Archivo de la etiqueta: transformaciones

Geometría Analítica I: Homotecias y semejanzas

Introducción

En esta ocasión, vamos a estudiar dos transformaciones importantes en las matemáticas, que ya hemos mencionado en entradas anteriores, pero que no hemos definido. Estas transformaciones son las semejanzas y las homotecias.

Homotecias

Las homotecias son las transformaciones que hacen que una figura aumente o disminuya de tamaño (como si aplicáramos un «zoom» a la figura). El cuánto aumenta o disminuye esta figura, es lo que llamaremos «factor de expansión», que tendrá un centro que se va a mantener mientras la figura aumenta o disminuye de tamaño, a este centro lo llamaremos «centro de expansión».

Cuando el centro de expansión es el origen, tenemos una transformación lineal con la siguiente matriz asociada:

\begin{equation}kI=\begin{pmatrix} k & 0 \\ 0 & k\end{pmatrix}\end{equation}

Con $k>0$.

Si $k>1$, tenemos un aumento y, si $k<1$, tenemos una disminución.

Si ahora componemos esta matriz con una traslación por $b \in \mathbb R^2$, obtenemos una homotecia de factor $k$ con centro de expansión $c$ que es el punto fijo que se obtiene resolviendo la siguiente ecuación:

\begin{equation}kx+b=x \end{equation}

Semejanzas

Las semejanzas son transformaciones que preservan ángulos.

Observa que las homotecias y las isometrías son semejanzas. Lo anterior muestra que las tres transformaciones están relacionadas, a continuación hablaremos más a fondo de esta relación.

Teorema 3.25: Si $f:\mathbb R^2 \to \mathbb R^2$ es una semejanza, entonces existen $k>0$, $A\in O(2)$ y $b \in \mathbb R^2$ tales que:

\begin{equation} f(x)=kAx+b \end{equation}

Demostración

Considera la transformación lineal $g(x)=f(x)-b$, con $b:=f(0)$. Esta transformación es una traslación, por lo que preserva ángulos.

También considera a $B=(u,v)$, la matriz asociada a $g$, donde $u$ y $v$ son ortogonales con la misma norma $(*)$.

Finalmente, sean $k=|u|=|v|$ y $A=\frac{B}{k}$.

Observa que $A\in O(2)$ porque sus columnas son ortonormales y que, además:

\begin{equation} f(x)=g(x)+b=Bx+b=k Ax+b\end{equation}

Lo que concluye la demostración.

Tarea moral

  1. Demuestra, en $(*)$, que $u$ y $v$ son ortogonales con la misma norma.
  2. Encuentra la expresión de la homotecia de factor de expansión $k$ y centro $c$.
  3. Demuestra que una transformación $f:\mathbb R^2 \to \mathbb R^2$ es una semejanza si y solo si, existe $k>0$ tal que $d(f(x),f(y))=kd(x,y)$ para todo $x,y \in \mathbb R^2$.

Más adelante…

No te pierdas la siguiente entrada en la que hablaremos de un nuevo tema, la clasificación.

Geometría Analítica I: Grupos de transformaciones

Introducción

En la primera entrada de esta unidad [1a entrada] indicamos que serán muy importantes tanto las propiedades de los vectores como los lugares geométricos vistos en las primeras dos unidades, pues serán de vital apoyo para comprender los tipos de transformaciones que estaremos viendo.

En la entrada anterior [2a entrada] contemplamos los conceptos necesarios de las funciones que nos ayudaron a definir formalmente a una transformación. En ésta entrada vamos a comenzar por dos conjuntos: $\Delta_{2}$ y $\Delta_{3}$, las propiedades que cumplen y que nos ayudarán a comprender la definición de un grupo. Ambos conjuntos son los ejemplos más representativos de los grupos de transformaciones: los grupos simétricos de orden n. Pretendemos dar a conocer el tema en éste primer curso de Geometría Analítica de forma introductoria; pero puede profundizarse en asignaturas más avanzadas de la carrera universitaria, una de ellas es Álgebra Moderna en la Teoría de Grupos.

El conjunto $\Delta_{2}$

Antes que nada nos pondremos de acuerdo en la notación que vamos a usar: $x \mapsto y$ nos indicará que al elemento $x$ le corresponde el elemento $y$ bajo la función correspondiente.

El primero conjunto que conoceremos tiene dos elementos $\{ 0,1 \}$, a quien identificaremos por $\Delta_{2}$ y se lee «delta-dos». ¿Cuáles son las funciones de $\Delta_{2}$ en sí mismas? Primero tenemos a

\begin{align*}
0 & \xmapsto{id} 0\\
1 & \mapsto 1\\
\end{align*}

a quien llamaremos por $id$ (identidad de $\Delta_{2}$); porque al elemento $0$ le corresponde él mismo y al elemento $1$ le corresponde él mismo. La siguiente función es

\begin{align*}
0 & \xmapsto{\rho} 1\\
1 & \mapsto 0\\
\end{align*}

que denotamos por $\rho$. ¿Qué ocurre si recurrimos a la función composición $\rho \circ \rho$? Si comenzamos con $0$ sabemos bajo $\rho$ que $\rho (0) = 1$, por ello

\begin{align*}
(\rho \circ \rho)(0) &= \rho [\rho (0)]\\
& = \rho (1) = 0.\\
\end{align*}

Y si comenzamos con $\rho (1)$, en forma análoga obtendremos $(\rho \circ \rho)(1) = 1$. Podemos darnos cuenta que $\rho$ es su propio inverso, pues $(\rho \circ \rho = id)$.

