Archivo de la etiqueta: conjugado

Álgebra Lineal I: Técnicas básicas de cálculo de determinantes

Introducción

Ya definimos a los determinantes para vectores, para transformaciones y para matrices. Además, mostramos algunas propiedades básicas de determinantes y las usamos para resolver varios problemas. Como hemos discutido, los determinantes guardan información importante sobre una transformación lineal o sobre una matriz. También ayudan a implementar la técnica de diagonalización la cual introdujimos hace algunas entradas y en la cual profundizaremos después. Es por esta razón que es importante tener varias técnicas para el cálculo de determinantes.

Fuera de este curso, los determinantes sirven en muchas otras áreas de las matemáticas. Cuando se hace cálculo de varias variables ayudan a enunciar el teorema del cambio de variable. En combinatoria ayudan a calcular el número de árboles generadores de una gráfica. Más adelante en tu formación matemática es probable que te encuentres con otros ejemplos.

Calculo de determinantes de $2\times 2$

Como ya discutimos anteriormente, una matriz en $M_2(F)$, digamos $A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}$ tiene determinante $ad-bc$.

Problema. Calcula el determinante de la matriz $$\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}^8.$$

Solución. Por la fórmula para el determinante de las matrices de $2\times 2$, se tiene que $\begin{vmatrix} 0 & 1\\ 1 & 1\end{vmatrix} = 0\cdot 1 – 1\cdot 1 = -1.$

Como el determinante es multiplicativo, $\det(A^2)=\det(A)\det(A)=(\det(A))^2$, e inductivamente se puede mostrar que para todo entero positivo $n$ se tiene que $\det(A^n)=(\det(A))^n$. De esta forma, el determinante que buscamos es $(-1)^8=1$.

$\square$

Observa que hubiera tomado más trabajo elevar la matriz a la octava potencia. Aunque esto usualmente no es recomendable, en este problema hay algo interesante que sucede con esta matriz. Llamémosla $A=\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}$. Haciendo las cuentas para las primeras potencias, se tiene que
\begin{align*}
A&=\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}\\
A^2&=\begin{pmatrix} 1 & 1\\ 1 & 2\end{pmatrix}\\
A^3&=\begin{pmatrix} 1 & 2\\ 2 & 3\end{pmatrix}\\
A^4&=\begin{pmatrix} 2 & 3\\ 3 & 5\end{pmatrix}\\
A^5&=\begin{pmatrix} 3 & 5\\ 5 & 8\end{pmatrix}
\end{align*}

Aquí aparece la sucesión de Fibonacci, dada por $F_0=0$, $F_1=1$ y $F_{n+2}=F_{n+1}+F_n$ para $n\geq 0$, cuyos primeros términos son $$0,1,1,2,3,5,8,13,21,\ldots.$$ De hecho se puede probar por inducción que $$A^n=\begin{pmatrix} F_{n-1} & F_n\\ F_n & F_{n+1}\end{pmatrix}.$$

Así, por un lado el determinante de la matriz $A^n$ es $F_{n-1}F_{n+1}-F_n^2$, usando la fórmula de determinante de $2\times 2$. Por otro lado, es $(-1)^n$, por el argumento del problema. Con esto hemos demostrado que para cualquier entero $n$ tenemos la siguiente identidad para los números de Fibonacci: $$F_{n-1}F_{n+1}-F_n^2 = (-1)^n.$$

Cálculo de determinantes de $3\times 3$

Para calcular el determinante de una matriz en $M_3(F)$ por definición, digamos de $A=\begin{pmatrix}a&b&c\\ d&e&f\\ g&h&i\end{pmatrix}$, tenemos que hacer una suma de $3!=6$ términos. Si se hacen las cuentas de manera explícita, el valor que se obtiene es $$aei+bfg+cdh-ceg-afh-bdi.$$

Esto se puede recordar mediante el siguiente diagrama, en el cual se ponen la primera y la segunda columna de nuevo, a la derecha. Las diagonales hacia abajo son términos positivos y las diagonales hacia arriba son términos negativos.

Cálculo de determinantes de matrices de 3x3
Cálculo de determinantes de $3\times 3$

Veamos un ejemplo de un problema en el que se puede aprovechar esta técnica.

Problema. Determina para qué reales $a,b,c$ se tiene que los vectores $(a,b,0)$, $(a,0,b)$ y $(0,a,b)$ son una base de $\mathbb{R}^3$.

Solución. Para que estos vectores sean una base de $\mathbb{R}^3$, basta con que sean linealmente independientes, pues son $3$. Como hemos visto en entradas anteriores, para que sean linealmente independientes, es necesario y suficiente que el determinante de la matriz $\begin{pmatrix}a&b&0\\ a&0&b\\ 0&a&b\end{pmatrix}$ sea distinto de cero.

