Archivo de la etiqueta: isometría

Geometría Analítica I: Clasificación isométrica de curvas cuadráticas

Introducción

Ya vimos cómo afectan las traslaciones y las transformaciones ortogonales a los polinomios cuadráticos, en esta entrada, usaremos todo lo que hemos aprendido de las entradas anteriores, para dar la clasificación isométrica de las curvas.

Clasificación

Vamos a demostrar, por medio de los siguientes teoremas, que cualquier polinomio cuadrado es isométricamente equivalente a alguna de las nueve posibles familias canónicas que mencionamos en entradas anteriores, cuando clasificamos las curvas.

Debido a que vimos que el polinomio cuadrático $P(x)=x*Ax+2b*x+c$ con $A=A^T\neq 0$, lo podemos componer con una isometría de la forma $g(x)=Bx+h$ con $B\in O(2)$ y obtener una ecuación de la forma:

\begin{equation}(P\circ g)(x)=x*(B^TAB)x+2B^T(Ah+b)*x+P(h)\end{equation}

Entonces, observa que el análisis para esta clasificación, puede partirse en dos grandes casos que dependen del determinante de la matriz, es decir, cuando $det(A)\neq 0$ y cuando $det(A)=0$.

Antes de analizar cada uno de estos casos, veamos un Lema que nos va a ayudar.

Lema 4.14: Si A es una matriz simétrica con valores propios $\alpha$ y $\beta$, entonces $det(A)=\alpha \beta$

Demostración

Sea $B$ una rotación que diagonaliza a $A$, entonces:

\begin{equation} \alpha \beta=det\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}=det(B^TAB)\end{equation}

Y recuerda que el determinante es una función lineal, lo que nos permite realizar la siguiente igualdad:

\begin{equation} \alpha \beta=det(B^TAB)=det(B^T)det(A)det(B)=1*det(A)*1=det(A)\end{equation}

Date cuenta que, con las igualdades anteriores, ya podemos dar por concluida la demostración.

Ahora sí podemos analizar cada uno de los casos que mencionamos al inicio.

Caso 1: $det(A)\neq 0$

De aquí, vamos a separar en varios casos, pero empecemos realizando un análisis general. Nombremos como el centro a $h=-A^{-1}b$ y a $B$ como una rotación que diagonalice a $A$. Entonces, observa que $P$ es isométricamente equivalente a un polinomio de la siguiente forma:

\begin{equation} P_1(x,y)=\alpha x^2+\beta y^2+\gamma\end{equation}

A continuación, vamos a encontrar estas equivalencias usando el Lema 4.14.

Caso 1.1 $det(A)>0$

Hay $3$ posibilidades:

  • $\gamma =0$, entonces la única solución es $(x,y)=(0,0)$
  • $\gamma$ del mismo signo que $\alpha$ y $\beta$, entonces la curva es vacía porque no hay soluciones reales.
  • $\gamma$ de signo opuesto que $\alpha$ y $\beta$, entonces, los ceros de $P_1$ coinciden con las soluciones canónicas de la elipse con $a=\sqrt{\frac{-\gamma}{\alpha}}, b=\sqrt{\frac{-\gamma}{\beta}}$ dada por:

\begin{equation}\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\end{equation}

Caso 1.2 $det(A)<0$

Hay $2$ posibilidades:

  • $\gamma=0$, entonces $P_1$ es una diferencia de cuadrados que, como $\alpha>0$, entonces $a=sqrt{\alpha}, b=\sqrt{-\beta}$ y puede factorizarse como se muestra a continuación. Además, esto implica que se trata de dos rectas cuya intersección es el centro.

\begin{equation}(ax+by)(ax-by)\end{equation}

  • $\gamma\neq 0$, entonces, podemos elegir el primer vector propio correspondiente a $x$, de manera que su valor propio $\alpha$ tenga signo contrario a $\gamma$, lo que implica que los ceros de $P_1$ corresponden a las soluciones de la ecuación canónica de la hipérbola que tiene a $a=\sqrt{-\frac{\gamma}{\alpha}}$ y $b=\sqrt{\frac{\gamma}{\beta}}$, cuya ecuación se puede expresar como:

\begin{equation}\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\end{equation}

Caso 2: $det(A)= 0$

Observa que, en este caso, no tenemos la seguridad de eliminar la parte lineal y que nos conviene simplificar la parte cuadrática. Por el Lema 4.14, uno de los valores propios es cero y el otro es distinto de cero.

Entonces, $P$ es isométricamente equivalente a un polinomio de la forma:

\begin{equation}(x+\alpha )^2+\beta y+(\gamma – \alpha^2)\end{equation}

Comprueba que, si hacemos el cambio de variable dado por $x’=x+\alpha$, podemos simplificar el polinomio anterior como:

\begin{equation}P_2(x,y)=x^2+ay+b\end{equation}

Y de nuevo tenemos dos subcasos.

