Archivo de la etiqueta: invertible

Inversas de matrices de 2×2 con reducción gaussiana

Introducción

Es posible que sepas que una matriz $$A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$$de $2\times 2$ es invertible si y sólo si $ad-bc=0$, y que en ese caso la inversa está dada por $$B=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$ De hecho, una vez que se propone a $B$ como esta matriz, es sencillo hacer la multiplicación de matrices y verificar que en efecto tanto $AB$ como $BA$ son la matriz identidad de $2\times 2$.

Sin embargo, la idea de esta entrada es deducir que $ad-bc$ tiene que ser distinto de $0$ para que $A$ sea invertible y que, en ese caso, la inversa tiene que ser de la forma que dijimos. En esta deducción no usaremos nunca la definición ni propiedades de determinantes.

El procedimiento

Lo que haremos es aplicar el procedimiento de reducción gaussiana para encontrar inversas, es decir, le haremos reducción gaussiana a la matriz $A’=\begin{pmatrix}
a & b & 1 & 0\\
c & d & 0 & 1
\end{pmatrix}$ obtenida de «pegar» a la matriz $A$ una matriz identidad a su derecha. Es un resultado conocido que si $A$ es invertible, entonces al terminar la reducción gaussiana de $A’$ la matriz de $2\times 2$ que queda a la izquierda será la identidad y la que quede a la derecha será la inversa de $A$.

Empecemos con una matriz $A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ de $2\times 2$ cualquiera. Si ambos $a$ y $c$ son iguales a $0$, entonces la primer columna de $BA$ es $0$ para toda $B$, y por lo tanto $A$ no puede tener inversa. Así, una primera condición para que $A$ tenga inversa es que $a$ o $c$ sean distintos de cero. Si $a$ fuera $0$, el primer paso de reducción gaussiana sería intercambiar las filas, así que podemos suponer sin pérdida de generalidad que $a$ no es $0$. De este modo, el primer paso de reducción gaussiana es multiplicar la primer fila por $1/a$ para que el pivote sea $1$: $$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
c & d & 0 & 1
\end{pmatrix}$$

El siguiente paso es hacer al resto de las entradas en la columna de ese primer pivote iguales a $0$. Para eso basta restar a la segunda fila $c$ veces la primera:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & d – \frac{bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}=\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & \frac{ad-bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}.$$

Si $ad-bc=0$, entonces el pivote de la segunda fila ya no quedaría en la segunda columna, y la forma escalonada reducida no tendría a la identidad a la izquierda. Así que una segunda condición para que $A$ sea invertible es que $ad-bc$ no sea cero. Notemos que si $ad-bc$ no es cero, entonces tampoco $a$ y $c$ son simultaneamente $0$, así que nuestra condición anterior ya está capturada con pedir que $ad-bc$ no sea cero.

Sabiendo que $ad-bc$ no es cero, el siguiente paso en la reducción gaussiana es multiplicar la segunda fila por $a/(ad-bc)$ para hacer el pivote igual a $1$:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Finalmente, para que el pivote de la segunda columna sea la única entrada no cero, tenemos que restar a la primera fila la segunda multiplicada por $-b/a$:

$$\begin{pmatrix}
1 & 0 & \frac{1}{a}+\frac{bc}{a(ad-bc)} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\begin{pmatrix}
1 & 0 & \frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Así, basta pedir $ad-bc$ para que la reducción gaussiana deje a la identidad en la matriz de $2\times 2$ de la izquierda y, al terminar el procedimiento, tenemos a la derecha a la inversa de $A$ que es la matriz:

$$\begin{pmatrix}
\frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
-\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$

Esto es a lo que queríamos llegar. Por supuesto, el camino fue largo y hay formas de llegar al mismo resultado de manera más corta, pero usando más teoría.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Álgebra Lineal I: Determinantes de matrices y transformaciones lineales

Introducción

En la entrada anterior dimos la definición de determinante para ciertos vectores con respecto a una base. En esta entrada continuamos con la construcción de determinantes. Primero, basados en la teoría que desarrollamos anteriormente, definiremos determinantes de transformaciones lineales. Luego, mediante la cercanía entre transformaciones lineales y matrices, definimos determinantes de matrices.

Determinantes de transformaciones lineales

Ahora definiremos el determinante para transformaciones lineales. Antes de esto, necesitamos hacer algunas observaciones iniciales y demostrar un resultado.