Usando la técnica de arriba, hacemos siguiente diagrama:

De aquí, vemos que el determinante es $$0+0+0-0-a^2b-ab^2=-ab(a+b).$$ Esta expresión es igual a cero si $a=0$, si $b=0$ o si $a+b=0$. En cualquier otro caso, el determinante no es cero, y por lo tanto los vectores forman una base.

$\square$

Ten mucho cuidado. Esta técnica no funciona para matrices de $4\times 4$ o más. Hay una forma sencilla de convencerse de ello. Por ejemplo, el determinante de una matriz de $4\times 4$ debe tener $4!=24$ sumandos. Si intentamos copiar la técnica de arriba, tendremos solamente $8$ sumandos ($4$ en una diagonal y $4$ en otra). Para cuando tenemos matrices de $4\times 4$ o más, tenemos que recurrir a otras técnicas.

Reducción gaussiana para determinantes

Cuando vimos el tema de sistemas de ecuaciones hablamos del algoritmo de reducción gaussiana, y vimos que este siempre lleva una matriz en $M_{m,n}(F)$ a su forma escalonada reducida mediante operaciones elementales. Cuando aplicamos el algoritmo a matrices en $M_n(F)$, siempre llegamos a una matriz triangular, en donde sabemos fácilmente calcular el determinante: es simplemente el producto de las entradas en la diagonal. Nota cómo lo anterior también se cumple para las matrices diagonales, pues son un caso particular de matrices triangulares.

Por esta razón, es fundamental para el cálculo de determinantes saber qué le hacen las operaciones elementales al determinante de una matriz.

Teorema. Las operaciones elementales tienen el siguiente efecto en el determinante de una matriz $A$:

  1. Si todos los elementos de un renglón o columna de $A$ se multiplican por $\lambda$, entonces el determinante se multiplica por $\lambda$.
  2. Cuando se intercambian dos renglones o columnas de $A$, el determinante se multiplica por $-1$.
  3. Si a un renglón de $A$ se le suma un múltiplo escalar de otro renglón, entonces el determinante no cambia. Sucede algo análogo para columnas.

Demostración. El punto $1$ ya lo demostramos en la entrada anterior, en donde vimos que el determinante es homogéneo.

Para los puntos $2$ y $3$, usemos que si $e_1,\ldots e_n$ es la base canónica de $F^n$, el determinante de una matriz con renglones $R_1,\ldots,R_n$ es $$\det_{(e_1,\ldots,e_n)}(R_1,\ldots,R_n).$$

Intercambiar los renglones $i$ y $j$ es hacer $\det_{(e_1,\ldots,e_n)}(R_{\sigma(1)},\ldots,R_{\sigma(n)})$ para la transposición $\sigma$ que intercambia $i$ y $j$. Como el determinante es antisimétrico y $\sigma$ tiene signo $-1$, obtenemos la conclusión.

Hagamos ahora el tercer punto. Tomemos $i\neq j$ y un escalar $\lambda$. Si al $i$-ésimo renglón de $A$ le sumamos $\lambda$ veces el $j$-ésimo renglón de $A$, esto es lo mismo que multiplicar a $A$ por la izquierda por la matriz $B$ que tiene unos en la diagonal y $\lambda$ en la entrada $(i,j)$. La matriz $B$ es triangular, de modo que su determinante es el producto de las entradas, que es $1$. De esta forma, $$\det(BA)=\det(B)\det(A)=\det(A).$$

$\square$

Así, una estrategia para calcular el determinante de una matriz es hacer reducción gaussiana hasta llegar a una matriz diagonal (incluso es suficiente que sea triangular superior) de determinante $\Delta$. Si en el camino se hicieron $r$ intercambios de renglones y se multiplicaron los renglones por escalares $\lambda_1,\ldots,\lambda_s$, entonces el determinante de $A$ será $$\frac{(-1)^r \Delta}{\lambda_1\cdot\ldots\cdot \lambda_s}.$$

Otras propiedades para calcular determinantes

Aquí recolectamos otras propiedades de determinantes que pueden ayudar a calcularlos. Ya mostramos todas ellas, salvo la número $2$. Esta la mostramos después de la lista.

  1. Si se descompone una columna de una matriz como suma de dos columnas, entonces el determinantes es la suma de los determinantes en los que ponemos cada columna en vez de la original.
  2. Si $A$ es una matriz en $M_n(\mathbb{C})$, entonces el determinante de la matriz conjugada $\overline{A}$ es el conjugado del determinante de $A$.
  3. El determinante es multiplicativo.
  4. Si $A$ es una matriz en $M_n(F)$, el determinante de $\lambda A$ es $\lambda^n$ veces el determinante de $A$.
  5. El determinante de una matriz triangular es el producto de sus entradas en la diagonal.
  6. El determinante de una matriz invertible es el inverso multiplicativo del determinante de la matriz.
  7. Una matriz tiene el mismo determinante que su transpuesta.

Proposición. Si $A$ es una matriz en $M_n(\mathbb{C})$, entonces el determinante de la matriz conjugada $\overline{A}$ es el conjugado del determinante de $A$.

