Archivo de la etiqueta: determinante

Cálculo Diferencial e Integral III: Polinomio característico

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior estudiamos las representaciones matriciales de una transformación lineal. Vimos cómo dadas ciertas bases del espacio dominio y codominio, existe un isomorfismo entre matrices y transformaciones lineales. Así mismo, planteamos la pregunta de cómo encontrar bases para que dicha forma matricial sea sencilla. Vimos que unos conceptos cruciales para entender esta pregunta son los de eigenvalor, eigenvector y eigenespacio. Lo que haremos ahora es introducir una nueva herramienta que nos permitirá encontrar los eigenvalores de una transformación: el polinomio característico.

A partir del polinomio característico daremos un método para encontrar también a los eigenvectores y, en algunos casos especiales, encontrar una representación de una transformación lineal como matriz diagonal. Todo lo que hacemos es una versión resumida de lo que se puede encontrar en un curso más completo de álgebra lineal. Dentro del blog, te recomendamos consultar las siguientes entradas:

Polinomio característico

Pensemos en el problema de hallar los eigenvalores de una transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$. Si $\lambda \in \mathbb{R}$ es uno de estos eigenvalores, queremos poder encontrar vectores $\bar{v}\neq \bar{0}$ tales que $T(\bar{v})=\lambda \bar{v}$. Esto sucede si y sólo si $\lambda \bar{v}-T(\bar{v})=\bar{0}$, lo cual sucede si y sólo si $(\lambda \text{Id}-T)(\bar{v})=\bar{0}$, en donde $\text{Id}:\mathbb{R}^n\to \mathbb{R}^n$ es la transformación identidad de $\mathbb{R}^n$ en $\mathbb{R}^n$. Tenemos de esta manera que $\bar{v}$ es un eigenvector si y sólo si $\bar{v}\in \ker(\lambda\text{Id}-T)$.

Si existe $\bar{v}\neq \bar{0}$ tal que $\bar{v}\in \ker(\lambda \text{Id}-T)$; entonces $\ker(\lambda \text{Id}-T)\neq \{ \bar{0}\}$ por lo cual la transformación $\lambda \text{Id}-T$ no es invertible, pues no es inyectiva. Así, en ninguna base $\text{Mat}_\beta(\lambda \text{Id}-T)$ es invertible, y por tanto su determinante es $0$. Estos pasos son reversibles. Concluimos entonces que $\lambda\in \mathbb{R}$ es un eigenvalor de $T$ si y sólo si en alguna base $\beta$ se cumple que $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0.$ Esto motiva la siguiente definición.

Definición. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Llamamos a $\det(\text{Mat}_\beta(\lambda \text{Id} – T))$ al polinomio característico de $T$ en la base $\beta$.

Por la discusión anterior, los escalares que cumplen $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0$ son los eigenvalores $T$. Para obtener los correspondientes eigenvectores, basta con resolver $\text{Mat}_\beta(T)X=\lambda X$, lo cual es un sistema de ecuaciones en el vector de variables $X$. Las soluciones $X$ nos darán las representaciones matriciales de vectores propios $\bar{v}\in \mathbb{R}^n$ en la base $\beta$.

Por el momento parece ser que tenemos mucha notación, pues debemos considerar la base en la que estamos trabajando. Un poco más adelante veremos que en realidad la base no importa mucho para determinar el polinomio característico. Pero por ahora, veamos un ejemplo concreto de las ideas platicadas hasta ahora.

Ejemplo: Consideremos $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $T(x,y,z)=(2x+z,y+x,-z)$. Calculemos su representación matricial con respecto a la base canónica $\beta$. Para ello, realizamos las siguientes evaluaciones:
\begin{align*}
T(1,0,0)&=(2,1,0)\\
T(0,1,0)&=(0,1,0)\\
T(0,0,1)&=(1,0,-1),
\end{align*}

de donde: $$\text{Mat}_\beta=\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Calculando el polinomio característico obtenemos: \[ det\begin{pmatrix} \lambda-2 & 0 & -1 \\ -1 & \lambda-1 & 0 \\ 0 & 0 & \lambda+1 \end{pmatrix}= (\lambda-2)(\lambda-1)(\lambda+1). \]

Las raíces de $(\lambda-2)(\lambda-1)(\lambda+1)$ son $\lambda_{1}=2$, $\lambda_{2}=1$ y $\lambda_{3}=-1$. Pensemos ahora en quiénes son los eigenvectores asociados a cada eigenvalor. Tomemos como ejemplo el eigenvalor $\lambda=2$. Para que $(x,y,z)$ represente a un eigenvector en la base canónica, debe pasar que:

\[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix},\]

lo cual sucede si y sólo si:

\[\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} – 2\begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};\]

\[\left[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} – 2\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right] \begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};\]

\[\begin{pmatrix} 0 & 0 & 1 \\ 1 & -1& 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

De aquí, podemos llegar a la siguiente forma escalonada reducida del sistema de ecuaciones:

\[\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

En esta forma es sencillo leer las soluciones. Tenemos que $z$ es variable pivote con $z=0$, que $y$ es variable libre, y que $x$ es variable pivote dada por $x=y$. Concluimos entonces que todos los posibles eigenvectores para el eigenvalor $2$ son de la forma $(y,y,0)$, es decir $E_2=\{(y,y,0): y \in \mathbb{R}\}$.

Queda como tarea moral que encuentres los eigenvectores correspondientes a los eigenvalores $1$ y $-1$.

$\triangle$

Matrices similares

En la sección anterior definimos el polinomio de una transformación lineal en términos de la base que elegimos para representarla. En realidad, la base elegida no es muy importante. Demostraremos un poco más abajo que dos representaciones matriciales cualesquiera de una misma transformación lineal tienen el mismo polinomio característico. Para ello, comencemos con la siguiente discusión.

Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal y sean $\beta_1=\{ \bar{e}_{1}, \dots , \bar{e}_{n}\}$, $\beta_2=\{ \bar{u}_{1}, \dots , \bar{u}_{n}\}$ dos bases (ordenadas) de $\mathbb{R}^n$. Supongamos que:

\begin{align*}
A&=\text{Mat}_{\beta_1}(T)=[a_{ij}]\\
B&=\text{Mat}_{\beta_2}(T)=[b_{ij}].
\end{align*}

Por cómo se construyen las matrices $A$ y $B$, tenemos que:

\begin{align*}
T(\bar{e}_j)&=\sum_{i=1}^n a_{ij} \bar{e}_i\quad\text{para $j=1,\ldots,n$}\\
T(\bar{u}_k)&=\sum_{j=1}^n b_{jk} \bar{u}_j\quad\text{para $k=1,\ldots,n$}.
\end{align*}

Como $\beta_{1}$ es base, podemos poner a cada un de los $\bar{u}_k$ de $\beta_{2}$ en términos de la base $\beta_{1}$ mediante combinaciones lineales, digamos:

\begin{equation}
\bar{u}_{k}=\sum_{j=1}^{n}c_{jk}\bar{e}_{j}
\label{eq:valor-u}
\end{equation}

en donde los $c_{jk}$ son escalares para $j=1,\ldots, n$ y $k=1,\ldots,n$. La matriz $C$ de $n\times n$, con entradas $c_{jk}$ representa a una transformación lineal invertible, ya que es una transformación que lleva uno a uno los vectores de una base a otra. Afirmamos que $CB=AC$. Para ello, tomaremos una $k$ en $[n]$ y expresaremos $T(\bar{u}_k)$ de dos formas distintas.