Si tomamos un espacio vectorial $V$ de dimensión finita $n\geq 1$ sobre un campo $F$, una transformación lineal $T:V\to V$ y una forma $n$-lineal $f:V^n\to F$, se puede mostrar que la transformación $$T_f:V^n\to F$$ dada por $$T_f(x_1,\ldots,x_n)=f(T(x_1),\ldots,T(x_n))$$ también es una forma $n$-lineal. Además, se puede mostrar que si $f$ es alternante, entonces $T_f$ también lo es. Mostrar ambas cosas es relativamente sencillo y queda como tarea moral.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n\geq 1$ sobre el campo $F$. Para cualquier transformación lineal $T:V\to V$ existe un único escalar $\det T$ en $F$ tal que $$f(T(x_1),\ldots,T(x_n))=\det T\cdot f(x_1,\ldots, x_n)$$ para cualquier forma $n$-lineal alternante $f:V^n\to F$ y cualquier elección $x_1,\ldots,x_n$ de vectores en $V$.

Demostración. Fijemos una base $B=(b_1,\ldots,b_n)$ cualquiera de $V$. Llamemos $g$ a la forma $n$-lineal alternante $\det_{(b_1,\ldots,b_n)}$. Por la discusión de arriba, la asignación $T_g:V^n\to F$ dada por $$(x_1,\ldots,x_n)\mapsto g(T(x_1),\ldots,T(x_n))$$ es una forma $n$-lineal y alternante.

Por el teorema que mostramos en la entrada de determinantes de vectores, se debe cumplir que $$T_g = T_g(b_1,\ldots,b_n) \cdot g.$$ Afirmamos que $\det T:= T_g(b_1,\ldots, b_n)$ es el escalar que estamos buscando.

En efecto, para cualquier otra forma $n$-lineal alternante $f$, tenemos por el mismo teorema que $$f=f(b_1,\ldots,b_n) \cdot g.$$ Usando la linealidad de $T$ y la igualdad anterior, se tiene que

\begin{align*}
T_f &= f(b_1,\ldots,b_n)\cdot T_g\\
&=f(b_1,\ldots,b_n) \cdot \det T \cdot g\\
&= \det T \cdot f.
\end{align*}

Con esto se prueba que $\det T$ funciona para cualquier forma lineal $f$. La unicidad sale eligiendo $(x_1,\ldots,x_n)=(b_1,\ldots,b_n)$ y $f=g$ en el enunciado del teorema, pues esto forza a que $$\det T = g(T(b_1),\ldots,T(b_n)).$$

$\square$

Ahora sí, estamos listos para definir el determinante de una transformación lineal.

Definición. El escalar $\det T$ del teorema anterior es el determinante de la transformación lineal $T$.

Para obtener el valor de $\det T$, podemos entonces simplemente fijar una base $B=(b_1,\ldots,b_n)$ y el determinante estará dado por $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n)).$$ Como el teorema también prueba unicidad, sin importar que base $B$ elijamos este número siempre será el mismo.

Ejemplo. Vamos a encontrar el determinante de la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^3$ dada por $$T(x,y,z)=(2z,2y,2x).$$ Para ello, usaremos la base canónica de $\mathbb{R}^3$. Tenemos que
\begin{align*}
T(1,0,0)&=(0,0,2)=2e_3\\
T(0,1,0)&=(0,2,0)=2e_2\\
T(0,0,1)&=(2,0,0)=2e_1.
\end{align*}

De acuerdo al teorema anterior, podemos encontrar al determinante de $T$ como $$\det T = \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1).$$

Como el determinante (para vectores) es antisimétrico, al intercambiar las entradas $1$ y $3$ su signo cambia en $-1$. Usando la $3$-linealidad en cada entrada, podemos sacar un factor $2$ de cada una. Así, tenemos:
\begin{align*}
\det T &= \det_{(e_1,e_2,e_3)}(2e_3,2e_2,2e_1)\\
&= -\det_{(e_1,e_2,e_3)}(2e_1,2e_2,2e_3)\\
&=-8\det_{(e_1,e_2,e_3)}(e_1,e_2,e_3)\\
&=-8.
\end{align*}

Concluimos entonces que el determinante de $T$ es $-8$.

$\square$

Ejemplo. Vamos ahora a encontrar el determinante de la transformación $T:\mathbb{R}_n[x]\to \mathbb{R}_n[x]$ que deriva polinomios, es decir, tal que $T(p)=p’$. Tomemos $q_0=1,q_1=x,\ldots,q_n=x^n$ la base canónica de $\mathbb{R}_n[x]$.

Notemos que, $T(1)=0$, de modo que los vectores $T(1),\ldots,T(x^n)$ son linealmente dependientes. Así, sin tener que hacer el resto de los cálculos, podemos deducir ya que $$\det_{(q_0,\ldots,q_n)}(T(q_0),\ldots,T(q_n))=0.$$ Concluimos entonces que $\det T = 0$.