Demostración. La conjugación compleja abre sumas y productos. Aplicando esto repetidas veces obtenemos la siguiente cadena de igualdades:

\begin{align*}
\overline{\det(A)}&=\overline{\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}}\\
&=\sum_{\sigma \in S_n} \overline{\text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}}\\
&=\sum_{\sigma \in S_n} \text{sign}(\sigma)\overline{a_{1\sigma(1)}}\cdot\ldots\cdot \overline{a_{n\sigma(n)}}\\
&=\det(\overline{A}).
\end{align*}

$\square$

Hay una última técnica que es fundamental para el cálculo de determinantes: la expansión de Laplace. En algunos textos incluso se usa para definir el determinante. Probablemente la conoces: es la que consiste en hacer el determinante «con respecto a una fila o columna» y proceder de manera recursiva. Hablaremos de ella más adelante y veremos por qué funciona.

Dos problemas de cálculo de determinantes

Problema. Considera la matriz $$A=\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ -1 & -3 & 0 & 1\end{pmatrix}.$$ Calcula los siguientes determinantes:

  • $\det A$
  • $\det(^t A)$
  • $\det(A^{-1})$
  • $\det(^t A A)$
  • $\det(-2A)$

Solución. Hagamos primero el determinante de la matriz $A$. Para ello, haremos operaciones elementales como sigue
\begin{align*}
&\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ -1 & -3 & 0 & 1\end{pmatrix}\\
\to&\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & -\frac{14}{5} & \frac{2}{5} & 1\end{pmatrix}\\
\to &\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & 0 & -\frac{12}{5} & \frac{33}{5}\end{pmatrix}\\
\to& \begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & 0 & 0 & \frac{189}{25}\end{pmatrix}.
\end{align*}

En el primer paso sumamos $1/5$ veces el primer renglón al último. Luego, sumamos $14/5$ veces el segundo renglón al último. Finalmente, sumamos $12/25$ veces el tercer renglón al último. De esta forma, nunca cambiamos el determinante de la matriz. Así, del determinante de $A$ es el mismo que el de la matriz final, que por ser triangular superior es el producto de las entradas en su diagonal. De este modo, $$\det(A) = 5\cdot 1 \cdot 5 \cdot \frac{189}{5} = 189.$$

El determinante de una matriz es igual al de su transpuesta, así que $\det(^t A)=\det(A)$. El determinante $\det(A^{-1})$ es el inverso multiplicativo de $\det(A)$, así que es $\frac{1}{189}$.

Como el determinante es multiplicativo, $$\det({^tA}A)=\det({^tA})\det(A)=189\cdot 189=35721.$$

Finalmente, usando que el determinante es homogéneo y que estamos en $M_4(\mathbb{R})$, tenemos que
\begin{align*}
\det(-2A)&=(-2)^4\det(A)\\
&=16\cdot 189\\
&=3024.
\end{align*}

$\square$

Problema. Sean $a,b,c$ números complejos. Calculando el determinante de la matriz $$A=\begin{pmatrix}a&b&c\\ c&a&b\\ b&c&a\end{pmatrix}$$ en $M_3(\mathbb{C})$ de dos formas distintas, muestra que $$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$

Solución. Usando la técnica para determinantes de $3\cdot 3$ tenemos que por un lado,
\begin{align*}
\det(A) &= a^3 + b^3 + c^3 – abc – bca – cab\\
&=a^3+b^3+c^3-3abc.
\end{align*}

Por otro lado, el determinante no cambia si al primer renglón le sumamos los otros dos, así que el determinante de $A$ también es $$\begin{vmatrix}a+b+c&a+b+c&a+b+c\\ c&a&b\\ b&c&a\end{vmatrix}.$$ Como el determinante es homogéneo, podemos factorizar $a+b+c$ de la primera entrada para obtener que $$\det(A)=(a+b+c)\begin{vmatrix}1&1&1\\ c&a&b\\ b&c&a\end{vmatrix}.$$

Aplicando de nuevo la fórmula de determinantes de $3\times 3$, tenemos que $$\begin{vmatrix}1&1&1\\ c&a&b\\ b&c&a\end{vmatrix} = a^2+b^2+c^2-ab-bc-ca.$$

Concluimos entonces que $$\det(A)=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Igualando ambas expresiones para $\det(A)$ obtenemos la identidad deseada.

