Archivo de la etiqueta: suma

Álgebra Superior II: El anillo de polinomios con coeficientes reales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Estamos listos para la cuarta y última parte del curso, en donde construiremos el anillo de polinomios con coeficientes reales. Los elementos de este anillo son polinomios, los cuales aparecen en numerosas áreas de las matemáticas. Tras su construcción, aprenderemos varias herramientas para trabajar con ellos.

En las tres primeras partes del curso ya trabajamos con otras estructuras algebraicas. Hasta ahora, hemos hablado de lo siguiente:

  • Naturales: Construimos a partir de teoría de conjuntos al conjunto $\mathbb{N}$ de números naturales, sus operaciones y orden. De lo más relevante es que dentro de los naturales podemos hacer definiciones por recursión y pruebas por indución.
  • Enteros: Con $\mathbb{N}$ construimos a los enteros $\mathbb{Z}$, sus operaciones y orden. Hablamos de divisibilidad y factorización. Esto dio pie a construir $\mathbb{Z}_n$, los enteros módulo $n$, junto con su aritmética. Aprendimos a resolver ecuaciones en $\mathbb{Z}$ y sistemas de congruencias.
  • Racionales y reales: Mencionamos brevemente cómo se construye $\mathbb{Q}$ a partir de $\mathbb{Z}$ y cómo se construye $\mathbb{R}$ a partir de $\mathbb{Q}$. Tanto $\mathbb{R}$ como $\mathbb{Q}$ son campos, así que ahí se pueden hacer sumas, restas, multiplicaciones y divisiones.
  • Complejos: A partir de $\mathbb{R}$ construimos el campo $\mathbb{C}$ de los números complejos. Definimos suma, multiplicación, inversos, norma y conjugados. Luego, desarrollamos herramientas para resolver varios tipos de ecuaciones en $\mathbb{C}$. Finalmente, construimos las funciones exponenciales, logarítmicas y trigonométricas.

Quizás a estas alturas del curso ya veas un patrón de cómo estamos trabajando. Aunque varias de estas estructuras ya las conocías desde antes, hay una primer parte importante que consiste en formalizar cómo se construyen. Luego, vimos cómo se definen las operaciones en cada estructura y qué propiedades tienen. Haremos algo muy parecido con los polinomios.

Intuición de los polinomios

La idea de esta entrada es llegar a los polinomios que ya conocemos, es decir, a expresiones como la siguiente: $$4+5x+\frac{7}{2}x^2-x^4+3x^5.$$ Lo que tenemos que formalizar es qué significa esa «x», y cómo le hacemos para sumar y multiplicar expresiones de este tipo.

Intuitivamente, lo que queremos ese que en la suma «se sumen términos del mismo grado» y que en el producto «se haga la distribución y se agrupen términos del mismo grado». Por ejemplo, queremos que la suma funcione así

\begin{align*}
(1+&x-x^2+3x^3)+(-7+3x+x^2+2x^3+x^4)\\
&=(1-7)+(1+3)x+(-1+1)x^2+(3+2)x^3+(0+1)x^4\\
&=-6+4x+0x^2+5x^3+x^4\\
&=-6+4x+5x^3+x^4,
\end{align*}

y que la multiplicación funcione así

\begin{align*}
(2&+3x)(5+x+x^2)\\
&=2(5+x+x^2)+3x(5+x+x^2)\\
&=(10+2x+2x^2)+(15x+3x^2+3x^3)\\
&=10+(2+15)x+(2+3)x^2+3x^3\\
&=10+17x+5x^2+3x^3.
\end{align*}

El exponente más grande de una $x$ puede ser tan grande como queramos, pero no se vale que los polinomios tengan una infinidad de términos. Así, queremos descartar cosas del estilo $$1+x+x^2+x^3+x^4+\ldots,$$ en donde sumamos indefinidamente.

Construcción de polinomios

Para construir polinomios formalmente, tenemos que elegir de dónde van a venir sus coeficientes. Puede ser $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{Z}$ o incluso $\mathbb{Z}_7$, digamos. Nosotros nos enfocaremos en construir los polinomios con coeficientes en $\mathbb{R}$, que tiene la ventaja de ser un campo. Algunas de las propiedades que probaremos se valen para cualquier elección de coeficientes, pero otras no. No profundizaremos en estas diferencias, pero es bueno que lo tengas en mente para tu formación matemática posterior.

Una buena idea para formalizar el concepto de polinomio, es notar que un polinomio está determinado por la lista de sus coeficientes, con esta idea en mente, podemos relacionar nuestra búsqueda con un concepto conocido de Cálculo.

Definición. Dado un conjunto $X$, una sucesión de elementos de $X$ es una función $a:\mathbb{N}\to X$. Para $n$ en $\mathbb{N}$, a $a(n)$ usualmente lo denotamos simplemente por $a_n$, y a la sucesión $a$ por $\{a_n\}$.

Definición. El soporte de una sucesión es el conjunto de naturales $n$ tales que $a_n\neq 0$.

