Álgebra Lineal I: Problemas de definición y propiedades de determinantes

Introducción

En esta entrada haremos una serie de problemas que nos ayudarán como repaso de los temas vistos durante las últimas dos semanas. Mostraremos algunas propiedades bastante interesantes acerca de las transformaciones alternantes y antisimétricas, así como de la transformación estrella de esta semana: el determinante.

Problemas de transformaciones antisimétricas

En la entrada del miércoles 6 de mayo, hablábamos sobre la equivalencia entre transformaciones alternantes y antisimétricas, justo resaltamos que ésto no es cierto si el campo F es \mathbb{Z}_2, y el siguiente ejemplo lo expone:

Ejemplo. Sea f:\mathbb{Z}_2 \times \mathbb{Z}_2 \rightarrow \mathbb{Z}_2 definido como f(x,y)=xy. Claramente f es bilineal, pero no es alternate ya que f(1,1)=1\neq 0. Por otro lado, f es antisimétrica, porque f(x,y)+f(y,x)=xy+yx=2xy=0.

\square

De manera natural surge la pregunta: ¿cómo podemos construir una transformación d-lineal antisimétrica o alternante? El siguiente problema muestra un camino para obtener una transformación antisimétrica dada un mapeo d-lineal f.

Problema. Sea f:V^d \rightarrow W una transformación d-lineal. Demuestra que

A(f):=\sum_{\sigma \in S_d} \text{sign}(\sigma) \sigma (f)

es un mapeo d-lineal antisimétrico.

Solución. Es fácil ver que A(f) es una transformación d-lineal, dado que A(f) es una combinación lineal de mapeos d-lineales. Queremos probar que, para \tau \in S_d, \tau (A(f))=\text{sign}(\tau) A(f). Notemos que

    \begin{align*} \tau(A(f)) &= \sum_{\sigma \in S_d} \text{sign}(\sigma) \tau(\sigma(f)) \\&= \sum_{\sigma \in S_d} \text{sign}(\sigma) (\tau\sigma)(f). \end{align*}

Usando el hecho que \text{sign}(\tau)\text{sign}(\sigma)=\text{sign}(\tau\sigma) y que \{ \tau \sigma : \sigma \in S_d \}=S_d, obtenemos que

    \begin{align*} \text{sign}(\tau)\tau(A(f)) &= \sum_{\sigma \in S_d} \text{sign}(\tau\sigma) (\tau\sigma)(f) \\&= \sum_{\eta \in S_d} \text{sign}(\eta) (\eta)(f) =A(f). \end{align*}

Por lo tanto, \tau(A(f))=\text{sign}(\tau)A(f).

\square

Problemas de determinantes

Ahora continuando con la discusiones del determinante, sabemos que éste es una forma n-lineal alternante, y además que cualquier otra forma n-lineal alternante varía de \det(b_1,\ldots,b_n) únicamente por un factor multiplicativo. Otro resultado interesante ese teorema es el siguiente:

Problema. Sea V un espacio vectorial sobre F de dimensión finita. Sea e_1,\ldots,e_n una base de V y sea T:V\rightarrow V una transformación lineal. Demuestra que para todo v_1,\ldots,v_n\in V tenemos que

\sum_{i=1}^n \det(v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots, v_n) =\text{Tr}(T)\cdot \det(v_1,\ldots,v_n),

donde todos los determinantes están calculados en la base canónica y \text{Tr}(T) es la traza de la matriz de T (con respecto a la base canónica).

Solución. Definimos el mapeo \phi:V^n\rightarrow F como

\phi(v_1,\ldots,v_n)=\sum_{i=1}^n \det(v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots,v_n).

Esta transformación es la suma de transformaciones n-lineales, por lo tanto \phi es n-lineal. Más aún, es alternante, ya que si asumimos, por ejemplo, que v_1=v_2, entonces

    \begin{align*} \phi(v_1,v_1,v_3,\ldots,v_n) &=\det(T(v_1),v_1,v_3,\ldots,v_n)+ \det(v_1,T(v_1),v_3,\ldots,v_n) \\&+ \sum_{i=3}^n \det(v_1,v_1,\ldots,v_{i-1},T(v_i),v_{i+1},\ldots,v_n) \\&= \det(T(v_1),v_1,v_3,\ldots,v_n)+ \det(v_1,T(v_1),v_3,\ldots,v_n) \\&= \det(T(v_1),v_1,v_3,\ldots,v_n)- \det(T(v_1),v_1,v_3,\ldots,v_n) \\&=0, \end{align*}

debido a que el determinante es antisimétrico.

