Archivo de la etiqueta: suma

Álgebra Superior II: Algoritmo de la división en los enteros

Por Ana Ofelia Negrete Fernández

Introducción

Gracias a todo lo trabajado con anterioridad y en particular a la entrada anterior de inmersión de los naturales en los enteros, ya podemos pensar al conjunto de enteros como el conjunto $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$. Además, dentro de esta estructura tenemos operaciones de suma, resta y producto. Sin embargo, aún no tenemos una operación de «división». Hay dos caminos que podemos seguir. Uno es algo parecido a lo que hicimos para tener una operación de resta: podemos construir ciertas clases de equivalencia sobre parejas de enteros, definir operaciones, orden, etcétera. Esto es lo que se hace para construir el conjunto $\mathbb{Q}$ de números racionales, del cual hablaremos más adelante. Otro camino es quedarnos en $\mathbb{Z}$ e intentar decir todo lo que podamos, aunque no tengamos una operación de división. Eso es lo que haremos ahora mediante lo que se conoce como el algoritmo de la división.

Por ejemplo, si tenemos los números $-20$ y $5$, entonces sí «podemos hacer la división» de manera exacta. Dicho de otra forma, sí existe un entero $k$ tal que $-20=5k$. Ese entero es $k=-4$. Sin embargo, si tenemos los números $20$ y $3$ no podemos hacer la división, en el sentido de que no existe un entero $k$ tal que $20=3k$. Sin embargo, sí podemos lograr que $3k$ quede muy cerca de $20$. Por ejemplo, podemos escribir $20=3\cdot 6 + 2$, es decir, el $20$ se queda únicamente a dos unidades de tres veces un entero.

Lo que nos dice el algoritmo de la división es que dados dos enteros $a$ y $b$, siempre sucederá que $a$ puede ser escrito como $b$ veces un entero, más un residuo «pequeño» en términos de $b$. También nos dice que esta forma de escribir a $a$ será única.

La intuición del algoritmo de la división

Lo que nos permite hacer el algoritmo de la división es saber «cuántas veces cabe un entero en otro». En general, vamos a poder escribir $a=qb+r$ y esto querrá decir que «$b$ cabe $q$ veces en $a$ y sobran $r$». Lo que nos gustaría es hacer esto de manera que sobre lo menos posible.

Un ejemplo sencillo sería el siguiente. Tomemos $a=7$ y $b=2$. Si nos preguntáramos: ¿cuántos equipos de $2$ personas se necesitan para repartir a $7$ personas?, una posible respuesta sería: podemos formar $2$ equipos de dos personas cada uno y dejar fuera a $3$ personas. Esto se escribiría como $7=2\cdot 2 + 3$. Sin embargo, una mejor respuesta (y la que deja a menos personas fuera) es la siguiente: podemos formar $3$ equipos de dos personas cada uno, y dejar a alguien fuera. Esto corresponde algebraicamente a la igualdad $7=3\cdot 2 + 1$. Esta forma de escribir al $7$ es mejor pues el residuo es más pequeño.

Hay algunos casos que suenan un poco raros. Por ejemplo, tomemos $a = 2$, $b = 3$. Podría parecer que la división de $2$ entre $3$ da cero pues «el $3$ el mayor que el $2$ y no hay modo de que $3$ quepa en $2$». Esto es cierto: $3$ cabe cero veces en $2$. Pero hay un residuo que no se ha mencionado, que en este caso es $2$. La forma de escribir esto algebraicamente será $2=3\cdot 0 + 2$. Aquí el $0$ quiere decir que «el $3$ cabe cero veces en el $2$» y el $2$ de la derecha quiere decir que «sobran $2$». Si lo pensamos como equipos, no nos alcanzaría para crear ni un sólo equipo de $3$ personas teniendo sólo $2$.

Otro caso extraño es cuando tenemos números negativos. Por ejemplo, si $a=-7$ y $b=3$ entonces la forma en la que queremos expresar a $a$ es como sigue: $-7=(-3)\cdot 3 + 2$. Lo hacemos de esta manera pues siempre querremos que el residuo que queda sea positivo. Y de entre los residuos que se pueden obtener, lo mejor es que sobren únicamente $2$.

Resulta que la cantidad que sobra siempre se puede garantizar que sea «chica». Si estamos repartiendo $a$ en cachos de tamaño $b$, siempre podremos garantizar que lo que sobra esté entre $0$ y $|b|-1$. En símbolos, el algoritmo de la división dice que dados $a, b \in \mathbb{Z}$, con $b\neq 0$, es posible encontrar $q$ y $r$ únicos, tales que $a = bq + r,$ con $0 \leq r < |b|$. A $q$ se le llama el cociente y a $r$ le llamamos el residuo.

Que no espante el valor absoluto que se le añade a la $b$. Aún no hemos definido qué es, pero lo explicaremos un poco más abajo. Sin embargo, antes de enunciar y demostrar el teorema daremos un ejemplo con números un poco más grandes y su intuición numérica.

Otro ejemplo para entender el algoritmo de la división en $\mathbb{Z}$

Comencemos planteando el problema para $a=3531$ y $b=8$. Es decir, queremos encontrar $q$ y $r$ enteros tales que $3531 = 8q + r$, donde además $0 \leq r < 8$. Ya que $r$ debe ser un número muy pequeño entre $0$ y $8$, podemos ir dando valores a $r$ hasta que $3531-r$ se pueda escribir como $8$ veces un entero.

Si $r = 0$, habríamos de verificar si $3531$ se puede escribir como $8$ veces un entero. Nuestra intuición nos dice que esto no debería poderse, pues $3531$ es un número impar, pero $8$ veces un entero siempre será un número par.

Si $r = 1$, entonces querríamos ver si $8q = 3530$. Pero esto tampoco se puede pues con $q=441$ tenemos $8q=3528<3530$ y con $q=442$ tenemos $8q=3536>3530$ y entonces ya se pasa. Si $r = 2$, buscaríamos si $8q = 3529$, pero de nuevo este es un número impar.

Finalmente, si $r = 3$, entonces queremos ver si se puede lograr $3528= 8q$. Esto sí se puede: se toma $q=441$. Así, hemos logrado determinar que con $q = 441$, $r = 3$ se cumple que $3531 = 8q + r$, con lo que terminamos el problema.

Geométricamente, esto significa que $3531$, en la recta de los números enteros, estará situado entre números que sean $8$ veces un entero, a saber, $8\cdot 441$ y $8\cdot 442$:

$$ \ldots < 8\cdot 441 < 3531 < 8\cdot 442 < \ldots \text{.}$$

Más precisamente, como $3531$ es un entero positivo, el problema consistió en encontrar el entero que sea $8$ veces un entero más cercano por la izquierda y añadir $3$ unidades. Esto también lo podemos enunciar como que «$3531$ está a $3$ unidades a la derecha de un número que es $8$ veces un entero»:

$$ 8\cdot 441 < 8\cdot 441 + 1 < 8\cdot 441 +2 < 3531 < 8\cdot 441 +4 < 8\cdot 441 +5 < 8\cdot 441 +6 < 8\cdot 441 +7 < 8\cdot 442 \text{.}$$

En realidad esto funciona sin importar los valores de $a$ y $b$. Dado un entero $b$, podemos poner los enteros de la forma $mb$ en la recta numérica y siempre podremos situar al entero $a$ entre dos de ellos:

$$qb \leq a < (q+1)b, \qquad q\in \mathbb{Z}.$$

Si $b>0$, los múltiplos de $b$ en la recta numérica se verían así:

$$\ldots -4b, -3b, -2b, -b, 0, b, 2b, 3b, 4b, \ldots $$

De este modo, $q$ sería el mayor múltiplo de $b$ más cercano a $a$, sin excederse de $a$.

Enunciado y demostración del algoritmo de la división en $\mathbb{Z}$

Para poder enunciar el algoritmo de la división sin importar el signo de $a$ y $b$, debemos introducir un símbolo adicional.