Podemos «visualizar» los primeros términos de una sucesión así: $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ en donde podemos poner tantos términos como queramos y los puntos suspensivos indican que «sigue y sigue». Por supuesto, usualmente esta visualización no puede guardar toda la información de la sucesión, pero puede ayudarnos a entenderla un poco mejor.

Ejemplo. Si tomamos la función identidad $\text{id}:\mathbb{N}\to \mathbb{N}$, obtenemos la sucesión $$(0,1,2,3,4,5,6,7,\ldots).$$

Al tomar la función $a:\mathbb{N}\to \mathbb{Z}$ tal que $a_n=(-1)^n$, obtenemos la sucesión $$(1,-1,1,-1,1,-1,\ldots).$$

$\square$

Los polinomios son aquellas sucesiones de reales que «después de un punto tienen puros ceros».

Definición. Un polinomio con coeficientes reales es una sucesión $\{a_n\}$ de reales tal que $a_n\neq 0$ sólo para una cantidad finita de naturales $n$.

En otras palabras, un polinomio es una sucesión con soporte finito. Si visualizamos a un polinomio como una sucesión, entonces es de la forma $$(a_0,a_1,a_2,a_3,a_4,a_5,\ldots),$$ en donde a partir de un punto ya tenemos puros ceros a la derecha. Por conveniencia, marcaremos ese punto con un $\overline{0}$.

Ejemplo. La sucesión $$\left(5,7,\frac{7}{2},0,-1,3,0,0,0,\ldots\right),$$ en la que después del $3$ ya todos los términos son ceros, representa a un polinomio. Con la convención de arriba, podemos escribirlo como $$\left(5,7,\frac{7}{2},0,-1,3,\overline{0}\right).$$ Su soporte consiste de aquellas posiciones en las que la sucesión no es cero, que son $0,1,2,4,5$.

La sucesión $$(1,-1,1,-1,1,-1,\ldots)$$ dada por $a_n=(-1)^n$ no es un polinomio, pues podemos encontrar una infinidad de términos no cero.

$\square$

Para que las definiciones de la siguiente sección te hagan sentido, puedes pensar de manera informal que la sucesión $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ representa al polinomio $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots.$$ La última condición en la definición de polinomio es la que garantiza que «tenemos un número finito de sumandos».

Definición. Definimos al conjunto de polinomios con coeficientes reales como $$\mathbb{R}[x]:=\{ p: p \text{ es polinomio con coeficientes reales}\}.$$

La igualdad de polinomios de define término a término, es decir.

Definición. Sean $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$. Decimos que $a=b$ si para todo natural se tiene $a_n=b_n$.

En las siguientes secciones definiremos las operaciones de suma y producto en $\mathbb{R}[x]$.

Suma y producto de polinomios

Los polinomios se suman «entrada a entrada».

Definición. Dados dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$, definimos su suma como el polinomio $$a+b:=\{a_n+b_n\},$$ o bien, en términos de sucesiones, como la sucesión $a+b:\mathbb{N}\to \mathbb{R}$ tal que $(a+b)(n)=a(n)+b(n)$.

Observa que nos estamos apoyando en la suma en $\mathbb{R}$ para esta definición.

Ejemplo. Los polinomios $$\left(0,2,0,4,-1,\frac{2}{3},\overline{0}\right)$$ y $$\left(1,-2,-1,-4,-2,\overline{0}\right)$$ tienen como suma al polinomio $$\left(0+1,2-2,0-1,4-4,-1-2,\frac{2}{3}+0,0+0,\ldots\right),$$ que es $$\left(1,0,-1,0,-3,\frac{2}{3},\overline{0}\right).$$

$\square$

La suma de dos polinomios sí es un polinomio pues claramente es una sucesión, y su soporte se queda contenido en la union de los soportes de los sumandos.

La siguiente definición guarda la idea de que para multiplicar queremos distribuir sumandos y agrupar términos del mismo grado. Tiene sentido si piensas en la asociación intuitiva informal que discutimos al final de la sección anterior.

Definición. Dados dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$, definimos su producto como el polinomio $$ab:=\{c_n\},$$ en donde $c_n$ está dado por $$c_n:=\sum_{i+j=n} a_ib_j,$$ en otras palabras, $$c_n=a_0b_n+a_1b_{n-1}+\ldots+a_{n-1}b_1+a_nb_0.$$

Aquí nos estamos apoyando en la suma y producto en $\mathbb{R}$ para definir la multiplicación de polinomios.

Una forma práctica de hacer el producto es mediante una tabla. En la primer fila ponemos al primer polinomio y en la primer columna al segundo. Las entradas interiores son el producto de la fila y columna correspondiente. Una vez que hacemos esto, la entrada $c_j$ del producto es la suma de los elementos en la $j$-ésima «diagonal».