Por un lado, usando \eqref{eq:valor-u} y por como es cada $T(\bar{e}_k)$ en la base $\beta_{1}$ tenemos que:

\begin{align*}
T(\bar{u}_k)&=\sum_{j=1}^n c_{jk} T(\bar{e}_j)\\
&=\sum_{j=1}^n c_{jk} \sum_{i=1}^n a_{ij} \bar{e}_i\\
&=\sum_{j=1}^n \sum_{i=1}^n (c_{jk} a_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (c_{jk} a_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} c_{jk}\right) \bar{e}_i.
\end{align*}

Por otro lado, usando $\eqref{eq:valor-u}$ y por como es cada $T(\bar{u}_k)$ en la base $\beta_{2}$:

\begin{align*}
T(\bar{u}_k)&=\sum_{j=1}^nb_{jk} \bar{u}_j\\
&=\sum_{j=1}^n b_{jk} \sum_{i=1}^{n}c_{ji}\bar{e}_{j} \\
&=\sum_{j=1}^n \sum_{i=1}^n (b_{jk} c_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (b_{jk} c_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n c_{ij} b_{jk} \right) \bar{e}_i.
\end{align*}

Comparemos ambas expresiones para $T(\bar{u}_k)$. La primera es una combinación lineal de los $\bar{e}_i$ y la segunda también. Como $T(\bar{u}_k)$ tiene una única expresión como combinación lineal de los $\bar{e}_i$, entonces los coeficientes de la combinación lineal deben coincidir. Concluimos que para cada $i$ se cumple:

$$\sum_{j=1}^n a_{ij} c_{jk}=\sum_{j=1}^n c_{ij} b_{jk}.$$

Pero esto precisamente nos dice que la entrada $(i,k)$ de la matriz $AC$ es igual a la entrada $(i,k)$ de la matriz $CB$. Con esto concluimos que $AC=CB$, como queríamos.

En resumen, obtuvimos que para dos matrices $A$ y $B$ que representan a la misma transformación lineal, existe una matriz invertible $C$ tal que: $B=C^{-1}AC$. Además $C$ es la matriz con entradas dadas por \eqref{eq:valor-u}.

Introduciremos una definición que nos permitirá condensar en un enunciado corto el resultado que hemos obtenido.

Definición. Dos matrices $A$ y $B$ se llamarán similares (o semejantes), cuando existe otra matriz $C$ invertible tal que $B=C^{-1}AC$.

Sintetizamos nuestro resultado de la siguiente manera.

Proposición. Si dos matrices representan a la misma transformación lineal, entonces estas matrices son similares.

El recíproco de la proposición también se cumple, tal y como lo afirma el siguiente resultado.

Proposición. Sean $A$ y $B$ matrices similares. Entonces $A$ y $B$ representan a una misma transformación lineal $T$, quizás bajo distintas bases.

Demostración: Supongamos que las matrices $A$ y $B$ son similares con $B=C^{-1}AC$, donde las matrices $A$, $B$, $C$ están dadas por entradas $A=[a_{ij}]$ $B=[b_{ij}]$, $C=[c_{jk}]$. Tomemos una base ordenada $\beta=\{\bar{e}_{1}, \dots ,\bar{e}_{n}\}$ de $\mathbb{R}^n$. Consideremos la transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)$ dada por $$T(\bar{e}_j)=\sum_{i=1}^n a_{ij} \bar{e}_i.$$

De esta manera $T$ tiene forma matricial $A$ en la base $\beta$.

Construyamos ahora una nueva base ordenada de $\mathbb{R}^n$ dada por vectores $\bar{u}_k$ para $k=1,\ldots,n$ construidos como sigue:

$$\bar{u}_{k}=\sum_{j=1}^{n}c_{jk}\bar{e}_{j}.$$

Como $C$ es invertible, en efecto tenemos que $\beta’:=\{\bar{u}_1,\ldots,\bar{u}_n\}$ también es base de $\mathbb{R}^n$. Además, de acuerdo con las cuentas que hicimos anteriormente, tenemos que precisamente la forma matricial de $T$ en la base $\beta’$ será $B$.

Así, hemos exhibido una transformación $T$ que en una base tiene representación $A$ y en otra tiene representación $B$.

$\square$

Juntando ambos resultados en uno solo, llegamos a lo siguiente.

Teorema. Dos matrices $A$ y $B$ en $M_n(\mathbb{R})$ son similares si y sólo si representan a una misma transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$, quizás bajo distintas bases.

El polinomio característico no depende de la base

Si dos matrices son similares, entonces comparten varias propiedades relevantes para el álgebra lineal. Veamos un ejemplo de esto.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal en un espacio sobre $\mathbb{R}$ de dimensión finita. Sean $\beta$ y $\beta’$ bases de $\mathbb{R}^n$. Entonces se obtiene lo mismo calculando el polinomio característico de $T$ en la base $\beta$, que en la base $\beta’$.

Demostración. Tomemos $A=\text{Mat}_{\beta}(T)$ y $B=\text{Mat}_{\beta’}(T)$. Como $A$ y $B$ representan a la misma transformación lineal $T$, entonces son similares y por lo tanto existe $C$ invertible con $B=C^{-1}AC$.

Para encontrar el polinomio característico de $T$ en la base $\beta$, necesitamos $\Mat_{\beta}(\lambda\text{Id}-T)$, que justo es $\lambda I -A$. Así mismo, en la base $\beta’$ tenemos $\lambda I – B$. Debemos mostrar que el determinante de estas dos matrices es el mismo. Para ello, procedemos como sigue:

\begin{align*}
\det(\lambda I -B) &= \det (\lambda C^{-1}C – C^{-1} A C)\\
&=\det(C^{-1}(\lambda I – A) C)\\
&=\det(C^{-1})\det(\lambda I – A) \det(C)\\
&=\det(C^{-1})\det(C)\det(\lambda I-A)\\
&=\det(I)\det(\lambda I-A)\\
&=\det(\lambda I-A).
\end{align*}

Aquí estamos usando que el determinante es multiplicativo. Cuando reordenamos expresiones con $\det$, lo hicimos pues los determinantes son reales, cuyo producto es conmutativo.

$\square$

Este teorema nos permite hablar del polinomio característico de una transformación lineal.

Concluimos esta entrada con un resultado que relaciona al polinomio característico de una transformación lineal, con la posibilidad de que exista una base cuya representación matricial sea diagonal.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Supongamos que el polinomio característico de $T$ tiene raíces distintas $\lambda_{1}, \dots ,\lambda_{n}$. Entonces se cumple lo siguiente:

  1. Si tomamos un eigenvector $\bar{u}_i$ para cada eigenvalor $\lambda_i$, entonces $\bar{u}_{1},\dots ,\bar{u}_{n}$ forman una base $\beta$ para $\mathbb{R}^n$.
  2. Con dicha base $\beta$, se cumple que $\text{Mat}_\beta(T)$ es una matriz diagonal con entradas $\lambda_{1},\dots ,\lambda_{n}$ en su diagonal.
  3. Si $\beta’$ es otra base de $\mathbb{R}^n$ y $A=\text{Mat}_{\beta’}(T)$, entonces $\text{Mat}_\beta(T) = C^{-1}AC$ para una matriz invertible $C$ con entradas dadas por \eqref{eq:valor-u}.

La demostración de este resultado queda como tarea moral.

Más adelante…

En la entrada planteamos entonces un método para encontrar los eigenvectores de una transformación $T$: 1) la transformamos en una matriz $A$, 2) encontramos el polinomio característico mediante $\det(\lambda I – A)$, 3) encontramos las raíces de este polinomio, 4) cada raíz es un eigenvalor y las soluciones al sistema lineal de ecuaciones $(\lambda I – A) X=0$ dan los vectores coordenada de los eigenvectores.

Como platicamos en la entrada, una condición suficiente para que una transformación de $\mathbb{R}^n$ a sí mismo sea diagonalizable es que tenga $n$ eigenvalores distintos. Otro resultado muy bonito de álgebra lineal es que si la transformación tiene alguna forma matricial simétrica, entonces también es diagonalizable. A esto se le conoce como el teorema espectral para matrices simétricas reales. En otros cursos de álgebra lineal se estudia la diagonalizabilidad con mucho detalle. Aquí en el blog puedes consultar el curso de Álgebra Lineal II.

Otra herramienta de álgebra lineal que usaremos en el estudio de la diferenciabilidad y continuidad de las funciones de $\mathbb{R}^{n}$ a $\mathbb{R}^{m}$ son las formas bilineales y las formas cuadráticas. En la siguiente entrada comenzaremos con estos temas.