Definición. Si $b \in \mathbb{Z}$, definimos el valor absoluto de $b$, denotado por $|b|$, como sigue: $$|b| = \left\lbrace \begin{matrix} b & \text{si $b\geq 0$}\\ -b & \text{si $ b < 0$} \end{matrix}\right.$$

En el algoritmo de la división nos darán dos números enteros $a$ y $b$. Para la restricción $0 \leq r \leq |b|$, sucederá que, no importa si $b$ sea un número positivo o negativo, nosotros nos fijaremos en el número siempre positivo que resulta de aplicarle valor absoluto a $b$. El resultado dice lo siguiente.

Teorema. Sean $a$ y $b$ en $\mathbb{Z}$ con $b\neq 0$. Entonces existen únicos enteros $q$ y $r$ enteros únicos tales que $$ a = qb + r$$ y $0 \leq r < |b|$.

Para la demostración del algoritmo de la división, necesitaremos el principio del buen orden. Como recordatorio, dice que todo subconjunto no vacío de $\mathbb{N}$ tiene un elemento mínimo.

Demostración. Primero hay que demostrar que siempre existen $q$ y $r$ enteros que satisfacen las condiciones que queremos. Vamos a suponer que $b>0$. El caso $b<0$ es muy parecido y quedará como tarea moral.

Lo que haremos es considerar al conjunto $S$ de todos los elementos de la forma $a-tb$ en donde $t$ es un entero, y tales que sean mayores o iguales a cero. Primero veremos que $S$ en efecto es un conjunto no vacío.

  • Si $a\geq 0$, tomamos $t=0$ y obtenemos la expresión $a-tb=a\geq 0$.
  • Si $a<0$, tomamos $t=a$ y obtenemos $a-tb=a-ab=a(1-b)$. Como $b>0$, entonces $b\geq 1$ y por lo tanto $(1-b)\leq 0$. Como $a<0$, obtenemos $a(1-b)\geq 0$, como queríamos.

Como $S$ es un conjunto no vacío de naturales, debe tener un elemento mínimo, al que le llamaremos $r$. Como $r$ está en $S$, obtenemos que $r=a-qb$ para algún entero $q$. Esto es un buen primer paso, pues nos muestra que $a=qb+r$. Sin embargo, todavía nos falta demostrar la importante desigualdad $0\leq r < |b|$. Como $b>0$, debemos mostrar $0\leq r < b$. Como $r$ está en $S$, obtenemos de manera inmediata que $r\geq 0$.

Sólo nos falta mostrar que $r<b$. Supongamos, con el fin de encontrar una contradicción, que $r\geq b$. Si este fuera el caso, sucedería que $r-b\geq 0$ además tendríamos la siguiente cadena de igualdades: $$r-b=a-tb-b=a-(t+1)b.$$

Esto lo que nos diría es que $r-b$ también está en $S$. ¡Pero eso es una contradicción!. Por construcción, $r$ era el menor elemento de $S$ y $r-b$ es un número menor que $r$ y que también está en $S$. Esta contradicción salió de suponer que $r\geq b$, así que en realidad debe pasar $r<b$, como queríamos.

Con esto queda demostrada la existencia de los enteros $q$ y $r$, tales que $a = bq + r$, con $0 \leq r < b$. Falta ver la unicidad. Supongamos que existen $q’$ y $r’$ enteros que también cumplen $$a = bq’ + r’$$ con $0\leq r’ < b$.

Demostramos primero que $r = r’$. Al hacer la resta $r-r’$ por un lado notamos que como mucho, puede valer $(b-1)-0=b-1$, lo cual pasa cuando $r=b-1$ y $r’=0$. Así mismo, por lo menos debe valer $0-(b-1)=-b+1$, lo cual sucede cuando $r=0$ y $r’=b-1$. Pero esta resta también se puede escribir de la siguiente manera: $$r-r’=(a-qb)-(a-q’b)=(q’-q)b.$

El único número de la forma $bk$ en $\{-b+1,-b+2,\ldots,0,\ldots,b-2,b-2\}$ es el entero $0$, pues justo no alcanza para llegar a $b$ ni a $-b$. De esta forma, $r-r’=0$, es decir $r=r’$. Y de aquí, obtenemos que $(q’-q)b=r-r’=0$. Como $b\neq 0$, obtenemos $q’-q=0$ y por lo tanto $q’=q$. Esto termina la demostración de la unicidad.

$\square$

Quizás el uso del principio del buen orden de la impresión de que la demostración anterior es «muy sofisticada». En realidad, esto no es así. Simplemente es la forma en la que se formaliza una idea muy intuitiva: si el residuo queda mayor a $b$, entonces todavía le podemos «transferir» un sumando $b$ de $r$ a $qb$. El principio del buen orden simplemente nos garantiza que en algún momento este proceso de «transferir» sumandos $b$ debe de concluir.

Más adelante…

Cuando aplicamos el algoritmo de la división nos puede pasar un caso muy especial: que $r$ sea igual a cero. En otras palabras, en este caso podemos escribir $a=qb$ y por lo tanto $b$ cabe en $a$ «de manera exacta». Este caso es muy interesante y amerita un profundo estudio. Cuando esto sucede, decimos que $a$ es múltiplo de $b$, o bien que $b$ divide a $a$. En la siguiente entrada estudiaremos con más detalle la relación de divisibilidad en $\mathbb{Z}$. Un poco más adelante hablaremos de los ideales de $\mathbb{Z}$, que son un tipo de subconjuntos fuertemente relacionados con la noción de divisibilidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra $q$ y $r$ enteros tales que $-1873 = 31q + r$ y $0\leq r < 31$.
  2. Demuestra las siguientes propiedades de la función valor absoluto de $\mathbb{Z}$:
    • $|a|\geq 0$ para cualquier entero $a$.
    • $|ab|=|a||b|$ para cualesquiera enteros $a$ y $b$.
    • $|a+b|\leq |a|+|b|$ para cualesquiera enteros $a$ y $b$.
  3. En general, ¿cómo se calcula $q$, para $a<0$? ¿y para $b<0$? Completa los detalles de la demostración del algoritmo de la división para cuando $b<0$.
  4. Encuentra un número que al dividirse entre $2$ deje residuo $1$, que al dividirse entre $3$ deje residuo $2$ y que al dividirse entre $4$ deje residuo $3$.
  5. Demuestra que cualquier entero se puede escribir de la forma $3q+r$ en donde $r$ es $-1$, $0$ ó $1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Inmersión de $\mathbb{N}$ en $\mathbb{Z}$

Por Ana Ofelia Negrete Fernández

Introducción

Desde la educación básica pensamos al conjunto de los números enteros como aquél que está conformado por los naturales, sus negativos y el cero: $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} .$$ Sin embargo, para poder fundamentar nuestra construcción, hasta ahora tenemos que el conjunto $\mathbb{Z}$ consiste por definición de ciertas clases de equivalencia de una relación en $\mathbb{N}\times \mathbb{N}$. ¡Observa que ni siquiera $\mathbb{N}$ es un subconjunto de $\mathbb{Z}$ a partir de esta definición! ¿Cómo le hacemos para que estos dos puntos de vista coincidan?

En esta entrada veremos dos cosas muy importantes que nos permitirán unificar ambas ideas. Lo primero que haremos es ver que, en efecto, podemos pensar que $\mathbb{N}$ «es un subconjunto» de $\mathbb{Z}$. Esto lo ponemos entre comillas pues en realidad lo que demostraremos es que hay una copia de $\mathbb{N}$ dentro de $\mathbb{Z}$, con toda la estructura que tenía $\mathbb{N}$ originalmente: sus operaciones, sus identidades, su orden.

Después de esto, nos enfocaremos en ver que $\mathbb{Z}$ consiste exactamente de esta copia y de sus inversos aditivos. Así, habremos formalizado que $\mathbb{Z}$ consiste exactamente de los naturales, sus inversos aditivos y ningún otro elemento.

