=&(e_1^* + e_2^*)(T(x,y,z))\\
=&(e_1^* + e_2^*)(x+3y, x+y-z)\\=&x+3y+x+y-z\\
=&2x+4y-z.
\end{align*}

Esto nos dice que $^tT(e_1^*+e_2^*)=2f_1^\ast+4f_2^\ast – f_3^\ast$.

Por otro lado,

\begin{align*}
(^tT(e_1^*&-e_2^*))(x,y,z)\\
=&(e_1^* – e_2^*)(T(x,y,z))\\
=&(e_1^* – e_2^*)(x+3y, x+y-z)\\
=&x+3y-x-y+z\\
=&2y+z.
\end{align*}

Por lo tanto, $ ^tT(e_1^*-e_2^*)) =2f_2^\ast+f_3^\ast.$

$\square$

Problema. Encuentra la matriz de $^tT$ con respecto a la base canónica de $\mathbb{R}^3$ sabiendo que

$T(x,y,z)=(x+y, y-z,x+2y-3z).$

Solución. Recordemos que para calcular la matriz asociada a una transformación con respecto a una base canónica sólo hace falta poner en la $i$-ésima columna la imagen del $i$-ésimo vector canónico. Por esto, calculamos los siguientes valores

$T(e_1)=T(1,0,0)=(1,0,1)$
$T(e_2)=T(0,1,0)=(1,1,2)$
$T(e_3)=(0,0,1)=(0,-1,-3).$

Entonces la matriz asociada a $T$ es

$A=\begin{pmatrix}
1 & 1 & 0\\
0 & 1 & -1\\
1 & 2 & -3\end{pmatrix}.$

Así, por Teorema 2 visto en la entrada de ortogonalidad y transformación transpuesta, sabemos que la matriz asociada a $^tT$ es justamente la matriz

$^tA=\begin{pmatrix}
1 & 0 & 1\\
1 & 1 & 2\\
0 & -1 & -3\end{pmatrix}$.

$\square$

Problemas de formas bilineales y cuadráticas

Problema. Demuestra que la transformación

$b:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$
$b((x,y),(z,t))=xt-yz$

es una forma bilineal sobre $\mathbb{R}^2$. Describe la forma cuadrática asociada.

Demostración. Sea $(x,y)\in \mathbb{R}^2$ fijo. Queremos ver que

$b((x,y), \cdot):\mathbb{R}^2 \to \mathbb{R}$
definida por
$(u,v)\mapsto b((x,y),(u,v))$
es lineal.

Sean $(u,v),(z,t)\in \mathbb{R}^2$.

\begin{align*}
b(&(x,y),(u,v)+(z,t))\\&=b((x,y),(u+z, v+t))\\&=x(v+t)-y(u+z)\\&=(xv-yu)+(xt-yz)\\
&=b((x,y),(u,v))+b((x,y),(z,t)).
\end{align*}

Sea $k \in \mathbb{R}$.
\begin{align*}
b((x,y),k(u,v))&=b((x,y),(ku,kv))\\
&=kxv-kyu\\
&=k(xv-yu)\\
&=kb((x,y),(u,v)).
\end{align*}

Así, $(u,v)\mapsto b((x,y),(u,v))$ es lineal.

Ahora veamos que dado $(u,v)\in\mathbb{R}^2$ fijo, la transformación $(x,y)\mapsto b((x,y),(u,v))$ es lineal.

Sean $(x,y),(z,t)\in\mathbb{R}^2$ y $k\in \mathbb{R}$. Tenemos que
\begin{align*}
b((x&,y)+k(z,t),(u,v))\\
=&b((x+kz,y+kt),(u,v))\\
=&(x+kz)v – (y+kt)u\\
=& xv-kzv-yu-ktu\\
=&(xv-yu)+k(zv-tu)\\
=&b((x,y),(u,v))+kb((z,t),(u,v)).
\end{align*}

Así, $(x,y)\mapsto b((x,y),(u,v))$ es lineal y por consiguiente $b$ es una forma bilineal.

Ahora, tomemos $q:\mathbb{R}^2\to \mathbb{R}$ definida por $$q(x,y)=b((x,y),(x,y)).$$
Entonces $q(x,y)=xy-yx=0$. Así, la forma cuadrática cero es la forma cuadrática asociada a la forma bilineal $b$.