$\square$

Determinantes de matrices

La expresión $$\det T = \det_{(b_1,\ldots,b_n)}(T(b_1),\ldots, T(b_n))$$ para una transformación lineal $T$ también nos permite poner al determinante en términos de las entradas de la matriz de $T$ con respecto a la base $B$. Recordemos que dicha matriz $A_T=[a_{ij}]$ tiene en la columna $i$ las coordenadas de $b_i$ en la base $B$. En otras palabras, para cada $i$ se cumple que $$T(b_i)=\sum_{j=1}^n a_{ji}b_i.$$

Usando esta notación, obtenemos que $$\det T = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)},$$ de manera que podemos expresar a $\det T$ en términos únicamente de su matriz en la base $B$.

Esto nos motiva a definir el determinante de una matriz en general.

Definición. Para una matriz $A$ en $M_n(F)$ de entradas $A=[a_{ij}]$, el determinante de $A$ es $$\det A = \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$ A $\det A$ también lo escribimos a veces en notación de «matriz con barras verticales» como sigue:

\begin{align*}
\det A = \begin{vmatrix}
a_{11} & a_{12} & \ldots & a_{1n}\\
a_{21} & a_{22} & \ldots & a_{2n}\\
\vdots & & \ddots & \vdots\\
a_{n1} & a_{n2} & \ldots & a_{nn}.
\end{vmatrix}
\end{align*}

Ejemplo. Si queremos calcular el determinante de una matriz en $M_2(F)$, digamos $$A=\begin{pmatrix} a & b \\ c & d \end{pmatrix},$$ debemos considerar dos permutaciones: la identidad y la transposición $(1,2)$.

La identidad tiene signo $1$ y le corresponde el sumando $ad$. La transposición tiene signo $-1$ y le corresponde el sumando $bc$. Así, $$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad-bc.$$

$\square$

Retomando la discusión antes de la definición, tenemos entonces que $\det T = \det A_T$, en donde a la izquierda hablamos de un determinante de transformaciones lineales y a la derecha de uno de matrices. La matriz de $T$ depende de la base elegida, pero como vimos, el determinante de $T$ no. Esta es una conclusión muy importante, y la enunciamos como teorema en términos de matrices.

Teorema. Sean $A$ y $P$ matrices en $M_n(F)$ con $P$ invertible. El determinante de $A$ y el de $P^{-1}AP$ son iguales.

Determinantes de matrices triangulares

Terminamos esta entrada con un problema que nos ayudará a repasar la definición y que más adelante servirá para calcular determinantes.

Problema. Muestra que el determinante de una matriz triangular superior o triangular inferior es igual al producto de las entradas de su diagonal.

Solución. En una matriz triangular superior tenemos que $a_{ij}=0$ si $i>j$. Vamos a estudiar la expresión $$\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}.$$

Si una permutación $\sigma$ no es la identidad, entonces hay un entero $i$ que no deja fijo, digamos $\sigma(i)\neq i$. Tomemos a $i$ como el mayor entero que $\sigma$ no deja fijo. Notemos que $\sigma(i)$ tampoco queda fijo por $\sigma$ pues $\sigma(\sigma(i))=\sigma(i)$ implica $\sigma(i)=i$, ya que $\sigma$ es biyectiva, y estamos suponiendo $\sigma(i)\neq i$. Por la maximalidad de $i$, concluimos que $\sigma(i)<i$.Entonces el sumando correspondiente a $\sigma$ es $0$ pues tiene como factor a la entrada $a_{i\sigma(i)}=0$.

En otras palabras, la única permutación a la que le puede corresponder un sumando no cero es la identidad, cuyo signo es $1$. De esta forma,
\begin{align*}
\det(A) &= \sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}\\
&=a_{11}\cdot \ldots \cdot a_{nn}.
\end{align*}

$\square$

Tarea moral

  • Muestra que la transformación $T_f$ definida en la entrada es $n$-lineal y alternante.
  • Usando la definición de determinante para transformaciones lineales, encuentra el determinante de la transformación lineal $T:\mathbb{R}^n \to \mathbb{R}^n$ dada por $$T(x_1,x_2,\ldots,x_n)=(x_2,x_3,\ldots,x_1).$$
  • Calcula por definición el determinante de las matrices $$\begin{pmatrix} 3 & 2 \\ 4 & 1\end{pmatrix}$$ y $$\begin{pmatrix} 1 & 2 & 4 \\ 1 & 3 & 9 \\ 1 & 4 & 16 \end{pmatrix}.$$
  • Calcula por definición el determinante de la matriz $$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 4 \\ 4 & 9 & 16\end{pmatrix}$$ y compáralo con el de la matriz de $3\times 3$ del inciso anterior. ¿Qué notas?
  • Completa el argumento para mostrar que el determinante de una matriz triangular inferior es el producto de las entradas en su diagonal.