Inmersión de los naturales en los enteros

En la entrada anterior hablamos acerca del orden en $\mathbb{Z}$. Para ello hablamos del conjunto de enteros positivos $P$. También definimos las relaciones $<$ y $\leq$. En un sentido bastante formal, los enteros mayores o iguales a cero son exactamente los números naturales. La manera en la que enunciamos este resultado es la siguiente.

Teorema. Existe una función biyectiva $\gamma:\mathbb{N}\to P\cup \{\overline{(0,0)}\}$ que preserva las operaciones de suma, producto, el inverso aditivo, el inverso multiplicativo y el orden. Esta función está dada por $\gamma(n)=\overline{(n,0)}$.

Una vez que demostremos esto, la imagen $\gamma(\mathbb{N})$ será exactamente la «copia» de los naturales que vive en los enteros y que precisamente tiene todas las propiedades algebraicas de los naturales que nos interesaban.

Para hacer la demostración de este teorema, probaremos el resultado poco a poco, a través de varios lemas.

Lema 1. La función $\gamma$ está bien definida y es biyectiva.

Demostración. La función $\gamma$ está bien definida pues las clases del estilo $\overline{(n,0)}$ siempre están en $P\cup \{\overline{(0,0)}\}$: si $n=0$, entonces obtenemos la clase $\overline{(0,0)}$ y si $n\neq 0$, entonces $n>0$, lo cual justifica que $\overline{(n,0)}$ es un entero positivo, es decir, en $P$.

Veamos que la función $\gamma$ es biyectiva. Para ver que es inyectiva tomamos dos naturales $m$ y $n$ tales que $\gamma(m)=\gamma(n)$, es decir, tales que $\overline{(m,0)}=\overline{(n,0)}$. Esto quiere decir que $m+0=n+0$, pero entonces $m=n$. Para ver que es suprayectiva, ya sabemos que tomemos una clase $\overline{(a,b)}$ en $P\cup \{\overline{(0,0)}\}$. Por lo visto en la entrada anterior, esto nos dice que $a\geq b$, pero entonces existe un natural $k$ tal que $a=b+k$, de modo que $a+0=b+k$ y por lo tanto $\overline{(a,b)}=\overline{(k,0)}$. Con esto concluimos que $$\gamma(k)=\overline{(k,0)}=\overline{(a,b)}.$$

$\square$

Observa que, sin embargo, no sucede que $\gamma(\mathbb{N})$ sea todo $\mathbb{Z}$. Es decir, hay enteros diferentes de las clases $\overline{(n,0)}$, por ejemplo, el $\overline{(0,1)}$. Se puede verificar que la imagen de $\gamma$ cubre a los enteros no negativos y sólo a esos.

Regresando al enunciado del teorema, lo que veremos ahora es que $\gamma$ respeta las operaciones de suma y producto, así como sus respectivas identidades.

Lema 2. Para cualesquiera naturales $m$ y $n$ se cumple que $$\gamma(m)+\gamma(n)=\gamma(m+n)$$ y que $$\gamma(m)\gamma(n)=\gamma(mn).$$ Además, $\gamma(0)$ es la identidad aditiva en $\mathbb{Z}$ y $\gamma(1)$ es la identidad multiplicativa en $\mathbb{Z}$.

Demostración. Basta usar la definición de $\gamma$ y de la suma en $\mathbb{Z}$:
\begin{align*}
\gamma (m)+\gamma(n)&=\overline{(m,0)}+\overline{(n,0)}\\
&= \overline{(m+n,0)}\\
&=\gamma{m+n}.
\end{align*}

De modo similar, para el producto usamos la definición de $\gamma$ y la del producto en $\mathbb{Z}$:

\begin{align*}
\gamma (m)\gamma(n)&=\overline{(m,0)}\overline{(n,0)}\\
&= \overline{(mn+0\cdot 0,m\cdot 0 + 0 \cdot n)}\\
&= \overline{(mn,0)}\\
&=\gamma{mn}.
\end{align*}

La parte de las identidades es sencilla de hacer y queda como tarea moral.

$\square$

Ya vimos que $\gamma$ respeta las operaciones. Ahora veamos que también respeta el orden.

Lema 3. Para cualesquiera naturales $m$ y $n$, sucede que $m < n$ si y sólo si $\gamma(m) < \gamma(n)$.

Demostración. Por definición de $\gamma$, tenemos que $\gamma(m)<\gamma(n)$ si y sólo si $\overline{(m,0)}<\overline{(n,0)}$. En la entrada anterior vimos que esto sucede si y sólo si en $\mathbb{N}$ tenemos que $m+0<n+0$. Pero esto es justo $m<n$.

$\square $

Los lemas 1, 2 y 3 conforman la demostración del teorema de esta sección.

Caracterización de los enteros

En vista del teorema de la sección anterior, dentro de $\mathbb{Z}$ hay metida una copia de $\mathbb{N}$. ¿Cuáles son los otros elementos de $\mathbb{Z}$? ¿Hay muchos más enteros que eso? La respuesta es que no. Para acabar de tener a todos los elementos de $\mathbb{Z}$ basta con tomar esta copia de los enteros y considerar a sus inversos aditivos.

Proposición. Para cualquier entero $\overline{(a,b)}$, tenemos que sucede una y exactamente una de las afirmaciones siguientes:

  • $\overline{(a,b)}=\overline{(0,0)}$.
  • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
  • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.

Demostración. Por el principio de tricotomía en $\mathbb{N}$, sabemos que se cumple una y exactamente una de las afirmaciones siguientes:

  • $a=b$
  • $a>b$
  • $a<b$

Si pasa la primera, entonces $\overline{(a,b)}=\overline{(0,0)}$. Si pasa la segunda, es porque existe un natural $n\neq 0$ tal que $a=b+n$, pero entonces $a+0=b+n$ y así $\overline{(a,b)}=\overline{(n,0)}$. Si pasa la tercera, es porque existe un natural $n,0$ tal que $a+n=b=b+0$, y entonces $\overline{(a,b)}=\overline{(0,n)}$.

De esta manera, se ve que siempre se cumple al menos una de las afirmaciones del enunciado. Ver que se cumple a lo más una es sencillo y queda como tarea moral.

$\square$

Siguiendo la demostración anterior con cuidado, nos damos cuenta que los casos corresponden precisamente al entero cero, a los positivos y a los negativos. La proposición anterior es una manera de ilustrar, en particular, que hay que hay el mismo número de números naturales positivos como números enteros negativos: a cada uno de ellos le podemos asociar (de manera biyectiva), un natural. Otra forma de dar esta biyección es mandar el entero positivo $\overline{(n,0)}$ al entero negativo $\overline{(0,n)}$, que es precisamente su inverso aditivo.

Re-etiquetando a los enteros

Estamos listos para abandonar la notación de parejas y clases de equivalencia. En vista de los resultados anteriores, cualquier entero positivo $\overline{(a,b)}$ es el mismo que un entero de la forma $\overline{(n,0)}$. Y los enteros de esta forma justo conforman una copia de $\mathbb{N}$ con toda la estructura algebraica que nos interesa. Así, ya nunca más tenemos que llamar a $\overline{(a,b)}$ con este nombre: basta simplemente llamarlo $n$.

Si tenemos un entero de la forma $\overline{(a,b)}$ con $a=b$, entonces simplemente lo llamaremos $0$. Y finalmente, si el entero $\overline{(a,b)}$ es negativo, podemos escribirlo de la forma $\overline{(0,n)}$ y en vista de lo anterior simplemente lo llamaremos $-n$. Todo esto funciona bien, porque también sabemos que justo $\overline{(n,0)}$ y $\overline{(0,n)}$ son inversos aditivos entre sí.

Pero, ¿cómo sabremos si al usar el símbolo $1$ nos estamos refiriendo al natural $\{\emptyset\}$ o al entero $\overline{(\{\emptyset\},\emptyset)}$? En realidad ya no es relevante, pues tenemos la total garantía de que los enteros no negativos se comportan exactamente como $\mathbb{N}$.

De esta manera, $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \}$$ y además tenemos la total garantía de que los enteros no negativos se comportan exactamente como los naturales.

Más adelante…

Después de liberar la gran carga que teníamos de usar la notación de parejas y de relaciones de equivalencia, ahora ya podemos usar a los enteros tal y como los conocíamos desde educación básica: como el cero, los enteros que no son cero, y sus negativos. Además, gracias a todo lo que demostramos, ya podemos utilizar las propiedades de la suma, el producto y el orden con la confianza de que están bien fundamentadas.

Lo que sigue es estudiar con más profundidad al conjunto $\mathbb{Z}$. Aunque no haya propiamente «divisiones exactas» en este conjunto, sí podemos preguntarnos qué sucede cuando dividimos un entero por otro, y cuánto queda. Esto lleva a las nociones de divisibilidad y residuos, que a su vez llevan a áreas muy interesantes de las matemáticas como el álgebra moderna y la teoría de números.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que en efecto no existe ningún natural $m$ tal que $\gamma(m)=\overline{(0,1)}$.
  2. Verifica que $\gamma(0)$ es la identidad aditiva de $\mathbb{Z}$ y $\gamma(1)$ es su identidad multiplicativa.
  3. Explica por qué para un entero $\overline{(a,b)}$ no puede suceder más de una de las siguientes afirmaciones:
    • $\overline{(a,b)}=\overline{(0,0)}$.
    • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
    • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.
  4. La función $\gamma$ no es una biyección entre $\mathbb{N}$ y $\mathbb{Z}$. Pero sí existen biyecciones entre estos dos conjuntos. Construye una y demuestra que en efecto es una biyección.
  5. Da una biyección que muestre que el conjunto de los enteros no negativos pares, $\{0, 2, 4, 6, \ldots\}$ y el conjunto de los enteros no negativos positivos, $\{ 0, 1, 2, 3, \ldots \}$ tienen la misma cardinalidad. ¿Será posible construir la biyección de modo que se preserve la operación de suma? ¿Será posible construirla de modo que se preserve la operación de producto?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: El orden en los enteros

Por Ana Ofelia Negrete Fernández

Introducción

En las entradas anteriores introdujimos al conjunto de los números enteros, así como sus operaciones de suma y producto. Lo que haremos ahora es ver cómo ordenar a los elementos en $\mathbb{Z}$. Lo haremos de una forma similar a la que hicimos lo de las operaciones: usando las nociones que ya teníamos definidas en $\mathbb{N}$.

Como recordatorio, en $\mathbb{N}$ dijimos que $a<b$ cuando $a\in b$. De esta noción de «menor que» dimos la noción de «menor o igual que», diciendo que $a\leq b$ cuando ya sea que $a<b$ o bien $a=b$. Vimos que esta relación $\leq$ define un orden parcial en $\mathbb{N}$ que además es tricotómico. Quizás los resultados más importantes para trabajar con esta noción de desigualdad fue ponerla en términos de suma de elementos en $\mathbb{N}$:

  • En $\mathbb{N}$ se cumple que $a<b$ si y sólo si existe un natural $k>0$ tal que $a+k=b$.
  • En $\mathbb{N}$ se cumple que $a\leq b$ si y sólo si existe un natural $k$ tal que $a+k=b$.

Con esto en mente, veamos ahora cómo construir un orden en $\mathbb{Z}$. Antes de hacer eso, conviene primero pensar en números positivos, negativos y el cero.

Los positivos, los negativos y el cero en $\mathbb{Z}$

Ya sabemos que la identidad aditiva en $\mathbb{Z}$ es la clase $\overline{(0,0)}$, que también se puede pensar como la clase $\overline{(a,a)}$ para cualquier $a$ en $\mathbb{N}$. Si tenemos cualquier otra clase $\overline{(a,b)}$, por tricotomía del orden en $\mathbb{N}$ nos quedan sólo otras dos opciones: o bien $a<b$, o bien $b<a$. Esto nos ayudará a definir la noción de positividad y negatividad.

Definición. Sea $\overline{(a,b)}$ un entero. Diremos que ${(a,b)}$ es:

  • Cero si $a=b$,
  • Positivo si $a>b$ y
  • Negativo si $a<b$.

Una vez más, por la tricotomía del orden en $\mathbb{N}$, siempre sucede exactamente una de las posibilidades anteriores. Es importante ver que esta definición está bien hecha, es decir, que no depende de la clase de equivalencia que se eligió. Por ejemplo, si $\overline{(a,b)}$ es positivo, sucede que $a>b$. Si tomamos $(c,d)$ tal que $(a,b)\sim (c,d)$, nos gustaría ver que también sucede $c>d$. Esto se debe a que $a+d=b+c$. Si tuviéramos $c\leq d$, entonces nos pasaría que $a+d>b+c$ y tendríamos una contradicción. Así, por tricotomía debe pasar $c>d$. El caso de la negatividad se verifica de manera análoga.

Recuerda que el inverso aditivo de un entero $\overline{(a,b)}$ es el entero $-\overline{(a,b)}=\overline{(b,a)}$. Así, si $\overline{(a,b)}$ es positivo, entonces su inverso aditivo es negativo y viceversa.

Definición. Usaremos la letra $P$ para referirnos al conjunto de todos los enteros positivos. Usaremos $-P$ para referirnos al conjunto de todos los enteros negativos.

¿Cómo se comportan estas definiciones con las operaciones que ya tenemos en $\mathbb{Z}$? Ahora tenemos todo lo necesario para poder formalizar oraciones como «negativo por negativo es positivo», o «positivo más positivo es positivo.

Proposición. En $\mathbb{Z}$ se cumple todo lo siguiente:

  • Si $\overline{(a,b)}$ y $\overline{(c,d)}$ están en $P$, entonces su suma está en $P$ y su producto también.
  • Si $\overline{(a,b)}$ y $\overline{(c,d)}$ están en $-P$, entonces su suma está en $-P$ y su producto está en $P$.

Demostración. Todas estas afirmaciones se traducen a proposiciones que debemos demostrar en $\mathbb{N}$. En el caso de la primera, debemos ver que si $a>b$ y $c>d$, entonces $a+c>b+d$ y que $ac+bd>ad+bc$. Lo primero es sencillo, pues sale de la compatibilidad de $>$ con la suma de $\mathbb{N}$. Demostremos entonces que $ac+bd>ad+bc$.

Como $a>b$, existe un natural $k>0$ tal que $a=b+k$. Como $c>d$, existe un natural $l>0$ tal que $c=d+l$. Haciendo estas substituciones de $a$ y $c$ en $ac+bd>ad+bc$, obtenemos la siguiente cadena de desigualdades que son equivalentes a lo que debemos demostrar:

\begin{align*}
ac+bd&>ad+bc\\
(b+k)(d+l)+bd&>(b+k)d+b(d+l)\\
bd+bl+kd+kl+bd&>bd+kd+bd+bl.
\end{align*}

La última de estas desigualdades se cumple pues a la izquierda tenemos todos los sumandos que del lado derecho, y además el sumando $kl$ que como $k>0$ y $l>0$, entonces cumple $kl>0$.

Las demostraciones para cuando los elementos son negativos quedan como tarea moral.

$\square$

Al conjunto de enteros positivos también se le conoce en ocasiones como $\mathbb{Z}^+$, y al de enteros positivos también se le conoce como $\mathbb{Z}^-$.

El orden en $\mathbb{Z}$

Estamos listos para definir el orden en $\mathbb{Z}$. Aprovecharemos que ya podemos restar para poner la definición de orden en términos de esta operación.

Definición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ diremos que $\overline{(c,d)}<\overline{(a,b)}$ si $\overline{(a,b)}-\overline{(c,d)}$ es un entero positivo.

En realidad la expresión $\overline{(a,b)}-\overline{(c,d)}$ es simplemente $\overline{(a+c,b+d)}$, así que otra forma de escribir la condición de la definición es simplemente pedir que $a+c>b+d$. Como siempre sucede que o bien $a+c>b+d$, o que $a+c<b+d$, o que $a+c=b+d$ (y sólo una de ellas), entonces de manera inmediata obtenemos la tricotomía en $\mathbb{Z}$.

Proposición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ siempre sucede exactamente alguna de las siguientes:

  • $\overline{(a,b)}<\overline{(c,d)}$
  • $\overline{(c,d)}<\overline{(a,b)}$
  • $\overline{(a,b)}=\overline{(c,d)}$

Como en el caso de los naturales, a partir de la definición de «menor estricto» es sencillo obtener la noción de «menor o igual».

Definición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ diremos que $\overline{(c,d)}\leq \overline{(a,b)}$ si o bien $\overline{(a,b)}-\overline{(c,d)}$ es un entero positivo, o bien $\overline{(a,b)}=\overline{(c,d)}$.

Lo anterior es equivalente a pedir que $a+c\geq b+d$.

Proposición. La relación $\leq$ es un orden parcial en $\mathbb{Z}$.

Demostración. Es inmediato que esta relación $\leq$ es reflexiva, pues $\overline{(a,b)}\leq \overline{(a,b)}$ se obtiene de manera inmediata de la segunda parte de la definición.

Para ver que es antisimétrica, si tuviéramos $\overline{(c,d)}\leq \overline{(a,b)}$ y $\overline{(a,b)}\leq \overline{(c,d)}$, entonces tendríamos las desigualdades $a+c\geq b+d$ y $b+d\geq a+c$, que por la antisimetría en $\mathbb{N}$ implican que $a+c=b+d$, que justo es $\overline{(a,b)}=\overline{(c,d)}$.

Finalmente, para ver que $\leq$ es una relación transitiva, comenzamos con enteros $\overline{(a,b)}, \overline{(c,d)}, \overline{(e,f)}$ tales que $\overline{(e,f)}\leq \overline{(c,d)}$ y $\overline{(c,d)}\leq \overline{(a,b)}$.

De la primer desigualdad obtenemos $c+f\geq e+d$ y de la segunda obtenemos que $a+d\geq b+c$. Sumando ambas desigualdades, obtenemos que $c+f+a+d\geq b+c+e+d$. De aquí podemos deducir que $a+f\geq b+e$. Esto precisamente nos dice que $\overline{(e,f)}\leq \overline{(a,b)}$, como queríamos.

$\square$

Las dos proposiciones anteriores se pueden resumir en el siguiente enunciado.

Teorema. La relación $\leq$ es un orden total en $\mathbb{Z}$.

Compatibilidad del orden con las operaciones en $\mathbb{Z}$

Lo último que nos queda por mencionar es cómo se comporta la relación $\leq$ en $\mathbb{Z}$ con sus operaciones de suma y producto. A continuación mencionamos algunas de las propiedades que se cumplen, aunque hay varias cosas más que se pueden demostrar.

Proposición. En $\mathbb{Z}$ se cumple lo siguiente:

  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}\leq \overline{(g,h)}$, entonces $$\overline{(a,b)}+\overline{(e,f)}\leq \overline{(c,d)}+\overline{(g,h)}.$$
  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es positivo, entonces $$\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(e,f)}.$$
  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es negativo, entonces $$\overline{(c,d)}\overline{(e,f)}\leq \overline{(a,b)}\overline{(e,f)}$$

Demostración.

  • Las hipótesis se pueden escribir como $a+d\leq b+c$ y $e+h\leq f+g$. Sumando ambas y asociando de un modo que nos convenga, obtenemos que $(a+e)+(d+h)\leq (b+f)+(c+g)$. Esto lo que nos dice es que $\overline{(a+e,b+f)}\leq $\overline{(c+g,d+h)}$, que es precisamente lo que queríamos demostrar.
  • Por la hipótesis, tenemos que $\overline{(c,d)}-\overline{(a,b)}$ es positivo y que $\overline{(e,f)}$ también. Por lo que ya vimos antes, el producto de estos dos enteros debe ser entonces positivo. Por distributividad, este producto es $\overline{(c,d)}\overline{(e,f)}-\overline{(a,b)}\overline{(e,f)}$. Así, $\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(e,f)},$ como queríamos.
  • Por la hipótesis, tenemos que $\overline{(c,d)}-\overline{(a,b)}$ es positivo y que $\overline{(e,f)}$ es negativo. Entonces $\overline{(f,e)}=-\overline{(e,f)}$ es positivo. Por lo que ya vimos antes, el producto de estos dos enteros debe ser entonces positivo. Por distributividad, este producto es $\overline{(c,d)}\overline{(f,e)}-\overline{(a,b)}\overline{(f,e)}$. Esta expresión se puede escribir de manera alternativa como $\overline{(a,b)}\overline{(e,f)}-\overline{(c,d)}\overline{(e,f)}$. Como es positiva, obtenemos justo lo que queríamos.

$\square$

En los ejercicios de la tarea moral explorarás más propiedades de la relación $\leq$ y cómo interactúa con las operaciones en $\mathbb{Z}$.

Más adelante…

Ya tenemos todo lo que necesitamos en los enteros: su definición, sus operaciones y su noción de orden. Sin embargo, aún tenemos una gran dificultad: es muy difícil escribirlos. Cada que queremos referirnos a un entero, debemos usar la clase de equivalencia de una pareja de naturales. Nos gustaría que los enteros fueran algo mucho más intuitivo: los naturales y sus negativos. Lo que haremos en la siguiente entrada es ver cómo formalizar esta idea para que podamos, finalmente, abandonar la notación de parejas de naturales y relaciones de equivalencia. Esto será bastante útil para después entrar en muchas otras propiedades que nos interesan de los enteros como la noción de divisibilidad y otras propiedades aritméticas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Completa las demostraciones de las nociones de positivo, negativo y orden en $\mathbb{Z}$ están bien definidas.
  2. Demuestra que la suma de dos enteros negativos es un entero negativo y que su producto es un entero positivo. Haz una demostración que funcione en general, pero luego verifícalo «a mano» para los enteros $\overline{(3,7)}$ y $\overline{(9,11)}$.
  3. En la entrada dimos la definición formal de $<$ y de $\leq$ en $\mathbb{Z}$, pero aún no hemos definido ni usado los símbolos $>$ y $\geq$ en $\mathbb{Z}$. Formaliza una definición para ellos. Demuestra que $\geq$ también es un orden total en $\mathbb{Z}$.
  4. Demuestra que en $\mathbb{Z}$, si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es negativo, entonces $$\overline{(a,b)}\overline{(e,f)}\geq \overline{(c,d)}\overline{(e,f)}.$$
  5. Determina si la siguiente propiedad del producto y el orden en $\mathbb{Z}$ siempre es verdadera, o bien si hay ocasiones en las que falla: «Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}\leq \overline{(g,h)}$, entonces $$\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(g,h)}.»

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Construcción de los enteros y su suma

Por Ana Ofelia Negrete Fernández

Introducción

Ya que se construyeron los números naturales, podríamos intentar usarlos para plantear ecuaciones con ellos y ver si se pueden resolver. Un tipo de ecuaciones muy sencillas son las de la forma $a=b+x$, en donde $a$ y $b$ son valores dados y lo que se espera es encontrar el valor de $x$. En los números naturales no hemos definido la resta, así que no es tan sencillo resolver esta ecuación como simplemente decir que la solución es $a-b$.

Lo que sí hicimos en entradas anteriores es ver que la ecuación $a=b+x$ con $a$ y $b$ en $\mathbb{N}$ tiene una solución $x$ en $\mathbb{N}$ si y sólo si $a\geq b$. Cuando $a<b$, no existe solución. Por ejemplo, no existe ninguna $x \in \mathbb{N}$ tal que $3 = 7 + x$.

Pensando esto de manera más intuitiva, $\mathbb{N}$ está conformado por el cero y demás números estrictamente positivos, pero en ocasiones eso no basta para realizar algunas cuentas. Consideremos el siguiente problema:

Una rana está en una posición inicial $0$ y salta dos unidades hacia la derecha. A continuación salta $3$ unidades hacia la izquierda. Luego vuelve a saltar $2$ unidades hacia la derecha y seguido de esto vuelve a saltar $3$ unidades a la izquierda. Una última vez, la rana salta $2$ unidades a la derecha seguidas de $3$ unidades a la izquierda. ¿En qué posición se encuentra la rana ahora?

La cuenta intuitiva, usando los números que conocemos desde educación básica, nos dice que la rana queda en la posición $-3$. Sin embargo, este es un número negativo, y dentro de nuestra construcción de $\mathbb{N}$ nunca hemos hablado de estos números.

La necesidad de que existan soluciones para las ecuaciones sencillas que mencionamos arriba y de que existan números para hacer cuentas como las de la rana es motivación suficiente para querer construir el conjunto de números enteros, denotado $\mathbb{Z}$. Lo que buscamos es que toda ecuación de la forma $a=b+x$ tenga una solución. Es decir, querremos que el conjunto de entero satisfaga que «para cualesquiera $a,b\in \mathbb{Z}$ existe $x\in \mathbb{Z}$ tal que $a= b+x$».

En esta entrada y las siguientes, describiremos la construcción de $\mathbb{Z}$, de sus operaciones y de su orden. Para hacer esto de la manera más formal posible, aprovecharemos la construcción que ya hemos hecho de $\mathbb{N}$.

A grandes rasgos, debemos de pasar por los siguientes pasos.

  1. Definiremos una relación en $\mathbb{N}\times \mathbb{N}$, en donde dos parejas $(a,b)$ y $(c,d)$ de enteros estarán relacionadas si $a+d=b+c$.
  2. Veremos que esto es una relación de equivalencia. Un número entero será una clase de equivalencia de esta relación, es decir, en símbolos será un conjunto de la siguiente forma: \[ \overline{(a,b)}:= \left\{ (c,d) \in \mathbb{N}\times\mathbb{N} : \left(a + d = b +c \right) \right\}, \] en donde $a$ y $b$ son números naturales.
  3. El conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas, en símbolos: \[ \mathbb{Z} := \left\{ \overline{(a,b)} : (a,b) \in \mathbb{N}\times\mathbb{N} \right\}.\]
  4. A este conjunto le daremos operaciones de suma, producto y un orden. Enunciaremos y demostraremos varias de sus propiedades.

Ya que hagamos todo esto, podremos pasar a una siguiente etapa de esta unidad, en donde daremos una introducción a la teoría de números, que es un área de las matemáticas que se dedica a estudiar propiedades aritméticas de $\mathbb{Z}$.

¿Qué es un número entero?

Comencemos tomando una pareja ordenada $(a,b) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$. Para esta pareja, la ecuación

\begin{equation}
a = b + x
\end{equation}

tiene una solución en $\mathbb{N}$. Sin embargo, existen más parejas que tienen la misma solución, es decir, parejas $(c,d)$ tales que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x \in \mathbb{N}$. Por ejemplo, si tomamos $a = 7$, $b = 3$ la ecuación correspondiente es $$7=3+x,$$ cuya solución es $x=4$. Si tomamos $c = 15$ y $d = 11$, entonces la ecuación es $$15=11+x,$$ cuya solución también es $x=4$.

En realidad, muchas más parejas de naturales pueden encontrarse tales que la solución $x$ sea la misma en las ecuaciones representadas por su pareja ordenada asociada. En el ejemplo anterior, otras parejas con la misma solución serían $(5, 1)$, $(31, 27)$, $(100, 96)$, etc. Lo que buscamos al construir a los números enteros es «agrupar» a las parejas con la misma solución $x$. Sin embargo, para que más adelante podamos también «considerar a los negativos», tendremos que cambiar un poco el enfoque.

La siguiente proposición nos permite describir quiénes son todas las parejas $(c,d) \in \mathbb{N} \times \mathbb{N}$ que tienen la misma solución.

Proposición. Sean $(a,b) \in \mathbb{N} \times \mathbb{N}$ y $(c,d) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$ y $c\geq d$. Se tiene que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x$ si y sólo si $a+d = b+c$.

Demostración. $\Longrightarrow )$ Comencemos suponiendo que las ecuaciones $a=b+x$ y $c=d+x$ tienen una misma solución $x$. Esto en símbolos quiere decir que

\begin{align*} a &= b+x \\ d + x &= c \end{align*}

Sumando ambas ecuaciones, obtenemos lo siguiente (aquí ya estamos usando las propiedades conmutativa y asociativa de la suma):

$$a + d + x = b + c + x.$$

En entradas anteriores ya demostramos que se cumple la ley de la cancelación en $\mathbb{N}$. Cancelando $x$ de ambos lados de la igualdad anterior, obtenemos $$a+d=b+c,$$ que era lo que queríamos.

$\Longleftarrow )$ Ahora comencemos con parejas $(a,b)$ y $(c,d)$ tales que $a+d=b+c$. Sea $k \in \mathbb{N}$ una solución de la ecuación $a = b + x$. Es decir, $a = b + k$. Sumando $d$ de ambos lados y usando la hipótesis, tenemos lo siguiente

\begin{align*} b + d + k &= a + d\\
&= b+c.
\end{align*}

Usando la ley de la cancelación en el término $b$, obtenemos que $d+k=c$, es decir, que $k$ también es solución de la ecuación $c=d+x$.

$\square$

La proposición anterior motiva entonces la siguiente definición para todas las parejas $(a,b)$, no sólo para aquellas con $a\geq b$.

Definición. Sean $(a,b)$ y $(c,d)$ parejas de números naturales. Diremos que $(a,b)\sim(c,d)$ si y sólo si $a + d = b + c$.

Probemos una propiedad fundamental de $\sim$.

Proposición. La relación $\sim$ en $\mathbb{N}\times \mathbb{N}$ es una relación de equivalencia.

Demostración. Debemos demostrar que $\sim$ es reflexiva, simétrica y transitiva.

  1. Reflexividad. Veamos que para toda $(a,b)\in \mathbb{N}\times \mathbb{N}$ se cumple que $(a,b)\sim (a,b)$. Por la conmutatividad de la suma en $\mathbb{N}$, $a + b = b + a$. Así, $(a,b) \sim (a,b)$.
  2. Simetría. Veamos que para cualesquiera $(a,b),(c,d) \in \mathbb{N}\times\mathbb{N}$, si $(a,b)\sim (c,d)$, entonces $(a,b) \sim (c,d)$. Sean $(a,b)$ y $(c,d)$. Si $(a,b)=(c,d)$, entonces $a+d = b+c$. Nuevamente por la conmutatividad de la suma en $\mathbb{N}$, se desprende que $c + b = d + a$. Esto es precisamente la definición de $(c,d)\sim(a,b)$.
  3. Transitividad. Veamos que para cualesquiera $(a,b), (c,d),(e,f) \in \mathbb{N}\times \mathbb{N}$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$, se obtiene que $(a,b)\sim (e,f)$. Sean $(a,b)$, $(c,d)$ y $(e,f)$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$. Esto quiere decir que $a+d=b+c$ y que $c+f=d+e$. Sumando ambas ecuaciones, se obtiene $$a+f+c+d=b+e+c+d.$$ Usando la ley de cancelación en $c+d$ obtenemos la ecuación $$a+f=b+e,$$ la cual precisamente corresponde a la relación $(a,b)\sim (e,f)$.

$\square$

Con sólo estas dos proposiciones ya debería quedar más claro de dónde sale la noción formal de número entero, que es la siguiente.

Definición. Un número entero es una clase de equivalencia de $\sim$, es decir, es un conjunto de la siguiente forma:

\begin{equation}
\overline{(a,b)} := \left\{(c,d)\in \mathbb{N}\times \mathbb{N} : a+d = b+c \right\}.
\end{equation}

Ejemplo. ¿Quién es el número entero $\overline{(0,0)}$? Es el conjunto de parejas $(c,d)$ para las cuales $0+d=c+0$, es decir, aquellas en donde $c=d$. De esta forma, $$\overline{(a,b)}=\{(0,0),(1,1),(2,2),(3,3),\ldots\}.$$

¿Cuándo dos números enteros son iguales? Para esto, debe suceder como conjuntos que $\overline{(a,b)}=\overline{(c,d)}$. Como $\sim$ es reflexiva, se tiene que $(a,b)\in \overline{(a,b)}$. Así, $(a,b)$ debe estar en $\overline{(c,d)}$ para que pueda darse la igualdad de conjuntos. Es decir, se necesita que $(a,b)\sim (c,d)$. Es fácil convencerse de que esto es una condición necesaria y suficiente.

El conjunto de los números enteros

En la definición de número entero podemos ir cambiando la pareja $(a,b)$ para ir obteniendo distintos conjuntos. Como $\sim$ es una relación de equivalencia en $\mathbb{N}\times \mathbb{N}$, al variar sobre todas las posibles parejas, estos conjuntos del estilo $\overline{(a,b)}$ forman una partición de $\mathbb{N}\times \mathbb{N}$. Si quieres recordar por qué, puedes ver las entradas correspondientes en el curso de Álgebra Superior I. El conjunto de todas las clases de equivalencia será nuestro conjunto de números naturales.

Definición. Para $(a,b) \in \mathbb{N}\times \mathbb{N}$, el conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas. En símbolos, definimos lo siguiente:

\begin{equation}
\mathbb{Z} := \left\{ \overline{(a,b)} : (a,b)\in \mathbb{N}\times \mathbb{N} \right\}.
\end{equation}

De ahora en adelante, abreviaremos la notación de clase de equivalencia por $\overline{(a,b)}$ (sin la tilde), para facilitar escribir las demostraciones. Otra notación usada comúnmente en la literatura es $[(a,b)]$, sin la tilde.

La suma de los números enteros

Hasta ahora los elementos del conjunto $\mathbb{Z}$ son clases de equivalencia y esto está algo alejado de nuestra noción de números. Definamos operaciones en $\mathbb{Z}$ para que de nuevo los pensemos como un sistema numérico. Comenzamos definiendo la suma de enteros como sigue.

Definición. La suma en los enteros es la función $ \widehat+ : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} $ tal que $$\overline{(a,b)} \enspace \widehat+ \overline{(c,d)} = \overline{(a+c,b+d)}.$$

De manera intuitiva, lo que esta suma refleja es que si tenemos dos ecuaciones $a = b + x$ y $c = d + y$, y las sumamos, entonces se obtiene la ecuación:

$$ a + c = (b + d) + (x + y),$$ la cual correspondería a la clase de equivalencia $\overline{(a+c,b+d)}$.

En la definición utilizamos símbolos distintos para la suma. El símbolo $+$ se refiere al símbolo de suma en $\mathbb{N}$ al cual estamos muy bien acostumbrados. El símbolo $\widehat +$ se refiere al símbolo en $\mathbb{Z}$ que estamos definiendo y que será la suma en $\mathbb{Z}$, para la cual aún tenemos que probar que se cumplan las propiedades que queremos. De ahora en adelante simplemente estaremos usando el símbolo $+$ para ambas, así que es muy importante que en cada momento te preguntes si se refiere al símbolo en $\mathbb{N}$ o en $\mathbb{Z}$, lo cual será claro por el contexto.

Un problema que podríamos tener con la definición de suma es que no estuviera bien definida. Es decir, que si tomamos diferentes representantes de la clase de equivalencia, al hacer la suma obtengamos un resultado diferente. A continuación mostramos que esto en realidad no es un problema.

Proposición. La suma en los enteros está bien definida. Es decir, si $(a,b)\sim (a’,b’)$ y $(c,d)\sim (c’,d’)$, entonces $(a+d,b+c)\sim(a’+d’,b’+c’)$.

Demostración. Las hipótesis corresponden a que $a+b’=b+a’$ y a que $c+d’=d+c’$, que escribiremos como $d+c’=c+d’$. Sumando la primera igualdad con la tercera, reordenando y agrupando términos, obtenemos que $$(a+d)+(b’+c’)=(b+c)+(a’+d’),$$

lo que significa que, como se quería, $(a+d , b+c) \sim (a’+d’, b’+c’).$ Es decir, $\overline{(a+d , b+c)} = \overline{(a’+d’ , b’+c’)}$, de modo que el resultado final de la suma no depende de los representantes que elegimos para hacerla.

$\square$

Propiedades de la suma en $\mathbb{Z}$

Como estamos definiendo una nueva operación de suma, hay que revisar de nuevo que tenga las propiedades que se necesitan para poder trabajar con ella de la manera usual. En esta sección hacemos esto.

Proposición. Se satisfacen las siguientes propiedades para la operación de suma en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}+\overline{(c,d)}=\overline{(c,d)}+\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}+\overline{(m,n)}=\overline{(a,b)}.$$
  • Inversos. Para cualquier entero $\overline{(a,b)}$ existe un entero $\overline{(c,d)}$ tal que la suma $\overline{(a,b)}+\overline{(c,d)}$ es el neutro de la propiedad anterior.

Demostración. La asociatividad se sigue de la siguiente cadena de igualdades.

\begin{align*}
(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}&=\overline{(a+c,b+d)}+\overline{(e,f)}\\
&=\overline{((a+c)+e,(b+d)+f)}\\
&=\overline{(a+(c+e),b+(d+f))}\\
&=\overline{(a,b)}+\overline{(c+d,d+f)}\\
&=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).
\end{align*}

En la primera, segunda, penúltima y última igualdades estamos usando la definición de suma en $\mathbb{Z}$. En la tercer igualdad estamos usando la asociatividad de la suma en $\mathbb{N}$.

Para demostrar la conmutatividad de la suma en $\mathbb{Z}$ usamos la conmutatividad de la suma en $\mathbb{N}$ en la segunda igualdad de la siguiente cadena:

\begin{align*}
\overline{(a,b)}+\overline{(c,d)}&=\overline{(a+c,b+d)}\\
&=\overline{(c+a,d+b)}\\
&=\overline{(c,d)}+\overline{(a,b)}.
\end{align*}

El elemento neutro de la suma en $\mathbb{Z}$ es el entero $\overline{(0,0)}$ pues, en efecto, si tomamos cualquier entero $\overline{(a,b)}$, tenemos que $$\overline{(a,b)}+\overline{(0,0)}=\overline{(a+0,b+0)}=\overline{(a,b)}.$$

Aquí estamos usando que en los naturales el $0$ es neutro para la suma.

Finalmente, dado cualquier entero $\overline{(a,b)}$, notamos que su inverso aditivo sería el entero $\overline{(b,a)}$. En efecto, su suma sería $$\overline{(a,b)}+\overline{(b,a)}=\overline{(a+b,a+b)}=\overline{(0,0)}.$$

La primer igualdad está usando la conmutatividad de la suma en $\mathbb{N}$ y la última el hecho de que $(a+b,a+b)\sim (0,0)$.

$\square$

Como los inversos aditivos se usan frecuentemente, usamos un símbolo especial para ellos: el símbolo de menos. Usamos también este símbolo en la definición de la función resta.

Definición. Para un entero $\overline{(a,b)}$ definimos $-\overline{(a,b)}:=\overline{(b,a)}$.

Para restar enteros, simplemente a un entero le sumamos el inverso del otro.

Definición. La resta de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ es el entero

\begin{align*}
\overline{(a,b)}-\overline{(c,d)}:&=\overline{(a,b)}+(-\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(d,c)}\\
&=\overline{(a+d,b+c)}.
\end{align*}

Cerrando el círculo

Finalizamos esta entrada observando que en $\mathbb{Z}$ ahora sí cualquier ecuación de la forma $r = w + s$ tiene una solución $w$ sin importar los valores de $r$ y $s$.

Proposición. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que existe un entero $\overline{(x,y)}$ tal que $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}.$$

Demostración. La solución es el entero $\overline{(x,y)}=\overline{(a,b)}-\overline{(c,d)}$. En efecto, usando las propiedades de la suma en $\mathbb{Z}$ y la definición de resta, tenemos que:

\begin{align*}
\overline{(x,y)}+\overline{(c,d)}&=(\overline{(a,b)}-\overline{(c,d)})+\overline{(c,d)}\\
&=\overline{(a,b)}+(-\overline{(c,d)}+\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(0,0)}\\
&=\overline{(a,b)}.
\end{align*}

Más adelante…

En esta entrada definimos a los enteros, al conjunto de números enteros y a la operación de suma. Vimos también que la suma tiene buenas propiedades. La estructura algebraica de $\mathbb{Z}$ es todavía más rica. Dentro de $\mathbb{Z}$ también se puede definir un producto y una relación de orden. Haremos esto en las siguientes entradas, enunciaremos las propiedades que tienen y las demostraremos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Repasa por qué las clases de equivalencia inducidas por una relación de equivalencia sobre un conjunto $X$ forman una partición del conjunto $X$.
  2. Encuentra la solución a la siguiente ecuación en los enteros $$\overline{(5,3)}=\overline{(x,y)}+\overline{(1,8)}.$$ Tu respuesta debe ser un número entero, es decir, un conjunto de parejas de naturales. ¿Cuáles son esas parejas?
  3. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, muestra que la solución $\overline{(x,y)}$ a la ecuación $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}$$ es única. Concluye que tanto el neutro aditivo de $\mathbb{Z}$, como los inversos aditivos en $\mathbb{Z}$ son únicos.
  4. Demuestra que para cualquier entero $\overline{(a,b)}$ se tiene que $-(-\overline{(a,b)})=\overline{(a,b)}$.
  5. Demuestra que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que $$-(\overline{(a,b)}+\overline{(c,d)})=(-\overline{(a,b)})+(-\overline{(c,d)}).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Compatibilidad del orden con las operaciones de los naturales

Por Roberto Manríquez Castillo

Introducción

En las entradas anteriores, nos encargamos de definir con toda formalidad la estructura con la que hemos estado familiarizados desde hace mucho; sin embargo, en principio, la forma en que definimos el orden y las distintas operaciones, no parece ser que.

Para finalizar con el estudio de los números naturales, veremos las importantes relaciones que hay entre el orden que definimos para $\mathbb{N}$ en la entrada anterior, y las operaciones que hemos trabajado a lo largo de este tema. Para esto, nuevamente ocuparemos el Principio de Inducción.

Una equivalencia del orden

Aunque como mencionamos en la introducción, la forma en que definimos el orden, no parece tener mucha relación con las operaciones definidas, usando la definición de la suma, podemos dar una definición equivalente del orden en $\mathbb{N}$, en el siguiente teorema, demostramos que en efecto, ambas caracterizaciones son equivalentes.

Teorema.Si $n,m$ son números naturales, se tiene que $n<m$ si y sólo si existe $k\in\mathbb{N}\setminus\{0\}$ tal que n+k=m.

Demostración. Procedamos por inducción sobre $n$.

Si $n=0$, si $0<m$, entonces $m\in \mathbb{N}\setminus\{0\}$ y $n+m=0+m=m$. Recíprocamente, si existe $k\in\mathbb{N}\setminus\{0\}$ tal que $0+k=m$, tendremos que $k=m$, por lo que $m\neq 0$ y por lo tanto $0<m$. Con esto probamos la base de inducción.

Supongamos que el resultado es válido para alguna $n$ y probemos que el resultado para $\sigma(n)$ es decir, que si $m\in\mathbb{N}$ se tiene que $\sigma(n)<m\Leftrightarrow$ existe $k\in\mathbb{N}\setminus\{0\}$ tal que $\sigma(n)+k=m$.

Verifiquemos la ida de la demostración. Supongamos que $\sigma(n)<m$, entonces $n<m$, por lo que por la hipótesis de inducción concluimos que existe $k\neq 0$ tal que $n+k=m$, como $k\neq0$, existe $k’$ tal que $\sigma(k’)=k$, entonces tenemos que

\begin{align*}
m&=n+k\\
&=n+\sigma(k’)\\
&=\sigma(n)+k’
\end{align*}

Notemos además que $k’\neq 0 $, ya que si $k’=0$, entonces $m=\sigma(n)$ lo cual es un contradicción.

Para el regreso, supongamos que existe $k\neq 0$ tal que $\sigma(n)+k=m$ y demostremos que $\sigma(n)\in m$. Como $\sigma(n)+k=m$, concluimos que $n+ \sigma(k)=m$, por lo que $n<m$ y por lo visto en la entrada de La relación de orden en los naturales, tendremos que $\sigma(n)\leq m$. Si $\sigma(n)=m$, entonces cancelando, obtenemos que $k=0$, lo cual es absurdo, entonces solo queda que $\sigma(n)<m$. Con esto concluimos la inducción y la prueba.

$\square$

El orden y las operaciones

Con el anterior resultado, es más fácil ver las relaciones que tendrán el orden con las operaciones, por ejemplo, la siguiente.

Teorema. Si $n<m$ y $l\in\mathbb{N}$, entonces $n+l<m+l$.

Demostración. Como $n<m$, entonces existe $k\neq 0$ tal que $n+k=m$, de donde $n+l+k=m+l$, pero justo esa es la definición de que $n+l<m+l$.

$\square$

Corolario. Si $a<b$ y $c<d$, entonces $a+c<b+d$.

Demostración. Como $a<b$, entonces $a+c<b+c$, y como $c<d$, tenemos que $b+c<b+d$. Por la transitividad del orden, obtenemos el resultado.

$\square$

Finalizamos la entrada, marcando la relación entre el orden y la multiplicación.

Teorema. Si $n<m$ y $l\in\mathbb{N}\setminus\{0\}$, entonces $n\cdot l<m\cdot l$

Demostración. Como $n<m$ entonces existe $k\neq 0$ tal que $n+k=m$, por lo que $nl+lk=ml$, sin embargo, como $l$ y $k$ son distintos de cero, entonces $lk$ también es distinto de cero, por lo que $nl<ml$ justo como debíamos probar.

$\square$

Más adelante…

Con esta entrada, terminamos el estudio de los números naturales, por lo que en la siguiente entrada empezaremos con el estudio de los números enteros. Sin embargo, toda la teoría que hemos desarrollado hasta el momento será la base para poder dar una definición precisa de qué son los números enteros. También nos ayudará a definir sus operaciones, así que nos encontraremos con más oportunidades para practicar nociones de los números naturales.

Hay que hacer una especial mención a los principios de inducción y de buen orden, ya que jugarán un papel crucial a la hora de estudiar las propiedades de los enteros, que nos servirán para desarrollar lo que conocemos como teoría de números.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que si $a<b$ y $c<d$, entonces $ac<bd$, no es necesario suponer que los números son distintos de cero.
  2. Si $n<m$ y $l\neq 0$, entonces $n^l<m^l$. Sugerencia, usa inducción sobre $l$.
  3. Si $n<m$ y $l\neq 0$, entonces $l^n<l^m$.
  4. Si $n<m$, entonces $n!<m!$.
  5. Demuestra que si $n,m\in\mathbb{N}\setminus\{0\}$, entonces $(1+m)^n\geq 1+nm$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»