Archivo de la etiqueta: reducción gaussiana

Álgebra Lineal I: Reducción gaussiana en sistemas lineales AX=b

Por Julio Sampietro

Introducción

Ya usamos el algoritmo de reducción gaussiana para estudiar sistemas de ecuaciones homogéneos. En esta entrada aplicamos lo que hemos aprendido de este método para resolver sistemas de ecuaciones no homogéneos.

Para hacer esto, adaptaremos la técnica para sistemas homogéneos (que en realidad, no es muy diferente) y la usamos para probar un resultado muy importante, llamado el teorema de existencia y unicidad. Damos unos cuantos ejemplos y concluimos con la prometida demostración de la unicidad de la forma escalonada reducida.

Adaptando el vocabulario

Consideramos un sistema lineal $AX=b$ con $A\in M_{m,n}(F)$ y $b\in F^{m}$, con variables $x_1, \dots, x_n$ que son las coordenadas de $X\in F^{n}$. Para resolver el sistema consideramos la matriz aumentada $\left(A\vert b\right)$ obtenida de $A$ al añadir al vector $b$ como columna hasta la derecha.

Ejemplo. Si

\begin{align*}
A= \begin{pmatrix} 0 & 1 & 2\\
-1 & 0 &1 \end{pmatrix} \text{ y } b= \begin{pmatrix} 12 \\ 14 \end{pmatrix}
\end{align*}

entonces

\begin{align*}
\left(A\vert b\right)= \begin{pmatrix} 0 & 1 & 2 & 12\\ -1 & 0 & 1 & 14\end{pmatrix}\end{align*}

$\square$

Las operaciones elementales del sistema se traducen entonces en operaciones elementales en la matriz aumentada, por lo que para resolver el sistema podemos primero llevar a la matriz aumentada a su forma escalonada y reducida y después resolver el sistema más sencillo. Esto lo podríamos hacer siempre y cuando al realizar operaciones elementales en la matriz aumentada no se modifique el conjunto de soluciones del sistema. Esto lo garantiza la siguiente proposición.

Proposición. Sea el sistema lineal $AX=b$. Supongamos que la matriz $\left(A’\vert b’\right)$ se obtiene a partir de la matriz $\left( A\vert b\right)$ realizando una sucesión finita de operaciones elementales. Entonces los sistemas $AX=b$ y $A’X=b’$ son equivalentes, es decir, tienen el mismo conjunto de soluciones.

Demostración: Como ya hemos visto anteriormente, realizar operaciones elementales en $\left(A \vert b\right)$ es equivalente a realizar operaciones elementales en las ecuaciones del sistema $AX=b$, pero ya sabemos que estas no alteran el conjunto de soluciones, pues son reversibles (es decir, podemos siempre deshacer los cambios).

$\square$

El teorema de existencia y unicidad

Llegamos ahora a otro resultado clave de nuestro estudio de ecuaciones. Es una caracterización que responde a nuestras preguntas: ¿Hay soluciones? ¿Son únicas? Además, nos puede sugerir cómo encontrarlas.

Teorema. (De existencia y unicidad) Supongamos que la matriz $\left(A\vert b\right)$ ha sido llevada a su forma escalonada reducida $\left(A’\vert b’\right)$ por operaciones elementales.

  1. (Existencia de soluciones) El sistema $AX=b$ es consistente si y sólo si $\left(A’\vert b’\right)$ no tiene ningún pivote (de filas) en su última columna.
  2. (Unicidad de soluciones) Si el sistema es consistente, entonces tiene una única solución si y sólo si $A’$ tiene pivotes (de filas) en cada columna.

Demostración:

  1. Supongamos que $\left(A’\vert b’\right)$ tiene un pivote en su última columna. Debemos ver que el sistema $AX=b$ no tiene solución. Para esto, basta ver que el sistema $A’X=b’$ no tiene solución, pues es un sistema equivalente.

    Si el pivote aparece en el $i$-ésimo renglón entonces este es de la forma $(0, \dots, 0, 1)$, pues recordemos que los pivotes son iguales a $1$ en la forma escalonada reducida. Entonces entre las ecuaciones del sistema $A’X=b’$ tenemos una de la forma $0 x_1′ +\dots +0 x_n’=1$, que no tiene solución alguna. Así el sistema $A’X=b’$ no es consistente, y por tanto $AX=b$ tampoco lo es.

    Conversamente, supongamos que $\left(A’ \vert b’\right)$ no tiene un pivote en su última columna. Digamos que $A’$ tiene pivotes en las columnas $j_1<\dots <j_k \leq n$ y sean $x_{j_1}, \dots, x_{j_k}$ las correspondientes variables pivote y todas las demás variables son libres. Dando el valor cero a todas las variables libres obtenemos un sistema en las variables $x_{j_1}, \dots, x_{j_k}$. Este sistema es triangular superior y se puede resolver empezando por la última ecuación, encontrando $x_{j_k}$, luego $x_{j_{k-1}}$ y así sucesivamente. Así encontramos una solución, por lo que el sistema es consistente. Esta solución encontrada también es una solución a $AX=b$, pues es un sistema equivalente.
  2. Como le podemos dar cualquier valor escalar a las variables libres, el argumento del párrafo anterior nos dice que la solución es única si y sólo si no tenemos variables libres, pero esto pasa si y sólo si los pivotes llegan hasta la última columna de $A’$.

$\square$

Ten cuidado. En la primer parte, la condición se verifica con $(A’|b)$. En la segunda parte, la condición se verifica con $A’$.

Encontrando y contando soluciones

Por simplicidad, asumamos que $F=\mathbb{R}$, es decir que nuestro campo de coeficientes del sistema $AX=b$ es el de los números reales. Procedemos como sigue para encontrar el número de soluciones del sistema:

  1. Consideramos la matriz aumentada $\left(A\vert b\right)$.
  2. Llevamos esta matriz a su forma escalonada reducida $\left(A’\vert b’\right)$.
  3. Si esta matriz tiene un renglón de la forma $(0, \dots, 0, 1)$, entonces el sistema es inconsistente.
  4. Si no tiene ningún renglón de esa forma, vemos si todas las columnas de $A’$ tienen al pivote de alguna fila:
    • Si en efecto todas tienen pivote, entonces el sistema tiene una única solución.
    • Si no todas tienen pivote, entonces nuestro sistema tiene una infinidad de soluciones.

En el caso en el que hay una o una infinidad de soluciones, además podemos decir exactamente cómo se ven esas soluciones:

  • Haciendo las variables libres iguales a cero (si es que hay), obtenemos una solución $X’$ al sistema $AX=b$.
  • Usamos reducción gaussiana para encontrar todas las soluciones al sistema homogéneo $AX=0$.
  • Finalmente, usamos el principio de superposición. Todas las soluciones a $AX=b$ son de la forma $X’$ más una solución a $AX=0$.

Problema. Consideremos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 2 & 2\\ 0 & 1 & 1\\ 2 & 4 &4 \end{pmatrix}.
\end{align*}

Dado $b\in \mathbb{R}^3$, encuentra condiciones necesarias y suficientes en términos de las coordenadas de $b$ para que el sistema $AX=b$ sea consistente.