Otra forma en que podemos trabajar la composición de funciones es siguiendo los elementos mediante una tablita. Vamos a ver que $\rho \circ \rho = id$ como sigue:

\begin{align*}
0 & \xmapsto{p} 1 \xmapsto{p} 0\\
1 & \mapsto 0 \mapsto 1\\
\end{align*}

donde colocamos la función correspondiente sobre cada flecha entre los elementos y nos damos cuenta que los elementos iniciales coinciden con las imágenes finales bajo la composición. Entonces concluimos que se cumple $\rho \circ \rho = id$.

Tenemos otras dos funciones:

\begin{align*}
0 & \xmapsto{C_{0}} 0 \hspace{0.2cm} & 0 \xmapsto{C_{1}} 1\\
1 & \mapsto 0 \hspace{0.18cm} &1 \mapsto 1\\
\end{align*}

e independientemente del elemento inicial, bajo $C_{0}$ corresponde el elemento $0$ y bajo $C_{1}$ corresponde el elemento $1$. Tanto $C_{0}$ como $C_{1}$ se consideran funciones constantes; mientras que las únicas transformaciones que contemplaremos de $\Delta_{2}$ son $ id $ y $ \rho $.

El conjunto $\Delta_{3}$

Ahora consideremos al conjunto $\Delta_{3} := \{ 0,1,2 \}$ e indicaremos las funciones de $\Delta_{3}$ en sí mismo bajo la notación

\begin{align*}
0 & \mapsto x\\
1 & \mapsto y\\
2 & \mapsto z
\end{align*}

donde $x, y, z \in \Delta_{3}$. Como $x, y, z \in \Delta_{3}$ son imágenes arbitrarias, habrán $3^3 = 27$ funciones, pero sólo 6 serán transformaciones. Vamos a explicar porqué sólo 6 transformaciones: puesto que queremos biyectividad, al elegir a $0$ y corresponderle su imagen, entonces al $1$ le podrán corresponder sólo $2$ opciones y a su vez, cuando llegamos al $2$, ya sólo le podrá corresponder $1$ opción. En resumen, en la primera posición hay $3$ opciones, en la segunda hay $2$ opciones y en la tercera sólo $1$ y el número de transformaciones será de $3 \times 2 \times 1 = 6$.

Las primeras 3 transformaciones que veremos son:

\begin{align*}
&0 \xmapsto{id} 0 &0 \xmapsto{\rho_{1}} 1& \hspace{0.2cm} &0 \xmapsto{\rho_{2}} 2\\
&1 \mapsto 1 &1 \mapsto 2 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 2 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 1
\end{align*}

De hecho a las 6 transformaciones las visualizaremos como las «simetrías» de un triángulo equilátero. Las primeras 3 corresponden a rotaciones (la identidad es quien rota $0$ grados). Diremos que $\rho_{1}$ y $\rho_{2}$ son inversas, pues $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$ (vamos a dejar esta relación como ejercicio de la tarea moral, para practicar). Es decir, con cualquier elemento inicial, la imagen de la composición será el mismo elemento inicial. Esto quiere decir que una rotación rotará $120°$ en una dirección y al aplicar la segunda rotación rota $120°$ pero en dirección contraria. Los triángulos correspondientes son:

También se cumple que $\rho_{1} \circ \rho_{1} = \rho_{2}$, pues

\begin{align*}
0 & \xmapsto{\rho_{1}} 1 \xmapsto{\rho_{1}} 2\\
1 & \mapsto 2 \mapsto 0 \\
2 & \mapsto 0 \mapsto 1
\end{align*}

Entonces decimos que cumple la siguiente definición:

Definición. Sea $f$ cualquier transformación, decimos que

\begin{equation*}
f^{n} = f \circ f \circ \cdots \circ f,
\end{equation*}

es decir, $f^{n}$ es $f$ compuesta consigo misma n veces.

En nuestro ejemplo, escribiremos que se cumple entonces la relación $\rho_{1}^{2} = \rho_{2}$. Por otro lado, para $\Delta_{3}$ tenemos otras 3 transformaciones llamadas transposiciones que geométricamente las visualizamos como reflexiones y son:

\begin{align*}
&0 \xmapsto{\alpha} 0 & 0 \xmapsto{\beta} 2 & \hspace{0.2cm} & 0 \xmapsto{\gamma} 1\\
&1 \mapsto 2 &1 \mapsto 1 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 1 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 2
\end{align*}

El triángulo que representa a estas transformaciones es:

Las direcciones de la flecha dependerán de cada transformación. Ahora vamos a probar una relación que cumple $ \alpha, $ la cual es:

Demostrar que se cumple $\alpha^{2} = id$.

Demostración. En efecto, recordemos que $ \alpha^{2} = \alpha \circ \alpha$, así que desarrollaremos el seguimiento de elementos a través de la composición $\alpha \circ \alpha$ como sigue:

\begin{align*}
0 & \xmapsto{\alpha} 0 \xmapsto{\alpha} 0\\
1 & \mapsto 2 \mapsto 1 \\
2 & \mapsto 1 \mapsto 2
\end{align*}

y observemos que al final de la composición obtuvimos $\alpha^2 (0)=0$, $\alpha^2 (1)=1$, $\alpha^2 (2)=2$ y con ello vemos que $\alpha^{2}=id.$

$\square$

En la sección de tarea moral dejaremos unos ejercicios de práctica sobre más relaciones que cumplen $\alpha$, $\beta$ y $\gamma$; como son $\alpha^2 = \beta^2 = \gamma^2 = id$, $\alpha \circ \beta = \rho_{1}$ y que $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.

A continuación vamos a definir a un conjunto de transformaciones que cumplen ciertas propiedades interesantes y para ejemplificar a dicho conjunto retomaremos uno de los conjuntos vistos en esta entrada.

Grupos de transformaciones

Definición. A un conjunto $G$ de transformaciones de un conjunto $A$ le llamaremos un grupo de transformaciones de $A$ si cumple:

  1. $id_{A} \in G$
  2. $f,g \in G \longrightarrow g \circ f \in G$
  3. $f \in G \longrightarrow f^{-1} \in G$

Como ejemplos, tomemos a $A$ como $A = \Delta_{3}$. Sabemos que tiene 6 elementos, pero un grupo de transformaciones es el de las rotaciones ya que contiene a la identidad $(1)$, es cerrado bajo la composición $(2)$ y es cerrado bajo inversas $(3)$.

Otro grupo de transformaciones de $A=\Delta_{3}$ es el de las transposiciones (o reflexiones) junto con la identidad.

Definición. Dado un conjunto cualquiera de transformaciones de $A$, el grupo que genera es el grupo de transformaciones obtenido de todas las posibles composiciones con elementos de él o sus inversos.

Como ejemplo de un grupo que genera tenemos a $\alpha$ y $\beta$ ya que generan todas las transformaciones de $\Delta_{3}$.

También $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$ ( porque $\rho^{3} = id$, $\rho_{1}$ y $\rho^{2} = \rho_{2}$).

Para terminar con esta entrada daremos un concepto adicional. Si te llamaron la atención los conjuntos $\Delta_{2}$ y $\Delta_{3}$ y quieres saber más de ellos o si hay más conjuntos similares, la respuesta es sí. Pertenecen a un conjunto de transformaciones, el cual definiremos a continuación:

Definición. Al conjunto de todas las transformaciones de un conjunto con $n$ elementos $\Delta_{n} := \{ 0, 1, \cdots, n-1 \}$ se le llama grupo simétrico de orden $n$ y se le denota $S_{n}$. Dicho grupo tiene $n! = n \times (n-1) \times (n-2 ) \cdots \times 2 \times 1$ ($n$ factorial) elementos a los cuales se le llaman permutaciones.

Tarea moral

  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\rho_{1}$ y $\rho_{2}$ que vimos en esta entrada, demostrar que $\rho_{1}$ y $\rho_{2}$ son inversas, es decir:
    1. $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$
  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\alpha$, $\beta$ y $\gamma$ que vimos en esta entrada, demostrar que se cumplen las relaciones siguientes:
    1. $\alpha^2 = \beta^2 = \gamma^2 = id$. [Sugerencia: Hacer cada composición por separado].
    2. $\alpha \circ \beta = \rho_{1}$
    3. $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.
  • Demuestren que $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$. [Sugerencia: Demuestren que se cumplen las relaciones $\rho^{3} = id$, y $\rho^{2} = \rho_{2}$), porque $\rho_{1}$ es un elemento de dicho grupo de rotaciones].

Más adelante

En esta entrada vimos que en el conjunto $\Delta_{3}$ hay dos posibles grupos de transformaciones: el de las rotaciones y el de las transposiciones junto con la identidad. Mediante triángulos pudimos visualizar el comportamiento que hay en los elementos iniciales y sus imágenes; con ello se comprende porque están en cada grupo.

En la siguiente entrada continuaremos con un primer grupo de transformaciones en los \mathbb{R}, que es de las transformaciones afines, que tiene una muy buena relación con un lugar geométrico que ya hemos visto: las rectas. La entrada [Rectas en forma paramétrica] de la Unidad 1 nos podrá ayudar como repaso si lo requerimos.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Geometría Analítica I: Introducción a transformaciones

Introducción

Hasta ahora hemos aprendido nuevos conceptos geométricos euclidianos desde producto interior y ortogonal, normas y ángulos entre vectores hasta distancias. Pero también hemos trabajado implícitamente con diversos tipos de funciones, como son las rectas o las cónicas. Las funciones participan en todas las ramas matemáticas e incluso en muchas disciplinas científicas y sociales, por lo que al principio de la unidad brindaremos las nociones de funciones necesarias que les permitirán asimilar de mejor manera los temas que hemos visto y avanzar a los temas esenciales de ésta unidad, los cuales son Transformaciones y Matrices.

Comenzaremos con el tema de transformaciones y vamos a llamar transformación en el plano a toda función que hará corresponder a cada punto del plano otro punto del mismo; es decir, las transformaciones son operaciones geométricas que nos permiten deducir una nueva figura a partir de una que previamente tenemos. La nueva figura se llama transformada de la original.

Podemos dar un primer escenario de la clasificación de transformaciones que veremos:

  • Isometrías: Son cambios de posición (orientación) de una determinada figura que no alteran la forma ni tamaño de ésta. Como ejemplos en este rubro tenemos las traslaciones, las rotaciones o las reflexiones (simetrías).

En la imagen tenemos el caso de una transformación de reflexión (o simetría) con respecto al eje $x=0$. Observemos que cada punto de la figura original y la imagen de cada uno de ellos bajo la reflexión se encuentran a igual distancia de una recta llamada eje de simetría.

  • Isomorfismos: Son cambios en una figura determinada que no alteran la forma pero sí el tamaño de ésta. Entre ellas tenemos a las homotecias y las semejanzas.

La imagen muestra un ejemplo de homotecia, la cual es una transformación del espacio (en este caso el plano) que dilata las distancias con respecto a un punto de origen $O$.

  • Composición de transformaciones: Es el proceso por el cual a una figura se le aplican dos o más transformaciones y éstas transformaciones pueden ser de diferente tipo. Veremos el caso de transformaciones afines.
  • Transformaciones ortogonales: Como las longitudes de vectores y ángulos entre ellos se definen mediante el producto interior; éste tipo de transformaciones preservan las longitudes de los vectores y los ángulos entre ellos.

Tarea moral:

Las gráficas de las funciones senoidales son contracciones y/o dilataciones de las gráficas del seno y el coseno.

\begin{align*}
y &= A sen(Bx + C) + D, & y &= Acos(Bx + C) + D,
\end{align*}

donde $|A|$ representa la amplitud y $|B|$ a la cantidad de veces que se repite un ciclo en el intervalo desde $0$ hasta $2 \pi$. Por otro lado $C$ determina el desplazamiento horizontal de las gráficas y $D$ el desplazamiento vertical de las gráficas. Además, $\dfrac{2 \pi}{|B|}$ es el periodo de la función y nos indica la la longitud de un ciclo.

Ejercicio 1. Identificar la amplitud, el periodo y graficar las funciones:

  • $y = 3 sen (2x),$
  • $y = 2 cos (x),$
  • $y = 2 + sen(x)$
  • $y = \dfrac{1}{2} sen \left( \dfrac{1}{2} x \right)$

Ejercicio 2. Grafiquen las siguientes funciones y analicen el efecto de las constantes con respecto a las gráficas del seno y coseno.

  • $y = sen(x + \pi)$
  • $y = cos(x+2) + 3$

Más adelante:

La tarea moral tiene un propósito, y es que recordemos cómo una función se ve afectada al variar parámetros específicos. Con ello podremos darnos cuenta que no estamos tan enajenados al tema de transformación de funciones que estaremos trabajando en esta unidad.

En la siguiente entrada repasaremos las nociones necesarias de funciones que nos permitirán definir formalmente el concepto de transformaciones y tratar posteriormente con su clasificación.

Entradas relacionadas

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Álgebra Lineal II: Polinomio característico

Introducción

En el transcurso de esta unidad hemos construido varios de los objetos algebraicos que nos interesan. En primer lugar, dejamos claro qué quería decir evaluar un polinomio en una matriz o transformación lineal. Esto nos llevó a preguntarnos por aquellos polinomios que anulan a una matriz o transformación lineal. De manera natural, descubrimos que aquellos polinomios que anulan son múltiplos de un polinomio especial asociado a la matriz o transformación lineal llamado polinomio mínimo.

De manera un poco separada, comenzamos a estudiar los eigenvalores, eigenvectores y eigenespacios de una transformación lineal y en la entrada anterior nos enfocamos en varias de sus propiedades principales. Uno de los resultados clave que encontramos es que los eigenvalores de una matriz o transformación lineal son las raíces del polinomio mínimo que estén en el campo en el que estemos trabajando.

Aunque este resultado sea interesante de manera teórica, en la práctica debemos hacer algo diferente pues no es tan sencillo encontrar el polinomio mínimo de una matriz o transformación lineal. Es por esto que ahora estudiaremos con profundidad otro objeto que resultará fundamental en nuestro estudio: el polinomio característico. Ya nos encontramos con él anteriormente. Si $A$ es una matriz en $M_n(F)$, dicho polinomio en la variable $\lambda$ es el determinante $\det(\lambda I_n-A)$.

Esta entrada es más bien una introducción, así que nos enfocaremos en probar las cosas más básicas de este objeto. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

Definición de polinomio característico

Comencemos con una matriz $A\in M_n(F)$. Vimos que encontrar los eigenvalores de $A$ se reduce a encontrar las soluciones de la ecuación

\begin{align*}
\det(\lambda I_n-A)=0
\end{align*}

en $F$. Vamos a estudiar más a detalle la expresión de la izquierda.

El siguiente teorema va un poco más allá y de hecho estudia expresiones un poco más generales.

Teorema. Sean $A,B\in M_n(F)$ dos matrices. Existe un polinomio $P\in F[X]$ tal que para todo $x\in F$ se cumple

\begin{align*}
P(x)=\det(xA+B).
\end{align*}

Si denotamos a este polinomio por $P(X)=\det(XA+B)$, entonces

\begin{align*}
\det(XA+B)=\det(A)X^{n}+\alpha_{n-1}X^{n-1}+\dots+\alpha_1 X+\det B
\end{align*}

para algunas expresiones polinomiales $\alpha_1,\dots, \alpha_{n-1}$ con coeficientes enteros en las entradas de $A$ y $B$.

