Archivo de la etiqueta: suma

Álgebra Superior II: Inmersión de $\mathbb{N}$ en $\mathbb{Z}$

Por Ana Ofelia Negrete Fernández

Introducción

Desde la educación básica pensamos al conjunto de los números enteros como aquél que está conformado por los naturales, sus negativos y el cero: $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} .$$ Sin embargo, para poder fundamentar nuestra construcción, hasta ahora tenemos que el conjunto $\mathbb{Z}$ consiste por definición de ciertas clases de equivalencia de una relación en $\mathbb{N}\times \mathbb{N}$. ¡Observa que ni siquiera $\mathbb{N}$ es un subconjunto de $\mathbb{Z}$ a partir de esta definición! ¿Cómo le hacemos para que estos dos puntos de vista coincidan?

En esta entrada veremos dos cosas muy importantes que nos permitirán unificar ambas ideas. Lo primero que haremos es ver que, en efecto, podemos pensar que $\mathbb{N}$ «es un subconjunto» de $\mathbb{Z}$. Esto lo ponemos entre comillas pues en realidad lo que demostraremos es que hay una copia de $\mathbb{N}$ dentro de $\mathbb{Z}$, con toda la estructura que tenía $\mathbb{N}$ originalmente: sus operaciones, sus identidades, su orden.

Después de esto, nos enfocaremos en ver que $\mathbb{Z}$ consiste exactamente de esta copia y de sus inversos aditivos. Así, habremos formalizado que $\mathbb{Z}$ consiste exactamente de los naturales, sus inversos aditivos y ningún otro elemento.

Inmersión de los naturales en los enteros

En la entrada anterior hablamos acerca del orden en $\mathbb{Z}$. Para ello hablamos del conjunto de enteros positivos $P$. También definimos las relaciones $<$ y $\leq$. En un sentido bastante formal, los enteros mayores o iguales a cero son exactamente los números naturales. La manera en la que enunciamos este resultado es la siguiente.

Teorema. Existe una función biyectiva $\gamma:\mathbb{N}\to P\cup \{\overline{(0,0)}\}$ que preserva las operaciones de suma, producto, el inverso aditivo, el inverso multiplicativo y el orden. Esta función está dada por $\gamma(n)=\overline{(n,0)}$.

Una vez que demostremos esto, la imagen $\gamma(\mathbb{N})$ será exactamente la «copia» de los naturales que vive en los enteros y que precisamente tiene todas las propiedades algebraicas de los naturales que nos interesaban.

Para hacer la demostración de este teorema, probaremos el resultado poco a poco, a través de varios lemas.

Lema 1. La función $\gamma$ está bien definida y es biyectiva.

Demostración. La función $\gamma$ está bien definida pues las clases del estilo $\overline{(n,0)}$ siempre están en $P\cup \{\overline{(0,0)}\}$: si $n=0$, entonces obtenemos la clase $\overline{(0,0)}$ y si $n\neq 0$, entonces $n>0$, lo cual justifica que $\overline{(n,0)}$ es un entero positivo, es decir, en $P$.

Veamos que la función $\gamma$ es biyectiva. Para ver que es inyectiva tomamos dos naturales $m$ y $n$ tales que $\gamma(m)=\gamma(n)$, es decir, tales que $\overline{(m,0)}=\overline{(n,0)}$. Esto quiere decir que $m+0=n+0$, pero entonces $m=n$. Para ver que es suprayectiva, ya sabemos que tomemos una clase $\overline{(a,b)}$ en $P\cup \{\overline{(0,0)}\}$. Por lo visto en la entrada anterior, esto nos dice que $a\geq b$, pero entonces existe un natural $k$ tal que $a=b+k$, de modo que $a+0=b+k$ y por lo tanto $\overline{(a,b)}=\overline{(k,0)}$. Con esto concluimos que $$\gamma(k)=\overline{(k,0)}=\overline{(a,b)}.$$

$\square$

Observa que, sin embargo, no sucede que $\gamma(\mathbb{N})$ sea todo $\mathbb{Z}$. Es decir, hay enteros diferentes de las clases $\overline{(n,0)}$, por ejemplo, el $\overline{(0,1)}$. Se puede verificar que la imagen de $\gamma$ cubre a los enteros no negativos y sólo a esos.

Regresando al enunciado del teorema, lo que veremos ahora es que $\gamma$ respeta las operaciones de suma y producto, así como sus respectivas identidades.

Lema 2. Para cualesquiera naturales $m$ y $n$ se cumple que $$\gamma(m)+\gamma(n)=\gamma(m+n)$$ y que $$\gamma(m)\gamma(n)=\gamma(mn).$$ Además, $\gamma(0)$ es la identidad aditiva en $\mathbb{Z}$ y $\gamma(1)$ es la identidad multiplicativa en $\mathbb{Z}$.

Demostración. Basta usar la definición de $\gamma$ y de la suma en $\mathbb{Z}$:
\begin{align*}
\gamma (m)+\gamma(n)&=\overline{(m,0)}+\overline{(n,0)}\\
&= \overline{(m+n,0)}\\
&=\gamma{m+n}.
\end{align*}

De modo similar, para el producto usamos la definición de $\gamma$ y la del producto en $\mathbb{Z}$:

\begin{align*}
\gamma (m)\gamma(n)&=\overline{(m,0)}\overline{(n,0)}\\
&= \overline{(mn+0\cdot 0,m\cdot 0 + 0 \cdot n)}\\
&= \overline{(mn,0)}\\
&=\gamma{mn}.
\end{align*}

La parte de las identidades es sencilla de hacer y queda como tarea moral.

$\square$

Ya vimos que $\gamma$ respeta las operaciones. Ahora veamos que también respeta el orden.

Lema 3. Para cualesquiera naturales $m$ y $n$, sucede que $m < n$ si y sólo si $\gamma(m) < \gamma(n)$.

Demostración. Por definición de $\gamma$, tenemos que $\gamma(m)<\gamma(n)$ si y sólo si $\overline{(m,0)}<\overline{(n,0)}$. En la entrada anterior vimos que esto sucede si y sólo si en $\mathbb{N}$ tenemos que $m+0<n+0$. Pero esto es justo $m<n$.

$\square $

Los lemas 1, 2 y 3 conforman la demostración del teorema de esta sección.

Caracterización de los enteros

En vista del teorema de la sección anterior, dentro de $\mathbb{Z}$ hay metida una copia de $\mathbb{N}$. ¿Cuáles son los otros elementos de $\mathbb{Z}$? ¿Hay muchos más enteros que eso? La respuesta es que no. Para acabar de tener a todos los elementos de $\mathbb{Z}$ basta con tomar esta copia de los enteros y considerar a sus inversos aditivos.

Proposición. Para cualquier entero $\overline{(a,b)}$, tenemos que sucede una y exactamente una de las afirmaciones siguientes:

  • $\overline{(a,b)}=\overline{(0,0)}$.
  • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
  • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.

Demostración. Por el principio de tricotomía en $\mathbb{N}$, sabemos que se cumple una y exactamente una de las afirmaciones siguientes:

  • $a=b$
  • $a>b$
  • $a<b$

Si pasa la primera, entonces $\overline{(a,b)}=\overline{(0,0)}$. Si pasa la segunda, es porque existe un natural $n\neq 0$ tal que $a=b+n$, pero entonces $a+0=b+n$ y así $\overline{(a,b)}=\overline{(n,0)}$. Si pasa la tercera, es porque existe un natural $n,0$ tal que $a+n=b=b+0$, y entonces $\overline{(a,b)}=\overline{(0,n)}$.

De esta manera, se ve que siempre se cumple al menos una de las afirmaciones del enunciado. Ver que se cumple a lo más una es sencillo y queda como tarea moral.

$\square$

Siguiendo la demostración anterior con cuidado, nos damos cuenta que los casos corresponden precisamente al entero cero, a los positivos y a los negativos. La proposición anterior es una manera de ilustrar, en particular, que hay que hay el mismo número de números naturales positivos como números enteros negativos: a cada uno de ellos le podemos asociar (de manera biyectiva), un natural. Otra forma de dar esta biyección es mandar el entero positivo $\overline{(n,0)}$ al entero negativo $\overline{(0,n)}$, que es precisamente su inverso aditivo.

Re-etiquetando a los enteros

Estamos listos para abandonar la notación de parejas y clases de equivalencia. En vista de los resultados anteriores, cualquier entero positivo $\overline{(a,b)}$ es el mismo que un entero de la forma $\overline{(n,0)}$. Y los enteros de esta forma justo conforman una copia de $\mathbb{N}$ con toda la estructura algebraica que nos interesa. Así, ya nunca más tenemos que llamar a $\overline{(a,b)}$ con este nombre: basta simplemente llamarlo $n$.

Si tenemos un entero de la forma $\overline{(a,b)}$ con $a=b$, entonces simplemente lo llamaremos $0$. Y finalmente, si el entero $\overline{(a,b)}$ es negativo, podemos escribirlo de la forma $\overline{(0,n)}$ y en vista de lo anterior simplemente lo llamaremos $-n$. Todo esto funciona bien, porque también sabemos que justo $\overline{(n,0)}$ y $\overline{(0,n)}$ son inversos aditivos entre sí.

Pero, ¿cómo sabremos si al usar el símbolo $1$ nos estamos refiriendo al natural $\{\emptyset\}$ o al entero $\overline{(\{\emptyset\},\emptyset)}$? En realidad ya no es relevante, pues tenemos la total garantía de que los enteros no negativos se comportan exactamente como $\mathbb{N}$.

De esta manera, $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \}$$ y además tenemos la total garantía de que los enteros no negativos se comportan exactamente como los naturales.

Más adelante…

Después de liberar la gran carga que teníamos de usar la notación de parejas y de relaciones de equivalencia, ahora ya podemos usar a los enteros tal y como los conocíamos desde educación básica: como el cero, los enteros que no son cero, y sus negativos. Además, gracias a todo lo que demostramos, ya podemos utilizar las propiedades de la suma, el producto y el orden con la confianza de que están bien fundamentadas.