Tarea moral

  1. Encuentra los eigenvectores faltantes del ejemplo de la sección de polinomio característico.
  2. Considera la transformación lineal $T(x,y,z)=(2x+z,y+x,-z)$ de $\mathbb{R}^3$ en $\mathbb{R}^3$. Nota que es la misma que la del ejemplo de la entrada. Encuentra su representación matricial con respecto a la base $\{(1,1,1),(1,2,3),(0,1,1)\}$ de $\mathbb{R}^3$. Verifica explícitamente que, en efecto, al calcular el polinomio característico con esta base se obtiene lo mismo que con la dada en el ejemplo.
  3. Demuestra que si $A$ y $B$ son dos representaciones matriciales de una misma transformación lineal $T$, entonces $\det(A)=\det(B)$.
  4. Sea $T:\mathbb{R}^{3}\to \mathbb{R}^{3}$ dada por $T(x,y,z)=(x+y+z,x,y)$. Encuentra los eigenvalores correspondientes a la transformación, y responde si es posible representarla con una matriz diagonal. En caso de que sí, encuentra explícitamente la base $\beta$ en la cual $\text{Mat}_{\beta}(T)$ es diagonal.
  5. Demuestra el último teorema de la entrada. Necesitarás usar resultados de la entrada anterior.

Entradas relacionadas

Ecuaciones Diferenciales I: El plano Traza – Determinante

Por Omar González Franco

Las matemáticas son la creación más poderosa y bella del espíritu humano.
– Stefan Banach

Introducción

Con esta entrada culminaremos el estudio de los sistemas lineales. En la unidad 3 hicimos un estudio analítico y en esta unidad un estudio cualitativo, aunque reducido a un sistema compuesto por dos ecuaciones, esto con el fin de hacer al mismo tiempo un estudio geométrico en el plano.

A continuación presentamos un breve resumen de los visto en las entradas anteriores.

Clasificación de los planos fase y los puntos de equilibrio

El sistema que estudiamos todo este tiempo fue

\begin{align*}
x^{\prime} &= ax + by \\
y^{\prime} &= cx + dy \label{1} \tag{1}
\end{align*}

Este sistema lo podemos escribir en forma matricial como

$$\begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \begin{pmatrix}
x \\ y
\end{pmatrix} \label{2} \tag{2}$$

Si

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
x^{\prime} \\ y^{\prime}
\end{pmatrix}, \hspace{1cm} \mathbf{Y} = \begin{pmatrix}
x \\ y
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix}$$

entonces el sistema (\ref{2}) se escribe como

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

Vimos que la naturaleza y estabilidad del punto de equilibrio quedó caracterizada por los valores propios de la matriz $\mathbf{A}$ del sistema.

El único punto de equilibrio de los sistemas lineales es el origen $Y_{0} = (0, 0)$, siempre que el determinante de $\mathbf{A}$ sea distinto de cero. En la entrada anterior teníamos que $|\mathbf{A}| = 0$, es por ello que obtuvimos infinitos puntos de equilibrio y es que el hecho de que tengamos valores propios nulos es un caso especial y poco común.

En el caso en el que no hay valores propios nulos, sabemos que en función del comportamiento de las trayectorias en relación con el punto de equilibrio aislado $Y_{0} = (0, 0)$, este punto se denominará: nodo, punto silla, centro, foco, atractor o repulsor. Recordemos cuando se da cada caso.

  1. El punto de equilibrio es un nodo.

    Este caso ocurre cuando los valores propios $\lambda_{1}$ y $\lambda_{2}$ son reales y del mismo signo.
  • Si $\lambda_{1} < \lambda_{2} < 0$, entonces todas las trayectorias se acercan al origen, de manera que el punto de equilibrio es un nodo atractor y será asintóticamente estable.
Nodo atractor.
  • Si $\lambda_{1} > \lambda_{2} > 0$, entonces todas las trayectorias se alejan del origen, por tanto, el punto de equilibrio es un nodo repulsor y será inestable.
Nodo repulsor.
  1. El punto crítico es un punto silla.

    Este caso se presenta cuando los valores propios $\lambda_{1}$ y $\lambda_{2}$ son reales y de distinto signo.
  • Si $\lambda_{1} < 0$ y $\lambda_{2} > 0$ ocurre que dos trayectorias rectas se acercan al origen y otras dos trayectorias rectas se separan de él, mientras que el resto de trayectorias al pasar cerca del origen inmediatamente se alejan de él. Esto nos permite concluir que todo punto silla es inestable.
Punto silla.
  1. El punto crítico es un centro.

    Este caso se presenta cuando los valores propios son imaginarios puros.
  • Si $\lambda_{1} = i \beta$ y $\lambda_{2} = -i \beta$, entonces las trayectorias serán curvas cerradas que rodean al origen, en general tienen forma de elipses, de modo que ninguna trayectoria tiende a él cuando $t \rightarrow + \infty $ o $t \rightarrow -\infty $, esto hace que el punto de equilibrio sea estable, pero no asintóticamente estable.
Centro.
  1. El punto crítico es un foco.

    En este caso los valores propios son complejos conjugados y tienen parte real no nula.
  • Si $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$, entonces las trayectorias son curvas en forma de espiral que, conforme $t \rightarrow + \infty$ todas se acercan al origen, es por ello que el punto de equilibrio es asintóticamente estable.
Foco estable.
  • Si $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$, entonces las trayectorias son curvas en forma de espiral que, conforme $t \rightarrow + \infty$ todas se separan del origen, es por ello que el punto de equilibrio es inestable.
Foco inestable.
  1. El punto crítico es un atractor o un repulsor.

    Este caso se presenta cuando un sistema lineal tiene valores propios reales, del mismo signo, pero además iguales.
  • Si $\lambda_{1} = \lambda_{2} < 0$, entonces las trayectorias tienden hacia el origen en forma de rayos o curvas dependiendo de si es posible determinar dos vectores propios o uno propio y otro generalizado. En este caso el punto de equilibrio es un atractor y es asintóticamente estable.
Atractor.
  • Si $\lambda_{1} = \lambda_{2} > 0$, entonces las trayectorias se alejan el origen en forma de rayos o curvas dependiendo de si es posible determinar dos vectores propios o uno propio y otro generalizado. En este caso el punto de equilibrio es un repulsor y es inestable.
Repulsor.
  1. Los puntos críticos son una recta.

    En este caso particular hay infinitos puntos de equilibrio, todos sobre una recta y ocurre cuando uno o ambos valores propios son cero.
Líneas de puntos fijos inestables.
Líneas de puntos fijos estables.

Como podemos ver, las características de las trayectorias y de los puntos de equilibrio en el plano fase quedan determinadas por los valores propios de la matriz de coeficientes $\mathbf{A}$. Sin embargo, estas características también se pueden describir en términos de la traza $T$ y del determinante $D$ de la matriz de coeficientes $A$, veamos como es esto.

La traza y el determinante de la matriz de coeficientes

Consideremos la matriz de coeficientes

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{4} \tag{4}$$

Sabemos que la traza de una matriz se define como la suma de los elementos de la diagonal principal de dicha matriz. En nuestro caso, la traza de $\mathbf{A}$ es

$$T = Tr(\mathbf{A}) = a + d \label{5} \tag{5}$$

Por otro lado, el determinante de la matriz $\mathbf{A}$ es

$$D = |\mathbf{A}| = ad -bc \label{6} \tag{6}$$

Consideremos la ecuación característica de $\mathbf{A}$.

$$|\mathbf{A} -\lambda \mathbf{I}| = \begin{vmatrix}
a -\lambda & b \\ c & d -\lambda
\end{vmatrix} = 0 \label{7} \tag{7}$$

El polinomio característico es

$$P(\lambda) = (a -\lambda)(d -\lambda) -bc = \lambda^{2} -(a + d) \lambda + (ad -bc) \label{8} \tag{8}$$

Si sustituimos las ecuaciones (\ref{5}) y (\ref{6}) en la ecuación característica se tiene

$$\lambda^{2} -T \lambda + D = 0 \label{9} \tag{9}$$

Las raíces de esta ecuación cuadrática son

$$\lambda_{1} = \dfrac{T + \sqrt{T^{2} -4D}}{2} \hspace{1cm} y \hspace{1cm} \lambda_{2} = \dfrac{T -\sqrt{T^{2} -4D}}{2} \label{10} \tag{10}$$

Hemos logrado escribir a los valores propios de $\mathbf{A}$ en términos de la traza y del determinante de la misma matriz $\mathbf{A}$.