Por el último teorema visto en la clase del viernes pasado, existe escalar \alpha tal que

\phi(v_1,\ldots,v_n)=\alpha \det(v_1,\ldots,v_n)

para todo v_1,\ldots,v_n. Sea A=[a_{ij}] la matriz de T con respecto a la base canónica. Si tomamos v_1=e_1,\ldots,v_n=e_n, por el mismo teorema tenemos que

    \begin{align*} \alpha &= \phi(e_1,\ldots,e_n) \\&=\sum_{i=1}^n \det(e_1,\ldots,e_{i-1},\sum_{j=1}^n a_{ji}e_j, e_{i+1},\ldots,e_n)\\&=\sum_{i=1}^n \sum_{j=1}^n a_{ji}\det(e_1,\ldots,e_{i-1},e_j,e_{i+1},\ldots,e_n) \\&= \sum_{i=1}^n a_{ii} = \text{Tr}(T). \end{align*}

Por lo tanto, obtenemos lo que queremos.

\square

Por último, los siguientes dos problemas nos ilustran como podemos obtener información de las matrices de manera fácil y “bonita”, usando algunas propiedades de los determinantes vistas en la sesión del martes pasado.

Problema. Sea n un número impar y sean A,B\in M_n(\mathbb{R}) matrices tal que A^2+B^2=0_n. Prueba que la matriz AB-BA no es invertible.

Solución. Notemos que

(A+iB)(A-iB)=A^2+B^2+i(BA-AB)=i(BA-AB).

Por la propiedad del determinante de un producto, tenemos que

\det(A+iB)\det(A-iB)=i^n \det(BA-AB).

Suponemos que AB-BA es invertible, entonces \det(BA-AB)\neq 0. Además sabemos que

\det(A-iB)=\det(\overline{A+iB})=\overline{\det(A+iB)},

esto implica que |\det(A+iB)|^2=i^n\det(BA-AB). Como consecuencia, i^n es un número real, contradiciendo al hecho que n es impar. Por lo tanto \det(BA-AB)=0.

\square

Problema. Para 1\leq i,j\leq n, definimos a_{ij} como el número de divisores positivos en común de i y j y definimos b_{ij} igual a 1 si j divide i e igual a 0 si no.

  1. Probar que A=B\cdot ^t B, donde A=[a_{ij}] y B=[b_{ij}].
  2. ¿Qué podemos decir de la forma de B?
  3. Calcula \det(A).

Solución. 1) Fijando i,j tenemos que

\det(B\cdot ^t B)_{ij}=\sum{k=1}^n b_{ik}b_{jk}.

Notemos que b_{ik}b_{jk} no es cero (b_{ij},b_{jk}=1) si y sólo si k divide a i y a j, esto implica que la cantidad de términos de la suma no ceros corresponde exactamente con la cantidad de los divisores en común que tengan i y j. Por lo tanto \det(B\cdot ^tB)_{ij}=a_{ij}.

2) Si i<j, no es posible que j divida a i. Entonces b_{ij}=0 para todo i<j, esto significa que B es, al menos, triangular inferior. Un dato más que podemos asegurar es que b_{ii}=1 para toda i, por lo tanto, al menos, todos los términos de la diagonal de B son iguales a 1.

3) Dada la propiedad multiplicativa del determinante, dado que \det(B)=\det(^tB) y usando el inciso (1), tenemos que \det(A)=\det(B\cdot ^tB)=(\det B)^2. Pero por el inciso (2), \det B=1, concluimos que \det A=1.

\square

3 comentarios en “Álgebra Lineal I: Problemas de definición y propiedades de determinantes

  1. Lorena

    Hola Leo.

    En el problema de A^2 + B^2 = 0_n, podrías profundizar más en el último párrafo, es decir, en la parte de “Como consecuencia, i^n es un número real, contradiciendo al hecho que n es impar. Por lo tanto det(BA-AB)=0 ”

    No comprendo por qué se menciona lo de “contradiciendo al hecho de que n es impar”

    Responder
    1. LeoLeo

      Hola Lorena. Lo que sucede es que las potencias del número imaginario i alternan entre ser reales e imaginarias:
      i=i
      i^2=-1
      ^3=-i
      i^4=1
      i^5=i
      i^6=-1
      etcétera.

      Si la potencia es par, entonces queda un número real (1 ó -1). Si la potencia es impar, entonces queda un número imaginario (i ó -i). Si quieres puedes pensarlo al revés: como n es impar, entonces a la derecha en la última igualdad tenemos un imaginario, pero a la izquierda hay un real. Esto es una contradicción.

      Responder
  2. Antonio Mayorquin

    En el último problema solución del 1 hay un error de subindices, donde la derecha de la ecuación de igualdad debe leer $\sum\limits_{k=1}^n$. Todo lo demás esta bien.

    Responder

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.