Ejemplo. Multipliquemos a los polinomios $$a=(3,-2,0,1,\overline{0})$$ y $$b=(0,2,7,\overline{0}).$$

Ponemos a $a$ y $b$ en la primer fila y columna respectivamente de la siguiente tabla:

$3$$-2$$0$$1$
$0$
$2$
$7$

Luego, en cada entrada interior de la tabla ponemos el producto de los coeficientes correspondientes:

$3$$-2$$0$$1$
$0$$3 \cdot 0$$-2 \cdot 0$$0\cdot 0$$1\cdot 0$
$2$$3 \cdot 2$$-2 \cdot 2$$0\cdot 2$$1\cdot 2$
$7$$3 \cdot 7$$-2 \cdot 7$$0\cdot 7$$1\cdot 7$

Después, hacemos las operaciones:

$3$$-2$$0$$1$
$0$$0$$0$$0$$0$
$2$$6$$-4$$0$$2$
$3$$21$$-14$$0$$7$

Finalmente, para encontrar el coeficiente $c_j$ del producto, hacemos la suma de las entradas en la $j$-ésima diagonal dentro de la tabla, es decir:
\begin{align*}
c_0&=0\\
c_1&=6+0=6\\
c_2&=21-4+0=17\\
c_3&=-14+0+0=-14\\
c_4&=0+2=2\\
c_5&=7.
\end{align*}

De esta forma, el polinomio producto es $$(0,6,17,-14,2,7,\overline{0}).$$ Es muy recomendable que notes que esto coincide con el producto (por ahora informal) \begin{align*}(3-&2x+x^3)(2x+7x^2)\\&=6x+17x^2-14x^3+2x^4+7x^5.\end{align*}

$\square$

El anillo de polinomios con coeficientes reales

Los polinomios y los enteros se parecen, en el sentido de que como estructura algebraica comparten muchas propiedades. La idea de esta sección es formalizar esta afirmación.

Teorema. El conjunto $\mathbb{R}[x]$ con las operaciones de suma y producto arriba definidos forman un anillo.

Demostración. Por una parte, tenemos que mostrar que la suma es asociativa, conmutativa, que tiene neutro e inversos aditivos. Por otra parte, tenemos que mostrar que el producto es asociativo. Finalmente, tenemos que mostrar que se vale la ley distributiva.

Tomemos dos polinomios $a=\{a_n\}$, $b=\{b_n\}$ y un natural $n$. El término $n$ de $a+b$ es $a_n+b_n$ y el de $b+a$ es $b_n+a_n$, que son iguales por la conmutatividad de la suma en $\mathbb{R}$. De manera similar, se muestra que la suma es asociativa.

El polinomio $(\overline{0})$ es la identidad de la suma. Esto es sencillo de mostrar y se queda como tarea moral. Además, si $a=\{a_n\}$ es un polinomio, entonces $\{-a_n\}$ es una sucesión con el mismo soporte (y por lo tanto finito), que cumple que $$\{a_n\}+\{-a_n\}=(0,0,0,\ldots)=(\overline{0}),$$ así que la suma tiene inversos aditivos.

Ahora probemos la asociatividad del producto. Tomemos tres polinomios $a=\{a_n\}$, $b=\{b_n\}$, $c=\{c_n\}$ y un natural $n$. Hagamos el producto $(ab)c$. Para cada $i$, el $i$-ésimo término de $ab$ es un cierto $d_i$ dado por $$d_i = \sum_{k+l=i} a_k b_l.$$ El $n$-ésimo término de $(ab)c$ es entonces
\begin{align*}
\sum_{i+j=n}d_ic_j &= \sum_{i+j=n}\sum_{k+l=i} a_kb_lc_j\\
&=\sum_{k+l+j=n}a_kb_lc_j.
\end{align*}

Un argumento análogo muestra que el $n$-esimo término de $a(bc)$ es también \begin{align*}
\sum_{k+l+j=n}a_kb_lc_j,
\end{align*}

lo cual muestra que la multiplicación es asociativa.

Lo último que nos queda por probar es la ley distributiva. Tomemos tres polinomios $a=\{a_n\}$, $b=\{b_n\}$, $c=\{c_n\}$ y un natural $n$. Usamos las propiedades de las operaciones en $\mathbb{R}$ para ver que el $n$-ésimo término de $a(b+c)$ es
\begin{align*}
\sum_{i+j=n} a_i(b_j+c_j)&=\sum_{i+j=n} (a_ib_j+ a_i c_j)\\
&=\sum_{i+j=n} a_ib_j + \sum_{i+j=n} a_ic_j.
\end{align*}

A la derecha tenemos el $n$-ésimo término de $ab$ sumado con el $n$-ésimo término de $ac$, así que coincide con el $n$-ésimo término de la suma $ab+ac$. Esto muestra que $a(b+c)$ y $ab+ac$ son iguales término a término y por lo tanto son iguales como polinomios.

$\square$

Como de costumbre, al inverso aditivo de un polinomio $a$ le llamamos $-a$, y definimos $a-b:=a+(-b)$.

Proposición. La multiplicación en $\mathbb{R}[x]$ es conmutativa.

Demostración. Tomemos dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$. Tenemos que ver que $ab$ y $ba$ son iguales término a término. Tomemos entonces un natural $n$. El término $c_n$ de $ab$ es $$c_n=\sum_{i+j=n} a_ib_j,$$ y el término $d_n$ de $ba$ es $$d_n=\sum_{i+j=n} b_ia_j.$$ Por la conmutatividad de la suma y el producto en $\mathbb{R}$, tenemos que $c_n=d_n$.