De tarea moral, usando (\ref{10}) calcula explícitamente las operaciones $(\lambda_{1} + \lambda_{2})$ y $(\lambda_{1} \cdot \lambda_{2})$ y verifica que se satisfacen las siguientes relaciones importantes.

$$T = \lambda_{1} + \lambda_{2} \label{11} \tag{11}$$

y

$$D = \lambda_{1} \lambda_{2} \label{12} \tag{12}$$

Es decir, la traza y el determinante de $\mathbf{A}$ también se pueden escribir en términos de los valores propios de $\mathbf{A}$.

El análisis cualitativo que hemos hecho a lo largo de las últimas entradas ha sido en función de los valores propios, recordemos que las posibilidades son

Valores propios reales y distintos:

  • $\lambda_{1} < \lambda_{2} < 0$.
  • $\lambda_{1} > \lambda_{2} > 0$.
  • $\lambda_{1} < 0$ y $\lambda_{2} > 0$.

Valores propios complejos:

  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha < 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha = 0$.
  • $\lambda_{1} = \alpha + i \beta$ y $\lambda_{2} = \alpha -i \beta$ con $\alpha > 0$.

Valores propios repetidos:

  • $\lambda_{1} = \lambda_{2} < 0$.
  • $\lambda_{1} = \lambda_{2} > 0$.

Valores propios nulos

  • $\lambda_{1} = 0$ y $\lambda_{2} < 0$.
  • $\lambda_{1} = 0$ y $\lambda_{2} > 0$.
  • $\lambda_{1} = \lambda_{2} = 0$.

Sin embargo, ahora podemos analizar cada caso pero en función de los valores de la traza $T$ y el determinante $D$ de $\mathbf{A}$, ya que inmediatamente podemos notar de (\ref{10}) que los valores propios de $\mathbf{A}$ son complejos si $T^{2} -4D < 0$, son repetidos si $T^{2} -4D = 0$, y son reales y distintos si $T^{2} -4D > 0$.

El plano Traza – Determinante

Comenzaremos a hacer un nuevo bosquejo para los sistemas lineales examinando el conocido plano traza – determinante. El eje $T$ corresponderá a la línea horizontal y representa a la traza, mientras que el eje $D$ corresponderá a la vertical y representa al determinante. En este plano la curva

$$T^{2} -4D = 0$$

o su equivalente,

$$D(T) = \dfrac{T^{2}}{4} \label{13} \tag{13}$$

es una parábola con concavidad hacia arriba. Arriba de ésta encontramos $T^{2} -4D < 0$, y abajo de ella $T^{2} -4D > 0$, tal como se muestra en la siguiente figura.

Plano traza – determinante.

Para usar este plano, calculamos primero $T$ y $D$ para una matriz $\mathbf{A}$ dada y luego localizamos el punto $(T, D)$ en el plano. De forma inmediata podremos visualizar si los valores propios son reales, repetidos o complejos, dependiendo de la posición de $(T, D)$ respecto a la parábola.

Ejemplo: Determinar el tipo de valores propios que tiene el siguiente sistema lineal.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & 5 \\ -2 & 6
\end{pmatrix} \mathbf{Y}$$

Solución: La matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix}
4 & 5 \\ -2 & 6
\end{pmatrix}$$

Vemos que

$$T = 4 + 6 = 10$$

y

$$D = 4(6) -5(-2) = 24 + 10 = 34$$

Ahora bien

$$T^{2} -4D = (10)^{2} -4(34) = 100 -136 = -36$$

Como $T^{2} -4D < 0$, entonces inmediatamente concluimos que los valores propios son complejos conjugados. Ahora bien, aún no sabemos si se trata de un centro o algún tipo de espiral, pero por el momento no nos preocupemos por ello.

Sólo con el fin de conocer el tipo de soluciones que tiene el sistema, su plano fase es el siguiente.

Plano fase del sistema.

Las trayectorias del sistema corresponden a espirales y el punto de equilibrio es un foco inestable. Observa que la figura ya nos da los valores de la traza, el determinante y el discriminante, aunque con una notación distinta.

Ahora puedes regresar a visualizar los planos fase de todos los ejemplos que hicimos en las 4 entradas anteriores y poner más atención en los valores de la traza y el determinante.

$\square$

Por su puesto que podemos hacer mucho más en el plano traza – determinante. Por ejemplo, desearíamos no sólo saber si los valores propios de $\mathbf{A}$ son complejos, repetidos o reales, sino que también conocer si tienen parte real nula o distinta de cero o si son reales positivos, negativos o de distinto signo, etcétera.

A continuación haremos un análisis más detallado sobre las raíces (\ref{10}) y veremos que tipo de información nos proporciona sobre los sistemas lineales.

Recordemos que los valores propios de $\mathbf{A}$, en términos de la traza y el determinante de $\mathbf{A}$ son

$$\lambda_{1} = \dfrac{T + \sqrt{T^{2} -4D}}{2} \hspace{1cm} y \hspace{1cm} \lambda_{2} = \dfrac{T -\sqrt{T^{2} -4D}}{2}$$

Atendiendo a los diferentes valores de $T$ y $D$, se tiene:

  1. Si $T^{2} -4D < 0$, entonces los valores propios $\lambda_{1}$ y $\lambda_{2}$ son complejos conjugados con parte real igual a $T /2$. Se tienen los siguientes casos:
  • Los valores propios son imaginarios puros si $T = 0$ (centro y estabilidad).
  • Los valores propios tienen parte real negativa cuando $T < 0$ (foco y estabilidad asintótica).
  • Los valores propios tienen parte real positiva cuando $T > 0$ (foco e inestabilidad).

    Si consideramos el plano traza – determinante y denotamos por $O$ al origen podremos asegurar que por encima de la parábola $T^{2} -4D = 0$ se tiene:
  • En el eje $OD$ se presentan los centros y hay estabilidad.
  • A la izquierda del eje $OD$ se presentan los focos y hay estabilidad asintótica.
  • A la derecha del eje $OD$ también se presentan focos, pero hay inestabilidad.
  1. Si $D < 0$, entonces se tiene $T^{2} -4D > T^{2}$. En este caso los valores propios son reales y de distinto signo, lo que significa que se presentarán puntos silla e inestabilidad. En el plano traza – determinante los encontraremos por debajo del eje $T$.
  1. Si $D > 0$ y $T^{2} -4D \geq 0$, entonces los valores propios son reales y tienen el mismo signo que $T$. Los casos posibles son:
  • Si $T < 0$, se tiene:
    • Cuando $T^{2} -4D = 0$, los valores propios son iguales y negativos (atractor y estabilidad asintótica).
    • Cuando $T^{2} -4D > 0$, los valores propios son reales, distintos y negativos (nodo atractor y estabilidad asintótica).
  • Si $T > 0$, se tiene:
    • Cuando $T^{2} -4D = 0$, los valores propios son iguales y positivos (repulsor e inestabilidad).
    • Cuando $T^{2} -4D > 0$, los valores propios son reales, distintos y positivos (nodo repulsor e inestabilidad).
  1. Si $D = 0$, entonces uno o ambos valores propios son cero. Los siguientes casos se obtienen directamente de (\ref{11}) y (\ref{12}).
  • Si $T = 0$ (origen), entonces ambos valores propios son cero (recta de puntos de equilibrio y trayectorias paralelas a dicha recta).
  • Si $T > 0$, entonces un valor propio es cero y el otro es positivo (recta de puntos de equilibrio inestables y trayectorias rectas que se alejan de la recta de puntos de equilibrio).
  • Si $T < 0$, entonces un valor propio es cero y el otro es negativo (recta de puntos de equilibrio asintóticamente estables y trayectorias rectas que tienden a la recta de puntos de equilibrio).

¡Todo lo que hemos aprendido sobre sistemas lineales homogéneos compuestos por dos ecuaciones diferenciales de primer orden con coeficientes constantes, incluyendo todas las características anteriores, se resume en el siguiente diagrama!.

Plano traza – determinante con todas las posibilidades de planos fase.

Veamos un ejemplo.