Más adelante…

En esta entrada planteamos cómo se define el concepto de matriz para transformaciones lineales y cómo esta definición se extiende naturalmente a la definición del determinante de una matriz, recordando que a cada transformación lineal se le puede asociar una matriz y viceversa.

En las siguientes entradas vamos a ver qué propiedades que cumplen los determinantes y aprenderemos diferentes técnicas para calcularlos. A lo largo de la unidad, desarrollaremos bastante práctica en el cálculo y la manipulación de los determinantes, ya sea el determinante de un conjunto de vectores, de una trasnformacón lineal o de una matriz.

Entradas relacionadas

Álgebra Lineal I: Cambio de base de transformaciones lineales

Introducción

En la entrada anterior definimos las matrices de cambio de base. Vimos algunas de sus propiedades básicas y mostramos cómo nos pueden ayudar para resolver el primero de los siguientes dos problemas.

  • Supongamos que tenemos dos bases $B_1$ y $B_2$ de un espacio vectorial $V$ y que tomamos un vector $v$ en $V$. Si ya sabemos la combinación lineal de elementos de $B_1$ que da $v$, ¿cómo podemos saber la combinación lineal de elementos de $B_2$ que da $v$? En otras palabras, ¿cómo podemos pasar a $v$ de su expresión en base $B_1$ a su expresión en base $B_2$?
  • Supongamos que tenemos una transformación lineal $T:V\to W$ entre dos espacios vectoriales $V$ y $W$, dos bases $B_1$ y $B_2$ de $V$ y dos bases $C_1$ y $C_2$ de $W$. Si ya sabemos qué le hace $T$ a los elementos de $V$ en términos de las bases $B_1$ y $C_1$, ¿cómo podemos saber qué hace $T$ en términos de las bases $B_2$ y $C_2$?

El objetivo de esta entrada es ver cómo con las matrices de cambio de base también podemos resolver el segundo problema. Después de hacer esto, hablaremos de una noción fundamental en álgebra lineal: la de matrices similares.

Matrices de cambio de base y transformaciones lineales

Las matrices de cambios de base nos ayudan a entender a las matrices de transformaciones lineales en bases diferentes.

Teorema. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita $V$ y $W$. Sean $B_1$ y $B_2$ bases de $V$, y $C_1$ y $C_2$ bases de $W$. Entonces $$\Mat_{C_2,B_2}(T) = \Mat_{C_2}(C_1)\Mat_{C_1,B_1}(T)\Mat_{B_1}(B_2).$$

Observa cómo la elección de orden en la notación está rindiendo fruto. En el lado derecho «van apareciendo las bases» en el «orden natural» $C_2$, $C_1$, $B_1$, $B_2$.

Demostración. Sean $P=\Mat_{C_1}(C_2)$ y $Q=\Mat_{B_1}(B_2)$. Por un resultado de la entrada anterior, $P$ es la matriz que representa a la transformación identidad en $W$ con respecto a las bases $C_1$ y $C_2$, es decir, $P=\Mat_{C_1,C_2}(\text{id}_W)$.

Por cómo son las matrices de composiciones de transformaciones lineales, y usando que $\text{id}_W\circ T=T$, tenemos que $$\Mat_{C_1,C_2}(\text{id}_W)\Mat_{C_2,B_2}(T)=\Mat_{C_1,B_2}(T).$$

De manera análoga, $Q$ es la matriz que representa a la transformación identidad en $V$ con respecto a las bases $B_1$ y $B_2$, de donde tenemos que $$\Mat_{C_1,B_1}(T)\Mat_{B_1,B_2}(\text{id}_V)=\Mat_{C_1,B_2}(T).$$

De esta forma, $$P\Mat_{C_2,B_2}(T) = \Mat_{C_1,B_2}(T) = \Mat_{C_1,B_1}(T) Q.$$ El resultado se obtiene multiplicando por la izquierda ambos lados de esta ecuación por $P^{-1}=\Mat_{C_2}(C_1)$.

$\square$

En la siguiente entrada se verán varios ejemplos que involucran crear matrices para transformaciones lineales, matrices de cambios de base y multiplicarlas para entender una transformación lineal en distintas bases.

Por el momento, dejamos únicamente un corolario del teorema anterior, para el caso en el que tenemos una transformación lineal de un espacio vectorial a sí mismo expresado en términos de dos bases.