$\square$

Proposición. La multiplicación en $\mathbb{R}[x]$ tiene identidad.

Demostración. El polinomio $(1,\overline{0})$ es la identidad multiplicativa. Esto es sencillo de mostrar y se queda como tarea moral.

$\square$

Proposición. Si $a$ y $b$ son polinomios en $\mathbb{R}[x]$ distintos del polinomio $(\overline{0})$, entonces su producto también.

Demostración. Para ello, tomemos el mayor natural $m$ tal que $a_m\neq 0$ y el mayor natural $n$ tal que $b_n\neq 0$. Estos existen pues $a$ y $b$ no son el polinomio $(\overline{0})$, y su soporte es finito.

Cualquier pareja de naturales $k$ y $l$ tales que $k+l=m+n$ con $k\leq m-1$ cumple $l\geq n+1.$ Así, si $k+l=m+n$ tenemos que:

  • Si $k\leq m-1$, entonces $b_l=0$ y por lo tanto $a_kb_l=0$
  • Si $k\geq m+1$, entonces $a_k=0$ y por lo tanto $a_kb_l=0$
  • Finalmente, si $k=m$, entonces $l=n$ y $$a_kb_l=a_mb_n\neq 0.$$

De esta forma, el $(m+n)$-ésimo término de $ab$ es $$\sum_{k+l=m+n} a_k b_l=a_mb_n\neq 0,$$ de modo que $ab$ no es el polinomio $(\overline{0})$.

$\square$

Corolario. En $\mathbb{R}[x]$ se vale la regla de cancelación, es decir, si $a,b,c$ son polinomios, $a\neq 0$ y $ab=ac$, entonces $b=c$.

Demostración. De la igualdad $ab=ac$ obtenemos la igualdad $a(b-c)=0$. Como $a\neq 0$, por la proposición anterior debemos tener $b-c=0$, es decir, $b=c$.

$\square$

A un anillo conmutativo cuya multiplicación tiene identidad y en donde se vale la regla de cancelación se le conoce como un dominio entero.

Teorema. El anillo $\mathbb{R}[x]$ es un dominio entero.

Con esto terminamos la construcción de $\mathbb{R}[x]$ y de sus operaciones. Cuando trabajamos con los polinomios de manera práctica resulta engorroso mantener esta notación de sucesiones. En la siguiente entrada justificaremos el uso de la notación «usual» de los polinomios, en la que usamos la letra «x» y exponentes.

Tarea moral

  • Justifica por qué el soporte del producto de dos polinomios es finito.
  • Muestra que la suma en $\mathbb{R}[x]$ es asociativa.
  • Verifica que el polinomio $(\overline{0})$ es la identidad aditiva en $\mathbb{R}[x]$.
  • Verifica que el polinomio $(1,\overline{0})$ es la identidad multiplicativa en $\mathbb{R}[x]$.
  • Considera los polinomios $a=\left(\frac{1}{3},4,\frac{5}{7},8,\overline{0}\right)$ y $b=\left(0,0,\frac{2}{5},\frac{3}{4},\overline{0}\right)$. Determina $a+b$ y $a\cdot b$.

Más adelante

Ya que definimos el anillo de polinomios con coeficientes en los reales, y sus operaciones, el siguiente paso que haremos será practicar como operar polinomios.

Después de esto empezaremos a desarrollar la teoría sobre los polinomios. Como ya hemos mencionado, y como te podrás dar cuenta en las siguientes entradas, esta teoría será muy similar a la que desarrollamos para los números enteros cuando vimos los temas de teoría de números.

Entradas relacionadas

Seminario de Resolución de Problemas: La integral

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya hemos cubierto varios temas de cálculo y resolución de problemas. Comenzamos platicando acerca de continuidad y de dos teoremas importantes para funciones continuas: el teorema del valor intermedio y el teorema del valor extremo. Después, hablamos acerca de derivadas y de dos teoremas importantes para funciones diferenciables: el teorema de Rolle y el teorema del valor medio. Luego, vimos que la diferenciabilidad también nos ayuda a encontrar límites de cocientes y potencias de formas indefinidas mediante la regla de L’Hôpital. En esta entrada y la siguiente hablaremos de la integral y cómo las ideas detrás de su construcción, así como sus propiedades, pueden ayudar a resolver problemas.

Para entender esta sección bien, es importante que conozcas la construcción de la integral de Riemann en una variable, así como sus propiedades principales. También supondremos que conoces las técnicas usuales para resolver integrales. Esto se hace durante el primer año de un curso de cálculo a nivel licenciatura. También puedes revisarlo en la literatura clásica, como el libro de Cálculo de Spivak.

Usar la integral como un área

La integral es por definición un límite de sumas superiores o inferiores. Hay problemas en los que podemos aprovechar esto para entender una suma o una sucesión. A grandes rasgos lo que hacemos es:

  • Interpretar la sucesión o serie como una suma de areas correspondiente a una suma superior o inferior de cierta integral $\int f(x) \,dx$.
  • Usar lo que sabemos de integración para poder decir algo del área dada por $\int f(x)\, dx$
  • Regresar esta información al problema original.

Veamos un ejemplo de esto.