Demostración. Consideremos el siguiente polinomio en la variable $X$ y coeficientes en $F$, es decir, el siguiente polinomio en $F[X]$:

\begin{align*}
P(X)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(a_{1\sigma(1)} X+b_{1\sigma(1)}\right)\cdots \left(a_{n\sigma(n)}X+b_{n\sigma(n)}\right).
\end{align*}

Por construcción, $P$ es un polinomio cuyos coeficientes son expresiones polinomiales enteras en las entradas de $A$ y $B$. Más aún, se cumple que $P(x)=\det(xA+B)$ para $x\in F$ (podría ser útil revisar la entrada sobre determinantes para convencerte de ello). El término constante lo obtenemos al evaluar en $X=0$, pero eso no es más que $P(0)=\det(0\cdot A+B)=\det(B)$. Finalmente para cada $\sigma\in S_n$ tenemos que el primer término de cada sumando es

\begin{align*}
\operatorname{sign}(\sigma)(a_{1\sigma(1)}X+b_{1\sigma(1)})\cdots (a_{n\sigma(n)} X+b_{n\sigma(n)})= \operatorname{sign}(\sigma) a_{1\sigma(1)}\cdots a_{n\sigma(n)}X^{n}+\dots
\end{align*}

En efecto, los términos «ocultos en los puntos suspensivos» todos tienen grado a lo más $n-1$. Agrupando todos los sumandos y comparando con la definición del determinante llegamos a que $$P(X)=\det(A)X^{n}+\ldots,$$ es decir el término de orden $n$ es en efecto $\det(A)$.

$\square$

Del teorema se sigue que si $A$ y $B$ tienen entradas enteras o racionales, $\det(XA+B)$ tiene coeficientes enteros o racionales respectivamente.

Enseguida podemos definir (gracias al teorema) el siguiente objeto:

Definición. El polinomio característico de la matriz $A\in M_n(F)$ es el polinomio $\chi_A\in F[X]$ definido por

\begin{align*}
\chi_A(X)=\det(X\cdot I_n-A).
\end{align*}

Una observación inmediata es que, de acuerdo al teorema, el coeficiente principal de $\chi_A(X)$ tiene coeficiente $\det(I_n)=1$. En otras palabras, acabamos de demostrar la siguiente propiedad fundamental del polinomio característico.

Proposición. El polinomio característico de una matriz en $M_n(F)$ siempre tiene grado exactamente $n$ y además es un polinomio mónico, es decir, que el coeficiente que acompaña al término de grado $n$ es iguala $1$.

Veamos un ejemplo sencillo.

Ejemplo. Si queremos calcular el polinomio característico de

\begin{align*}
A=\begin{pmatrix} 1 & -1\\ 1 &0\end{pmatrix}\in M_2(\mathbb{R})
\end{align*}

entonces usamos la definición

\begin{align*}
\chi_A(X)&=\det(X\cdot I_2-A)\\&=\begin{vmatrix} X-1 & 1\\ -1 & X\end{vmatrix}\\&= X(X-1)+1.
\end{align*}

Y así los eigenvalores de $A$ son las raíces reales de $\chi_A(X)$. Es decir, tenemos que resolver

\begin{align*} 0=x(x-1)+1=x^2-x+1.\end{align*}

Sin embargo, el discriminante de esta ecuación cuadrática es $(-1)^2-4(1)(1)=-3$, el cual es un real negativo, por lo que no tenemos eigenvalores reales. Si estuviéramos trabajando en $\mathbb{C}$ tendríamos dos eigenvalores complejos:

\begin{align*}
x_{1,2}= \frac{1\pm i\sqrt{3}}{2}.
\end{align*}

De aquí, ¿cómo encontramos los eigenvectores y eigenespacios? Basta con resolver los sistemas lineales homogéneos de ecuaciones $(A-x_1I_2)X=0$ para encontrar el $x_1$-eigenespacio y $(A-x_2)X=0$ para encontrar el $x_2$-eigenespacio.

$\square$

Algunos cálculos de polinomios característicos

Ya que calcular polinomios característicos se reduce a calcular determinantes, te recomendamos fuertemente que recuerdes las propiedades que tienen los determinantes. Sobre todo, aquellas que permiten calcularlos.

¡A calcular polinomios característicos!

Problema. Encuentra el polinomio característico y los eigenvalores de $A$ dónde $A$ es

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0 & 0\\
2 & 0 & -1 & 0\\
0 & 7 & 0 &6\\
0 & 0 & 3 & 0
\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. Usamos la expansión de Laplace respecto al primer renglón:

\begin{align*}
\chi_A(X)&=\det(XI_4-A)\\&= \begin{vmatrix}
X & -1 & 0 & 0\\
-2 & X & 1 & 0\\
0 & -7 & X & -6\\
0 & 0 & -3 & X\end{vmatrix}\\
&= X\begin{vmatrix} X & 1 & 0\\ -7 & X & -6\\ 0 & -3 & X\end{vmatrix}+ \begin{vmatrix}
-2 & 1 & 0\\ 0 & X& -6\\ 0 &-3 & X\end{vmatrix}\\
&= X(X^3-11X)-2(X^2-18)\\
&= X^4-13X^2+36.
\end{align*}

Después, para encontrar los eigenvalores de $A$ tenemos que encontrar las raíces reales de la ecuación

\begin{align*}
x^4-13x^2+36=0.
\end{align*}

Sin embargo, no hay que desalentarse por ver una ecuación de grado $4$. Si hacemos el cambio $y=x^2$ podemos llevar nuestro problema a resolver

\begin{align*}
y^2-13y+36=0.
\end{align*}

¡Es una ecuación de segundo orden! Esta la podemos resolver usando ‘la chicharronera’ y obtenemos como soluciones $y_1=4$ y $y_2=9$. Pero todavía tenemos que resolver $x^2=y_1$ y $x^2=y_2$. Al resolver estas últimas dos ecuaciones obtenemos que $x=\pm 2,\pm 3$ son los eigenvalores de $A$.