Solución: Dado $b$ con coordenadas $b_1, b_2$ y $b_3$, la matriz aumentada es

\begin{align*}
\left( A\vert b\right) = \begin{pmatrix} 1 & 2 & 2 & b_1 \\ 0 & 1 & 1 & b_2 \\ 2 & 4 & 4 & b_3\end{pmatrix}.
\end{align*}

Para obtener su forma escalonada reducida sustraemos dos veces el primer renglón del tercero y luego dos veces el segundo del primero, obteniendo así:

\begin{align*}
\left( A\vert b\right) \sim \begin{pmatrix} 1 & 0 & 0 &b_1-2b_2\\ 0 & 1 & 1 & b_2\\ 0 & 0 & 0 &b_3-2b_1\end{pmatrix}.
\end{align*}

Por el teorema anterior, el sistema $AX=b$ es consistente si y sólo si esta matriz no tiene pivotes en la última columna, es decir, necesitamos que la entrada de hasta abajo a la derecha sea cero. Así, el sistema es consistente si y sólo si $b_3-2b_1=0$ o, dicho de otra manera, si y sólo si $b_3=2b_1$.

$\square$

Unicidad de la forma escalonada reducida

Concluimos esta entrada con una demostración de la unicidad de la forma escalonada reducida, usando que si dos matrices $A$ y $B$ que difieren por una sucesión finita de operaciones elementales entonces los sistemas $AX=0$ y $BX=0$ son equivalentes. La demostración que presentamos (corta y elegante) se debe a Thomas Yuster, publicada en el año 1983.

Teorema. La forma escalonada reducida es única.

Demostración: Procedemos por inducción sobre $n$, el número de columnas de $A\in M_{m,n}(F)$. El resultado es claro para $n=1$, pues solo tenemos una columna cero o una columna con un $1$ hasta arriba. Supongamos pues que el resultado se cumple para $n-1$, y demostremos que se cumple para $n$. Sea $A\in M_{m,n}(F)$ y sea $A’\in M_{m,n-1}(F)$ la matriz que se obtiene al quitarle la $n$-ésima columna.

Supongamos que $B$ y $C$ son ambas matrices distintas en forma escalonada reducida obtenidas de $A$. Dado que una sucesión de operaciones elementales que llevan a $A$ a una forma escalonada reducida también llevan a $A’$ a una forma escalonada reducida (si a una matriz escalonada reducida le cortamos una columna, sigue siendo escalonada reducida), podemos aplicar la hipótesis de inducción y concluir que si $B$ y $C$ son distintas entonces difieren en la columna que quitamos y solo en esa.

Sea $j$ tal que $b_{jn}\neq c_{jn}$ (por nuestra discusión previa, existe esta entrada, ya que asumimos que $B\neq C$). Si $X$ es un vector tal que $BX=0$ entonces $CX=0$, ya que $A,B$ y $C$ son matrices equivalentes. Luego $(B-C)X=0$. Como $B$ y $C$ difieren solo en la última columna, la $j$-ésima ecuación del sistema se lee $(b_{jn}-c_{jn})x_n=0$, pues los coeficientes previos son cero. Así, $x_n=0$ siempre que $BX=0$ o $CX=0$. Se sigue que $x_n$ no es una variable libre para $B$ y $C$, por lo que ambas tienen un pivote en la última columna. Como ambas están en forma escalonada reducida, entonces la última columna tiene necesariamente un $1$ en la entrada de hasta abajo y puros ceros en otras entradas, es decir, $B$ y $C$ tienen la misma última columna, una contradicción a nuestras suposiciones.

Se sigue que entonces $B=C$ y queda probado por contradicción el paso inductivo, lo que prueba el teorema.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Determina cuántas soluciones tiene el sistema $AX=b$ con
    \begin{align*} A=\begin{pmatrix} 0 & 1 &1\\ 2& -4 & 7\\ 0 & 0 & 1 \end{pmatrix}\text{ y } b=\begin{pmatrix} 1 \\ 6 \\-1\end{pmatrix}\end{align*}
  • Si $A$ tiene estrictamente más renglones que columnas y $b$ es un vector que no tiene ninguna entrada cero, ¿puede el sistema $AX=b$ ser consistente?
  • Si $A$ tiene estrictamente más columnas que renglones, ¿puede el sistema $AX=0$ tener una única solución?
  • Si $A\in M_{m,n}(F)$ es una matriz diagonal, ¿que puedes decir de la consistencia y la unicidad de soluciones del sistema $AX=b$?

Más adelante…

El método que describimos en esta entrada es muy flexible y poderoso. Permite resolver sistemas de ecuaciones de la forma $AX=b$ de manera metódica. Esto no quiere decir que ya entendamos todo lo que hay que saber de sistemas lineales. Una vez que hayamos introducido los conceptos de espacio vectorial y subespacio, podremos describir con más precisión cómo son las soluciones a un sistema lineal. Además, más adelante, veremos otras formas en las que se pueden resolver sistemas de ecuaciones usando determinantes. En particular, veremos la regla de Cramer.

Por ahora, nos enfocaremos en una aplicación más de la reducción gaussiana: encontrar inversas de matrices. Veremos esto en la siguiente entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Reducción gaussiana para determinar inversas de matrices

Por Ayax Calderón

Introducción

En entradas anteriores hablamos de las matrices en forma escalonada reducida y de cómo cualquier matriz puede ser llevada a esta forma usando el algoritmo de reducción gaussiana. Usamos esto para resolver sistemas de ecuaciones lineales arbitrarios, es decir, de la forma $AX=b$. en esta ocasión estudiaremos cómo ver si una matriz es invertible y cómo determinar inversas de matrices mediante el algoritmo de reducción gaussiana.

Inversas de matrices elementales

Recordemos que una matriz $A\in M_n(F)$ es invertible si existe una matriz $B$ tal que $AB=BA=I_n$. Dicha matriz $B$ es única, se conoce como la matriz inversa de $A$ y se denota por $A^{-1}$.

Es importante observar que las matrices elementales son invertibles, puesto que las operaciones elementales se pueden revertir (esto también nos dice que la inversa de una matriz elemental también es una matriz elemental). Por ejemplo, si la matriz $E$ se obtiene de $I_n$ intercambiando los renglones $i$ y $j$, entonces $E^{-1}$ se obtiene de $I_n$ haciendo la misma operación, por lo que $E^{-1}=E$. Por otro lado, si $E$ se obtiene de sumar $\lambda$ veces el renglón $j$ al renglón $i$ en $I_n$, entonces E^{-1} se obtiene de sumar $-\lambda$ veces el renglón $j$ al renglón $i$ en $I_n$. El argumento para reescalamientos queda como tarea moral.

Debido a su importancia, enunciaremos este resultado como una proposición.

Proposición. Las matrices elementales son invertibles y sus inversas también son matrices elementales. Como consecuencia, cualquier producto de matrices elementales es invertible.

Algunas equivalencias de matrices invertibles

Hasta el momento sólo tenemos la definición de matrices invertibles para verificar si una matriz es invertible o no. Esto es poco práctico, pues dada una matriz, tendríamos que sacar otra «de la nada».

El siguiente resultado empieza a decirnos cómo saber de manera práctica cuándo una matriz cuadrada es invertible. También habla de una propiedad importante que cumplen las matrices invertibles.

Teorema. Para una matriz $A\in M_n(F)$ las siguientes afirmaciones son equivalentes:
(a) $A$ es invertible.
(b) $A_{red}=I_n$.
(c) $A$ es producto de matrices elementales.

Demostración. Para empezar, notemos que el producto de matrices invertibles es invertible , pues cualquier matriz elemental es invertible y las matrices invertibles son estables bajo productos. Esto prueba que (c) implica (a).

Ahora, supongamos que (a) se satisface. Recordemos que para una matriz $A\in M_{m,n}(F)$ podemos encontrar una matriz $B\in M_m(F)$ que es producto de matrices elementales y tal que $A_{red}=BA$. Como $A$ es invertible (por hipótesis) y $B$ es invertible (por la proposición de la sección anterior), entonces $BA$ es invertible y por consiguiente $A_{red}$ también lo es. En particular, todos los renglones de $A_{red}$ son distintos de cero y por lo tanto $A_{red}$ tiene $n$ pivotes, uno en cada columna. Como $A_{red}$ está en forma escalonada reducida, necesariamente $A_{red}=I_n$. Esto prueba que (a) implica (b).

Finalmente, supongamos que $(b)$ se satisface. Entonces existe una matriz $B$, la cual es producto de matrices elementales y tal que $BA=I_n$. Por la proposición anterior $B$ es invertible y $B^{-1}$ es producto de matrices elementales. Como $BA=I_n$, tenemos que $A=B^{-1}BA=B^{-1}$ y así $A$ es producto de matrices elementales, de manera que (b) implica (c).

$\square$

Ya podemos responder de manera práctica la pregunta «¿$A$ es invertible?». Para ello, basta aplicarle reducción gaussiana a $A$. Por el teorema anterior, $A$ es invertible si y sólo si la forma escalonada reducida obtenida es $I_n$. Por supuesto, esto aún no nos dice exactamente quién es la inversa.

Invertibilidad y sistemas de ecuaciones

La siguiente proposición expresa las soluciones del sistema $AX=b$ cuando $A$ es una matriz cuadrada e invertible. Para facilitar las cosas hay que tener un algoritmo para encontrar la inversa de una matriz. Más adelante veremos uno de estos algoritmos basado en reducción gaussiana.

Proposición. Si $A\in M_n(F)$ es una matriz invertible, entonces para todo $b\in F^n$ el sistema $AX=b$ tiene una única solución, dada por $X=A^{-1}b$.

Demostración. Sea $X$ una solución del sistema. Multiplicando la igualdad $AX=b$ por la izquierda por $A^{-1}$ obtenemos $A^{-1}(AX)=A^{-1}b$. Como
\begin{align*}
A^{-1}(AX)=(A^{-1}A)X
=I_nX=X,
\end{align*}
concluimos que $X=A^{-1}b$, por lo tanto el sistema tiene a lo más una solución. Para ver que esta es en efecto una solución, calculamos
\begin{align*}
A(A^{-1}b)=(AA^{-1})b=I_nb=b.
\end{align*}

$\square$

A continuación presentamos un resultado más, que relaciona matrices invertibles con que sus sistemas lineales correspondientes tengan soluciones únicas.

Teorema. Sea $A\in M_n(F)$ una matriz. Las siguientes afirmaciones son equivalentes:
(a) $A$ es invertible.
(b) Para toda $b\in F^n$ el sistema $AX=b$ tiene una única solución $X\in F^n$.
(c) Para toda $b\in F^n$ el sistema $AX=b$ es consistente.

Demostración. Ya demostramos que (a) implica (b). Es claro que (b) implica (c) pues si el sistema tiene una única solución, en particular tiene una solución.

Así, supongamos que que (c) se satisface. Sea $A_{red}$ la forma escalonada reducida de $A$. Por una proposición ya antes mencionada en esta entrada sabemos que existe una matriz $B$ la cual es producto de matrices elementales (por lo tanto invertible) y tal que $A_{red}=BA$. Deducimos que el sistema $A_{red}X=Bb$ tiene al menos una solución para todo $b\in F^n$ (pues si $AX=b$, entonces $A_{red}X=BAX=Bb$).

Ahora, para cualquier $b’\in F^n$ podemos encontrar $b$ tal que $b’=Bb$, tomando $b=B^{-1}b’$. Aquí estamos usando que $B$ es invertible por ser producto de matrices elementales. Concluimos que el sistema $A_{red}X=b$ es consistente para cada $b\in F^n$, pero entonces cualquier renglón de $A_{red}$ debe ser distinto de cero (si la fila $i$ es cero, entonces escogiendo cada vector $b$ con la $i-$ésima coordenada igual a $1$ se obtiene un sistema inconsistente) y, como en la demostración del teorema anterior, se tiene que $A_{red}=I_n$. Usando el teorema anterior concluimos que $A$ es invertible.

$\square$

Hasta ahora, al tomar un matriz cuadrada $A$ y proponer una inversa $B$, la definición de invertibilidad nos exige mostrar ambas igualdades $AB=I_n$ y $BA=I_n$. Finalmente tenemos las herramientas necesarias para mostrar que basta mostrar una de estas igualdades para que ambas se cumplan.

Corolario. Sean $A,B\in M_n(F)$ matrices.
(a) Si $AB=I_n$, entonces $A$ es invertible y $B=A^{-1}$.
(b) Si $BA=I_n$, entonces $A$ es invertible y $B=A^{-1}$.

Demostración. (a) Para cada $b\in F^n$ el vector $X=Bb$ satisface
\begin{align*}
AX=A(Bb)
=(AB)b=b,
\end{align*}
por lo tanto el sistema $AX=b$ es consistente para cada $b\in M_n(F)$. Por el teorema anterior, $A$ es invertible. Multiplicando la igualdad $AB=I_n$ por la izquierda por $A^{-1}$ obtenemos $B=A^{-1}AB=A^{-1}$, y así $B=A^{-1}$.
(b) Por el inciso (a), sabemos que $B$ es invertible y $A=B^{-1}$, pero entonces $A$ es invertible y $A^{-1}=B$.

$\square$

Determinar inversas usando reducción gaussiana

El corolario anterior nos da una manera práctica de saber si una matriz es invertible y, en esos casos, determinar inversas de matrices. En efecto, $A$ es invertible si y sólo si podemos encontrar una matriz $X$ tal que $AX=I_n$ y de aquí $X=A^{-1}$.

La ecuación $AX=I_n$ es equivalente a los siguientes sistemas lineales:
\begin{align*}
AX_1=e_1, \hspace{2mm}, AX_2=e_2, \hspace{2mm} \dots , \hspace
{2mm} AX_n=e_n.
\end{align*}
donde $e_i$ es la $i-$ésima columna de $I_n$ y $X_i$ denota la $i-$ésima columna de $X$. Ya sabemos cómo resolver sistemas lineales usando reducción gaussiana. Esto nos da una manera práctica de calcular $X$: si al menos uno de estos sistemas es inconsistente, entonces $A$ no es invertible; si todos son consistentes, entonces las soluciones $X_1,\ldots,X_n$ son las columnas de la inversa.

En la práctica, uno puede evitar resolver $n$ sistemas lineales considerando el siguiente truco:

En lugar de tomar $n$ matrices aumentadas $[A| e_i]$ considera sólo la matriz aumentada $[A|I_n]$, en la cual agregamos la matriz $I_n$ a la derecha de $A$ (de manera que $[A|I_n]$ tiene $2n$ columnas). Finalmente sólo hay que encontrar la forma escalonada reducida $[A’|X]$ de la matriz de $n\times 2n \hspace{2mm} [A|I_n]$. Si $A’$ resulta ser distinto de $I_n$, entonces $A$ no es inverible. Si $A’=I_n$, entonces la inversa de $A$ es simplemente la matriz $X$.

Ejemplo de determinar inversas

Para ilustrar lo anterior resolveremos el siguiente ejemplo práctico.

Ejemplo. Calcula la inversa de la matriz
\begin{align*}
A= \begin{pmatrix}
1 & 5 & 1\\
2 & 11 & 5\\
9 & -3 & 0
\end{pmatrix}.
\end{align*}

Solución. Aplicamos reducción gaussiana a la matriz extendida
\begin{align*}
[A|I_3]= \begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
2 & 11 & 5 & 0 & 1 & 0\\
9 & -3 & 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_2 -2R_1\begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
9 & -3 & 0 & 0 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_3 -9R_1\begin{pmatrix}
1 & 5 & 1 & 1 & 0 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & -48 & -9 & -9 & 0 & 1
\end{pmatrix}
\end{align*}

\begin{align*}
R_1 -5R_2\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & -48 & -9 & -9 & 0 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
R_3 +48R_2\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 135 & -105 & 48 & 1
\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{135}R_3\begin{pmatrix}
1 & 0 & -14 & 11 & -5 &0\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
\begin{align*}
R_1+14R_3\begin{pmatrix}
1 & 0 & 0 & \frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
0 & 1 & 3 & -2 & 1 & 0\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
\begin{align*}
R_2-3R_3\begin{pmatrix}
1 & 0 & 0 & \frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
0 & 1 & 0 & \frac{1}{3} & -\frac{1}{15} & -\frac{1}{45}\\
0 & 0 & 1 & -\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}
\end{align*}
De donde
\begin{align*}
A^{-1}=\begin{pmatrix}
\frac{1}{9} & -\frac{1}{45} &\frac{14}{135}\\
\frac{1}{3} & -\frac{1}{15} & -\frac{1}{45}\\
-\frac{7}{9} & \frac{16}{45} & \frac{1}{135}
\end{pmatrix}.
\end{align*}

$\square$

En el ejemplo anterior hicimos el algoritmo de reducción gaussiana «a mano», pero también pudimos haber usado una herramienta en línea, como la calculadora de forma escalonada reducida de eMathHelp.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • ¿Cuál sería la operación elemental inversa a aplicar un reescalamiento por un factor $c\neq 0$ en el renglón de una matriz?
  • Encuentra la inversa de la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2 & 1\\
    2 & 0 & 2\\
    1 & 2 & 0
    \end{pmatrix}.
    \end{align*}
    mediante reducción gaussiana.
  • Resuelve el sistema de ecuaciones
    \begin{align*}
    \begin{cases}
    x+2y+2z=1\\
    2x+y+2z=4\\
    2x+2y+z=5
    \end{cases}
    \end{align*}
  • Sea $A\in M_n(F)$ una matriz tal que $A_{red}\neq I_n$. Explica por qué $A$ no es invertible.
  • Cuando $A$ no es invertible, la matriz $[A|I_n]$ tiene forma escalonada reducida $[A_{red}|X]$, con $A_{red}\neq I_n$. ¿Qué sucede si en este caso haces la multiplicación $AX$? ¿Y la multiplicación $XA$?
  • Demuestra la primera proposición de esta entrada para operaciones elementales sobre las columnas.

Más adelante…

En esta entrada vimos cómo el algoritmo de reducción gaussiana nos permite saber si una matriz es invertible o no. También nos da una forma práctica de determinar inversas. Hay otras formas de hacer esto mediante determinantes. Sin embargo, el método que describimos es bastante rápido y flexible.

Ya que entendemos un poco mejor a las matrices invertibles, el siguiente paso es usarlas para desarrollar nuestra teoría de álgebra lineal. Las matrices invertibles se corresponden con transformaciones lineales que se llaman isomorfismos, las cuales detectan cuándo dos espacios vectoriales son «el mismo».

También más adelante refinaremos el concepto de ser invertible y no. Esta es una clasificación en sólo dos posibilidades. Cuando definamos y estudiamos el rango de matrices y transformaciones lineales tendremos una forma más precisa de decir «qué tanta información guarda una transformación».

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Teorema de reducción gaussiana

Por Julio Sampietro

Introducción

Llegamos a uno de los resultados más importantes del álgebra lineal: el teorema de reducción gaussiana. Como mencionamos en una entrada previa, el teorema nos proporcionará un algoritmo que nos permitirá resolver muchos problemas prácticos: resolver sistemas lineales, invertir matrices, así como temas que veremos más adelante, como determinar la independencia lineal de vectores.

El teorema nos dice que cualquier matriz puede llevarse a una en forma escalonada reducida con solo una cantidad finita de operaciones elementales. La prueba además nos dice cómo hacerlo de una manera más o menos sencilla. Aparte de la demostración, damos una receta un poco más coloquial de cómo trabajar con el algoritmo y finalmente damos un ejemplo, muy importante para aclarar el procedimiento.

Sugerencia antes de empezar

El algoritmo que veremos es uno de esos resultados que es fácil de seguir para una matriz en concreto, pero que requiere de un buen grado de abstracción para entender cómo se demuestra en general. Una fuerte recomendación es que mientras estes leyendo la demostración del siguiente teorema, tengas en mente alguna matriz muy específica, y que vayas realizando los pasos sobre ella. Puedes usar, por ejemplo, a la matriz $$A=\begin{pmatrix} 0 & 0 & 4 & -2 \\ 0 & 3 & -1 & 0 \\ 0& -3 & 5 & -2 \end{pmatrix}.$$

El teorema de reducción gaussiana

Teorema. Cualquier matriz $A\in M_{m,n}(F)$ puede llevarse a una en forma escalonada reducida realizando una cantidad finita de operaciones elementales en sus filas.

Demostración: Daremos una demostración algorítmica. Sea $A\in M_{m,n}(F)$ cualquier matriz. Para auxiliarnos en el algoritmo, vamos a tener registro todo el tiempo de las siguientes dos variables:

  • $X$ es la columna que «nos toca revisar»
  • $Y$ es la cantidad de «filas no triviales» que hemos encontrado

La variable $X$ empieza siendo $1$ y la variable $Y$ empieza siendo $0$.

Haremos los siguientes pasos:

Paso 1. Revisaremos la columna $X$ a partir de la fila $Y+1$ (osea, al inicio $Y=0$, así que revisamos toda la columna). Si todas estas entradas son iguales a $0$, entonces le sumamos $1$ a $X$ (avanzamos hacia la derecha) y si $X<n$, volvemos a hacer este Paso 1. Si $X=n$, vamos al paso 7.

Paso 2. En otro caso, existe alguna entrada distinta de cero en la columna $X$, a partir de la fila $Y+1$. Tomemos la primera de estas entradas. Supongamos que sucede en la fila $i$, es decir, que es la entrada $a_{iX}$. Al número en esta entrada $a_{iX}$ le llamamos $x$.

Paso 3. Hacemos un intercambio entre la fila $i$ y la fila $Y+1$. Puede pasar que $i=Y+1$, en cuyo caso no estamos haciendo nada. Independientemente del caso, ahora el número en la entrada $(X,Y+1)$ es $x\neq 0$.

Paso 4. Tomamos la fila $Y+1$ y la multiplicamos por el escalar $1/x$. Esto hace que ahora sea la primer entrada en su fila distinta de cero, y además que sea igual a $1$.

Paso 5. De ser necesario, hacemos transvecciones para hacer el resto de las entradas de la columna $X$ iguales a $0$. Esto lo podemos hacer pues, si por ejemplo la entrada $a_{iX}\neq 0$, entonces la transvección que a la $i$-ésima fila le resta $a_{iX}$ veces la $(Y+1)$-ésima fila hace que la entrada $(i,X)$ se anule.

Paso 6. Le sumamos $1$ a $Y$ (para registrar que encontramos una nueva fila no trivial) y le sumamos $1$ a $X$ (para avanzar a la columna de la derecha). Si $X<n$, vamos al Paso 1. Si $X=n$, vamos al Paso 7.

Paso 7. Reportamos la matriz obtenida como $A_{red}$, la forma escalonada reducida de $A$.

Mostremos que en efecto obtenemos una matriz escalonada reducida. El Paso 3 garantiza que las únicas filas cero están hasta abajo. El Paso 4 garantiza que todos los pivotes son iguales a 1. El ir recorriendo las columnas de izquierda a derecha garantiza que los pivotes quedan «escalonados», es decir de abajo hacia arriba quedan de izquierda a derecha. El Paso 5 garantiza que cada pivote es la única entrada no cero de su columna.

$\square$

El procedimiento descrito en el teorema se llama reducción gaussiana.

Como vimos en la entrada anterior realizar una operación elemental es sinónimo de multiplicar por una matriz elemental. Como el teorema nos dice que podemos obtener una matriz en forma escalonada reducida realizando una cantidad finita de operaciones elementales, se sigue que podemos obtener una matriz en forma escalonada reducida multiplicando por la izquierda por un número finito de matrices elementales. Al asociar todas estas matrices elementales en un único producto, obtenemos la demostración del siguiente corolario.

Corolario. Para cualquier matriz $A\in M_{m,n}(F)$ podemos encontrar una matriz $B\in M_{m}(F)$ que es un producto finito de matrices elementales y que satisface qu $A_{red}=BA$.

Un tutorial de reducción gaussiana más relajado

Si bien el teorema nos da la manera formal de hacer el algoritmo, el proceso es en realidad bastante intuitivo una vez que se entiende. Para esto explicamos en unos cuantos pasos en términos más sencillos como hacer la reducción:

  1. Buscamos la primer columna de la matriz que no tenga puros ceros.
  2. Una vez encontrada, buscamos la primer entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos el renglón con esa entrada hasta arriba haciendo un cambio de renglones.
  4. Multiplicamos por el inverso de esa entrada a todo el renglón, para quedarnos así con un $1$ hasta arriba.
  5. Sustraemos múltiplos del primer renglón a todos los otros renglones para que todo lo que esté abajo del $1$ sea cero.
  6. Buscamos la siguiente columna tal que no sea cero abajo del primer renglón.
  7. Repetimos los pasos anteriores, solo que en lugar de pasar nuestro renglón «hasta arriba» solo lo colocamos en el segundo lugar, y así sucesivamente.

Un ejemplo de reducción gaussiana

La mejor manera de entender el algoritmo de reducción gaussiana es con un ejemplo. Usemos el algoritmo para reducir la matriz

\begin{align*}
A=\begin{pmatrix} 0 & 1 & 2 & 3 &4\\ -1 & 0 &1 & 2 &3 \\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}\in M_{4,5}(\mathbb{R}).
\end{align*}

Aplicando los pasos en orden: Primero identificamos la primer columna que no sea idénticamente cero, y vemos que la primera columna no tiene puros ceros. La primer entrada que no es cero está en el segundo renglón. Así cambiamos el primer y segundo renglón de lugar para subir esa entrada y obtener

\begin{align*}
A_1=\begin{pmatrix} -1 & 0 &1 & 2 &3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}.
\end{align*}

Ahora que la primer entrada del primer renglón es distinta de cero, multiplicamos el primer renglón por $\frac{1}{-1}=-1$ y obtenemos

\begin{align*}
A_2=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3 & 1 &-1 & 0 & 2\end{pmatrix}.
\end{align*}

Ahora queremos quitar el $3$ del último renglón. Para esto, multiplicamos por $-3$ el primer renglón y lo sumamos al último y nos queda

\begin{align*}
A_3&=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 3-3 & 1-3\cdot 0 &-1-3\cdot (-1) & 0-3\cdot (-2) & 2-3\cdot (-3)\end{pmatrix}\\ &=\begin{pmatrix} 1 & 0 &-1 & -2 &-3 \\ 0 & 1 & 2 & 3 &4\\ 0 & 1 & 1 & 1 &1\\ 0 & 1&2 & 6 & 11\end{pmatrix}.
\end{align*}

Ya tenemos entonces nuestra primera columna en forma escalonada reducida, pasemos a la segunda. Ya tenemos un $1$ en la segunda entrada de la segunda columna, por lo que no hace falta hacer un cambio de renglón o multiplicar por un inverso. Basta entonces con cancelar las otras entradas de la columna, para eso sustraemos el segundo renglón del tercero y cuarto, para obtener

\begin{align*}
A_4&= \begin{pmatrix} 1 & 0 & -1 & -2 & -3 \\ 0 & 1 & 2 & 3 &4 \\ 0-0 & 1-1 & 1-2 & 1-3 & 1-4\\ 0 -0 & 1-1& 2-2 & 6-3 & 11-4\end{pmatrix}\\
&= \begin{pmatrix}
1 & 0 &-1 & -2 &-3\\ 0 & 1 & 2 & 3 &4 \\ 0 & 0 & -1 & -2 & -3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.
\end{align*}

Seguimos entonces con la tercera columna, y observamos que la entrada $(3,3)$ es $-1$, entonces la transformamos en un $1$ multiplicando el tercer renglón por $\frac{1}{-1}=-1$.

\begin{align*}
A_5=\begin{pmatrix}
1 & 0 &-1 & -2 &-3\\ 0 & 1 & 2 & 3 &4 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.
\end{align*}

Ahora tenemos que cancelar las entradas de la tercer columna, para eso sumamos $-2$ veces el tercer renglón al segundo y una vez el tercer renglón al primero:

\begin{align*}
A_6&=\begin{pmatrix}
1+0 & 0+0 &-1+1 & -2+2 &-3+3\\ 0-2\cdot 0 & 1-2\cdot 0 & 2-2\cdot 1 & 3-2\cdot2 &4-2\cdot3 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}\\
&= \begin{pmatrix}
1 & 0 &0 & 0 &0\\ 0 & 1 & 0 & -1 &-2 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &3 & 7\end{pmatrix}.
\end{align*}

Ahora pasamos a la siguiente columna. En la entrada $(4,4)$ tenemos un $3$, pero queremos un $1$, entonces multiplicamos el último renglón por $\frac{1}{3}$:

\begin{align*}
A_7= \begin{pmatrix}
1 & 0 &0 & 0 &0\\ 0 & 1 & 0 & -1 &-2 \\ 0 & 0 & 1 & 2 & 3\\ 0 & 0 & 0 &1 & \frac{7}{3}\end{pmatrix}.\end{align*}

Finalmente, cancelamos las entradas restantes de los otros renglones sustrayendo dos veces el último renglón del penúltimo y sumándolo una vez al segundo para obtener

\begin{align*}
A_8=\begin{pmatrix}1 & 0 &0 &0 &0 \\ 0 & 1& 0 & 0 & \frac{1}{3}\\ 0 & 0 &1 & 0 &-\frac{5}{3}\\ 0 & 0 & 0 & 1 & \frac{7}{3} \end{pmatrix}.
\end{align*}

Y así termina nuestro algoritmo, y nuestra matriz está en forma escalonada reducida. Las dos cosas más importantes de $A_8$ son que

  • Está en forma escalonada reducida y
  • es equivalente a $A$, es decir, el sistema de ecuaciones $AX=0$ y el sistema de ecuaciones $A_8 X =0$ tienen exactamente las mismas soluciones.

De hecho, todas las matrices $A,A_1, A_2, \ldots, A_8$ son equivalentes entre sí, pues difieren únicamente en operaciones elementales. Esta propiedad es muy importante, y precisamente es la que nos permite aplicar el algoritmo de reducción gaussiana a la resolución de sistemas lineales.

Una aplicación a un sistema de ecuaciones

Usemos el ejemplo anterior para resolver un sistema de ecuaciones:

Problema. Resolver en los reales el sistema lineal homogéneo $AX=0$ donde $A$ es la matriz ejemplo de la sección anterior.

Solución: Los sistemas $AX=0$ y $A_{red}X=0$ son equivalentes, por lo que basta resolver $A_{red}X=0$ con $A_{red}$ la matriz en forma escalonada reducida que encontramos (es decir, $A_8$). Este sistema queda planteado por las siguientes ecuaciones lineales:

\begin{align*}
\begin{cases}
x_1=0\\
x_2+\frac{x_5}{3}=0\\
x_{3}-\frac{5}{3}x_5=0\\
x_4+\frac{7}{3}x_5=0.
\end{cases}.
\end{align*}

Ya hemos resuelto sistemas de este estilo. Aquí $x_5$ es la variable libre y $x_1,x_2,x_3,x_4$ son variables pivote. Fijando $x_5$ igual a cualquier número real $t$, obtenemos que las soluciones son de la forma

\begin{align*}
\left(0, -\frac{1}{3}t, \frac{5}{3} t, – \frac{7}{3}t, t\right), \hspace{2mm} t\in \mathbb{R}.
\end{align*}

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Aplica el algoritmo de reducción gaussiana a la matriz $$\begin{pmatrix} 1 & 1 & 2 & 2 & 3 & 3 \\ 0 & 0 & 4 & 4 & 5 & 5 \\ 0 & 0 & 0 & 0 & 6 & 6 \end{pmatrix}.$$ Para su sistema lineal asociado, encuentra todas las variables pivote y libres y resuélvelo por completo.
  • Aplica el algoritmo de reducción gaussiana a la matriz $$\begin{pmatrix} 0 & 8 \\ 0 & 2 \\ -1 & 5 \\ 2 & 3 \\ 5 & 0 \\ 3 & 1\end{pmatrix}.$$
  • Considera las matrices $A_1$, $A_4$ y $A_8$ de la sección con el ejemplo del algoritmo de reducción gaussiana. Toma una solución no trivial de $A_8X=0$ y verifica manualmente que también es solución de los sistemas lineales $A_1X=0$ y de $A_4X=0$.
  • Encuentra la matriz $B$, producto de matrices elementales tal que $BA=A_{red}$ con $A$ la matriz que usamos en el ejemplo. Para ello, tendrás que multiplicar todas las matrices correspondientes a las operaciones elementales que usamos.
  • Explica qué es lo que garantiza que el algoritmo de reducción gaussiana en efecto hace una cantidad finita de operaciones elementales.
  • Aplica el algoritmo de reducción gaussiana a la matriz $$A=\begin{pmatrix} 0 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1\end{pmatrix}.$$ Si haces los pasos correctamente, llegarás a una matriz del estilo $$A_{red}=\begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix}.$$ Toma el bloque $B$ de $2\times 2$ de la izquierda de $A$, es decir $B=\begin{pmatrix} 0 & 2 \\ 1 & 1\end{pmatrix}$. Toma el bloque $C$ de $2\times 2$ de la derecha de $A_{red}$, es decir, $C=\begin{pmatrix} a & b \\ c & d \end{pmatrix}.$ ¿Qué matriz obtienes al hacer el producto $BC$? ¿Y el producto $CB$? ¿Por qué crees que pasa esto?

Más adelante…

El algoritmo de reducción gaussiana es crucial para muchos de los problemas que nos encontramos en álgebra lineal. Por ahora, las aplicaciones principales que veremos es cómo nos permite resolver sistemas de ecuaciones lineales de la forma $AX=b$ y cómo nos permite encontrar inversas de matrices. Sin embargo, más adelante usaremos reducción gaussiana para determinar la dimensión de espacios vectoriales, conjuntos generados, para determinar si ciertos vectores son linealmente independientes, para determinar el rango de una matriz y varias otras cosas más.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Más ejemplos de reducción gaussiana

Por Ayax Calderón

Introducción

En esta entrada veremos varios ejemplos que nos ayudarán a comprender que la reducción gaussiana es una herramienta muy poderosa a la hora de resolver sistemas de ecuaciones lineales.