Problema. Calcula el siguiente límite $$\lim_{n\to \infty} \left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2n-1}\right).$$

La cantidad de términos de este límite depende de $n$, así que no podemos hacerlos uno por uno. No hay una forma sencilla de hacer la suma. Tampoco parece que podamos usar la regla de L’Hôpital. Lo que haremos es entender a la expresión dentro del límite de manera geométrica.

Sugerencia pre-solución. Haz una figura con la que puedas relacionar el límite que buscamos con cierta área que puedas expresar en términos de una integral.

Solución. Consideremos la gráfica de la función $f(x)=\frac{1}{x}$ en el intervalo $[n,2n]$ y el área debajo de esta gráfica, que mostramos en verde a continuación.

Integral de 1/x en el intervalo de n a 2n.
Gráfica de $1/x$ en el intervalo $[n,2n]$

Notemos que la suma que aparece en el problemas corresponde a sumar las áreas de los rectángulos de base $1$ y alturas $\frac{1}{n}$, $\frac{1}{n+1}$, $\ldots$, $\frac{1}{2n-1}$, que podemos encontrar en azul en la siguiente figura.

Cota con suma superior
Dar una cota inferior para nuestra expresión.

Así, obtenemos que podemos acotar inferiormente nuestra suma de la siguiente manera:

\begin{align*}
\frac{1}{n}+\ldots+\frac{1}{2n-1} &> \int_n^{2n} \frac{1}{x}\, dx\\
&= (\log x) \Big|_n^{2n} \\
&= \log 2.
\end{align*}

De manera similar, podemos pensar ahora en rectángulos que queden por debajo de la gráfica de la función, y que en total su area es menor que el valor de la integral. Los mostramos a continuación en color rojo:

Cota con suma inferior
Dar una cota superior para nuestra expresión (un poco cambiada)

De aquí, podemos dar la siguiente cota:

\begin{align*}
\frac{1}{n+1}+\ldots+\frac{1}{2n} &< \int_n^{2n} \frac{1}{x}\, dx\\
&= (\log x) \Big|_n^{2n} \\
&= \log 2.
\end{align*}

Si juntamos ambas desigualdades, deducimos que $$\log 2< \frac{1}{n}+\ldots+\frac{1}{2n-1}<\left(\frac{1}{n}-\frac{1}{2n}\right) + \log 2.$$

Ahora sí podemos hacer $n\to \infty$. Como ambos lados de la desigualdad convergen a $\log 2$, tenemos que la sucesión que nos interesa también debe converger a $\log 2$.

$\square$

Traducir a una integral y usar técnicas de integración

Hay varias técnicas que podemos usar para realizar integrales: cambio de variable, integración trigonométrica, integración por partes, integración por fracciones parciales, etc. En algunas ocasiones podemos transformar un problema a una integral, aplicar una de estas técnicas, y luego regresar al contexto original. Veamos un ejemplo de esto.

Problema. Demuestra que para cualquier par de enteros positivos $m$ y $n$ tenemos que $$\sum_{k=0}^n (-1)^k \binom{n}{k}\frac{1}{k+m+1} = \sum_{k=0}^m (-1)^k \binom{m}{k} \frac{1}{k+n+1}.$$

Sugerencia pre-solución. Intenta formular un problema equivalente aprovechando que para cualquier entero no negativo $r$ se tiene que $\frac{1}{r+1}=\int_0^1 t^r \, dt$. Tendrás que usar esto varias veces, usar la fórmula de binomio de Newton y después aprovechar una simetría para hacer un cambio de variable.

Solución. Notemos que $$\frac{1}{k+m+1}=\int_0^1 t^{k+m} \, dt.$$ Substituyendo en la expresión de la izquierda, obtenemos que la suma buscada es $$\sum_{k=0}^n(-1)^k\binom{n}{k}\int_0^1t^{k+m}\, dt.$$ Usando la linealidad de la integral y la fórmula del binomio de Newton tenemos que esta suma es igual a
\begin{align*}
&\int_0^1 \sum_{k=1}^n (-1)^k \binom{n}{k} t^{k+m}\, dt \\
=& \int_0^1 t^m(1-t)^n \, dt.
\end{align*}

Con el cambio de variable $s=1-t$, la integral anterior es igual a $$\int_0^1 s^n(1-s)^m.$$ Pero por un argumento inverso al que hicimos para llegar a la primer integral, esta segunda integral es igual a $$\sum_{k=0}^m (-1)^k\binom{m}{k}\frac{1}{k+n+1}.$$

Esto es justo el lado derecho en la identidad que queríamos.

$\square$

El teorema de Lebesgue

No todas las funciones son integrables con la definición de Riemann (que aquí simplemente llamaremos «ser integrable»), pues puede ser que el límite de las sumas superiores no sea igual al de las sumas inferiores. Un resultado profundo en cálculo es el criterio de Lebesgue, que caracteriza aquellas funciones acotadas que tienen integral de Riemann en un intervalo.

Teorema (criterio de Lebesgue). Una función acotada $f:[a,b]\to \mathbb{R}$ es integrable si y sólo si su conjunto de discontinuidades tiene medida $0$.