$\square$

Problema. Para un real $p\geq 0$, definimos el espacio $$l_p:=\left\{(x_n)_{n\in\mathbb{N}} : x_n\in\mathbb{R} \forall n\in \mathbb{N} ; \displaystyle\sum_{i\in \mathbb{N}}|x_i| ^p < \infty \right\}.$$

Notemos que para $p\in[1,\infty)$, $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas de manera natural. La demostración no es totalmente trivial, pues hay que mostrar que este espacio es cerrado bajo la suma, y esto requiere de la desigualdad del triángulo para la norma $|\cdot |_p$. Puedes intentar demostrar esto por tu cuenta como tarea moral.

Ahora, considera $H:l_2\times l_2 \to\mathbb{R}$ definida por

$H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})=\displaystyle\sum_{n\in\mathbb{N}}x_ny_n$.


Demuestra que $H$ es una forma bilineal simétrica sobre $l_2$.

Demostración. Lo primero que haremos es mostrar que la forma bilineal que definimos en efecto tiene valores reales. Para ello, tenemos que ver que converge.

Observemos que para cada $n\in\mathbb{N}$ se tiene que

$0\leq(|x_n|- |y_n|)^2.$

Entonces ,
\begin{align*}
0&\leq |x_n| ^2 -2|x_ny_n|+ |y_n |^2\\
|x_n y_n|&\leq \frac{1}{2}(|x_n|^2 + |y_n|^2).
\end{align*}


Por consiguiente,

$\displaystyle\sum_{n\in\mathbb{N}}|x_n y_n|\leq \frac{1}{2}\left (\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 + \displaystyle\sum_{n\in\mathbb{N}}|y_n|^2 \right ) < \infty$.

Lo anterior se debe a que

$\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 < \infty$ ya que $(x_n)_{n\in \mathbb{N}}\in l_2$

y análogamente para $(y_n)_{n\in \mathbb{N}}$.

Así, $\displaystyle\sum_{n\in\mathbb{N}}x_n y_n < \infty$, pues converge absolutamente, y por lo tanto $H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ siempre cae en $\mathbb{R}$.

Ahora veamos que $H$ es bilineal. Sea $x=(x_n)_{n\in \mathbb{N}}\in l_2$ fija. Queremos ver que $$(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$$ es lineal.

Sean $y=(y_n)_{n\in \mathbb{N}},z=(z_n)_{n\in \mathbb{N}}\in l_2$ y $k\in \mathbb{R}$.

Entonces

\begin{align*}
H(x,&y+kz)\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n +kx_nz_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n + k\displaystyle\sum_{n\in\mathbb{N}}x_n z_n\\
&= H(x,y) + k H(x,z).
\end{align*}

Así, $(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

De manera análoga se ve que si $(y_n)_{n\in \mathbb{N}} \in l_2$ fija, entonces $(x_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

Además
\begin{align*}
H(x,y)&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}y_n x_n \\
&= H(y,x).
\end{align*}

Por lo tanto, $H$ es una forma bilineal simétrica sobre $l_2$.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que en efecto $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas entrada a entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Introducción a espacio dual

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada empezamos la tercera unidad del curso de Álgebra Lineal I. Los conceptos fundamentales de esta nueva unidad son el de espacio dual y el de formas bilineales.

Hagamos un pequeño recordatorio, que será útil para entender los temas que vendrán. Ya definimos qué es un espacio vectorial y qué son las transformaciones lineales.

Para los espacios vectoriales, hablamos de subespacios, de conjuntos generadores, independientes y bases. A partir de ellos definimos qué quiere decir que un espacio sea de dimensión finita y, en ese caso, dijimos cómo definir la dimensión. Un lema fundamental para hacer esto fue el lema del intercambio de Steinitz.

Dijimos que las transformaciones lineales son funciones «bonitas» entre espacios vectoriales que «abren sumas» y «sacan escalares». Dimos como ejemplos a las proyecciones y las simetrías. Vimos lo que le hacen a generadores, linealmente independientes y bases. También, vimos que podemos expresarlas a través de matrices.

Un tipo de matrices de trasformaciones lineales muy importante son las matrices de cambios de base, que permiten conocer las coordenadas de vectores en distintas bases y pasar matrices de transformaciones lineales entre distintas bases. Finalmente, hablamos del rango para matrices y transformaciones lineales.

Es muy bueno entender estos temas lo mejor posible antes de continuar. Aunque no te queden 100% claras todas las demostraciones, por lo menos intenta sí conocer las hipótesis y los enunciados de los resultados principales.

Los temas que vendrán están basados en los capítulos 6 y 10 del libro de Titu Andreescu.

Dualidad y espacio dual

Antes de continuar, el siguiente ejemplo te debe de quedar clarísimo. Dice que hay una forma de hacer un espacio vectorial cuyos elementos son transformaciones lineales. Así es, cada vector de este espacio es una transformación lineal. Esto no debería de ser tan raro pues ya estudiamos algunos espacios vectoriales de funciones.