Corolario. Sea $T:V\to V$ una transformación lineal de un espacio vectorial $V$ de dimensión finita a sí mismo. Sean $B$ y $B’$ bases de $V$ y $P$ la matriz de cambio de base de $B$ a $B’$. Entonces $$\Mat_{B’}(T)=P^{-1}\Mat_{B}(T)P.$$

Matrices similares

Definición. Decimos que dos matrices $A$ y $B$ en $M_{n}(F)$ son similares o conjugadas si existe una matriz invertible $P$ en $M_n(F)$ tal que $B=P^{-1}AP$.

En otras palabras, $A$ y $B$ son matrices similares si representan a una misma transformación lineal en diferentes bases.

Proposición. La relación «ser similares» es una relación de equivalencia en $M_n(F)$.

Demostración. Toda matriz es similar a sí misma usando $P=I_n$, la identidad. Si $A$ y $B$ son similares con matriz invertible $P$, entonces $B$ y $A$ son similares con matriz invertible $P^{-1}$. Si $A$ y $B$ son similares con matriz invertible $P$ y $B$ y $C$ son similares con matriz invertible $Q$, notemos que $A=P^{-1}BP=P^{-1}(Q^{-1}CQ)P=(QP)^{-1}C(QP)$, de modo que $A$ y $C$ son similares con matriz invertible $QP$.

$\square$

¿Por qué es importante saber si dos matrices son similares? Resulta que dos matrices similares comparten muchas propiedades, como su traza, su determinante, su rango, etc. Para algunas matrices es más sencillo calcular estas propiedades. Así que una buena estrategia en álgebra lineal es tomar una matriz $A$ «complicada» y de ahí encontrar una matriz similar $B$ «más simple», y usar $B$ para encontrar propiedades de $A$.

Veamos un ejemplo de esto. Mediante un sencillo argumento inductivo se puede mostrar lo siguiente.

Proposición. Si $A$ y $B$ son matrices similares con $A=P^{-1}BP$, entonces $A^n=P^{-1}B^nP$.

Si $B$ fuera una matriz diagonal, entonces es fácil encontrar $B^n$: basta con elevar cada una de las entradas de su diagonal a la $n$ (lo cual es mucho más fácil que hacer productos de matrices). Así, esto da una forma muy fácil de encontrar $A^n$: basta con encontrar $B^n$, y luego hacer dos multiplicaciones de matrices más, por $P^{-1}$ a la izquierda y por $P$ a la derecha.

Tarea moral

  • Deduce el corolario del teorema principal de esta entrada.
  • Considera $\mathbb{R}[x]_2$ de polinomios con coeficientes reales y grado a lo más dos. Sea $T: \mathbb{R}[x]_2$ la transformación tal qur $T(p)=p’$, el polinomio derivado. Encuentra la matriz que representa a la transformación en la base $\{1+x+x^2,1+2x,1\}$ y la matriz que representa a la transformación en la base $\{1,x,x^2\}$. Encuentra también la matriz de cambio de base de la primera a la segunda. Verifica que se cumple la conclusión del corolario.
  • Sean $A$ y $B$ matrices similares. Muestra que $A$ es invertible si y sólo si $B$ lo es.
  • Sean $A$ y $B$ matrices similares. Muestra que $A$ y $B$ tienen la misma traza.
  • Completa el argumento inductivo para demostrar la última proposición.
  • Considera la matriz con entradas complejas $A=\begin{pmatrix}1 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -1 \end{pmatrix}$. Encuentra $A^{105}$.

Más adelante…

En estas últimas dos entradas aprendimos a hacer «cambios de base», tanto para coordenadas, como para formas matriciales. También, introdujimos el concepto de similitud de matrices. Cuando $A$ es una matriz similar a una matriz diagonal, decimos que $A$ es diagonalizable. Que una matriz sea diagonalizable trae muchas ventajas. Como ya mencionamos, una de ellas es poder elevar la matriz a potencias de manera sencilla. Otra ventaja es que en las matrices diagonalizables es sencillo calcular rangos, determinantes y otras invariantes de álgebra lineal.

Una parte importante de lo que resta del curso consistirá en entender por qué las matrices simétricas con entradas reales son diagonalizables. El teorema principal del curso (el teorema espectral), consistirá en mostrar que toda matriz simétrica con entradas reales es diagonalizable mediante matrices ortogonales. Para poder demostrarlo, necesitaremos primero estudiar teoría geométrica de espacios vectoriales y teoría de determinantes.

Entradas relacionadas

Álgebra Lineal I: Matrices de cambio de base

Introducción

Anteriormente platicamos de cómo al elegir una base ordenada $B$ de un espacio vectorial $V$ de dimensión finita $n$, podemos expresar a cada uno de sus vectores en términos de «coordenadas», que vienen de los coeficientes de la combinación lineal de elementos de $B$ que da el vector. Así mismo, vimos cómo podemos comenzar con una transformación lineal $T:V\to W$ entre espacios vectoriales $V$ y $W$ y de ahí obtener una «matriz que la represente». Para ello, necesitamos elegir bases ordenadas $B_V$ y $B_W$ de $V$ y $W$ respectivamente. Tanto las coordenadas, como las matrices que representan a transformaciones lineales, dependen fuertemente de las bases ordenadas elegidas. En esta entrada hablaremos de las matrices de cambio de base, pues nos ayudarán a pasar de unas coordenadas a otras.

Siento más concretos, es posible que en algunas aplicaciones de álgebra lineal tengamos una transformación $T:V\to W$, y que los vectores de $V$ o los de $W$ los tengamos que entender en más de una base. Así, los dos siguientes problemas aparecen frecuentemente:

  • Supongamos que tenemos dos bases (ordenadas) $B_1$ y $B_2$ de un espacio vectorial $V$ y que tomamos un vector $v$ en $V$. Si ya sabemos la combinación lineal de elementos de $B_1$ que da $v$, ¿cómo podemos saber la combinación lineal de elementos de $B_2$ que da $v$? En otras palabras, ¿cómo podemos pasar a $v$ de su expresión en base $B_1$ a su expresión en base $B_2$?
  • Supongamos que tenemos una transformación lineal $T:V\to W$ entre dos espacios vectoriales $V$ y $W$, dos bases (ordenadas) $B_1$ y $B_2$ de $V$ y dos bases (ordenadas) $C_1$ y $C_2$ de $W$. Si ya sabemos qué le hace $T$ a los elementos de $V$ en términos de las bases $B_1$ y $C_1$, ¿cómo podemos saber qué hace $T$ en términos de las bases $B_2$ y $C_2$?

La herramienta que necesitamos para responder ambos problemas se le conoce como matrices de cambio de base. El objetivo de esta entrada es definir estas matrices, ver algunas propiedades básicas que cumplen y ver cómo nos ayudan a resolver el primero de los problemas de aquí arriba. En una segunda entrada veremos cómo también sirven para resolver el segundo.

Matrices de cambio de base

Definición. Sea $V$ un espacio vectorial de dimensión $n$ sobre el campo $F$. Sean $B=(v_1,\ldots,v_n)$ y $B’=(v_1′, \ldots, v_n’)$ dos bases ordenadas de $V$. La matriz de cambio de base de $B$ a $B’$ es la matriz $P=[p_{ij}]$ en $M_{n}(F)$ cuya columna $j$ tiene como entradas a las coordenadas de $v_j’$ escrito en términos de la base $B$. En otras palabras, las entradas $p_{1j},\ldots,p_{nj}$ de la $j$-ésima columna de $P$ son los únicos elementos de $F$ para los cuales $$v_j’=p_{1j}v_1+\ldots +p_{nj} v_n,$$ para toda $j=1,2,\ldots,n$.

Ejemplo. Considera la base ordenada $B=(1,x,x^2)$ de $\mathbb{R}_2[x]$, el espacio vectorial de polinomios de coeficientes reales grado a lo más $2$. Veremos que $B’=(3x^2,2x,1)$ es también una base de $\mathbb{R}_2[x]$. Encontraremos la matriz de cambio de base de $B$ a $B’$ y la matriz de cambio de base de $B’$ a $B$.

La dimensión de $\mathbb{R}_2[x]$ es $3$ y $B’$ tiene $3$ elementos, así que basta ver que los elementos de $B’$ son linealmente independientes para ver que $B’$ es base. Una combinación lineal $a(3x^2)+b(2x)+c(1)=0$ es equivalente a que $3ax^2+2bx+c=0$, lo cual sucede si y sólo si $a=b=c=0$. Esto muestra que $B’$ es base.

Para encontrar a la matriz de cambio de base de $B$ a $B’$ lo que tenemos que hacer es escribir a los elementos de $B’$ como combinación lineal de los elementos de $B$. Esto lo hacemos de la siguiente manera (recuerda que el orden es importante):

\begin{align*}
3x^2 &= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2\\
2x &= 0\cdot 1+ 2\cdot x + 0 \cdot x^2\\
1 & = 1\cdot 1 + 0 \cdot x + 0 \cdot x^2.
\end{align*}

Como los coeficientes de $3x^2$ en la base ordenada $B$ son $0$, $0$ y $3$, entonces la primer columna de la matriz de cambio de base será $\begin{pmatrix} 0 \\ 0 \\ 3\end{pmatrix}$. Argumentando de manera similar para $2x$ y $1$, tenemos que la matriz de cambio de base de $B$ a $B’$ es $$\begin{pmatrix}
0 & 0 & 1\\
0 & 2 & 0 \\
3 & 0 & 0
\end{pmatrix}.$$

Para encontrar a la matriz de cambio de base de $B’$ a $B$, expresamos a los elementos de $B$ en términos de la base $B’$ como sigue:

\begin{align*}
1 &= 0 \cdot (3x^2) + 0 \cdot (2x) + 1 \cdot 1\\
x &= 0\cdot (3x^2)+ \frac{1}{2} \cdot (2x) + 0 \cdot 1\\
x^2 & = \frac{1}{3} \cdot (3x^2) + 0 \cdot (2x) + 0 \cdot 1.
\end{align*}

En este caso fue sencillo hacerlo, pero en otros problemas frecuentemente esto se hace resolviendo un sistema de ecuaciones.

De esta manera, tenemos que la matriz de cambio de base de $B’$ a $B$ es $$\begin{pmatrix}
0 & 0 & \frac{1}{3}\\
0 & \frac{1}{2} & 0 \\
1 & 0 & 0
\end{pmatrix}.$$

$\square$

Cambio de coordenadas usando matrices de cambio de base

Las matrices de cambio de base nos ayudan a responder la primer pregunta que planteamos al inicio de esta entrada. Si conocemos las coordenadas de un vector en una base, podemos usar la matriz de cambio de base para encontrar las coordenadas del vector en otra base.

Proposición. Sea $V$ un espacio vectorial de dimensión $n$, $B=(v_1,\ldots,v_n)$, $B’=(v_1′,\ldots,v_n’)$ bases ordenadas de $V$ y $P$ la matriz de cambio de base de $B$ a $B’$. Supongamos que el vector $v$ de $V$ se escribe en base $B$ como $$v=c_1v_1+c_2v_2+\ldots+c_nv_n$$ y en base $B’$ como $$v=c_1’v_1’+c_2’v_2’+\ldots+c_n’v_n’.$$ Entonces: $$
P
\begin{pmatrix}
c_1′ \\
\vdots \\
c_n’
\end{pmatrix}=\begin{pmatrix}
c_1 \\
\vdots \\
c_n
\end{pmatrix} .$$

En otras palabras, la matriz $P$ de cambio de base de $B$ a $B’$ manda las coordenadas de un vector en base $B’$ a coordenadas en base $B$ al multiplicar por la izquierda. Ojo: para construir $P$ expresamos a $B’$ en términos de $B$, pero lo que hace $P$ es expresar a alguien de coordenadas en $B’$ a coordenadas en $B$.

Demostración. El vector de coordenadas de $v_j’$ escrito en base $B’$ es el vector canónico $e_j$ de $F^n$. Además, $Pe_j$ es la $j$-ésima columna de $P$, que por construcción es el vector de coordenadas de $v_j’$ en la base $B$. Así, el resultado es cierto para los vectores $v_j’$ de la base $B’$. Para cualquier otro vector $v$, basta expresarlo en términos de la base $B’$ y usar la linealidad de asignar el vector de coordenadas y la linealidad de $P$.

$\square$

Problema. Escribe a los vectores $v_1=(4,3,5,2)$, $v_2=(2,2,2,2)$ y $v_3(0,0,0,1)$ de $\mathbb{R}^4$ como combinación lineal de los elementos de la base $B$ de $\mathbb{R}^4$ conformada por los vectores $(1,0,0,0)$, $(1,1,0,0)$, $(1,1,1,0)$ y $(1,1,1,1)$.

Solución. Conocemos las coordenadas de $v_1,v_2,v_3$ en la base canónica $(1,0,0,0)$, $(0,1,0,0)$, $(0,0,1,0)$, $(0,0,0,1)$. De hecho, el vector de coordenadas de $v_1$ es exactamente $v_1$ (esto es algo que sucede pues estamos trabajando en $\mathbb{R}^4$). Lo que nos estan pidiendo son las coordenadas de $v_1,v_2,v_3$ en la base $B$. Nos gustaría usar la proposición anterior. Para ello, necesitamos encontrar la matriz de cambio de base de $B$ a la base canónica. Escribamos entonces a la base canónica en términos de los vectores de $B$:

\begin{align*}
(1,0,0,0)&=1\cdot (1,0,0,0)+0\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,1,0,0)&= -1\cdot (1,0,0,0)+1\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,1,0)&= 0\cdot (1,0,0,0)-1\cdot (1,1,0,0)+1\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,0,1)&= 0\cdot (1,0,0,0)+0\cdot (1,1,0,0)-1\cdot (1,1,1,0)+1\cdot (1,1,1,1)\\
\end{align*}

A estas coordenadas las ponemos como columnas para encontrar la matriz de cambio de base de $B$ a la base canónica:
$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Para encontrar las coordenadas de $v_1, v_2, v_3$ en términos de la base $B$, basta con multiplicar esta matriz a la izquierda para cada uno de ellos:

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
4 \\
3 \\
5 \\
2
\end{pmatrix} = \begin{pmatrix}
1 \\
-2 \\
3\\
2
\end{pmatrix},$$

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
2 \\2 \\ 2 \\ 2
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ 0\\ 2
\end{pmatrix} $$ y

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\0 \\ 0 \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ -1\\ 1
\end{pmatrix}. $$

En efecto, se puede verificar que estos nuevos vectores dan las combinaciones lineales de la base $B$ que hacen a $v_1$, $v_2$ y $v_3$, por ejemplo, para $v_1$ tenemos: $$(4,5,3,2)=(1,0,0,0)-2(1,1,0,0)+3(1,1,1,0)+2(1,1,1,1).$$

$\square$

Matrices de cambio de base como la forma matricial de una transformación lineal

A la matriz de cambio de base de $B$ a $B’$ la denotamos por $\text{Mat}_B(B’)$.

Una observación crucial es que podemos pensar a las matrices de cambio de base en un espacio vectorial $V$ justo como formas matriciales correspondientes a una transformación lineal específica. De hecho, la transformación lineal que le corresponde es muy bonita: es la identidad $\text{id}_V$ que manda a cada vector de $V$ a sí mismo.

De manera más concreta, si $B$ y $B’$ son bases de $V$ y $\text{Mat}_B(B’)$ es la matriz de cambio de base de $B$ a $B’$, entonces $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$ A estas alturas tienes todas las herramientas necesarias para demostrar esto.

¿Qué sucede si ahora tenemos tres bases $B$, $B’$ y $B»$ de $V$ y componemos a la identidad consigo misma? Utilizando los argumentos de la entrada anterior, la matriz correspondiente a la composición es el producto de las matrices de cada transformación. Juntando esto con la observación anterior, tenemos la siguiente propiedad para matrices de cambio de base:

$$\text{Mat}_B(B»)=\text{Mat}_{B}(B’)\cdot \text{Mat}_{B’}(B»).$$

Finalmente, ¿qué sucede si en la igualdad anterior ponemos $B»=B$? Al lado izquierdo tenemos la matriz de cambio de base de $B$ a sí misma, que puedes verificar que es la identidad. Al lado derecho tenemos al producto de la matriz de cambio de base de $B$ a $B’$ con la matriz de cambio de $B’$ a $B$. Esto muestra que las matrices de cambio de base son invertibles.

Resumimos todas estas observaciones en la siguiente proposición:

Proposición. Sean $B$, $B’$ y $B»$ bases del espacio vectorial de dimensión finita $V$.

  • La matriz de cambio de base de $B$ a $B’$ corresponde a la matriz de la transformación identidad de $V$ a $V$, en donde el primer $V$ lo pensamos con la base $B’$ y al segundo con la base $B$.
  • El producto de matrices de cambio de base de $B$ a $B’$ y de $B’$ a $B»$ es la matriz de cambio de base de $B$ a $B»$.
  • La matriz de cambio de base de $B$ a $B’$ es invertible, y su inversa es la de cambio de base de $B’$ a $B$.

En la próxima entrada veremos cómo las matrices de cambio de base también nos ayudan a entender transformaciones lineales bajo distintas bases.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede en el primer ejemplo si multiplicas ambas matrices de cambio de base que encontramos?
  • En el segundo ejemplo, encuentra la matriz de cambio de base de la base canónica a la matriz $B$
  • Considera las cuatro matrices de $2\times 2$ que puedes formar colocando tres unos y un cero. Muestra que estas cuatro matrices forman una base $B$ de $M_{2,2}(\mathbb{R})$. Determina la matriz de cambio de base de $B$ a la base canónica de $M_{2,2}(\mathbb{R})$. Ojo: Una cosa son los elementos del espacio vectorial y otra cosa van a ser las matrices de cambio de base. Como $M_{2,2}(\mathbb{R})$ es de dimensión $4$, la matriz de cambio de base que tienes que determinar en realidad es de $4\times 4$.
  • Da una demostración de que, en efecto $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$
  • Verifica que la matriz de cambio de base $B$ a sí misma es la identidad.

Más adelante…

En esta entrada ya vimos cómo cambian las coordenadas de un vector cuando cambiamos de base. Lo que haremos en la siguiente entrada es estudiar cómo cambia la forma matricial de una transformación lineal cuando cambiamos las bases de su espacio vectorial origen y su espacio vectorial destino.

Entradas relacionadas