El teorema de Lebesgue da una prueba sencilla de que si $f$ y $g$ son integrables, entonces su producto también, lo cual no es fácil de probar a partir de la definición. A continuación esbozamos esta prueba.

Las discontinuidades de $f^2$ están contenidas en las de $f$, de modo que si $f$ es integrable, por el teorema de Lebesgue $f^2$ también. Además, suma y resta de integrables es sencillo ver que es integrable, de modo que $(f+g)^2$ también lo es. Para concluir, notamos que $$fg=\frac{(f+g)^2-f^2-g^2}{2},$$ de modo que $fg$ es integrable.

Veamos un problema que combina varias de las ideas de cálculo que hemos visto.

Problema. Si $f:[a,b]\to \mathbb{R}$ es una función tal que $f+\sin(f)$ es integrable, entonces $f$ también es integrable.

Sugerencia pre-solución. Usa el criterio de Lebesgue. Necesitarás estudiar las discontinuidades con cuidado, para lo cual es útil recordar cómo interactúan las funciones continuas con las sucesiones convergentes.

Solución. Como $f+\sin(f)$ es integrable, entonces es acotada. Así, $f$ también lo es. La función $g(x)=x+\sin(x)$ tiene derivada $1+\cos(x)\geq 0$ y que es $0$ sólo en un conjunto discreto de puntos, de modo que es estrictamente creciente. Además, los límites en $-\infty$ y $\infty$ son $-\infty$ e $\infty$ respectivamente. Por el teorema del valor intermedio, pasa por todos los reales. Así, $g$ es una función biyectiva.

Mostraremos que las discontinuidades de $f$ están contenidas en las de $f+\sin(f)$, o bien, dicho de otra forma, que si $f+\sin(f)$ es continua en $x$, entonces $f$ también. Tomemos una sucesión $\{x_n\}$ que converge a $x$. Como $f+\sin(f)$ es continua en $x$, tenemos que $\{f(x_n)+\sin(f(x_n))\}$ converge a $f(x)+\sin(f(x))=g(f(x))$.

Como $f$ es una función acotada, la sucesión $\{f(x_n)\}$ es acotada, y para ver que converge a un límite, basta ver que toda subsucesión convergente converge al mismo límite. Tomemos una subsucesión convergente digamos, al límite $L$. Tendríamos que $g(L)=g(f(x))$, y como $g$ es biyectiva tendríamos que $L=f(x)$. En otras palabras, toda subsucesión convergente de $\{f(x_n)\}$ converge a $f(x)$. De esta forma, $\{f(x_n)\}$ converge a $f(x)$. Con esto concluimos que $f$ es continua en $x$.

Concluimos que el conjunto de discontinuidades de $f$ está contenido en el de $f+\sin(f)$, el cual tiene medida $0$. De este modo, el de $f$ también tiene medida $0$ y por el criterio de Lebesgue, es integrable.

$\square$

Más problemas

Hay más ejemplos de problemas relacionados con la integral en la Sección 6.8 del libro Problem Solving through Problems de Loren Larson.

Álgebra Superior II: La conjugación compleja

Por Leonardo Ignacio Martínez Sandoval

Introducción

En una entrada anterior definimos el conjunto $\mathbb{C}$ de los números complejos. Vimos que sus elementos tienen la forma $a+bi$, donde $a$ y $b$ son números reales. Definimos las operaciones de suma y producto, y vimos que, con estas operaciones, $\mathbb{C}$ es un campo. En esta entrada hablaremos acerca de la conjugación compleja.

Definición. Sea $z=a+bi$ un número complejo. El conjugado de $z$ es el número complejo $a-bi$ que denotaremos como $\overline{z}$.

Ejemplo. Sea $z=5+8i$, entonces $\overline{z}=5-8i$. Si $z=\sqrt{3}-8\pi i $, entonces $\overline{z}=\sqrt{3}+8\pi i$.

En la entrada anterior justificamos que podíamos abandonar la notación de parejas, sin embargo en ocasiones seguirá siendo útil pensar al complejo $a+bi$ como el punto $(a,b)$ del plano. Si lo pensamos así, la conjugación compleja manda al punto $(a,b)$ en el punto $(a,-b)$, es decir, se comporta como una reflexión en el eje $x$.

La conjugación compleja se comporta como una reflexión en el eje x
La conjugación compleja se comporta como una reflexión en el eje $x$

Conjugación y operaciones complejas

La conjugación compleja «se comporta bien» con las operaciones definidas en $\mathbb{C}$. Este es el contenido de la siguiente proposición.

Proposición 1. Si $w$ y $z$ son números complejos, entonces:

  • El conjugado de la suma es la suma de los conjugados, es decir, $\overline{w+z}=\overline{w}+\overline{z}$.
  • El conjugado del producto es el producto de los conjugados, es decir, $\overline{wz}=\overline{w}\overline{z}$.