De ser necesario, verifica que en efecto se satisfacen los axiomas de espacio vectorial, para entender todavía mejor el ejemplo.

Ejemplo. Si $V$ y $W$ son espacios vectoriales sobre un mismo campo $F$, entonces el conjunto de transformaciones lineales de $V$ a $W$ es un espacio vectorial con las operaciones de suma de funciones y multiplicación por escalar.

Recordemos que la suma de funciones manda a las funciones $S:V\to W$ y $T:V\to W$ a la función $S+T:V\to W$ para la cual $$(S+T)(v)=S(v)+T(v)$$ y que la multiplicación por escalar manda al escalar $c\in F$ y a la función $T:V\to W$ a la función $cT:V\to W$ para la cual $$(cT)(v)=cT(v).$$

La razón por la cual este es un espacio vectorial es que es un subconjunto del espacio vectorial de todas las funciones de $V$ a $W$, y además es cerrado bajo sumas y multiplicaciones por escalar, de modo que es un subespacio.

A este espacio vectorial le llamamos $\text{Hom}(V,W)$.

$\square$

En esta unidad vamos a estudiar $\text{Hom}(V,W)$, pero para un caso particular muy concreto: para cuando $W$ es $F$, el campo sobre el cual está $V$. Podemos hacer esto, pues recuerda que podemos pensar al campo $F$ como un espacio vectorial sobre sí mismo.

A partir de ahora fijaremos el campo $F$. Si quieres, puedes pensarlo como $\mathbb{R}$ o $\mathbb{C}$ pero lo que digamos funcionará para campos arbitrarios.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. El espacio dual $V^\ast$ de $V$ es el conjunto de transformaciones lineales $l:V\to F$ dotado con las operaciones suma dada por $$(l_1+l_2)(v)=l_1(v)+l_2(v)$$ y producto por escalar dado por $$(cl)(v)=c(l(v))$$ para $l_1,l_2, l$ en $V^\ast$, $v$ en $V$ y $c$ en $F$.

A cada elemento de $V^\ast$ le llamamos una forma lineal en $V$. Usamos la palabra «forma» para insistir en que es una transformación que va hacia el campo $F$ sobre el cual está $V$.

Ejemplo. Consideremos al espacio vectorial $\mathbb{R}^3$. Está sobre el campo $\mathbb{R}$. Una forma lineal aquí es simplemente una transformación lineal $S_1:\mathbb{R}^3\to \mathbb{R}$, por ejemplo $$S_1(x,y,z)=x+y-z.$$ Otra forma lineal es $S_2:\mathbb{R}^3\to \mathbb{R}$ dada por $$S_2(x,y,z)=y+z-x.$$ Si sumamos ambas formas lineales, obtenemos la forma lineal $S_1+S_2$, la cual cumple $$(S_1+S_2)(x,y,z)=(x+y-z)+(y+z-x)=2y.$$

Estas son sólo dos formas lineales de las que nos interesan. Si queremos construir todo el espacio dual $(\mathbb{R}^3)^\ast$, necesitamos a todas las transformaciones lineales de $\mathbb{R}^3$ a $\mathbb{R}$.

Recordemos que cada transformación lineal $T$ de estas está representada de manera única por una matriz en $M_{1,3}(\mathbb{R})$ de la forma, digamos, $\begin{pmatrix} a & b & c\end{pmatrix}$. Así, toda transformación lineal de $\mathbb{R}^3$ a $\mathbb{R}$ lo que hace es enviar a $(x,y,z)$ a $$\begin{pmatrix} a& b & c \end{pmatrix}\begin{pmatrix}x\\ y\\ z\end{pmatrix}=ax+by+cz.$$ Se puede verificar que la suma de matrices y el producto escalar corresponden precisamente con la suma de sus transformaciones lineales asociadas, y su producto escalar.

Dicho de otra forma, $(\mathbb{R}^3)^\ast$ se puede pensar como el espacio vectorial de matrices $M_{1,3}(\mathbb{R})$. Observa que $\mathbb{R}^3$ y $(\mathbb{R}^3)^\ast$ tienen ambos dimensión $3$.

$\square$

Ejemplo. Consideremos el espacio vectorial $V$ de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$. Una forma lineal es una transformación lineal que a cada vector de $V$ (cada función) lo manda a un real en $\mathbb{R}$. Un ejemplo es la forma lineal $T:V\to \mathbb{R}$ tal que $$T(f)=\int_0^1 f(t)\,dt.$$ Otro ejemplo es la forma lineal $\text{ev}_0:V\to \mathbb{R}$ que manda a cada función a lo que vale en $0$, es decir, $$\text{ev}_0(f)=f(0).$$ Aquí dimos dos formas lineales, pero hay muchas más. De hecho, en este ejemplo no está tan sencillo decir quienes son todos los elementos de $V^\ast$.