$\square$

Tarea moral

  • Sea $\alpha$ un número real. Encuentra el determinante de la matriz $$\begin{pmatrix}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{pmatrix}.$$
  • Determina para qué valores de $a$ la matriz $$\begin{pmatrix} a & 0 & a & 0 & a \\0 & a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 \\ 0 & a & 0 & a & 0 \\ a & 0 & a & 0 & a \end{pmatrix}$$ es invertible.
  • Encuentra el determinante de la matriz $$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 & 2 \end{pmatrix}.$$
  • Sea $x$ un número complejo. Muestra que el determinante de la matriz $$\begin{pmatrix}3x^2-6x+5&2x^2-4x+2&x^2-2x\\ 2x^2-4x+2&2x^2+2x+1&x^2-x\\ x^2-2x&x^2-x&x^2\end{pmatrix}$$ es $x^6$. Sugerencia. Hay una solución simple, factorizando a la matriz como el producto de dos matrices triangulares, una superior y una inferior, una transpuesta de la otra.
  • Muestra que si $A=\begin{pmatrix}0& 1 \\ 1 & 1\end{pmatrix}$, entonces $$A^n=\begin{pmatrix} F_{n-1} & F_n\\ F_n & F_{n+1}\end{pmatrix},$$ donde $\{F_n\}$ es la sucesión de Fibonacci. Muestra que para los números de Fibonacci se satisface que $$F_{2n}=F_n(F_{n+1}+F_{n-1}).$$

Más adelante…

En esta entrada vimos varias formas para calcular el determinante de una matriz. Cuando nos enfrentemos con un problema que requiere el cálculo de un determinante, tenemos que elegir la que más nos convenga (o la que requiera menos pasos). La mejor forma de desarrollar un poco de «intuición» al momento de elegir el mejor método para calcular determinantes es haciendo ejercicios.

A continuación pondremos en práctica lo que aprendimos en esta entrada haciendo varios ejercicios de cálculo de determinantes.

Entradas relacionadas

Álgebra Superior II: Problemas de norma y la ecuación general de segundo grado

Introducción

Estudiamos ya la norma de un número complejo, así como la ecuación general de segundo grado en $\mathbb{C}$ y un método para obtener raíces complejas. Abordaremos ahora varios ejemplos y ejercicios del libro de Álgebra Superior de Bravo, Rincón, Rincón, así como un ejercicio de norma.

Ejemplo de ecuaciones cuadráticas

Comenzaremos viendo con detalle el ejemplo 134 del libro. Antes de eso, hacemos un pequeño recordatorio de cómo se resuelven ecuaciones cuadráticas en los complejos. El ejemplo 134 dice lo siguiente.

Ejercicio. Encontrar las raíces de $z^2-2iz-9-6i=0$.

Ejemplo de resolución de ecuación cuadrática compleja (parte 1)
Ejemplo de resolución de ecuación cuadrática compleja (parte 2).

Problemas de raíces cuadradas y ecuaciones cuadráticas

A continuación, un par de incisos del ejercicio 326. Los incisos de este ejercicio consisten en encontrar raíces (cuadradas) complejas:

Ejercicio. Encuentra las raíces cuadradas de $1+\sqrt{3}i$ y las de $-1$.

Cómo encontrar raíces cuadradas complejas

Posteriormente, un ejercicio de resolución de una ecuación cuadrática compleja.

Ejercicio. Resuelve la ecuación cuadrática $z^2-3z+3-i=0$.

Resolución de una ecuación cuadrática compleja

Problema de norma compleja

Finalmente, resolvemos el siguiente problema de norma compleja.

Problema. Encuentra todos los complejos de la forma $z=2a+(1-3a)i$ en donde $a$ es un real y $z$ tiene norma $1$.

Ejercicio de norma compleja

Álgebra Superior II: Norma y distancia en los complejos

Introducción a norma en los complejos

Ya definimos a $\mathbb{C}$ y sus operaciones. También definimos y dimos las propiedades de la conjugación compleja. Ahora hablaremos de la norma en los números complejos.

Definición. Dado el número complejo $w=a+bi$, su norma es $\sqrt{a^2+b^2}$. Denotamos a la norma de $w$ por $\Vert w \Vert$.

Ejemplo. La norma del complejo $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ es $$\sqrt{\left(\frac{1}{\sqrt 2}\right)^2+ \left(\frac{1}{\sqrt 2}\right)^2}=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)}=\sqrt{1}=1.$$ La norma del complejo $-3i$ es $$\sqrt{0^2+(-3)^2}=\sqrt{9}=3.$$

$\square$

Cuando pensamos a los números complejos como elementos del plano, identificando al complejo $a+bi$ con el punto $(a,b)$, la norma es una forma de medir qué tan alejado está del origen.

A partir de la noción de norma podemos definir la noción de distancia, que dice qué tan lejos están dos complejos entre sí.

Definición. Para dos números complejos $w$ y $z$ definimos la distancia entre $w$ y $z$ como la norma de $w-z$, es decir, $\Vert w-z\Vert$. La denotamos por $d(w, z)$

Propiedades básicas de la norma en los complejos

La norma en los complejos está relacionada con otras operaciones definidas como sigue:

Teorema 1. Sean $w$ y $z$ números complejos. Entonces:

  1. La norma es la raíz del producto de un complejo por su conjugado, es decir, $\Vert z \Vert = \sqrt{z\overline{z}}.$
  2. $\Vert z \Vert$ es un número real no negativo.
  3. $\Vert z \Vert = 0$ si y sólo si $z=0$.
  4. La norma es multiplicativa, es decir, $\Vert zw \Vert = \Vert z \Vert \Vert w \Vert$.