Caso 2.1 $a=0$

  • $b<0$, entonces, $P_2$ define dos rectas paralelas.
  • $b=0$, entonces $P_2$ es una recta doble.
  • $b>0$, entonces $P_2$ consiste en dos rectas imaginarias.

Caso 2.2 $a\neq 0$

SI hacemos el cambio de variable $y’=y+\frac{b}{a}$, tenemos que $P$ es isométricamente equivalente al polinomio:

\begin{equation}x^2+ay\end{equation}

Que define una parábola.

Tarea moral

  1. Encuentra un polinomio que defina las siguientes curvas cuadráticas:
    • La hipérbola con semieje principal $4$ en la dirección $(2,1)$, semieje secundario $1$ y centro en $(2,3)$.
    • La elipse con semieje mayor $3$ en la dirección $(3,4)$, semieje menor $2$ y centro en $(-1,2)$.
  2. Describe geométricamente las siguientes curvas cuadráticas que están definidas por los siguientes polinomios, además, da su centro la dirección de los ejes y los parámetros o la ecuación canónica correspondiente:
    • $9x^2-4xy+6y^2-58x+24y+59$
    • $66x^2-24xy+59y^2-108x-94y+1$
    • $-7x^2+48xy+7y^2+158x-6y-88$
    • $32x^2+48xy+18y^2+31x-8y-88$

Más adelante…

En la última sección de esta unidad, veremos otra forma de clasificar las curvas, que es mediante la semejanza de curvas cuadráticas.

Geometría Analítica I: Reflexiones y pasos

Introducción

En entradas anteriores, ya estudiamos algunas isometrías, en esta ocasión, dedicaremos esta sección al estudio de las isometrías que cambian de orientación, es decir, de las que son de la forma $f(x)= E_\theta x+b$ con $E_\theta$ una matriz de reflexión.

Algunas definiciones informales

Antes de empezar con este capítulo, es importante entender a qué nos referimos con reflexiones y «pasos».

  • Reflexiones: Como ya hemos estado estudiando en otras entradas, se tiene una reflexión cuando hay un comportamiento similar a un espejo, es decir, que se tiene exactamente lo mismo y a la misma altura, pero de forma «reflejada».
  • Pasos: Entenderemos por «pasos» a la acción que realizamos al caminar y avanzar. Y, a los pasos con traslación trivial, a los que damos reflejando nuestros pasos con una línea recta.

Un teorema importante

Teorema 3.24: Una isometría que invierte orientación es un paso (con traslación trivial) o una reflexión.

Demostración

La isometría que invierte orientación, como ya mencionamos al inicio, es de la forma $f(x)= E_\theta x+b$ con $E_\theta$ matriz de reflexión.

  • Puntos fijos

Primero vamos a ver si hay puntos fijos, para esto, debemos analizar el siguiente determinante:

\begin{equation}det(I-E_\theta)=det\begin{pmatrix} 1-\cos(2\theta) & – \sin(2\theta) \\
– \sin(2\theta) & 1+\cos(2\theta)\end{pmatrix}\end{equation}

De donde obtenemos:

\begin{equation}det(I-E_\theta)=1-\cos^2(2\theta)-\sin^2(2\theta)=1-1=0\end{equation}

Esto significa que no hay una solución única, es decir, que no tiene solución o tiene muchas soluciones.

  • Análisis de soluciones

Si $b=0$, entonces $f$ es una reflexión y las soluciones son los puntos de la recta espejo: l.

Veamos cuáles son los puntos de la recta l satisfacen la ecuación anterior que encontramos. Si $u=(\cos(\theta),\sin(\theta))$ es el vector unitario que genera a l, entonces:

\begin{equation}E_\theta u=\begin{pmatrix} \cos(2\theta) & \sin(2\theta) \\
\sin(2\theta) & -\cos(2\theta)\end{pmatrix}\begin{pmatrix} \cos(\theta)\\
\sin(\theta) \end{pmatrix}\end{equation}

Donde, después de aplicar las funciones trigonométricas, llegamos a:

\begin{equation}E_\theta u=\begin{pmatrix} \cos(2\theta-\theta)\\
\sin(2\theta-\theta) \end{pmatrix}=u\end{equation}

Esto implica que $E_\theta(tu)=t(E_\theta u)=tu$ son todos los puntos de la recta l que satisfacen que $(I-E_\theta) x=0$.

Si para alguna $b$, el sistema $(I-E_\theta)x=b tiene una solución en particular, $c$, entonces toda la recta l$+c$ tiene soluciones para el sistema y se trata de una reflexión con espejo l$+c$, es decir, se trata de un «paso».

Pero, ¿cuáles son estas $b$ para las que hay solución?

Encontremos estas $b$ pensando de forma geométrica.

Observemos que, para cualquier $x \in \mathbb R^2$, la expresión $(I-E_\theta)x=x-E_\theta x$ indica el vector que va de $E_\theta x$ a $x$ y que es perpendicular al «espejo».

Si vemos a $(I-E_\theta)$ como función, encontraremos que es la proyección ortogonal a $l^T$, lo que implica que su imagen sea $l^T$.