Ejemplo: Caracterizar el siguiente sistema lineal.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
3 & -4 \\ 1 & -1
\end{pmatrix} \mathbf{Y}$$

Solución: La matriz de coeficientes es

$$\mathbf{A} = \begin{pmatrix}
3 & -4 \\ 1 & -1
\end{pmatrix}$$

Vemos que

$$T = 3 + (-1) = 2$$

y

$$D = 3(-1) -(-4)(1) = -3 + 4 = 1$$

tenemos, entonces

$$T^{2} -4D = (2)^{2} -4(1) = 4 -4 = 0$$

Como $T > 0$, $D > 0$ y $T^{2} -4D = 0$, vamos al punto 3 y deducimos que el sistema lineal tiene valores propios iguales y positivos. De acuerdo a las ecuaciones (\ref{11}) y (\ref{12}) se tiene el siguiente sistema.

\begin{align*}
T &= 2 = \lambda_{1} + \lambda_{2} \\
D &= 1 = \lambda_{1}\lambda_{2}
\end{align*}

De la primer ecuación obtenemos $\lambda_{1} = 2 -\lambda_{2}$, sustituyendo en la segunda ecuación se tiene

$$1 = (2 -\lambda_{2}) \lambda_{2}$$

de aquí obtenemos la ecuación cuadrática

$$\lambda_{2}^{2} -2 \lambda_{2} + 1 = 0$$

Las raíces son

$$\lambda_{2} = \dfrac{2 \pm \sqrt{4 -4}}{2} = 1$$

La única raíz es $\lambda_{2} = 1$, sustituyendo en cualquier ecuación del sistema obtenemos que $\lambda_{1} = 1$. Por lo tanto, el único valor propio de la matriz $\mathbf{A}$ es $\lambda = 1$ (iguales y positivos, tal como lo habíamos deducido).

Si vamos al plano traza – determinante, como $T > 0$ y $D > 0$, entonces estamos en el primer cuadrante, pero además $T^{2} -4D = 0$, así que estamos situados sobre la parábola del primer cuadrante, exactamente en el punto $(T, D) = (2, 1)$, esto nos permite concluir que el plano fase del sistema corresponde a repulsor.

El plano fase del sistema es el siguiente.

Plano fase del sistema.

Efectivamente se trata de un repulsor.

$\square$

Debido a que cada punto del plano traza – determinante representa un plano fase distinto, el plano traza – determinante es un ejemplo de lo que se conoce como plano paramétrico.

El plano paramétrico

El plano traza – determinante es un ejemplo de un plano paramétrico. Los elementos de la matriz $\mathbf{A}$ son parámetros que se pueden ajustar, cuando esos elementos cambian, la traza y el determinante de la matriz también se modifican y el punto $(T, D)$ se mueve en el plano paramétrico. Cuando este punto entra en las diversas regiones del plano traza – determinante, debemos imaginar que los retratos fase asociados también experimentan transformaciones.

El plano traza – determinante es un esquema de clasificación del comportamiento de todas las posibles soluciones de sistemas lineales.

En este enlace se tiene acceso a una herramienta visual del plano paramétrico. En él se puede mover el punto $(T, D)$ a lo largo de las diferentes regiones del plano traza – determinante a la vez que visualizamos el tipo de planos fase que se generan. ¡Pruébalo y diviértete!

Con esto concluimos el estudio de los sistemas lineales. Cabe mencionar que el plano traza – determinante no da una información completa sobre el sistema lineal tratado.

Por ejemplo, a lo largo de la parábola $T^{2} -4D = 0$ tenemos valores propios repetidos, pero no podemos determinar si tenemos uno o varios vectores propios linealmente independientes. para saberlo es preciso calcularlos.

De modo similar, no podemos determinar la dirección en que las soluciones se mueven alrededor del origen si $T^{2}-4D < 0$. Por ejemplo, las dos matrices

$$\mathbf{A} = \begin{pmatrix}
0 & 1 \\ -1 & 0
\end{pmatrix} \hspace{1cm} y \hspace{1cm} \mathbf{B} = \begin{pmatrix}
0 & -1 \\ 1 & 0
\end{pmatrix}$$

tienen traza $T = 0$ y determinante $D = 1$, pero las soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ se mueven alrededor del origen en el sentido de las manecillas del reloj, mientras que las soluciones de $\mathbf{Y}^{\prime} = \mathbf{BY}$ viajan en el sentido opuesto.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Hacer un análisis cualitativo de los siguientes sistemas lineales apoyándose de la traza y el determinante de la matriz de coeficientes $\mathbf{A}$, así como del plano traza – determinante. Es decir, de acuerdo al valor de la traza $T$, el determinante $D$ y el discriminante $T^{2} -4D$, determinar que tipo de valores propios tiene el sistema, así como el tipo de plano fase y estabilidad del punto de equilibrio.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    5 & 4 \\ -2 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & -1 \\ -2 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 1 \\ 4 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & -1 \\ 1 & 3
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    6 & 3 \\ 2 & 1
    \end{pmatrix} \mathbf{Y}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & -5 \\ 2 & 2
    \end{pmatrix} \mathbf{Y}$

Más adelante…

Estamos cerca de concluir el curso. En las próximas entradas estudiaremos de manera cualitativa a los sistemas no lineales compuestos por dos ecuaciones diferenciales de primer orden.

En particular, en la siguiente entrada veremos que alrededor de un punto de equilibrio de un sistema no lineal las trayectorias son muy parecidas a las de un sistema lineal lo que nos permitirá observar el comportamiento que tienen las soluciones del sistema no lineal, al menos cerca de un punto de equilibrio.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Por Blanca Radillo

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema. Considera los vectores

$v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)$

en $\mathbb{R}^4$. Prueba que para cualquier elección de $x\in\mathbb{R}$, los vectores $v_1,v_2,v_3$ son linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son $v_1,v_2,v_3$, es decir,

$A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Sabemos que $v_1,v_2,v_3$ son linealmente independiente si y sólo si $\text{dim(span}(v_1,v_2,v_3))=3$, ya que $\text{rank}(A)=3$, y eso es equivalente (por la clase del lunes) a demostrar que $A$ tiene una submatriz de $3\times 3$ invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,$

lo que implica que es invertible, y por lo tanto $v_1,v_2, v_3$ son vectores linealmente independientes.

$\square$

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre $\mathbb{R}$ o sobre $\mathbb{C}$. Como $\mathbb{R}\subset \mathbb{C}$, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en $\mathbb{R}$ se cumplen en $\mathbb{C}$. En este caso particular, si las soluciones de una matriz en $M_{m,n}(\mathbb{R})$ son soluciones de la misma matriz pero vista como elemento en $M_{m,n}(\mathbb{C})$. El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea $A\in M_{m,n}(F)$ y sea $F_1$ un campo contenido en $F$. Consideremos el sistema lineal $AX=0$. Si el sistema tiene una solución no trivial en $F_1^n$, entonces tiene una solución no trivial en $F^n$.

Demostración. Dado que el sistema tiene una solución no trivial en $F_1^n$, $r:=\text{rank}(A) < n$ vista como elemento en $M_{m,n}(F_1)$. Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a $A$ como elemento de $M_{m,n}(F_1)$ o de $M_{m,n}(F)$. Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de $F^n$ de dimensión $n-r>0$. Por lo tanto, el sistema $AX=0$ tiene una solución no trivial en $F^n$.

$\square$

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. Sea $S_a$ el siguiente sistema lineal:

$\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.$

Encuentra los valores de $a$ para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como $AX=b$ donde

$A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$

Notemos que

$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,$

entonces si $a\neq 1/8$, $A$ es invertible, y por lo tanto $\text{rank}(A)=3$, mientras que si $a=1/8$, $A$ no es invertible y $\text{rank}(A)=2$ ya que la submatriz es invertible

$\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.$

Además, si la matriz $(A,b)$ es igual a

$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},$

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, $\text{rank}(A,b)=3$.

Aplicando el Teorema de Rouché-Capelli, para $a=1/8$, el sistema $AX=b$ no tiene soluciones. También podemos concluir que como $\text{rank}(A)=3$ para todo $a\neq 1/8$, el sistema tiene exactamente una solución. (Y $AX=b$ nunca tiene infinitas soluciones).