Demostración. Si $z=a+ib$, entonces $\overline{z}=a-ib$, y por lo tanto

\begin{align*}
\sqrt{z\overline{z}}&=\sqrt{a^2-(ib)^2}\\
&=\sqrt{a^2+b^2}\\
&=\Vert z \Vert.
\end{align*}

La norma de $z=a+ib$ es la suma del cuadrado de dos reales. Cada uno de ellos es no negativo, así que esa suma es no negativa. De este modo, al sacar raíz cuadrada obtenemos un número real y no negativo. Para que este número sea cero, necesitamos que $a^2=b^2=0$, es decir, que $a=b=0$, lo cual sucede justo cuando $z=0$.

Para mostrar la última propiedad, se pueden tomar dos números complejos explícitos y hacer las cuentas. Sin embargo, también podemos probarla usando la primer propiedad y la conmutatividad del producto, de números complejos, como sigue:

$$\Vert zw \Vert ^2= zw\overline{zw} = z\overline{z} w\overline{w}= \Vert z \Vert^2 \Vert w \Vert ^2.$$

Sacando raíz cuadrada de ambos lados obtenemos el resultado deseado.

$\square$

Ejercicios que usan las propiedades básicas

Veamos algunas formas en las que podemos usar las propiedades anteriores, de la norma, en los complejos.

Ejercicio. Muestra que $z$ y $\overline{z}$ tienen la misma norma.

Solución. Usando que $\overline{\overline{z}}=z$, la propiedad 1 del Teorema 1 y la conmutatividad del producto en $\mathbb{C}$ tenemos que $$\Vert \overline{z}\Vert = \sqrt{\overline{z}z}=\sqrt{z\overline{z}} = \Vert z \Vert.$$

$\square$

El siguiente es un corolario de la propiedad 4 del Teorema 1, que se puede mostrar usando inducción. La prueba de este corolario se deja como tarea moral.

Corolario. Para $z$ un complejo y $n$ un natural, se tiene que $$\Vert z^n \Vert = \Vert z \Vert ^n.$$

Ejercicio. Determina la norma del complejo $$\left(3+4i\right)^{20}.$$

Solución. Tomemos $u=3+4i$. El problema nos pide determinar $\Vert u^{20} \Vert$. Una forma de hacerlo es realizar primero la operación $u^{20}$, pero esto parece ser complicado. En vez de eso, usamos el Corolario anterior. Para ello, notamos que $$\Vert u \Vert = \sqrt{3^2+4^2}= \sqrt{25}=5.$$

De este forma, por el corolario, la norma que buscamos es $$\Vert u^{20} \Vert = \Vert u \Vert ^{20}= 5^{20}.$$

$\square$

Ejercicio. Sea $z$ un número complejo. Muestra que los siguientes números complejos tienen la misma norma: $$z, -z, iz, -iz.$$

Solución. Se sigue de la propiedad $4$ del Teorema 1 y de que $$\Vert -1 \Vert = \Vert i \Vert = \Vert -i \Vert = 1.$$

$\square$

Ejercicio. Muestra que para un número real, $r$, su norma compleja coincide con su valor absoluto.

Solución. Usando la propiedad 1 del Teorema 1 y que $\overline{r}=r$, tenemos que $$\Vert r \Vert = \sqrt{\overline{r}r}=\sqrt{r^2}=|r|.$$

$\square$

La desigualdad del triángulo

¿Cómo se comporta la norma con la suma de los complejos? Lo responderemos en esta sección. Pero antes, de pasar al teorema 2 que contiene la respuesta, veamos un pequeño resultado auxiliar.

Lema. Si $z$ es un número complejo, entonces $|\text{Re}(z)| \leq \Vert z \Vert$ y $|\text{Im}(z)|\leq \Vert z \Vert$. La primer igualdad se da si y sólo si $z$ es un número real y la segunda si y sólo si $z$ es un número imaginario puro, es decir, si su parte real es $0$.

Demostración. Tomemos $z=a+ib$. Tenemos que $a^2\leq a^2+b^2$, de modo que sacando raíces cuadradas tenemos que $$|\text{Re}(z)| = |a| = \sqrt{a^2}\leq \sqrt{a^2+b^2}=\Vert z \Vert.$$ La igualdad se da si y sólo si $b=0$, lo cual sucede si y sólo si $z$ es real.

$\square$

La demostración de la segunda parte es análoga, y queda como tarea moral.

Teorema 2 (desigualdad del triángulo). Para dos números complejos $w$ y $z$ se tiene que $$\Vert w+z \Vert \leq \Vert w \Vert + \Vert z \Vert.$$ La igualdad se da si y sólo si $w$ es un múltiplo real de $z$, es decir, si y sólo si existe un real $r$ tal que $w=rz$.