$\square$

Espacio dual de un espacio de dimensión finita

Sea $V$ un espacio de dimensión finita $n$ y $B=\{e_1,e_2,\ldots,e_n\}$ una base de $V$. Como ya vimos antes, una transformación lineal queda totalmente definida por lo que le hace a los elementos de una base. Más concretamente, si $v=x_1e_1+\ldots+x_ne_n$, entonces lo que hace una forma lineal $l$ en $v$ es $$l(x_1e_1+\ldots+x_ne_n)=x_1a_1+\ldots+x_na_n,$$ en donde $a_i=l(e_i)$ son elementos en $F$.

Hay una manera canónica de combinar a un elemento $l$ de $V^\ast$ y a un elemento $v$ de $V$: evaluando $l$ en $v$. Así, definimos al emparejamiento canónico entre $V$ y $V^\ast$ como la función $$\langle\cdot, \cdot \rangle: V^\ast \times V$$ definida para $l$ en $V^\ast$ y $v$ en $V$ como $$\langle l,v\rangle = l(v).$$

Observa que $\langle\cdot, \cdot \rangle$ es lineal en cada una de sus entradas por separado, es decir para $c$ en $F$, para $l_1,l_2,l$ en $V^\ast$ y para $v_1,v_2,v$ en $V$ se tiene que $$\langle cl_1+l_2,v\rangle = c\langle l_1,v\rangle + \langle l_2,v\rangle$$ y que $$\langle l,cv_1+v_2\rangle = c\langle l,v_1\rangle +\langle l,v_2\rangle.$$ Esto es un ejemplo de una forma bilineal. Estudiaremos estas formas a detalle más adelante.

Vamos a hacer una pequeña pausa. Hasta ahora, para un espacio vectorial $V$ definimos:

  • Su espacio dual $V^\ast$.
  • El emparejamiento canónico entre $V$ y $V^\ast$.

Si a $V^\ast$ le estamos llamando «el dual» es porque esperamos que sea «muy parecido» a $V$. También, en una operación de dualidad nos gustaría que al aplicar dualidad dos veces «regresemos» al espacio original.

Por esta razón, nos gustaría a cada elemento $v$ de $V$ asociarle un elemento de $V^ {\ast \ast} $, el espacio dual del espacio dual. Afortunadamente, hay una forma muy natural de hacerlo. Para cada $v$ en $V$ podemos considerar la forma lineal $\text{ev}_v:V^\ast \to F$ que a cada forma lineal $l$ en $V^\ast$ le asigna $l(v)$.

Ejemplo. Considera el espacio vectorial de matrices $M_{2}(\mathbb{R})$. El espacio dual $M_{2}(\mathbb{R})^\ast$ consiste de todas las transformaciones lineales $T: M_{2}(\mathbb{R}) \to \mathbb{R}$. Un ejemplo de estas transformaciones es la transformación $T$ que a cada matriz la manda a la suma de sus entradas, $T\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+b+c+d$. Otro ejemplo es la transformación $S$ que a cada matriz la manda a su traza, es decir, $S\begin{pmatrix}a& b\\c & d\end{pmatrix}=a+d$.

Consideremos ahora a la matriz $A=\begin{pmatrix} 5 & 2\\ 1 & 1\end{pmatrix}$.

A esta matriz le podemos asociar la transformación $\text{ev}_A:M_{2}(\mathbb{R})^\ast\to F$ tal que a cualquier transformación lineal $L$ de $ M_{2}(\mathbb{R})$ a $\mathbb{R}$ la manda a $L(A)$. Por ejemplo, a las $T$ y $S$ de arriba les hace lo siguiente $$\text{ev}_A(T)=T(A)=5+2+1+1=9$$ y $$\text{ev}_A(S)=S(A)=5+1=6.$$

$\square$

La discusión anterior nos permite dar una transformación lineal $\iota: V \to V {\ast \ast}$ tal que a cada $v$ la manda a $\text{ev}_v$, a la cual le llamamos la bidualidad canónica entre $V$ y $V^ {\ast \ast} $. Nota que $$\langle \iota(v), l\rangle=\langle l, v\rangle.$$ Un teorema importante que no probaremos en general, sino sólo para espacios vectoriales de dimensión finita, es el siguiente.