$\square$

Problema. Sean $a,b,c$ números reales dados. Resuelve el sistema lineal

$\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.$

Solución. La matriz del sistema es

$A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.$

No es difícil ver que $\text{det}(A)=4abc$. Si $abc\neq 0$, usando la regla de Cramer, la única solución al sistema está dada por

$x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}$

$y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},$

resolviendo los determinantes obtenemos que

$x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.$

Ahora, si $abc=0$, entonces $A$ no es invertible ($\text{rank}(A)<3$). El sistema es consistente si y sólo si $\text{rank}(A)=\text{rank}(A,b)$.

Sin pérdida de generalidad, decimos que $a=0$ (pues $abc=0$). Esto reduce el sistema a

$\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.$

El sistema es consistente si $b=c$ y distintos de cero. En este caso, tenemos que $b(2x+y+z)=1$ y $b(y+z)=1$, implicando $x=0$, $y+z=1/b$. De manera similar, obtenemos las posibles soluciones si $b=0$ o si $c=0$.

Resumiendo:

  • Si $abc\neq 0$, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) $a=0$ y $b=c \neq 0$; caso 2) $b=0$ y $a=c\neq 0$; caso 3) $c=0$ y $a=b\neq 0$, tenemos infinitas soluciones descritas como, para todo $w\in \mathbb{R}$: caso 1) $(0,w,1/b-w)$; caso 2) $(w,0,1/a-w)$; caso 3) $(w,1/a-w,0)$.
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para $a,b,c$, el sistema no es consistente.

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de cálculo de determinantes

Por Ayax Calderón

Para esta entrada del blog haremos uso de las propiedades vistas en la entrada de propiedades de determinantes para facilitar las cuentas a la hora de calcular determinantes de matrices que un primera instancia podrían parecer complicadas. Asimismo, haciendo uso de estas propiedades, se demostrará el teorema de expansión de Laplace.

Problemas resueltos

Problema. Considera la siguiente matriz

$$A=\begin{pmatrix}
1 & 1 & 1\\
1 & 2 & 1\\
1 & 1 & 2\end{pmatrix}$$

y calcula $\det (A^{-1})$.

Solución. Como el determinante es multiplicativo, sabemos que $\det(A^{-1})=\frac{1}{\det A}$ , por lo que nos bastará con calcular $\det A$.
Es fácil ver que $\det A = 1(4-1)- 1(2-1)+1(1-2)=2-1-1=1.$
Así, $\det (A^{-1})=1$.

$\square$

Problema. Sea $A\in M_n(\mathbb{R}).$

  1. Muestra que si $n^2-n+1$ entradas de $A$ son iguales a $0$, entonces $\det A =0$.
  2. Muestra que se puede escoger $A$ de tal manera que $\det A \neq 0$ tiene $n^2-n+1$ entradas iguales.
  3. Muestra que si $n^2-n+2$ entradas de $A$ son iguales, entonces $\det A = 0$.

Demostración.

  1. Afirmamos que la matriz $A$ tiene una columna en la que todas las entradas son cero. Supongamos que cada columna de $A$ tiene a los más $n-1$ ceros, entonces la matriz $A$ tiene a lo más $n^2 -n$ ceros, lo cuál contradice nuestra hipótesis, por lo tanto existe una columna en la cuál todas las entradas son iguales a cero. Por lo tanto $\det A = 0$.
  2. Consideremos la matriz $A=[a_{ij}]$ dado por $a_{ij}=1$ si $i\neq j$ y $a_{ij}=i$ si $i=j$. De esta manera nos aseguramos de que $n^2-n+1$ entradas son iguales a $1$, pero $\det A \neq 0$, pues si sustraemos el primer renglón de cada uno de los siguientes renglones obtenemos una matriz triangular superior con entradas diagonales distintas de cero, por lo que $\det A \neq 0$.
  3. Si $A$ tiene $n^2-n+2$ entradas iguales (digamos a un número $k$), entonces $A$ tiene a lo más $n-2$ entradas distintas a $k$. Por lo tanto, a lo más $n-2$ columnas de $A$ contienen una entrada distinta de $k$, es decir, al menos dos columnas de $A$ tienen todas sus entradas iguales a $k$, entonces $\rank(A)<n$. Por consiguiente $\det A=0$.

$\square$

Teorema de Expansión de Laplace

Sea $A=[a_{ij}]\in M_n(F)$ una matriz y sea $C_{i,j}$ el cofactor de $a_{ij}$.

(a) (Expansión con respecto a una columna $j$) Para cada $j\in\{1,2,\dots , n\}$ tenemos $$ \det A = \displaystyle\sum _{i=1}^n a_{ij}C_{ij}.$$

(b) (Expansión con respecto a una columna $i$). Para cada $i\in \{1,2,\dots , n\}$ tenemos $$\det A = \displaystyle\sum _{j=1}^n a_{ij}C_{ij}.$$

Demostración. (a) Tomemos $j\in \{1,2,\dots , n\}$ fija , y sea $B=(e_1,\dots, e_n)$ la base canónica de $F^n$ y sea $C_1,\dots, C_n \in F^n$ las columnas de $A$, tales que $C_k=\displaystyle\sum_{i=1}^{n} a_{ik}e_i$ para toda $k$. Se sigue que

$$\det A = \det _{B}(C_1, \dots, C_n)=\det_B(C_1,\dots, C_{j-1}, \displastyle\sum_{i=1}^{n}a_{ij}e_i, C_{j+1},\dots C_n)$$

$$=\displaystyle\sum_{i=1}^n a_{ij}\det_B(C_1,\dots, C_{j-1}, e_i, C_{j+1},\dots , C_n ).$$

Nos falta ver que $X_{ij}:=\det_B(C_1,\dots, C_{j-1}, e_i, C_{j+1},\dots , C_n)= C_{ij}$. Mediante una serie de $n-j$ intercambios de columnas, podemos poner la $j-$ésima columna del determinante $X_{ij}$ en la última posición, y mediante una sucesión de $n-i$ intercambios de renglones podemos poner el $i-$ésimo renglón en la última posición, lo que nos da

$$X_{ij}=(-1)^{n-1+n-j}=\det \begin{pmatrix}
a_{11} & \dots & a_{i,j-1} & a_{1,j+1} & \dots & a_{1n} & 0\\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\
a_{n1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{nn} & 0\\
a_{i1} & \dots & a_{i,j-1} & a_{i,j+1} & \dots & a_{in} & 1\end{pmatrix}.$$

El último determinante es precisamente $C_{ij}$, y como $(-1)^{n-i+n-j}=(-1)^{i+j}$ se sigue el resultado deseado.

(b) La prueba para este inciso se sigue del inciso anterior y tomando en cuenta que $\det A = \det (^tA)$.

$\square$

Problema 3. Sean $x,y,z \in \mathbb{R}$, $A=
\begin{pmatrix}
0 & y & z\\
z & x & 0\\
y & 0 & x\end{pmatrix}$

y $B=
\begin{pmatrix}
0 & z & y\\
y & x & 0\\
z & 0 & x\end{pmatrix}$. Calcula el determinante de la matriz $$C=\begin{pmatrix}y^2+z^2 & xy & xz\\
xy & x^2+z^2 & yz\\
xz & yz & x^2 + y^2\end{pmatrix}.$$

Solución. Note que $^tA=B$, entonces $\det A = \det B$. Calculemos $\det A$

$$\det A = -z(yx)+y(-zx)=-2xyz$$

Además notemos que $\begin{pmatrix}
0 & y & z\\
z & x & 0\\
y & 0 & x\end{pmatrix} \begin{pmatrix}
0 & z & y\\
y & x & 0\\
z & 0 & x\end{pmatrix} = \begin{pmatrix}y^2+z^2 & xy & xz\\
xy & x^2+z^2 & yz\\
xz & yz & x^2 + y^2\end{pmatrix} $

o bien, $AB=C$.
Así, $\det C= (\det A)^2= (-2xyz)^2 = 4x^2y^2z^2.$

$\square$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Técnicas básicas de cálculo de determinantes

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya definimos a los determinantes para vectores, para transformaciones y para matrices. Además, mostramos algunas propiedades básicas de determinantes y las usamos para resolver varios problemas. Como hemos discutido, los determinantes guardan información importante sobre una transformación lineal o sobre una matriz. También ayudan a implementar la técnica de diagonalización la cual introdujimos hace algunas entradas y en la cual profundizaremos después. Es por esta razón que es importante tener varias técnicas para el cálculo de determinantes.