Demostración. Tenemos que:
\begin{align*}
\Vert w+z \Vert^2 &= (w+z)\overline{(w+z)}\\
&=(w\overline{w}+w\overline{z}+\overline{w}z+z\overline{z})\\
&=\Vert w \Vert^2 + 2\text{Re}(w\overline{z}) + \Vert z \Vert^2.
\end{align*}

Podemos continuar usando la desigualdad del Lema anterior (notemos que se obtiene la igualdad si y sólo si $w\overline{z}$ es real)

\begin{align*}
&\leq \Vert w \Vert^2 + 2\Vert w\overline{z}\Vert + \Vert z \Vert^2\\
&=\Vert w \Vert ^2 + 2 \Vert w \Vert \Vert z \Vert + \vert z \Vert^2\\
&=\left(\Vert w \Vert + \Vert z \Vert \right)^2.
\end{align*}

Esta cadena de desigualdades se resume a $$ \Vert w+z \Vert^2 \leq \left(\Vert w \Vert + \Vert z \Vert \right)^2, $$ de donde sacando raíz cuadrada en ambos lados, obtenemos lo deseado.

Como observamos durante la demostración, la igualdad se da si y sólo si $w\overline{z}$ es un número real, es decir, si y sólo si existe un real $s$ tal que $w\overline{z}=s$. Multiplicando por $z$ de ambos lados, obtenemos que $$w\Vert z \Vert^2 = sz.$$ Si $z=0$, entonces $w=0$ y por lo tanto $w$ es trivialmente un múltiplo real de $z$. Si $z\neq 0$, entonces $w=\frac{s}{\Vert z \Vert ^2}\cdot z$ también es un múltiplo real de $z$, con $r=\frac{s}{\Vert z \Vert ^2}$. Esto termina el análisis, de los casos, de la igualdad.

$\square$

Propiedades de la distancia

En la introducción definimos la distancia entre dos números complejos $w$ y $z$ como la norma de $w-z$, en símbolos, $d(w,z)=\Vert w-z \Vert$. Para formalizar ideas veamos la siguiente definición.

Definición. Sea $X$ un conjunto y $e: X\times X\rightarrow \mathbb{R}^{+}\cup \lbrace 0\rbrace$ una función, $e$ es una métrica en $X$ si, para todo $x$, $y$ y $z\in X$, satisface que:

  1. $e(x, y)\geq 0$.
  2. $e(x, y)=0$ si, y sólo si, $x=y$.
  3. $e(x, y)=e(y, x)$.
  4. $e(x, y)\leq e(x, z) + e(y, z).$

Observa que a partir de los teoremas 1 y 2, la distancia $d$ cumple las propiedades de esta definición, por lo que decimos que $d$ es una métrica en $\mathbb{C}$. Así tenemos el siguiente teorema.

Teorema 3. Sean $w$ y $z$ dos números complejos cualesquiera y $d(w, z)=\vert\vert w- z\vert\vert$. Entonces $d$ es una métrica en $\mathbb{C}$.

Demostrar este teorema es sencillo a partir de lo que ya vimos, así que su demostración queda como tarea moral.

Tarea moral

  • Muestra la propiedad 4 del Teorema 1 usando de manera explícita las partes reales e imaginarias de los complejos $z$ y $w$.
  • Demuestra el corolario de normas de potencias de complejos.
  • Determina la norma del complejo $(12-5i)^{10}$.
  • Determina la norma del complejo $(1+2i)(-3+4i)(5-6i)(-7-8i)$.
  • Demuestra la segunda parte del Lema.
  • Demuestra el Teorema 3.
  • Sean $w=(3+4i)(5-i)$ y $z=(5-i)(4+2i)$. Determina $d(w,z)$.

Álgebra Superior II: Ejercicios de conjugados complejos

Aquí van los videos de hoy, en donde vemos ejemplos resueltos de conjugación compleja. Expliqué con un poco más de detalle el ejemplo 132 del libro de Bravo, Rincón y Rincón. Resolví el ejercicio 325 completo, así como otros 3 ejercicios de conjugados complejos del libro Álgebra Superior II de Antonio Lascurain. Más adelante les pondré en foto para los que no tengan facilidad para ver los videos de YouTube.

Ejemplos y ejercicios de conjugados complejos del Bravo, Rincón, Rincón

Primero, resolvemos el ejemplo 132 del libro:

Problema. Calcular $z$ si $iz+(2-i)\overline{z}=10+6i$.

Ejemplo 132 detallado

Inciso 1 del ejercicio 325:

Problema. Resuelve $(1+i)z+(1-i)\overline{z}=4$.

Inciso 1 del ejercicio 325

Inciso 2 del ejercicio 325:

Problema. Resuelve $z\overline{z}+3(z+\overline{z})=7$

Inciso 2 del ejercicio 325

Inciso 3 del ejercicio 325. Nota importante de este ejercicio: Alrededor del 7:09 me equivoqué en un signo, el término $6d$ de la parte imaginaria debería ser negativo. Eso puede que cambie el resultado final, pero esa es la idea de la resolución del problema.