Problemas resueltos

Problema. Implementa el algoritmo de reducción gaussiana en la matriz
\begin{align*}
A=\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}
\end{align*}

Solución. Para este problema usaremos la siguiente notación para indicar las operaciones elementales que estamos efectuando :

  • $R_i \leftrightarrow R_j$ para intercambiar el renglón $i$ con el renglón $j$.
  • $kR_i$ para multiplicar el renglón $i$ por el escalar $k$.
  • $R_i + kR_j$ para sumarle $k$ veces el renglón $j$ al renglón $i$.


\begin{align*}
A=&\begin{pmatrix}
0 & 2 & 1 & 1 & 2\\
1 & 1 & 0 & 2 & 1\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_1 \leftrightarrow R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
1 & 1 & 1 & 1 & 1\end{pmatrix}\\
R_4 – R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
-3 & 1 & 1 & 0 & 2\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 + 3R_1
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 2 & 1 & 1 & 2\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
\frac{1}{2}R_2
& \begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 4 & 1 & 6 & 5\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_3 – 4R_2
&\begin{pmatrix}
1 & 1 & 0 & 2 & 1\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}
\end{align*}
\begin{align*}
R_1 – R_2
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & -1 & 4 & 1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
-1\cdot R_3
&\begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 1 & -1 & 0\end{pmatrix}\\
R_4 – R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & \frac{1}{2} & \frac{1}{2} & 1\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}\\
R_2 – \frac{1}{2} R_3
& \begin{pmatrix}
1 & 0 & -\frac{1}{2} & \frac{3}{2} & 0\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix} \\
R_1 + \frac{1}{2}R_3
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 3 & 1\end{pmatrix}
\end{align*}
\begin{align*}
\frac{1}{3} R_4
&\begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & -4 & -1\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
R_3 + 4R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & \frac{5}{2} & \frac{3}{2}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_2 – \frac{5}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & -\frac{1}{2} & -\frac{1}{2}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix} \\
R_1 + \frac{1}{2}R_4
& \begin{pmatrix}
1 & 0 & 0 & 0 & -\frac{1}{3}\\
0 & 1 & 0 & 0 & \frac{2}{3}\\
0 & 0 & 1 & 0 & \frac{1}{3}\\
0 & 0 & 0 & 1 & \frac{1}{3}\end{pmatrix}\\
=&A_{red}
\end{align*}

$\square$

Problema. Resuelve el siguiente sistema homogéneo.
\begin{align*}
\begin{cases}
x+2y-3z &=0\\
2x+5y+2z &=0\\
3x-y-4z &=0
\end{cases}
\end{align*}

Solución. La matriz asociada al sistema anterior es
\begin{align*}
\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}
\end{align*}
Para resolver el sistema $AX=0$ nos bastará con encontrar $A_{red}$, pues el sistema $A_{red}X=0$ es equivalente al sistema $AX=0$.
\begin{align*}
&\begin{pmatrix}
1 & 2 & -3\\
2 & 5 & 2\\
3 & -1 & -4
\end{pmatrix}\\
R_2 -2R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
3 & -1 & -4
\end{pmatrix}\\
R_3 – 3R_1
&\begin{pmatrix}
1 & 2 & -3\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_1 – 2R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & -7 & 5
\end{pmatrix}\\
R_3 + 7R_2
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 8\\
0 & 0 & 61
\end{pmatrix}\\
R_2 – \frac{8}{61}R_3
&\begin{pmatrix}
1 & 0 & -19\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
R_1 + \frac{19}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 61
\end{pmatrix}\\
\frac{1}{61}R_3
&\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=A_{red}
\end{align*}

De lo anterior se sigue que para resolver el sistema $AX=0$ basta con resolver el sistema
\begin{align*}
\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z
\end{pmatrix}= \begin{pmatrix}
0\\
0\\
0
\end{pmatrix}.
\end{align*}
Pero este sistema es el sistema

\begin{align*}
\begin{cases} x = 0\\ y = 0 \\ z = 0. \end{cases}
\end{align*}

De esta forma, $x=y=z=0$ es la (única) solución al sistema original.

$\square$

Problema. Determina las soluciones fundamentales del sistema homogéneo $AX=0$, donde $A$ es la matriz
\begin{align*}
A=\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix}.
\end{align*}

Solución. Sea $AX=0$ el sistema
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0\\
-2 & 4 & 0 & 2\\
-1 & 2 & 1 & 2
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}

Para este problema nuevamente nos interesa llevar la matriz asociada al sistema a su forma escalonada reducida.

Aunque es muy importante saber cómo se hacen estos procedimientos, es cierto que también existen herramientas que nos ayudan a hacer estos cálculos de manera más rápida. En esta ocasión usaremos una calculadora de forma reducida escalonada disponible en línea, la cual nos indica que la forma escalonada reducida de la matriz $A$ es
\begin{align*}
A_{red}=\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix}.
\end{align*}

De esta forma, el sistema del problema es equivalente al sistema $A_{red}X=0$
\begin{align*}
\begin{pmatrix}
1 & -2 & 0 & -1\\
0 & 0 & 1 & 1\\
0 & 0 & 0 & 0
\end{pmatrix} \begin{pmatrix}
x\\
y\\
z\\
w \end{pmatrix} = \begin{pmatrix}
0\\
0\\
0 \end{pmatrix}
\end{align*}
Las variables pivote son $x$ y $z$. Las variables libres son $y$ y $w$.

Como se mencionó en una entrada anterior, para encontrar las soluciones fundamentales hay que expresar a las variables pivote en términos de las variables libres. En el sistema anterior podemos notar que
\begin{align*}
\begin{cases}
x =2y+w\\
z=-w.
\end{cases}
\end{align*}
por lo que
\begin{align*}
\begin{pmatrix}
x\\
y\\
z\\
w
\end{pmatrix}&=\begin{pmatrix}
2y+w\\
y\\
-w\\
w
\end{pmatrix}\\
&=y\begin{pmatrix}
2\\
1\\
0\\
0
\end{pmatrix} + w \begin{pmatrix}
1\\
0\\
-1\\
1
\end{pmatrix}
\end{align*}
siendo los vectores columna de la última igualdad las soluciones fundamentales del sistema $AX=0$, es decir que con estas soluciones se pueden generar todas las demás.

$\square$

Hasta ahora hemos visto ejemplos de reducción gaussiana de matrices de tamaño muy concreto y entradas muy concretas. Sin embargo, otra habilidad importante es aprender a usar reducción gaussiana en una matriz de tamaño arbitrario, con algunas entradas específicas. Veamos un ejemplo de cómo hacer esto.

Problema. Sea $n>2$ un número entero. Resuelve en números reales el sistema
\begin{align*}
x_2=\frac{x_1+x_3}{2}, x_3= \hspace{2mm} \frac{x_2+x_4}{2}, \hspace{2mm} \dots , \hspace{2mm}, x_{n-1}=\frac{x_{n-2}+x_n}{2}.
\end{align*}

Solución. Este es un sistema lineal homogéneo de ecuaciones. Esto se puede verificar multiplicando cada ecuación por $2$ e igualándola a $0$. Por ejemplo, la primer ecuación se puede escribir como $x_1-2x_2+x_3=0$. Transformando el resto de las ecuaciones, obtenemos que el sistema se puede escribir en forma matricial como $AX=0$, donde$A$ es la matriz en $M_{n-2,n}(F)$ dada por
\begin{align*}
\begin{pmatrix}
1 & -2 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Esta matriz se ve algo intimidante, pero igual se le puede aplicar reducción gaussiana. Hagamos esto.

Afortunadamente, en cada fila ya tenemos un pivote y están «escalonados». Basta con hacer transvecciones para asegurar que en cada columna de un pivote, el pivote es la única entrada no cero. Haremos los primeros pasos para encontrar un patrón de qué va sucediendo.