Fuera de este curso, los determinantes sirven en muchas otras áreas de las matemáticas. Cuando se hace cálculo de varias variables ayudan a enunciar el teorema del cambio de variable. En combinatoria ayudan a calcular el número de árboles generadores de una gráfica. Más adelante en tu formación matemática es probable que te encuentres con otros ejemplos.

Calculo de determinantes de $2\times 2$

Como ya discutimos anteriormente, una matriz en $M_2(F)$, digamos $A=\begin{pmatrix}a&b\\ c&d\end{pmatrix}$ tiene determinante $ad-bc$.

Problema. Calcula el determinante de la matriz $$\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}^8.$$

Solución. Por la fórmula para el determinante de las matrices de $2\times 2$, se tiene que $\begin{vmatrix} 0 & 1\\ 1 & 1\end{vmatrix} = 0\cdot 1 – 1\cdot 1 = -1.$

Como el determinante es multiplicativo, $\det(A^2)=\det(A)\det(A)=(\det(A))^2$, e inductivamente se puede mostrar que para todo entero positivo $n$ se tiene que $\det(A^n)=(\det(A))^n$. De esta forma, el determinante que buscamos es $(-1)^8=1$.

$\square$

Observa que hubiera tomado más trabajo elevar la matriz a la octava potencia. Aunque esto usualmente no es recomendable, en este problema hay algo interesante que sucede con esta matriz. Llamémosla $A=\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}$. Haciendo las cuentas para las primeras potencias, se tiene que
\begin{align*}
A&=\begin{pmatrix} 0 & 1\\ 1 & 1\end{pmatrix}\\
A^2&=\begin{pmatrix} 1 & 1\\ 1 & 2\end{pmatrix}\\
A^3&=\begin{pmatrix} 1 & 2\\ 2 & 3\end{pmatrix}\\
A^4&=\begin{pmatrix} 2 & 3\\ 3 & 5\end{pmatrix}\\
A^5&=\begin{pmatrix} 3 & 5\\ 5 & 8\end{pmatrix}
\end{align*}

Aquí aparece la sucesión de Fibonacci, dada por $F_0=0$, $F_1=1$ y $F_{n+2}=F_{n+1}+F_n$ para $n\geq 0$, cuyos primeros términos son $$0,1,1,2,3,5,8,13,21,\ldots.$$ De hecho se puede probar por inducción que $$A^n=\begin{pmatrix} F_{n-1} & F_n\\ F_n & F_{n+1}\end{pmatrix}.$$

Así, por un lado el determinante de la matriz $A^n$ es $F_{n-1}F_{n+1}-F_n^2$, usando la fórmula de determinante de $2\times 2$. Por otro lado, es $(-1)^n$, por el argumento del problema. Con esto hemos demostrado que para cualquier entero $n$ tenemos la siguiente identidad para los números de Fibonacci: $$F_{n-1}F_{n+1}-F_n^2 = (-1)^n.$$

Cálculo de determinantes de $3\times 3$

Para calcular el determinante de una matriz en $M_3(F)$ por definición, digamos de $A=\begin{pmatrix}a&b&c\\ d&e&f\\ g&h&i\end{pmatrix}$, tenemos que hacer una suma de $3!=6$ términos. Si se hacen las cuentas de manera explícita, el valor que se obtiene es $$aei+bfg+cdh-ceg-afh-bdi.$$

Esto se puede recordar mediante el siguiente diagrama, en el cual se ponen la primera y la segunda columna de nuevo, a la derecha. Las diagonales hacia abajo son términos positivos y las diagonales hacia arriba son términos negativos.

Cálculo de determinantes de matrices de 3x3
Cálculo de determinantes de $3\times 3$

Veamos un ejemplo de un problema en el que se puede aprovechar esta técnica.

Problema. Determina para qué reales $a,b,c$ se tiene que los vectores $(a,b,0)$, $(a,0,b)$ y $(0,a,b)$ son una base de $\mathbb{R}^3$.

Solución. Para que estos vectores sean una base de $\mathbb{R}^3$, basta con que sean linealmente independientes, pues son $3$. Como hemos visto en entradas anteriores, para que sean linealmente independientes, es necesario y suficiente que el determinante de la matriz $\begin{pmatrix}a&b&0\\ a&0&b\\ 0&a&b\end{pmatrix}$ sea distinto de cero.

Usando la técnica de arriba, hacemos siguiente diagrama:

De aquí, vemos que el determinante es $$0+0+0-0-a^2b-ab^2=-ab(a+b).$$ Esta expresión es igual a cero si $a=0$, si $b=0$ o si $a+b=0$. En cualquier otro caso, el determinante no es cero, y por lo tanto los vectores forman una base.

$\square$

Ten mucho cuidado. Esta técnica no funciona para matrices de $4\times 4$ o más. Hay una forma sencilla de convencerse de ello. Por ejemplo, el determinante de una matriz de $4\times 4$ debe tener $4!=24$ sumandos. Si intentamos copiar la técnica de arriba, tendremos solamente $8$ sumandos ($4$ en una diagonal y $4$ en otra). Para cuando tenemos matrices de $4\times 4$ o más, tenemos que recurrir a otras técnicas.

Reducción gaussiana para determinantes

Cuando vimos el tema de sistemas de ecuaciones hablamos del algoritmo de reducción gaussiana, y vimos que este siempre lleva una matriz en $M_{m,n}(F)$ a su forma escalonada reducida mediante operaciones elementales. Cuando aplicamos el algoritmo a matrices en $M_n(F)$, siempre llegamos a una matriz triangular, en donde sabemos fácilmente calcular el determinante: es simplemente el producto de las entradas en la diagonal. Nota cómo lo anterior también se cumple para las matrices diagonales, pues son un caso particular de matrices triangulares.

Por esta razón, es fundamental para el cálculo de determinantes saber qué le hacen las operaciones elementales al determinante de una matriz.

Teorema. Las operaciones elementales tienen el siguiente efecto en el determinante de una matriz $A$:

  1. Si todos los elementos de un renglón o columna de $A$ se multiplican por $\lambda$, entonces el determinante se multiplica por $\lambda$.
  2. Cuando se intercambian dos renglones o columnas de $A$, el determinante se multiplica por $-1$.
  3. Si a un renglón de $A$ se le suma un múltiplo escalar de otro renglón, entonces el determinante no cambia. Sucede algo análogo para columnas.

Demostración. El punto $1$ ya lo demostramos en la entrada anterior, en donde vimos que el determinante es homogéneo.

Para los puntos $2$ y $3$, usemos que si $e_1,\ldots e_n$ es la base canónica de $F^n$, el determinante de una matriz con renglones $R_1,\ldots,R_n$ es $$\det_{(e_1,\ldots,e_n)}(R_1,\ldots,R_n).$$

Intercambiar los renglones $i$ y $j$ es hacer $\det_{(e_1,\ldots,e_n)}(R_{\sigma(1)},\ldots,R_{\sigma(n)})$ para la transposición $\sigma$ que intercambia $i$ y $j$. Como el determinante es antisimétrico y $\sigma$ tiene signo $-1$, obtenemos la conclusión.

Hagamos ahora el tercer punto. Tomemos $i\neq j$ y un escalar $\lambda$. Si al $i$-ésimo renglón de $A$ le sumamos $\lambda$ veces el $j$-ésimo renglón de $A$, esto es lo mismo que multiplicar a $A$ por la izquierda por la matriz $B$ que tiene unos en la diagonal y $\lambda$ en la entrada $(i,j)$. La matriz $B$ es triangular, de modo que su determinante es el producto de las entradas, que es $1$. De esta forma, $$\det(BA)=\det(B)\det(A)=\det(A).$$

$\square$

Así, una estrategia para calcular el determinante de una matriz es hacer reducción gaussiana hasta llegar a una matriz diagonal (incluso es suficiente que sea triangular superior) de determinante $\Delta$. Si en el camino se hicieron $r$ intercambios de renglones y se multiplicaron los renglones por escalares $\lambda_1,\ldots,\lambda_s$, entonces el determinante de $A$ será $$\frac{(-1)^r \Delta}{\lambda_1\cdot\ldots\cdot \lambda_s}.$$

Otras propiedades para calcular determinantes

Aquí recolectamos otras propiedades de determinantes que pueden ayudar a calcularlos. Ya mostramos todas ellas, salvo la número $2$. Esta la mostramos después de la lista.