Problema. Resuelve el sistema \begin{align*}iz+(1+i)&=3+i\\ (1+i)\overline{z}-(6+i)\overline{w}&=4\end{align*}

Ejercicios del libro de Lascurain

Los siguientes ejercicios fueron tomados del libro de Álgebra Superior II de Antonio Lascurain.

Problema. Realiza la siguiente operación de números complejos: $$\overline{\left(\frac{2-4i}{5-5i}\right)}$$.

Una división con conjugados complejos

Problema. Encuentra las parejas $u,v$ de números complejos para las cuales sucede que $u \overline{\overline{v}u}=v$.

Problema 1 de conjugación compleja

Problema. Encuentra las parejas $u,v$ de números complejos para las cuales sucede que $v+iu=-\overline{v}+i\overline{u}$.

Problema 2 de conjugación compleja

Álgebra Superior II: La conjugación compleja

Introducción

En una entrada anterior definimos el conjunto $\mathbb{C}$ de los números complejos. Vimos que sus elementos tienen la forma $a+bi$, donde $a$ y $b$ son números reales. Definimos las operaciones de suma y producto, y vimos que, con estas operaciones, $\mathbb{C}$ es un campo. En esta entrada hablaremos acerca de la conjugación compleja.

Definición. Sea $z=a+bi$ un número complejo. El conjugado de $z$ es el número complejo $a-bi$ que denotaremos como $\overline{z}$.

Ejemplo. Sea $z=5+8i$, entonces $\overline{z}=5-8i$. Si $z=\sqrt{3}-8\pi i $, entonces $\overline{z}=\sqrt{3}+8\pi i$.

En la entrada anterior justificamos que podíamos abandonar la notación de parejas, sin embargo en ocasiones seguirá siendo útil pensar al complejo $a+bi$ como el punto $(a,b)$ del plano. Si lo pensamos así, la conjugación compleja manda al punto $(a,b)$ en el punto $(a,-b)$, es decir, se comporta como una reflexión en el eje $x$.

La conjugación compleja se comporta como una reflexión en el eje x
La conjugación compleja se comporta como una reflexión en el eje $x$

Conjugación y operaciones complejas

La conjugación compleja «se comporta bien» con las operaciones definidas en $\mathbb{C}$. Este es el contenido de la siguiente proposición.

Proposición 1. Si $w$ y $z$ son números complejos, entonces:

  • El conjugado de la suma es la suma de los conjugados, es decir, $\overline{w+z}=\overline{w}+\overline{z}$.
  • El conjugado del producto es el producto de los conjugados, es decir, $\overline{wz}=\overline{w}\overline{z}$.

Demostración. Si escribimos a $w=a+bi$ y $z=c+di$ con $a,b,c,d$ números reales. Tenemos que
\begin{align*}
\overline{w+z}&=\overline{(a+c)+(b+d)i}\\
&=(a+c)-(b+d)i\\
&=(a-bi)+(c-di)\\
&=\overline{w}+\overline{z},
\end{align*} lo cual prueba la primera parte de la proposición. Por otro lado
\begin{align*}
\overline{wz}&=\overline{(ac-bd)+(ad+bc)i}\\
&=(ac-bd)-(ad+bc)i\\
&=(ac-(-b)(-d))+(a(-d)+b(-c))i\\
&=(a-bi)(c-di)\\
&=\overline{w}\overline{z},
\end{align*} lo cual prueba la segunda parte.

$\square$

Se pueden mostrar resultados análogos para la conjugación compleja de la resta y cociente. Esto se deja en la tarea moral.

Ejemplo. Considera los números complejos $5+4i$, $3+2i$ y $1-i$. Vamos a determinar el conjugado de su suma de dos formas distintas. Por un lado, si los sumamos obtenemos el complejo $$(5+3+1)+(4+2-1)i=9+5i,$$ cuyo conjugado es $9-5i$.

Por otro lado, podemos conjugar a cada uno de los números de manera independiente para obtener $5-4i$, $3-2i$ y $1+i$. Al hacer la suma de estos complejos, obtenemos $$(5+3+1)+(-4-2+1)i=9-5i.$$ En ambos casos obtenemos lo mismo.

$\square$

La conjugación compleja es autoinversa

Proposición 2. La operación «conjugar» es autoinversa, y por lo tanto es biyectiva.

Demostración. En efecto, si $z=a+bi$, entonces $$\overline{\overline{z}}=\overline{a-bi}=a+bi=z.$$

Para ver que conjugar es suprayectivo, tomemos $z$ en $\mathbb{C}$. Tenemos que $\overline{\overline{z}}=z$, de modo que $z$ está en la imagen de la operación conjugación.

Para ver que conjugar es inyectivo, tomemos $w$ y $z$ en $\mathbb{C}$ tales que $\overline{w}=\overline{z}$. Aplicando conjugación a esta igualdad, y usando la primer parte de la proposición, tenemos que $w=z$.

$\square$

Operaciones de un complejo con su conjugado

Sea $z=a+bi$ un número complejo, a $a$ le llamamos la parte real de $z$ y a $b$ le llamamos la parte imaginaria. Usamos la notación $a=\text{Re}(z)$ y $b=\text{Im}(z)$, respectivamente. Cuidado: la parte imaginaria es un número real. Se llama parte imaginaria porque es la que acompaña a $i$.

Si hacemos operaciones de un complejo con su conjugado, obtenemos valores especiales.

Proposición 3. Sea $z$ un número complejo. Entonces:

  • $z+\overline{z}=2\text{Re}(z)$
  • $z-\overline{z}=2\text{Im}(z) i$
  • $z\overline{z}=\text{Re}(z)^2+\text{Im}(z)^2$

La demostración de la Proposición 3 es sencilla y se deja como tarea moral.

Ejemplo. Si tomamos el número complejo $3+4i$ y le sumamos su conjugado $3-4i$, obtenemos el número real $6$, que es dos veces la parte real de $3+4i$.

Si hacemos la multiplicación $(3+4i)(3-4i)$, obtenemos también un número real: $$3^2-(4i)^2=9-(-16)=25.$$

$\square$

Como corolario de la Proposición 3, obtenemos lo siguiente.

Corolario. Si $z=\overline{z}$, entonces $z$ es un número real.

Demostración. Por la primera parte de la Proposición 3, tenemos que $2z=z+\overline{z}=2\text{Re}(z)$, de modo que $z=\text{Re}(z)$ y por lo tanto $z$ es un número real.

$\square$

Ejercicio. Muestra que el complejo $$\left(\frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2} i \right) \left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2} i \right)$$ es un número real.

Solución. Podríamos hacer las cuentas y verificar que la parte imaginaria es $0$. Sin embargo, basta con notar que la expresión es el producto de un complejo con su conjugado, es decir, es de la forma $z\overline{z}$. De manera directa, por la última parte de la Proposición 3 obtenemos que es un número real.

$\square$

La conjugación compleja es (casi) el único automorfismo que fija a los reales

En las secciones anteriores vimos que la conjugación compleja deja fijos a los reales y que respeta las operaciones. En esta sección veremos que es la única operación, en $\mathbb{C}$, que hace esto sin ser la identidad.

Teorema. Si $\eta:\mathbb{C}\to \mathbb{C}$ es una función biyectiva. tal que:

  • $\eta$ no es la identidad.
  • $\eta(a)=a$ para todo $a$ real.
  • $\eta(w+z)=\eta(w)+\eta(z)$ para todo par de complejos $w$ y $z$.
  • $\eta(wz)=\eta(w)\eta(z)$ para todo par de complejos $w$ y $z$.

Entonces $\eta$ es la conjugación compleja.

Demostración. Sea $z=a+bi$, tenemos que

\begin{align*}
\eta(a+bi)&=\eta(a)+\eta(bi)\\
&=\eta(a)+\eta(b)\eta(i)\\
&=a+b\eta(i),
\end{align*}

así que basta determinar quién es $\eta(i)$. Por otro lado, como $-1$ es real, tenemos también que
\begin{align*}
-1&=\eta(-1)\\
&=\eta(i\cdot i)\\
&=\eta(i)\eta(i)\\
&=\eta(i)^2,
\end{align*}

de modo que $\eta(i)$ es una raíz de $-1$ y por lo tanto es $i$ o $-i$. Si $\eta(i)=i$, tendríamos que $\eta$ es la identidad, lo cual contradice nuestras hipótesis. Así, $\eta(i)=-i$ y por lo tanto $\eta$ es la conjugación compleja.

$\square$

Tarea moral

  • Considera los números complejos $w_j=5+(2-j)i$, en donde $j$ es un entero en $\lbrace 0,1,2,3,4\rbrace$. Encuentra el valor de la suma $w_0+w_1+w_2+w_3+w_4$ y del producto $w_0w_1w_2w_3w_4$.
  • Toma los números complejos $w$ y $z$. Muestra que $\overline{w-z}=\overline{w}-\overline{z}$ y que si $z\neq 0$, entonces $\overline{w/z}=\overline{w}/ \overline{z}$.
  • Haz la demostración de la Proposición 3
  • ¿Cuáles números complejos satisfacen que $z^2=\overline{z}$?
  • Sea $z$ un número complejo distinto de $0$. ¿Qué obtienes cuando realizas la división $z/\overline{z}$?

En el blog hay una entrada acerca de aplicaciones de la aritmética de números complejos a la resolución de problemas en matemáticas. No formará parte de la evaluación del curso, pero puede ayudarte a entender más profundamente lo que estamos haciendo y a motivar la teoría que desarrollamos.