De lo anterior, podemos concluir que la isometría $f(x)=E_\theta x+b$ solo tiene puntos fijos si $b\in l^T$

  • Otra forma de escribir la isometría

Finalmente, observemos que, cualquier $b \in \mathbb R^2$ puede ser escrito como suma de sus componentes respecto a la base normal $u, u^T$, es decir, como: $b-b1+b2$

Entonces podemos escribir la la isometría como:

\begin{equation}f(x)=(E_\theta x+b_2)+b_1\end{equation}

Con lo que concluimos la demostración.

Tarea moral

  1. Demuestra que si $f$ es una isometría que invierte orientación, entonces $f^2=f\circ f$ es una traslación.
  2. Con la notación usada en esta sección, demuestra usando coordenadas e identidades trigonométricas, que $(I-E_\theta) u^T=2u^T$
  3. Si $f(x)=E_\theta x+b$. Encuentra y argumenta geométricamente una expresión para $f^{-1}$.

Más adelante…

No te pierdas la siguiente sección de estudio en la que analizaremos las homotecias y semejanzas.

Geometría Analítica I: Introducción a transformaciones

Introducción

Hasta ahora hemos aprendido nuevos conceptos geométricos euclidianos desde producto interior y ortogonal, normas y ángulos entre vectores hasta distancias. Pero también hemos trabajado implícitamente con diversos tipos de funciones, como son las rectas o las cónicas. Las funciones participan en todas las ramas matemáticas e incluso en muchas disciplinas científicas y sociales, por lo que al principio de la unidad brindaremos las nociones de funciones necesarias que les permitirán asimilar de mejor manera los temas que hemos visto y avanzar a los temas esenciales de ésta unidad, los cuales son Transformaciones y Matrices.

Comenzaremos con el tema de transformaciones y vamos a llamar transformación en el plano a toda función que hará corresponder a cada punto del plano otro punto del mismo; es decir, las transformaciones son operaciones geométricas que nos permiten deducir una nueva figura a partir de una que previamente tenemos. La nueva figura se llama transformada de la original.

Podemos dar un primer escenario de la clasificación de transformaciones que veremos:

  • Isometrías: Son cambios de posición (orientación) de una determinada figura que no alteran la forma ni tamaño de ésta. Como ejemplos en este rubro tenemos las traslaciones, las rotaciones o las reflexiones (simetrías).

En la imagen tenemos el caso de una transformación de reflexión (o simetría) con respecto al eje $x=0$. Observemos que cada punto de la figura original y la imagen de cada uno de ellos bajo la reflexión se encuentran a igual distancia de una recta llamada eje de simetría.

  • Isomorfismos: Son cambios en una figura determinada que no alteran la forma pero sí el tamaño de ésta. Entre ellas tenemos a las homotecias y las semejanzas.

La imagen muestra un ejemplo de homotecia, la cual es una transformación del espacio (en este caso el plano) que dilata las distancias con respecto a un punto de origen $O$.

  • Composición de transformaciones: Es el proceso por el cual a una figura se le aplican dos o más transformaciones y éstas transformaciones pueden ser de diferente tipo. Veremos el caso de transformaciones afines.
  • Transformaciones ortogonales: Como las longitudes de vectores y ángulos entre ellos se definen mediante el producto interior; éste tipo de transformaciones preservan las longitudes de los vectores y los ángulos entre ellos.

Tarea moral:

Las gráficas de las funciones senoidales son contracciones y/o dilataciones de las gráficas del seno y el coseno.

\begin{align*}
y &= A sen(Bx + C) + D, & y &= Acos(Bx + C) + D,
\end{align*}

donde $|A|$ representa la amplitud y $|B|$ a la cantidad de veces que se repite un ciclo en el intervalo desde $0$ hasta $2 \pi$. Por otro lado $C$ determina el desplazamiento horizontal de las gráficas y $D$ el desplazamiento vertical de las gráficas. Además, $\dfrac{2 \pi}{|B|}$ es el periodo de la función y nos indica la la longitud de un ciclo.

Ejercicio 1. Identificar la amplitud, el periodo y graficar las funciones:

  • $y = 3 sen (2x),$
  • $y = 2 cos (x),$
  • $y = 2 + sen(x)$
  • $y = \dfrac{1}{2} sen \left( \dfrac{1}{2} x \right)$

Ejercicio 2. Grafiquen las siguientes funciones y analicen el efecto de las constantes con respecto a las gráficas del seno y coseno.

  • $y = sen(x + \pi)$
  • $y = cos(x+2) + 3$

Más adelante:

La tarea moral tiene un propósito, y es que recordemos cómo una función se ve afectada al variar parámetros específicos. Con ello podremos darnos cuenta que no estamos tan enajenados al tema de transformación de funciones que estaremos trabajando en esta unidad.

En la siguiente entrada repasaremos las nociones necesarias de funciones que nos permitirán definir formalmente el concepto de transformaciones y tratar posteriormente con su clasificación.

Entradas relacionadas

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso: