Archivo de la etiqueta: áreas

Geometría Analítica I: Propiedades de elipses

Introducción

En la entrada anterior definimos qué es una elipse, hablamos de una técnica para trazar una y cómo esta técnica, nos conduce naturalmente a su definición analítica: una elipse es la curva que define al conjunto de puntos que cumplen que la suma a dos puntos distintos llamados focos es constante. Finalmente vimos cómo escribir la ecuación canónica de la elipse; a partir de esta ecuación canónica podemos leer toda su información geométrica.

Ahora, para finalizar nuestro estudio de las elipses, vamos a hablar de sus elementos, propiedades focales y sus propiedades métricas. Verás cómo algunos problemas de aplicación motivan el estudio formal de estas propiedades y extenderemos algunas de ellas para el estudio de las cónicas que nos faltan. Sin más preámbulo, abordaremos el tema.

Elementos de una elipse

En la entrada anterior hicimos mención a algunos de los elementos que componen una elipse. Como mencionamos, a partir de la ecuación canónica puedes leer directamente información como el eje menor y el eje mayor; conociendo estos dos ejes, puedes deducir cuáles son sus vértices y sus focos. Haciendo más cuentas puedes deducir cuál es su lado recto y directrices.

En la siguiente figura puedes observar un diagrama que muestra todos los elementos de la elipse y en la siguiente tabla puedes ver qué relación guardan unos con otros. Es importante que sepamos extraer toda la información geométrica que nos sea posible cuando se nos presente una ecuación en su forma canónica.

Breve resumen de los elementos de una elipse. Estos elementos tienen análogos cuando tratamos con otras secciones cónicas.
Elemento dentro de la elipse canónicaExpresión analítica
Longitud del eje mayor$$2a$$
Coordenadas de los vértices$$(\pm a,0)$$
Longitud del eje menor$$2b$$
Coordenadas de los co-vértices$$(0,\pm b)$$
Coordenadas de los focos$(\pm c,0) \quad \text{donde} \quad c^{2}=a^{2}+b^{2}$
Excentricidad$$\varepsilon=\sqrt{\frac{a^{2}-b^{2}}{a^{2}}}=\sqrt{1-\frac{b^{2}}{a^{2}}}$$

Como puedes notar, la última fila se refiere a una propiedad de la elipse que no hemos discutido: la excentricidad. La excentricidad normalmente denotada como $\epsilon$ es un parámetro que determina el grado de desviación de una sección cónica con respecto a una circunferencia. Pronto veremos que a partir de la excentricidad, podemos definir a las tres secciones cónicas como el lugar geométrico de los puntos $\mathbf{X}$ cuya razón de sus distancias a un foco $\mathbf{p}$ y a una recta $\ell$ es una constante fija. Profundizaremos en el estudio de la excentricidad a lo largo de esta unidad, por el momento fijemos la idea de que las elipses necesariamente deben tener una excentricidad menor que uno; es decir $\epsilon < 1$.

Otra observación importante: estas reglas se refieren a una elipse centrada en el origen que tiene una ecuación canónica $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. No es el objetivo de esta unidad hablar de traslaciones y rotaciones; pero debes saber que si la elipse tiene el centro fuera del origen en un punto $(h,k)$, su ecuación se ve así: $\frac{x^{2}-h}{a^{2}}+\frac{y^{2}-k}{b^{2}}=1$. El estudio de elipses rotadas se aborda comúnmente en un segundo curso de geometría analítica.

Propiedad focal de la elipse

La propiedad focal de la elipse es es que culaquier fotón que sale de uno de los focos, se refleja dentro de la elipse para llegar al otro foco. Si no estás familiarizado con el fotón, imagina la siguiente situación: estás en un cuarto con paredes reflejantes y con forma elíptica; si tu te paras en uno de los focos del cuarto y apuntas con una linterna hacia algún punto en las paredes, el rayo de luz de tu linterna impactará directamente en el otro foco.

Existen dos formas de formalizar la propiedad que describimos en el párrafo anterior; la primera consiste en tomar el círculo de radio $2\mathbf{a}$ centrado en el foco $\mathbf{p}$ (este círculo contiene el otro foco $\mathbf{q}$, puesto que ahora $2 a>d(p, q)$) y luego ver que para los puntos de este círculo, su mediatriz con $\mathbf{q}$ es tangente a la elipse $\mathcal{E}$. La segunda forma de resolver este problema nos va a permitir abordar el clásico «problema del bombero», entonces dejaremos el primero como tarea moral.

Para hablar del problema del bombero observa la siguiente figura, supongamos que un bombero está para en el punto $\mathbf{p}$ y hay un incendio en el punto $\mathbf{q}$. Pero tiene su cubeta vacía, y entonces tiene que pasar primero a llenarla a un río cuyo borde es la recta $\mathcal{l}$. El problema consiste en saber cuál es la trayectoria óptima que debe seguir el bombero. Es decir, ¿para cuál punto $x \in \mathcal{l}$? se tiene que $\mathrm{d}(\mathbf{p}, \boldsymbol{x})+\mathrm{d}(\boldsymbol{x}, \mathbf{q})$ es mínima.

Nota cómo no hemos específicado de qué lado del río está el fuego; si estuviera del otro lado que el bombero, cualquier trayectoria al fuego tiene que pasar por $\mathcal{l}$ y entonces debe irse por la línea recta de $\mathbf{p}$ a $\mathbf{q}$ y tomar agua en $\boldsymbol{x}_{0}=\ell \cap \overline{\mathbf{p q}}$ (ver la siguiente figura). Entonces, si fuego y bombero están del mismo lado del río $\mathcal{l}$ podemos pensar en un «fuego virtual», que es el reflejado de $\mathbf{q}$ en $\mathcal{l}$, llamémosle $\mathbf{q}_{0}$, que cumple que $\mathrm{d}(\mathbf{x}, \mathbf{q})=\mathrm{d}\left(\mathbf{x}, \mathbf{q}_{0}\right)$ para todo $\mathbf{x} \in \mathcal{l}$, (para $\mathbf{q}$ y $\mathbf{q}_{0}$, \mathcal{l} es su mediatriz). La solución es, por el caso anterior, $\mathbf{x}_{0}=\ell \cap \overline{\mathbf{p q}_{0}}$.

Pero observa cómo además de que el ángulo $\alpha$ con el que llega el bombero a $\mathcal{l}$ es igual al ángulo de «de reflexión» con el que sale corriendo al fuego (ya con la cubeta llena), e igual al ángulo con el que seguiría su trayecto al fuego virtual; y que esta propiedad determina el punto de mínimo recorrido $\mathbf{x}_{0}$; es fácil convercerse de que para cualquier otro punto de $\mathcal{l}$ los ángulos de llegada y de salida son distintos. Si los bomberos fueran fotones que salen de $\mathbf{p}$ y $\mathcal{l}$ es un espejo, el único que llega a $\mathbf{q}$ es el fotón de recorrido mínimo.

Para aterrizar nuestro problema del bombero al caso de las elipses, considera ahora que $\mathbf{p}$ y $\mathbf{q}$ son los focos de una elipse y $\mathbf{x}_{0}$ un punto en ella. Sea $\mathcal{l}$ la recta que pasa por $\mathbf{x}_{0}$ y bisecta (por fuera) los segmentos de $\mathbf{p}$ y $\mathbf{q}$ a $\mathbf{x}_{0}$. Por construcción, y considerando la solución al problema del bombero, cualquier otro punto $\mathbf{x} \in \mathcal{l}$ tiene mayor suma de distancias a los focos y por tanto está fuera de la elipse. Esto demuestra que $\mathcal{l}$ es la tangente a la elipse en el punto $\mathbf{x}_{0}$, y por lo tanto, queda demostrada la propiedad focal de la elipse.

Antes de dar por terminada esta sección, te invito a que experimentes con el siguiente recuadro interactivo de GeoGebra: en él podrás ver cómo funciona esta propiedad focal de las elipses para elipses de diferentes tamaños y posiciones. ¿Puedes ver qué pasa con esta propiedad para el caso degenerado de la elipse? ¿Qué pasa si los focos son el mismo punto?

Propiedades métricas de la elipse

Tocaremos brevemente el tema de las propiedades métricas de la elipse; lo haremos sólo superficialmente pues una demostración formal se escapa de lo que planeamos cubrir en este curso. Si no estás familiarizado con los términos que aparecen en esta sección, no te preocupes, enfócate en entender cómo se llegó a los resultados y tenlos como referencia por si los ocupas en algún otro curso un poco más enfocado a las aplicaciones de las elipses.

La primera de sus propiedades métricas que vamos a abordar es el área de la elipse: considera que esta propiedad se refiere a la elipse con ecuación:

\begin{equation}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
\end{equation}

La ecuación anterior, puede ser reescrita como

\begin{equation}
y(x)=b \sqrt{1-x^{2} / a^{2}}.
\end{equation}

Para toda $x \in[-a, a]$, esta curva es la mitad superior de la elipse. Entonces, el doble de la integral $y(x)$ sobre le intervalo $[-a, a]$ será el área de la elipse:

\begin{equation}
\begin{aligned}
A_{\text {ellipse }} &=\int_{-a}^{a} 2 b \sqrt{1-\frac{x^{2}}{a^{2}}} d x \
&=\frac{b}{a} \int_{-a}^{a} 2 \sqrt{a^{2}-x^{2}} d x .
\end{aligned}
\end{equation}

La segunda integral es el área del círculo con radio $a$, la cual vale $\pi a^{2}$. Entonces,

\begin{equation}
A_{\text {ellipse }}=\frac{b}{a} \pi a^{2}=\pi a b.
\end{equation}

La circunferencia de una elipse, es decir, el análogo del perímetro para las circunferencias presenta un problema: ¡es bastante difícil de obtener! pues hay que calcular una integral que no puede ser evaluada en términos de funciones elementales. De momento, pondremos sólo la fórmula, pues es un resultado bastante útil. Si te interesa ver cómo se llegó a este resultado, puedes revisar la siguiente fuente.

\begin{equation}
C \approx \pi[3(a+b)-\sqrt{(3 a+b)(a+3 b)}]=\pi\left[3(a+b)-\sqrt{10 a b+3\left(a^{2}+b^{2}\right)}\right]
\end{equation}

La última de estas propiedades métricas que veremos superficialmente será la curvatura; esto te podría resultar especialmente útil si por ejemplo quisieras calcular la curvatura de la trayectoria para una partícula que se mueve trazando una parábola. La curvatura para una elipse con ecuación canónica $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ será:

\begin{equation}
\kappa=\frac{1}{a^{2} b^{2}}\left(\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}\right)^{-\frac{3}{2}}.
\end{equation}

Tarea moral

  • Demuestra la propiedad focal de la elipse sin resolver el problema del bombero. Sugerencia. toma el círculo de radio $2\mathbf{a}$ centrado en un foco $\mathbf{p}$ y luego ve que para los puntos de este círculo, su mediatriz con $\mathbf{q}$ es tangente a una elipse.
  • Halle la ecuación de la elipse con centro en el origen que satisface las condiciones dadas; construya la curva:
  1. La longitud del eje mayor es $10$ y l del eje menor $8$; los focos están sobre el eje $y$.
  2. El eje menor mide $10$ y un vértice es $(6,0)$.
  3. El lado recto mide $\frac{32}{7}$ y uno de los extremos del eje menor está en $(4,0)$.
  • Obten el área de la elipse que tiene la siguiente ecuación:

$$
\frac{x^{2}}{16}+\frac{y^{2}}{25}=1
$$

  • Obtenga una aproximación del perímetro de la siguiente elipse:

$$
\frac{x^{2}}{25}+\frac{y^{2}}{225}=1
$$

  • Obtenga la curvatura de la siguiente elipse en el punto $(3,2)$:

$$
\frac{x^{2}}{16}+\frac{y^{2}}{9}=1
$$

Más adelante…

En esta entrada y en la anterior profundizamos en las propiedades de la elipse. Seguiremos nuestro estudio de las secciones cónicas definiendo a las hipérbolas, veremos que a pesar de ser figuras muy distintas, guardan una relación estrecha con los círculos y las elipses. Al igual que para las figuras que hemos visto hasta el momento, entenderemos cómo llegar a una expresión analítica y aprenderemos a leer toda la información geométrica que contiene.

Entradas relacionadas

Seminario de Resolución de Problemas: La integral

Introducción

Ya hemos cubierto varios temas de cálculo y resolución de problemas. Comenzamos platicando acerca de continuidad y de dos teoremas importantes para funciones continuas: el teorema del valor intermedio y el teorema del valor extremo. Después, hablamos acerca de derivadas y de dos teoremas importantes para funciones diferenciables: el teorema de Rolle y el teorema del valor medio. Luego, vimos que la diferenciabilidad también nos ayuda a encontrar límites de cocientes y potencias de formas indefinidas mediante la regla de L’Hôpital. En esta entrada y la siguiente hablaremos de la integral y cómo las ideas detrás de su construcción, así como sus propiedades, pueden ayudar a resolver problemas.

Para entender esta sección bien, es importante que conozcas la construcción de la integral de Riemann en una variable, así como sus propiedades principales. También supondremos que conoces las técnicas usuales para resolver integrales. Esto se hace durante el primer año de un curso de cálculo a nivel licenciatura. También puedes revisarlo en la literatura clásica, como el libro de Cálculo de Spivak.

Usar la integral como un área

La integral es por definición un límite de sumas superiores o inferiores. Hay problemas en los que podemos aprovechar esto para entender una suma o una sucesión. A grandes rasgos lo que hacemos es:

  • Interpretar la sucesión o serie como una suma de areas correspondiente a una suma superior o inferior de cierta integral $\int f(x) \,dx$.
  • Usar lo que sabemos de integración para poder decir algo del área dada por $\int f(x)\, dx$
  • Regresar esta información al problema original.

Veamos un ejemplo de esto.

Problema. Calcula el siguiente límite $$\lim_{n\to \infty} \left(\frac{1}{n}+\frac{1}{n+1}+\ldots+\frac{1}{2n-1}\right).$$

La cantidad de términos de este límite depende de $n$, así que no podemos hacerlos uno por uno. No hay una forma sencilla de hacer la suma. Tampoco parece que podamos usar la regla de L’Hôpital. Lo que haremos es entender a la expresión dentro del límite de manera geométrica.

Sugerencia pre-solución. Haz una figura con la que puedas relacionar el límite que buscamos con cierta área que puedas expresar en términos de una integral.

Solución. Consideremos la gráfica de la función $f(x)=\frac{1}{x}$ en el intervalo $[n,2n]$ y el área debajo de esta gráfica, que mostramos en verde a continuación.

Integral de 1/x en el intervalo de n a 2n.
Gráfica de $1/x$ en el intervalo $[n,2n]$

Notemos que la suma que aparece en el problemas corresponde a sumar las áreas de los rectángulos de base $1$ y alturas $\frac{1}{n}$, $\frac{1}{n+1}$, $\ldots$, $\frac{1}{2n-1}$, que podemos encontrar en azul en la siguiente figura.

Cota con suma superior
Dar una cota inferior para nuestra expresión.

Así, obtenemos que podemos acotar inferiormente nuestra suma de la siguiente manera:

\begin{align*}
\frac{1}{n}+\ldots+\frac{1}{2n-1} &> \int_n^{2n} \frac{1}{x}\, dx\\
&= (\log x) \Big|_n^{2n} \\
&= \log 2.
\end{align*}

De manera similar, podemos pensar ahora en rectángulos que queden por debajo de la gráfica de la función, y que en total su area es menor que el valor de la integral. Los mostramos a continuación en color rojo:

Cota con suma inferior
Dar una cota superior para nuestra expresión (un poco cambiada)

De aquí, podemos dar la siguiente cota:

\begin{align*}
\frac{1}{n+1}+\ldots+\frac{1}{2n} &< \int_n^{2n} \frac{1}{x}\, dx\\
&= (\log x) \Big|_n^{2n} \\
&= \log 2.
\end{align*}

Si juntamos ambas desigualdades, deducimos que $$\log 2< \frac{1}{n}+\ldots+\frac{1}{2n-1}<\left(\frac{1}{n}-\frac{1}{2n}\right) + \log 2.$$

Ahora sí podemos hacer $n\to \infty$. Como ambos lados de la desigualdad convergen a $\log 2$, tenemos que la sucesión que nos interesa también debe converger a $\log 2$.

$\square$

Traducir a una integral y usar técnicas de integración

Hay varias técnicas que podemos usar para realizar integrales: cambio de variable, integración trigonométrica, integración por partes, integración por fracciones parciales, etc. En algunas ocasiones podemos transformar un problema a una integral, aplicar una de estas técnicas, y luego regresar al contexto original. Veamos un ejemplo de esto.

Problema. Demuestra que para cualquier par de enteros positivos $m$ y $n$ tenemos que $$\sum_{k=0}^n (-1)^k \binom{n}{k}\frac{1}{k+m+1} = \sum_{k=0}^m (-1)^k \binom{m}{k} \frac{1}{k+n+1}.$$

Sugerencia pre-solución. Intenta formular un problema equivalente aprovechando que para cualquier entero no negativo $r$ se tiene que $\frac{1}{r+1}=\int_0^1 t^r \, dt$. Tendrás que usar esto varias veces, usar la fórmula de binomio de Newton y después aprovechar una simetría para hacer un cambio de variable.

Solución. Notemos que $$\frac{1}{k+m+1}=\int_0^1 t^{k+m} \, dt.$$ Substituyendo en la expresión de la izquierda, obtenemos que la suma buscada es $$\sum_{k=0}^n(-1)^k\binom{n}{k}\int_0^1t^{k+m}\, dt.$$ Usando la linealidad de la integral y la fórmula del binomio de Newton tenemos que esta suma es igual a
\begin{align*}
&\int_0^1 \sum_{k=1}^n (-1)^k \binom{n}{k} t^{k+m}\, dt \\
=& \int_0^1 t^m(1-t)^n \, dt.
\end{align*}

Con el cambio de variable $s=1-t$, la integral anterior es igual a $$\int_0^1 s^n(1-s)^m.$$ Pero por un argumento inverso al que hicimos para llegar a la primer integral, esta segunda integral es igual a $$\sum_{k=0}^m (-1)^k\binom{m}{k}\frac{1}{k+n+1}.$$

Esto es justo el lado derecho en la identidad que queríamos.

$\square$

El teorema de Lebesgue

No todas las funciones son integrables con la definición de Riemann (que aquí simplemente llamaremos «ser integrable»), pues puede ser que el límite de las sumas superiores no sea igual al de las sumas inferiores. Un resultado profundo en cálculo es el criterio de Lebesgue, que caracteriza aquellas funciones acotadas que tienen integral de Riemann en un intervalo.

Teorema (criterio de Lebesgue). Una función acotada $f:[a,b]\to \mathbb{R}$ es integrable si y sólo si su conjunto de discontinuidades tiene medida $0$.

El teorema de Lebesgue da una prueba sencilla de que si $f$ y $g$ son integrables, entonces su producto también, lo cual no es fácil de probar a partir de la definición. A continuación esbozamos esta prueba.

Las discontinuidades de $f^2$ están contenidas en las de $f$, de modo que si $f$ es integrable, por el teorema de Lebesgue $f^2$ también. Además, suma y resta de integrables es sencillo ver que es integrable, de modo que $(f+g)^2$ también lo es. Para concluir, notamos que $$fg=\frac{(f+g)^2-f^2-g^2}{2},$$ de modo que $fg$ es integrable.

Veamos un problema que combina varias de las ideas de cálculo que hemos visto.

Problema. Si $f:[a,b]\to \mathbb{R}$ es una función tal que $f+\sin(f)$ es integrable, entonces $f$ también es integrable.

Sugerencia pre-solución. Usa el criterio de Lebesgue. Necesitarás estudiar las discontinuidades con cuidado, para lo cual es útil recordar cómo interactúan las funciones continuas con las sucesiones convergentes.

Solución. Como $f+\sin(f)$ es integrable, entonces es acotada. Así, $f$ también lo es. La función $g(x)=x+\sin(x)$ tiene derivada $1+\cos(x)\geq 0$ y que es $0$ sólo en un conjunto discreto de puntos, de modo que es estrictamente creciente. Además, los límites en $-\infty$ y $\infty$ son $-\infty$ e $\infty$ respectivamente. Por el teorema del valor intermedio, pasa por todos los reales. Así, $g$ es una función biyectiva.

Mostraremos que las discontinuidades de $f$ están contenidas en las de $f+\sin(f)$, o bien, dicho de otra forma, que si $f+\sin(f)$ es continua en $x$, entonces $f$ también. Tomemos una sucesión $\{x_n\}$ que converge a $x$. Como $f+\sin(f)$ es continua en $x$, tenemos que $\{f(x_n)+\sin(f(x_n))\}$ converge a $f(x)+\sin(f(x))=g(f(x))$.

Como $f$ es una función acotada, la sucesión $\{f(x_n)\}$ es acotada, y para ver que converge a un límite, basta ver que toda subsucesión convergente converge al mismo límite. Tomemos una subsucesión convergente digamos, al límite $L$. Tendríamos que $g(L)=g(f(x))$, y como $g$ es biyectiva tendríamos que $L=f(x)$. En otras palabras, toda subsucesión convergente de $\{f(x_n)\}$ converge a $f(x)$. De esta forma, $\{f(x_n)\}$ converge a $f(x)$. Con esto concluimos que $f$ es continua en $x$.

Concluimos que el conjunto de discontinuidades de $f$ está contenido en el de $f+\sin(f)$, el cual tiene medida $0$. De este modo, el de $f$ también tiene medida $0$ y por el criterio de Lebesgue, es integrable.

$\square$

Más problemas

Hay más ejemplos de problemas relacionados con la integral en la Sección 6.8 del libro Problem Solving through Problems de Loren Larson.

Hacer una figura

HeuristicasOtra herramienta muy importante para resolver problemas es poder plantear el problema de forma visual. Los seres humanos llevamos muchísimas generaciones viendo, mucho más de lo que llevamos platicando y por tanto hay algunos conocimientos que se facilitan utilizando la vista.

Veremos algunos ejemplos de problemas en los cuales hacer una figura es útil y en algunos casos necesario.

Ir a los videos…