Demostración. Si escribimos a $w=a+bi$ y $z=c+di$ con $a,b,c,d$ números reales. Tenemos que
\begin{align*}
\overline{w+z}&=\overline{(a+c)+(b+d)i}\\
&=(a+c)-(b+d)i\\
&=(a-bi)+(c-di)\\
&=\overline{w}+\overline{z},
\end{align*} lo cual prueba la primera parte de la proposición. Por otro lado
\begin{align*}
\overline{wz}&=\overline{(ac-bd)+(ad+bc)i}\\
&=(ac-bd)-(ad+bc)i\\
&=(ac-(-b)(-d))+(a(-d)+b(-c))i\\
&=(a-bi)(c-di)\\
&=\overline{w}\overline{z},
\end{align*} lo cual prueba la segunda parte.

$\square$

Se pueden mostrar resultados análogos para la conjugación compleja de la resta y cociente. Esto se deja en la tarea moral.

Ejemplo. Considera los números complejos $5+4i$, $3+2i$ y $1-i$. Vamos a determinar el conjugado de su suma de dos formas distintas. Por un lado, si los sumamos obtenemos el complejo $$(5+3+1)+(4+2-1)i=9+5i,$$ cuyo conjugado es $9-5i$.

Por otro lado, podemos conjugar a cada uno de los números de manera independiente para obtener $5-4i$, $3-2i$ y $1+i$. Al hacer la suma de estos complejos, obtenemos $$(5+3+1)+(-4-2+1)i=9-5i.$$ En ambos casos obtenemos lo mismo.

$\square$

La conjugación compleja es autoinversa

Proposición 2. La operación «conjugar» es autoinversa, y por lo tanto es biyectiva.

Demostración. En efecto, si $z=a+bi$, entonces $$\overline{\overline{z}}=\overline{a-bi}=a+bi=z.$$

Para ver que conjugar es suprayectivo, tomemos $z$ en $\mathbb{C}$. Tenemos que $\overline{\overline{z}}=z$, de modo que $z$ está en la imagen de la operación conjugación.

Para ver que conjugar es inyectivo, tomemos $w$ y $z$ en $\mathbb{C}$ tales que $\overline{w}=\overline{z}$. Aplicando conjugación a esta igualdad, y usando la primer parte de la proposición, tenemos que $w=z$.

$\square$

Operaciones de un complejo con su conjugado

Sea $z=a+bi$ un número complejo, a $a$ le llamamos la parte real de $z$ y a $b$ le llamamos la parte imaginaria. Usamos la notación $a=\text{Re}(z)$ y $b=\text{Im}(z)$, respectivamente. Cuidado: la parte imaginaria es un número real. Se llama parte imaginaria porque es la que acompaña a $i$.

Si hacemos operaciones de un complejo con su conjugado, obtenemos valores especiales.

Proposición 3. Sea $z$ un número complejo. Entonces:

  • $z+\overline{z}=2\text{Re}(z)$
  • $z-\overline{z}=2\text{Im}(z) i$
  • $z\overline{z}=\text{Re}(z)^2+\text{Im}(z)^2$

La demostración de la Proposición 3 es sencilla y se deja como tarea moral.

Ejemplo. Si tomamos el número complejo $3+4i$ y le sumamos su conjugado $3-4i$, obtenemos el número real $6$, que es dos veces la parte real de $3+4i$.

Si hacemos la multiplicación $(3+4i)(3-4i)$, obtenemos también un número real: $$3^2-(4i)^2=9-(-16)=25.$$

$\square$

Como corolario de la Proposición 3, obtenemos lo siguiente.

Corolario. Si $z=\overline{z}$, entonces $z$ es un número real.

Demostración. Por la primera parte de la Proposición 3, tenemos que $2z=z+\overline{z}=2\text{Re}(z)$, de modo que $z=\text{Re}(z)$ y por lo tanto $z$ es un número real.

$\square$

Ejercicio. Muestra que el complejo $$\left(\frac{1+\sqrt{5}}{2}+\frac{1-\sqrt{5}}{2} i \right) \left(\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2} i \right)$$ es un número real.

Solución. Podríamos hacer las cuentas y verificar que la parte imaginaria es $0$. Sin embargo, basta con notar que la expresión es el producto de un complejo con su conjugado, es decir, es de la forma $z\overline{z}$. De manera directa, por la última parte de la Proposición 3 obtenemos que es un número real.

$\square$

La conjugación compleja es (casi) el único automorfismo que fija a los reales

En las secciones anteriores vimos que la conjugación compleja deja fijos a los reales y que respeta las operaciones. En esta sección veremos que es la única operación, en $\mathbb{C}$, que hace esto sin ser la identidad.

Teorema. Si $\eta:\mathbb{C}\to \mathbb{C}$ es una función biyectiva. tal que:

  • $\eta$ no es la identidad.
  • $\eta(a)=a$ para todo $a$ real.
  • $\eta(w+z)=\eta(w)+\eta(z)$ para todo par de complejos $w$ y $z$.
  • $\eta(wz)=\eta(w)\eta(z)$ para todo par de complejos $w$ y $z$.

Entonces $\eta$ es la conjugación compleja.