$\square$

Problema. Calcula el polinomio característico y los eigenvalores de la matriz

\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 &1 \end{pmatrix}\in M_3(F_2).
\end{align*}

Solución. Nota que estamos trabajando en el campo de dos elementos $F_2$, por lo que $-1=1$. Usando la definición:

\begin{align*}
\chi_A(X)&=\det(XI_3-A)\\&= \begin{vmatrix} X-1 & 0 & -1\\ -1 & X-1 & 0\\ -1 & 0 &X-1\end{vmatrix}\\
&= \begin{vmatrix} X+1 & 0 & 1\\ 1 & X+1& 0 \\ 1 & 0 &X+1\end{vmatrix}.
\end{align*}

Aquí estamos usando repetidamente $-1=1$. Usamos otra vez la expansión de Laplace en el primer renglón para llegar a

\begin{align*}
\chi_A(X)&= (X+1)\begin{vmatrix} X+1 & 0 \\ 0 & X+1\end{vmatrix}+\begin{vmatrix} 1 & X+1\\ 1 & 0\end{vmatrix}\\
&= (X+1)^3-(X+1).
\end{align*}

Luego, si queremos encontrar los eigenvalores de $A$ tenemos que resolver

\begin{align*}
(x+1)^3-(x+1)=0.
\end{align*}

Si bien existen varias maneras de resolver la ecuación, podemos simplemente sustituir los únicos valores posibles de $x$ : $0$ o $1$. Sustituyendo es fácil ver que ambos satisfacen la ecuación, por lo que los eigenvalores de $A$ son $0$ y $1$.

$\square$

Tarea moral

  • Demuestra que $0$ es un eigenvalor de una matriz $A$ si y sólo si $\det(A)=0$.
  • ¿Una matriz compleja de tamaño $n$ tiene necesariamente $n$ eigenvalores distintos?
  • Calcular el polinomio característico y los eigenvalores de
    \begin{align*}A=\begin{pmatrix} 1 & 2 & 0\\ 0 & 1 &2\\ 2 & 0 & 1\end{pmatrix}\in M_3(F_3).
    \end{align*}
  • Usando la fórmula del determinante para matrices de tamaño $2$, encuentra un criterio simple para saber si una matriz con entradas reales de tamaño $2$ tiene dos, uno o ningún eigenvalor real.
  • Da un criterio simple para saber si una matriz de tamaño $2$ con entradas complejas tiene eigenvalores puramente imaginarios.

Más adelante

En la próxima entrada calcularemos el polinomio característico de una variedad de matrices importantes: triangulares superiores, nilpotentes, etc. Esto nos permitirá entender mejor al polinomio característico y lidiar con muchos casos para facilitarnos los cálculos más adelante.

Álgebra Lineal II: Eigenvectores y eigenvalores

Introducción

En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Estos son esenciales para entender a las transformaciones lineales, y tienen un rango de aplicabilidad impresionante: aparecen en la física, las ecuaciones diferenciales parciales, la ciencia de datos, la topología algebraica y la probabilidad.

Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.

Eigen-definiciones

Comenzamos con $V$ un espacio vectorial sobre $F$ y $T:V\to V$ una transformación lineal.

Definición. Un eigenvalor (también conocido como valor propio) de $T$ es un escalar $\lambda \in F$ tal que $\lambda \cdot \operatorname{Id}-T$ no es invertible. Un eigenvector (también conocido como vector propio o $\lambda$-eigenvector) correspondiente a $\lambda$ es un vector no-cero de $\ker (\lambda \cdot \operatorname{Id}-T)$. A este kernel se le conoce como el eigenespacio correspondiente a $\lambda$ (o $\lambda$-eigenespacio).

Entonces un $\lambda$-eigenvector es por definición distinto de cero y satisface

\begin{align*}
T(v)=\lambda v.
\end{align*}

Hay que tener cuidado. se permite que $\lambda=0$ sea eigenvalor, pero no se permite que $v=0$ sea eigenvector.

La colección de todos los eigenvectores, junto con el vector cero, es el eigenespacio asociado a $\lambda$. Podemos enunciar definiciones análogas con matrices.

Definición. Sea $A\in M_n(F)$ una matriz cuadrada. Un escalar $\lambda \in F$ es un eigenvalor de $A$ si existe un vector $X\in F^n$ distinto de cero (un eigenvector) tal que $AX=\lambda X$. En este caso el subespacio

\begin{align*}
\ker(\lambda I_n-A):=\lbrace X\in F^n\mid AX=\lambda X\rbrace
\end{align*}

es el $\lambda$-eigenespacio de $A$.

Puedes verificar que ambas definiciones se corresponden en el siguiente sentido:

Si $V$ es un espacio de dimensión finita y $T:V\to V$ es una transformación lineal, podemos escoger cualquier base de $V$ y asociarle a $T$ su forma matricial, digamos $A$, en esta base. Los eigenvalores de $T$ son precisamente los eigenvalores de $A$. ¡Pero cuidado! Los eigenvectores de $A$ dependerán de la base elegida.

Un primer ejemplo

Seguimos con un sencillo pero importante ejemplo.

Ejemplo. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Busquemos los eigenvectores y eigenvalores de $A$, pensando a $A$ como una matriz con entradas complejas. Sea $\lambda\in \mathbb{C}$ un eigenvalor y $X$ un eigenvector asociado. Entonces se cumple la relación $AX=\lambda X$. Si $X=(x_1,x_2)$ entonces la condición mencionada es equivalente al par de ecuaciones

\begin{align*}
-x_2=\lambda x_1, \hspace{5mm} x_1=\lambda x_2.
\end{align*}

Sustituyendo una en la otra obtenemos

\begin{align*}
-x_2=\lambda^2 x_2.
\end{align*}

Si $x_2=0$ entonces $x_1=0$ y así $X$ es un vector nulo, lo que es imposible por definición (recuerda que pedimos que los eigenvectores sean distintos de cero). Entonces $x_2\neq 0$ y podemos dividir por $x_2$ a la ecuación previa, de manera que $\lambda^2=-1$, o sea $\lambda=\pm i$. Conversamente, $i$ y $-i$ son eigenvalores. En efecto, podemos tomar $x_2=1$ y $x_1=\lambda$ como soluciones del problema anterior y obtener un vector propio asociado. De hecho, el eigenespacio está dado por

\begin{align*}
\ker (\lambda I_2-A)=\lbrace (\lambda x_2, x_2)\mid x_2\in \mathbb{C}\rbrace
\end{align*}

y esto no es más que la recta generada por el vector $v=(\lambda,1)\in \mathbb{C}^2$. Por lo tanto, vista como una matriz compleja, $A$ tiene dos eigenvalores distintos $\pm i$ y dos eigenespacios, los generados por $(i,1)$ y $(-i,1)$.

Por otro lado, veamos qué pasa si pensamos a $A$ como una matriz con entradas reales. Haciendo las mismas cuentas llegamos a la misma ecuación, $-x_2=\lambda^2 x_2$. Podemos reescribirla factorizando el término $x_2$:

\begin{align*}
(\lambda^2+1)x_2=0.
\end{align*}

Como $\lambda$ esta vez es un número real, $\lambda^2+1$ siempre es distinto de cero. Entonces para que el producto sea cero, tiene que ocurrir que $x_2=0$, ¡pero entonces $x_1=0$ y así $X=0$! En conclusión: vista como una matriz con entradas reales, $A$ no tiene eigenvalores, y por tanto no tiene eigenespacios. La moraleja es que los eigenvalores y eigenvectores dependen mucho del campo en el que trabajemos.

¿Cómo calcularlos?

Si bien el ejemplo anterior resultó simple, no es difícil imaginar que matrices más complicadas y más grandes pueden resultar en procedimientos menos claros. En general:

  • ¿Cómo podemos calcular los eigenvalores?
  • ¿Cómo podemos calcular los eigenespacios de manera eficiente?
  • ¿Cómo podemos calcular los eigenvectores?

Una vez calculados los eigenvalores, calcular los eigenespacios se reduce a resolver el sistema de ecuaciones homogéneo $(A-\lambda I_n)X=0$, lo cual ya hemos hecho muchas veces mediante reducción gaussiana. Luego, calcular los eigenvectores simplemente es tomar los elementos no cero del eigenespacio. Sin embargo, el cálculo de eigenvalores involucra encontrar raíces de polinomios lo cual de entrada no es obvio. Un primer paso es la siguiente observación que enunciamos como proposición.

Proposición. Un escalar $\lambda \in F$ es un eigenvalor de $A\in M_n(F)$ si y sólo si

\begin{align*}
\det(\lambda I_n-A)=0.
\end{align*}

Demostración. El sistema $(\lambda I_n-A)X=0$ tiene soluciones no triviales si y sólo si la matriz $\lambda I_n-A$ no es invertible. A su vez, la matriz $\lambda I_n-A$ no es invertible si y sólo si su determinante es nulo. El resultado se sigue.

$\square$

Regresemos a nuestra pregunta. Si

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots& \dots\\
a_{n1} & a_{n2}& \dots & a_{nn}
\end{pmatrix}
\end{align*}

entonces la proposición nos dice que podemos calcular los valores propios de $A$ resolviendo la ecuación polinomial

\begin{align*}
\begin{vmatrix}
\lambda- a_{11} & -a_{12} & \dots & -a_{1n}\\
-a_{21} & \lambda -a_{22} & \dots & -a_{2n}\\
\dots & \dots & \dots & \dots \\
-a_{n1} & -a_{n2} & \dots & \lambda-a_{nn}
\end{vmatrix}
=0
\end{align*}

en $F$. Esta es una ecuación polinomial de grado $n$, y si el grado es mayor a $4$ en general no existe una fórmula para resolverla en términos de radicales (aunque claro que hay casos particulares que si podemos resolver sin mucho problema).

Problema. Queremos calcular los eigenvalores de $A$, donde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 &-1\\
0 & 1 & 0
\end{pmatrix}.
\end{align*}

Solución. Como vimos en la proposición, esto se reduce a calcular las raíces del polinomio

\begin{align*}
\begin{vmatrix}
\lambda -1 & 0 & 0\\
0 & \lambda & 1\\
0 &-1 & \lambda
\end{vmatrix}=0.
\end{align*}

Calculando el determinante vemos que esto es de hecho

\begin{align*}
(\lambda-1)(\lambda^2+1)=0.
\end{align*}

Sin embargo tenemos que recordar que las raíces dependen de nuestro campo de elección. Como no comentamos nada sobre el campo en el cual trabajamos, consideraremos dos casos. Si el campo es $\mathbb{C}$ entonces los eigenvalores son $1$ y $\pm i$. Si trabajamos sobre $\mathbb{R}$ entonces tenemos un único eigenvalor: $1$.

$\square$

Ejercicios

Acabamos esta entrada con unos ejercicios para reforzar lo que vimos.

Problema. Encuentra todos los números reales $x$ tales que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & x\\
2 & 1
\end{pmatrix}
\end{align*}

tiene exactamente dos eigenvalores distintos. La misma pregunta para ningún eigenvalor.

Solución. El número de eigenvalores va a estar dado por el número de raíces del polinomio $\det(\lambda I_2-A)$. Es decir, tenemos que trabajar la ecuación

\begin{align*}
\det(\lambda I_2-A)=\begin{vmatrix} \lambda -1 & -x\\ -2 & \lambda-1\end{vmatrix}=0.
\end{align*}

Que a su vez se reduce a

\begin{align*}
(\lambda-1)^2-2x=0.
\end{align*}

Y para que tenga dos soluciones basta con que $2x$ sea un número positivo. En efecto, en ese caso podemos despejar y resolver

\begin{align*}
\lambda = 1 \pm \sqrt{2x}.
\end{align*}

Como $2x$ es positivo solo si $x$ lo es, podemos concluir que la condición necesaria y suficiente es que $x$ sea un real positivo. Similarmente, si $x$ es un número negativo no tendremos ningún eigenvalor.

$\square$

Problema. Sea $V$ el conjunto de todas las matrices $A\in M_2(\mathbb{C})$ tales que $v=\begin{pmatrix} 1\\ 2 \end{pmatrix}$ es un eigenvector de $A$. Demuestra que $V$ es un subespacio de $M_2(\mathbb{C})$ y da una base.

Solución. Supongamos que $v$ es un eigenvector de $A$, con eigenvalor $\lambda$, y que es eigenvector de $B$, con eigenvalor $\mu$. Entonces

\begin{align*}
(A+c B)(v)= Av+c Bv= \lambda v+c\mu v= (\lambda+c\mu)v
\end{align*}

por lo que $v$ es eigenvector de $A+cB$ con eigenvalor $\lambda +c\mu$. Esto demuestra que $V$ es un subespacio. Para darnos una idea de cómo podría ser una base para $V$, comencemos con una matriz genérica $A=\begin{pmatrix} a & b\\ c & d\end{pmatrix}$ tal que $A\in V$. Entonces $A$ tiene que satisfacer $Av=\lambda v$ para algún $\lambda$. Escribamos esto más explicitamente

\begin{align*}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2\end{pmatrix}= \begin{pmatrix}
a+2b\\
c+2d
\end{pmatrix}=\begin{pmatrix} \lambda \\ 2\lambda\end{pmatrix}.
\end{align*}

Así se desprenden dos ecuaciones

\begin{align*}
\begin{cases}
a+2b=\lambda \\
c+2d=2\lambda
\end{cases}.
\end{align*}

Sabemos que $\lambda$ es un parámetro libre, pues puede ser cualquier eigenvalor. Si conocemos a $\lambda$ entonces necesitamos alguna de las variables, $a$ o $b$ para determinar a la otra y lo mismo con $c$ y $d$. Entonces escojamos $b$ y $d$ como variables libres. Enseguida nuestra matriz es de la forma (reemplazando a $a$ y $c$ por sus valores en $b$ y $d$):

\begin{align*}
A&= \begin{pmatrix}
\lambda -2b & b\\
2\lambda -2d & d
\end{pmatrix}\\
&= b\begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}+ d \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix}+\lambda \begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}.
\end{align*}

Entonces proponemos como base

\begin{align*}
\beta = \bigg\lbrace \begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix},\begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}\bigg\rbrace.
\end{align*}

Ya vimos que $\beta$ genera a $V$, y dejamos la independencia lineal como ejercicio.

$\square$

Más adelante

En las próximas entradas desarrollaremos las propiedades relevantes de los eigenvalores y eigenvectores para eventualmente llegar al polinomio característico y establecer el puente con el polinomio mínimo.

Tarea moral

Aquí unos ejercicios para que repases el material de esta entrada.

  1. Encuentra todos los eigenvalores de la matriz $A=\begin{pmatrix} 1 & 1 &0 \\ 0 & 2 &1\\ 0 & 0 & 1\end{pmatrix}\in M_3(\mathbb{C})$.
  2. Completa la demostración del último ejercicio de la sección de ejercicios, verificando que las soluciones encontradas son matrices linealmente independientes. ¿Puedes generalizar este ejercicio de alguna manera?
  3. Encuentra los eigenvalores de la matriz $A\in M_n(\mathbb{R})$ cuyas entradas son puros $2$.
  4. Da contraejemplos para cada una de las siguientes afirmaciones:
    1. Si $u$ y $v$ son eigenvectores de $A$, entonces $u+v$ es eigenvector de $A$.
    2. Si $\lambda$ es eigenvalor de $A$ y $\mu$ es eigenvalor de $B$, entonces $\lambda \mu$ es eigenvalor de $AB$.
    3. Si $A$ y $B$ son formas matriciales de una misma transformación $T$ y $v$ es eigenvector de $A$, entonces $v$ es eigenvector de $B$.
  5. Considera la transformación derivada en $\mathbb{R}[x]$. ¿Quienes son sus eigenvectores y eigenvalores? Como sugerencia, estudia el coeficiente de mayor grado.