En el primer paso, sumamos dos veces la fila $2$ a la primer fila. Al hacer esto obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & -3 & 2 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & -2 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Con esto la segunda columna ya queda lista. El el siguiente paso, multiplicamos por 3 (y 2) la tercer fila y se lo sumamos a la primera fila (y segunda, respectivamente). Obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & -3 & 2 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

Para el siguiente paso, ahora hay que multiplicar por 4 (3, 2) la cuarta fila y sumárselo a la primera (segunda, tercera, respectivamente), y obtenemos:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -5 & 4 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -4 & 3 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -3 & 2 &\cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 & \cdots & 0 & 0 & 0 \\
& \vdots & & \vdots & & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & 0 & \cdots & -2 & 1 & 0\\
0 & 0 & 0 & 0 & 0 & 0 &\cdots & 1 &- 2 & 1
\end{pmatrix}.
\end{align*}

El patrón es ahora claro. Conforme arreglamos la columna $j$, luego la columna $j+1$ tiene a los números $-(j+1), -j, \ldots, -3, -2$ y la columna $j+2$ tiene a los números $j,j-1,j-2,\ldots,1,-2,1$. Esto puede demostrarse formalmente por inducción. Al arreglar la columna $n-2$, la matriz queda en la siguiente forma escalonada reducida:

\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & \cdots & 0 & -(n-1) & n-2 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & -(n-2) & n-3 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & -(n-3) & n-4 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & -(n-4) & n-5 \\
& \vdots & & \vdots & & \ddots & & \vdots &\\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & -3 & 2\\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & -2 & 1
\end{pmatrix}.
\end{align*}

Estamos listos para resolver el sistema asociado. Las variables libres son $x_{n-1}$ y $x_n$, que podemos darles valores arbitrarios $a$ y $b$. Las variables pivote son todas las demás, y de acuerdo a la forma de la matriz anterior, están dadas por

\begin{align*}
x_1&=(n-1)a – (n-2) b\\
x_2&=(n-2)a – (n-3) b\\
x_3&=(n-3)a – (n-4) b\\
&\vdots\\
x_{n-2}&=2a- b.
\end{align*}

Esto determina todas las soluciones.

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de sistemas de ecuaciones y forma escalonada reducida

Por Ayax Calderón

Introducción

En esta entrada nos encargaremos de resolver algunos problemas de sistemas de ecuaciones lineales y de dar algunos ejemplos más de matrices en forma escalonada reducida.

Problemas resueltos

Problema. ¿Para cuáles números reales $a$ se tiene que el siguiente sistema es consistente?. Resuelve el sistema para estos casos.

\begin{align*}
\begin{cases}
x + 2y &=1\\
4x+8y &=a.
\end{cases}
\end{align*}

Solución. Tomando la primera ecuación y multiplicandola por $4$ vemos que

\begin{align*}
4x+8y=4
\end{align*}

De lo anterior se sigue que el único número real $a$ para el cuál el sistema es consistente es $a=4$, pues en otro caso tendríamos ecuaciones lineales que se contradicen entre sí.

Cuando $a=4$, tenemos entonces una única ecuación $x+2y=1$. Para encontrar todas las soluciones a esta ecuación lineal, podemos fijar el valor de $y$ arbitrariamente como un número real $r$. Una vez fijado $y$, obtenemos que $x=1-2y=1-2r$. Así, el conjunto de soluciones es $$\{(1-2r,r): r \in \mathbb{R}\}.$$

$\square$

Problema. Encuentra todos $a,b\in\mathbb{R}$ para los cuales los sistemas

\begin{align*}
\begin{cases}
2x + 3y &=-2\\
x – 2y &=6
\end{cases}
\end{align*}
y
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
son equivalentes.

Solución. Para resolver el primer sistema tomamos la segunda ecuación y despejamos $x$:
\begin{align*}
x=6+2y.
\end{align*}
Sustituyendo lo anterior en la primera ecuación se tiene
\begin{align*}
2(6+2y)+3y&=-2\\
12+7y&=-2\\
7y&=-14\\
y&=-2.
\end{align*}
Luego sustituimos el valor de $y$ para encontrar $x$
\begin{align*}
x&=6+2y\\
&=6+2(-2)\\
&=2.
\end{align*}
Ahora, para encontrar los valores de $a$ y $b$, sustituimos los valores de $x$ y $y$ que encontramos en el primer sistema y de esta forma garantizamos que ambos sistemas tendrán el mismo conjunto de soluciones, es decir, son equivalentes.
\begin{align*}
\begin{cases}
x + 2ay &=3\\
-x – y &=b
\end{cases}
\end{align*}
\begin{align*}
\begin{cases}
2 + 2a(-2) &=3\\
-2 – (-2) &=b
\end{cases}
\end{align*}
De la segunda ecuación es inmediato que $b=0$.
Por otro lado, despejando $a$ de la primera ecuación se tiene
\begin{align*}
2-4a&=3\\
-4a&=1\\
a&=-\frac{1}{4}
\end{align*}
Concluimos que los sistemas son equivalentes cuando
\begin{align*}
a=-\frac{1}{4}, \hspace{4mm} b=0.
\end{align*}

$\square$

Más ejemplos de forma escalonada reducida

Para finalizar con esta entrada veremos más ejemplos de matrices que están en forma escalonada reducida y de matrices que no lo están.

Ejemplo. La matriz
\begin{align*}
\begin{pmatrix}
2 & -1 & 3 & 1\\
1 & 0 & 2 & 2\\
3 & 1 & 7 & 0\\
1 & 2 & 4 & -1\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues todas las entradas de la primera columna son distintas de cero.
En cambio, la matriz
\begin{align*}
\begin{pmatrix}
1 & 0 & 2 & 0\\
0 & 1 & 1 & 0\\
0 & 0 & 0 & 1\\
0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida. Queda como tarea moral verificar que esto es cierto.

$\square$

Ejemplo. La matriz
\begin{align*}
\begin{pmatrix}
0 & 0 & 0 & 0 & 0\\
0 & 1 & -5 & 2 & 0\\
0 & 0 & 0 & 0 & 3\\
0 & 0 & 0 & 0 & 0\end{pmatrix}
\end{align*}
no está en forma escalonada reducida, pues hay filas cero por encima de filas no cero. Otro problema que tiene es que el pivote de la tercer fila no es igual a $1$.


En cambio
\begin{align*}
\begin{pmatrix}
1 & 0 & 0 & 0 & -1\\
0 & 1 & 0 & 0 & 2\\
0 & 0 & 1 & 0 & 1\\
0 & 0 & 0 & 1 & 1\end{pmatrix}
\end{align*}
sí está en forma escalonada reducida.

$\square$

Ejemplo. La matriz $\begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix}$ no está en forma escalonada reducida pues el pivote de la segunda fila está más a la izquierda que el de la primera. Sin embargo, si intercambiamos las filas, la matriz $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{pmatrix}$ sí está en forma escalonada reducida.

$\square$

Más adelante veremos un método para llevar una matriz a su forma escalonada reducida y veremos que esto es muy útil para resolver sistemas de ecuaciones lineales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»