Teorema. Para cualquier espacio vectorial $V$, la bidualidad canónica es inyectiva.

De hecho, para espacios vectoriales de dimensión finita veremos que es inyectiva y suprayectiva, es decir, que es un isomorfismo entre $V$ y $V^{\ast \ast}$.

Formas coordenadas

En esta sección hablaremos de cómo encontrar una base para el espacio dual de un espacio vectorial $V$ de dimensión finita.

Supongamos que $V$ es de dimensión finita $n$ y sea $B=\{e_1,\ldots,e_n\}$ una base de $V$. A partir de la base $B$ podemos obtener $n$ formas lineales $e_i^\ast:V\to F$ como sigue. Para obtener el valor de $e_i^\ast$ en un vector $v$, expresamos a $v$ en términos de la base $$v=x_1e_1+x_2e_2+\ldots+x_n e_n$$ y definimos $e_i^\ast(v)=x_i$. A $e_i^\ast$ le llamamos la $i$-ésima forma coordenada para la base $B$ de $V$.

Directamente de las definiciones que hemos dado, tenemos que $$v=\sum_{i=1}^n e_i^\ast(v) e_i = \sum_{i=1}^n \langle e_i^\ast, v\rangle e_i.$$

Otra relación importante es que $e_i^\ast(e_j)=0$ si $i\neq j$ y $e_i^\ast(e_j)=1$ si $i=j$. De hecho, muchas veces tomaremos esta como la definición de la base dual.

Ejemplo. Si estamos trabajando en $F^n$ y tomamos la base canónica $e_i$, entonces la forma canónica $e_i^\ast$ manda al vector $(x_1,\ldots,x_n)$ a $x_i$, que es precisamente la $i$-ésima coordenada. De aquí el nombre de formas coordenadas. En efecto, tenemos que $$v=x_1e_1+x_2e_2+\ldots+x_ne_n.$$

$\square$

Estamos listos para enunciar el teorema principal de esta entrada introductoria a dualidad lineal.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ y $B=\{e_1,\ldots,e_n\}$ una base de $V$. Entonces el conjunto de formas coordenadas $B^\ast=\{e_1^\ast, \ldots,e_n^\ast\}$ es una base de $V^\ast$. En particular, $V^\ast$ es de dimensión finita $n$. Además, la bidualidad canónica $\iota:V\to V^{\ast \ast}$ es un isomorfismo de espacios vectoriales.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Revisa por definición que si $V$ y $W$ son espacios vectoriales sobre $F$, entonces $\text{Hom}(V,W)$ es un espacio vectorial sobre $F$.
  • Encuentra más formas lineales en el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{R}$.
  • Justifica por qué $\iota:V\to V^{\ast \ast}$ es una transformación lineal y argumenta por qué $\langle \iota (v),l\rangle = \langle l,v\rangle$.
  • En el espacio de polinomios $\mathbb{R}_n[x]$ con coeficientes reales y grado a lo más $n$, ¿quienes son las formas coordenadas para la base ordenada $(1,x,x^2,\ldots,x^{n-1},x^n)$?, ¿quiénes son las formas coordenadas para la base ordenada $(1,1+x,\ldots,1+\ldots+x^{n-1},1+\ldots+x^n)$?
  • Aplica el último teorema a la base canónica $E_{ij}$ de $M_2(\mathbb{R})$ para encontrar una base de $M_2(\mathbb{R})^\ast$
  • Considera el espacio vectorial $V$ de matrices en $M_2(\mathbb{R})$. ¿Quién es el kernel de la forma lineal en $V$ que a cada matriz la manda a su traza? ¿Quién es el kernel de la forma lineal $\text{ev}_A$ en $V^\ast$, donde $A=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$?

Más adelante…

Esta primera entrada introduce los conceptos de espacio dual. Estos conceptos son bastante útiles más adelante. Veremos que gracias a ellos, podemos dar una interpretación en términos de transformaciones lineales de la matriz transpuesta. En esta primer entrada también hablamos de formas lineales. Más adelante, veremos como éstas nos llevan de manera natural al concepto de «hiperplanos» en cualquier espacio vectorial. Uno de los resultados clave que demostraremos con la teoría de dualidad es que cualquier subespacio de un espacio vectorial de dimensión finita se puede pensar como intersección de hiperplanos. Gracias a esto encontraremos una fuerte relación entre subespacios y sistemas de ecuaciones lineales.

Antes de poder hacer estas cosas bien, necesitamos desarrollar bases sólidas. Por ello, en la siguiente entrada demostraremos el último teorema enunciado. También, veremos algunas recetas para resolver problemas de bases duales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»