Demostración. Sea $z=a+bi$, tenemos que

\begin{align*}
\eta(a+bi)&=\eta(a)+\eta(bi)\\
&=\eta(a)+\eta(b)\eta(i)\\
&=a+b\eta(i),
\end{align*}

así que basta determinar quién es $\eta(i)$. Por otro lado, como $-1$ es real, tenemos también que
\begin{align*}
-1&=\eta(-1)\\
&=\eta(i\cdot i)\\
&=\eta(i)\eta(i)\\
&=\eta(i)^2,
\end{align*}

de modo que $\eta(i)$ es una raíz de $-1$ y por lo tanto es $i$ o $-i$. Si $\eta(i)=i$, tendríamos que $\eta$ es la identidad, lo cual contradice nuestras hipótesis. Así, $\eta(i)=-i$ y por lo tanto $\eta$ es la conjugación compleja.

$\square$

Tarea moral

  • Considera los números complejos $w_j=5+(2-j)i$, en donde $j$ es un entero en $\lbrace 0,1,2,3,4\rbrace$. Encuentra el valor de la suma $w_0+w_1+w_2+w_3+w_4$ y del producto $w_0w_1w_2w_3w_4$.
  • Toma los números complejos $w$ y $z$. Muestra que $\overline{w-z}=\overline{w}-\overline{z}$ y que si $z\neq 0$, entonces $\overline{w/z}=\overline{w}/ \overline{z}$.
  • Haz la demostración de la Proposición 3
  • ¿Cuáles números complejos satisfacen que $z^2=\overline{z}$?
  • Sea $z$ un número complejo distinto de $0$. ¿Qué obtienes cuando realizas la división $z/\overline{z}$?

En el blog hay una entrada acerca de aplicaciones de la aritmética de números complejos a la resolución de problemas en matemáticas. No formará parte de la evaluación del curso, pero puede ayudarte a entender más profundamente lo que estamos haciendo y a motivar la teoría que desarrollamos.

Álgebra Superior II: Simplificación, suma y producto de complejos

Por Claudia Silva

Introducción

En una entrada de blog anterior, construimos el campo de los números complejos y definimos sus operaciones básicas. Ahora resolveremos algunos problemas de operaciones con complejos.

Haremos dos tipos de problemas. El primer tipo se trata de simplificar expresiones en números complejos para que se vuelvan de la forma $x+yi$ con $x$ y $y$ números reales. El segundo tipo es de realizar operaciones de suma, resta, producto y división de complejos, y luego simplificar.

Simplificación de expresiones complejas

Comenzamos con un video de simplificar expresiones de números complejos.

Expresar en la forma $a+bi$ las expresiones…

Problemas de operaciones con complejos

Ahora vemos varios ejemplos de realizar sumas con números complejos.

Sumar números complejos

En todos los ejemplos del video, realizamos sólo sumas de dos números, pero se podrían realizar sumas con cualquier cantidad de sumandos. Por ejemplo, podemos considerar la suma $$(5+2i)+(8+i)-(1-7i).$$ ¿Cuál sería el resultado de esta operación?

Finalmente, a continuación se muestra un video en donde see realizan operaciones de productos y de divisiones de números complejos.

Productos y divisiones de números complejos

En el video se define al conjugado del número complejo $z=a+bi$, que se denota por $\overline{z}$ y se obtiene de cambiarle el signo a la parte imaginaria. Por ejemplo, $\overline{4-5i}=4+5i$. Si multiplicas a un número complejo $a+bi$ por su conjugado, obtienes el real $a^2+b^2$. Esto es útil para quitar las partes imaginarias de los denominadores de expresiones fraccionales con complejos.

Más ejemplos y práctica extra

En otro curso, el Seminario de Resolución de Problemas, escribimos una entrada de cómo se pueden usar los números complejos para la resolución de problemas matemáticos. Ahí hay teoría más avanzada, pero puedes echarle un ojo para que veas lo que veremos más adelante en el curso.

En la página de Khan Academy en Español, puedes aprender más acerca de los números complejos, así como hacer muchos ejercicios de práctica.

1TFC

Los TFC (Teoremas Fundamentales de los Cuadraditos)

Por Leonardo Ignacio Martínez Sandoval

Esta entrada está motivada por una pregunta en el grupo de Matemáticos de Facebook. Palabras más, palabras menos, alguien preguntaba por qué «derivar es el inverso de integrar», si uno tiene que ver con sacar un área y el otro tiene que ver con sacar una pendiente.

La idea formal que está detrás de esto de que sean «inversas» son los teoremas fundamentales del cálculo (TFC). Pero en esta entrada no me quiero meter con definiciones de límite ni cosas por el estilo. A fin de cuentas es un blog y estamos navegando tranquilos. Así que déjenme trabajar «al ahí se va», osea, informalmente. La idea es entender por qué derivar e integrar son operaciones inversas «con dibujitos» y en un caso más sencillo: el caso discreto. Veremos los teoremas fundamentales de los cuadraditos (TFC). ¡Oh no! ¡Se confunden las siglas! Bueno, ni modo.

Los cuadraditos

Todo empieza con algunos cuadraditos ordenados en columnas. De izquierda a derecha, tenemos 1, 2, 5, 3, 2, 4 y 2 cuadraditos en cada columna. Le voy a llamar $C_j$ a la cantidad de cuadraditos en la columna $j$. Por ejemplo, $C_3=5$.

Funcion

Seguir leyendo…