  1. Si se descompone una columna de una matriz como suma de dos columnas, entonces el determinantes es la suma de los determinantes en los que ponemos cada columna en vez de la original.
  2. Si $A$ es una matriz en $M_n(\mathbb{C})$, entonces el determinante de la matriz conjugada $\overline{A}$ es el conjugado del determinante de $A$.
  3. El determinante es multiplicativo.
  4. Si $A$ es una matriz en $M_n(F)$, el determinante de $\lambda A$ es $\lambda^n$ veces el determinante de $A$.
  5. El determinante de una matriz triangular es el producto de sus entradas en la diagonal.
  6. El determinante de una matriz invertible es el inverso multiplicativo del determinante de la matriz.
  7. Una matriz tiene el mismo determinante que su transpuesta.

Proposición. Si $A$ es una matriz en $M_n(\mathbb{C})$, entonces el determinante de la matriz conjugada $\overline{A}$ es el conjugado del determinante de $A$.

Demostración. La conjugación compleja abre sumas y productos. Aplicando esto repetidas veces obtenemos la siguiente cadena de igualdades:

\begin{align*}
\overline{\det(A)}&=\overline{\sum_{\sigma \in S_n} \text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}}\\
&=\sum_{\sigma \in S_n} \overline{\text{sign}(\sigma)a_{1\sigma(1)}\cdot\ldots\cdot a_{n\sigma(n)}}\\
&=\sum_{\sigma \in S_n} \text{sign}(\sigma)\overline{a_{1\sigma(1)}}\cdot\ldots\cdot \overline{a_{n\sigma(n)}}\\
&=\det(\overline{A}).
\end{align*}

$\square$

Hay una última técnica que es fundamental para el cálculo de determinantes: la expansión de Laplace. En algunos textos incluso se usa para definir el determinante. Probablemente la conoces: es la que consiste en hacer el determinante «con respecto a una fila o columna» y proceder de manera recursiva. Hablaremos de ella más adelante y veremos por qué funciona.

Dos problemas de cálculo de determinantes

Problema. Considera la matriz $$A=\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ -1 & -3 & 0 & 1\end{pmatrix}.$$ Calcula los siguientes determinantes:

  • $\det A$
  • $\det(^t A)$
  • $\det(A^{-1})$
  • $\det(^t A A)$
  • $\det(-2A)$

Solución. Hagamos primero el determinante de la matriz $A$. Para ello, haremos operaciones elementales como sigue
\begin{align*}
&\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ -1 & -3 & 0 & 1\end{pmatrix}\\
\to&\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & -\frac{14}{5} & \frac{2}{5} & 1\end{pmatrix}\\
\to &\begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & 0 & -\frac{12}{5} & \frac{33}{5}\end{pmatrix}\\
\to& \begin{pmatrix}5& 1 & 2& 0 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 5 & 2\\ 0 & 0 & 0 & \frac{189}{25}\end{pmatrix}.
\end{align*}

En el primer paso sumamos $1/5$ veces el primer renglón al último. Luego, sumamos $14/5$ veces el segundo renglón al último. Finalmente, sumamos $12/25$ veces el tercer renglón al último. De esta forma, nunca cambiamos el determinante de la matriz. Así, del determinante de $A$ es el mismo que el de la matriz final, que por ser triangular superior es el producto de las entradas en su diagonal. De este modo, $$\det(A) = 5\cdot 1 \cdot 5 \cdot \frac{189}{5} = 189.$$

El determinante de una matriz es igual al de su transpuesta, así que $\det(^t A)=\det(A)$. El determinante $\det(A^{-1})$ es el inverso multiplicativo de $\det(A)$, así que es $\frac{1}{189}$.

Como el determinante es multiplicativo, $$\det({^tA}A)=\det({^tA})\det(A)=189\cdot 189=35721.$$

Finalmente, usando que el determinante es homogéneo y que estamos en $M_4(\mathbb{R})$, tenemos que
\begin{align*}
\det(-2A)&=(-2)^4\det(A)\\
&=16\cdot 189\\
&=3024.
\end{align*}

$\square$

Problema. Sean $a,b,c$ números complejos. Calculando el determinante de la matriz $$A=\begin{pmatrix}a&b&c\\ c&a&b\\ b&c&a\end{pmatrix}$$ en $M_3(\mathbb{C})$ de dos formas distintas, muestra que $$a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$

Solución. Usando la técnica para determinantes de $3\cdot 3$ tenemos que por un lado,
\begin{align*}
\det(A) &= a^3 + b^3 + c^3 – abc – bca – cab\\
&=a^3+b^3+c^3-3abc.
\end{align*}

Por otro lado, el determinante no cambia si al primer renglón le sumamos los otros dos, así que el determinante de $A$ también es $$\begin{vmatrix}a+b+c&a+b+c&a+b+c\\ c&a&b\\ b&c&a\end{vmatrix}.$$ Como el determinante es homogéneo, podemos factorizar $a+b+c$ de la primera entrada para obtener que $$\det(A)=(a+b+c)\begin{vmatrix}1&1&1\\ c&a&b\\ b&c&a\end{vmatrix}.$$

Aplicando de nuevo la fórmula de determinantes de $3\times 3$, tenemos que $$\begin{vmatrix}1&1&1\\ c&a&b\\ b&c&a\end{vmatrix} = a^2+b^2+c^2-ab-bc-ca.$$

Concluimos entonces que $$\det(A)=(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$$ Igualando ambas expresiones para $\det(A)$ obtenemos la identidad deseada.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $\alpha$ un número real. Encuentra el determinante de la matriz $$\begin{pmatrix}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha \end{pmatrix}.$$
  • Determina para qué valores de $a$ la matriz $$\begin{pmatrix} a & 0 & a & 0 & a \\0 & a & 0 & a & 0 \\ 0 & 0 & a & 0 & 0 \\ 0 & a & 0 & a & 0 \\ a & 0 & a & 0 & a \end{pmatrix}$$ es invertible.
  • Encuentra el determinante de la matriz $$\begin{pmatrix} 2 & 1 & 0 & 0 & 0 \\0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 1 & 0 & 0 & 0 & 2 \end{pmatrix}.$$
  • Sea $x$ un número complejo. Muestra que el determinante de la matriz $$\begin{pmatrix}3x^2-6x+5&2x^2-4x+2&x^2-2x\\ 2x^2-4x+2&2x^2+2x+1&x^2-x\\ x^2-2x&x^2-x&x^2\end{pmatrix}$$ es $x^6$. Sugerencia. Hay una solución simple, factorizando a la matriz como el producto de dos matrices triangulares, una superior y una inferior, una transpuesta de la otra.
  • Muestra que si $A=\begin{pmatrix}0& 1 \\ 1 & 1\end{pmatrix}$, entonces $$A^n=\begin{pmatrix} F_{n-1} & F_n\\ F_n & F_{n+1}\end{pmatrix},$$ donde $\{F_n\}$ es la sucesión de Fibonacci. Muestra que para los números de Fibonacci se satisface que $$F_{2n}=F_n(F_{n+1}+F_{n-1}).$$

Más adelante…

En esta entrada vimos varias formas para calcular el determinante de una matriz. Cuando nos enfrentemos con un problema que requiere el cálculo de un determinante, tenemos que elegir la que más nos convenga (o la que requiera menos pasos). La mejor forma de desarrollar un poco de «intuición» al momento de elegir el mejor método para calcular determinantes es haciendo ejercicios.

A continuación pondremos en práctica lo que aprendimos en esta entrada haciendo varios ejercicios de cálculo de determinantes.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»