Lo que sigue es estudiar con más profundidad al conjunto $\mathbb{Z}$. Aunque no haya propiamente «divisiones exactas» en este conjunto, sí podemos preguntarnos qué sucede cuando dividimos un entero por otro, y cuánto queda. Esto lleva a las nociones de divisibilidad y residuos, que a su vez llevan a áreas muy interesantes de las matemáticas como el álgebra moderna y la teoría de números.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Muestra que en efecto no existe ningún natural $m$ tal que $\gamma(m)=\overline{(0,1)}$.
  2. Verifica que $\gamma(0)$ es la identidad aditiva de $\mathbb{Z}$ y $\gamma(1)$ es su identidad multiplicativa.
  3. Explica por qué para un entero $\overline{(a,b)}$ no puede suceder más de una de las siguientes afirmaciones:
    • $\overline{(a,b)}=\overline{(0,0)}$.
    • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
    • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.
  4. La función $\gamma$ no es una biyección entre $\mathbb{N}$ y $\mathbb{Z}$. Pero sí existen biyecciones entre estos dos conjuntos. Construye una y demuestra que en efecto es una biyección.
  5. Da una biyección que muestre que el conjunto de los enteros no negativos pares, $\{0, 2, 4, 6, \ldots\}$ y el conjunto de los enteros no negativos positivos, $\{ 0, 1, 2, 3, \ldots \}$ tienen la misma cardinalidad. ¿Será posible construir la biyección de modo que se preserve la operación de suma? ¿Será posible construirla de modo que se preserve la operación de producto?

Entradas relacionadas

Álgebra Superior II: El orden en los enteros

Por Ana Ofelia Negrete Fernández

Introducción

En las entradas anteriores introdujimos al conjunto de los números enteros, así como sus operaciones de suma y producto. Lo que haremos ahora es ver cómo ordenar a los elementos en $\mathbb{Z}$. Lo haremos de una forma similar a la que hicimos lo de las operaciones: usando las nociones que ya teníamos definidas en $\mathbb{N}$.

Como recordatorio, en $\mathbb{N}$ dijimos que $a<b$ cuando $a\subseteq b$. De esta noción de «menor que» dimos la noción de «menor o igual que», diciendo que $a\leq b$ cuando ya sea que $a<b$ o bien $a=b$. Vimos que esta relación $\leq$ define un orden parcial en $\mathbb{N}$ que además es tricotómico. Quizás los resultados más importantes para trabajar con esta noción de desigualdad fue ponerla en términos de suma de elementos en $\mathbb{N}$:

  • En $\mathbb{N}$ se cumple que $a<b$ si y sólo si existe un natural $k>0$ tal que $a+k=b$.
  • En $\mathbb{N}$ se cumple que $a\leq b$ si y sólo si existe un natural $k$ tal que $a+k=b$.

Con esto en mente, veamos ahora cómo construir un orden en $\mathbb{Z}$. Antes de hacer eso, conviene primero pensar en números positivos, negativos y el cero.

Los positivos, los negativos y el cero en $\mathbb{Z}$

Ya sabemos que la identidad aditiva en $\mathbb{Z}$ es la clase $\overline{(0,0)}$, que también se puede pensar como la clase $\overline{(a,a)}$ para cualquier $a$ en $\mathbb{N}$. Si tenemos cualquier otra clase $\overline{(a,b)}$, por tricotomía del orden en $\mathbb{N}$ nos quedan sólo otras dos opciones: o bien $a<b$, o bien $b<a$. Esto nos ayudará a definir la noción de positividad y negatividad.

Definición. Sea $\overline{(a,b)}$ un entero. Diremos que ${(a,b)}$ es:

  • Cero si $a=b$,
  • Positivo si $a>b$ y
  • Negativo si $a<b$.

Una vez más, por la tricotomía del orden en $\mathbb{N}$, siempre sucede exactamente una de las posibilidades anteriores. Es importante ver que esta definición está bien hecha, es decir, que no depende de la clase de equivalencia que se eligió. Por ejemplo, si $\overline{(a,b)}$ es positivo, sucede que $a>b$. Si tomamos $(c,d)$ tal que $(a,b)\sim (c,d)$, nos gustaría ver que también sucede $c>d$. Esto se debe a que $a+d=b+c$. Si tuviéramos $c\leq d$, entonces nos pasaría que $a+d>b+c$ y tendríamos una contradicción. Así, por tricotomía debe pasar $c>d$. El caso de la negatividad se verifica de manera análoga.

Recuerda que el inverso aditivo de un entero $\overline{(a,b)}$ es el entero $-\overline{(a,b)}=\overline{(b,a)}$. Así, si $\overline{(a,b)}$ es positivo, entonces su inverso aditivo es negativo y viceversa.

Definición. Usaremos la letra $P$ para referirnos al conjunto de todos los enteros positivos. Usaremos $-P$ para referirnos al conjunto de todos los enteros negativos.

¿Cómo se comportan estas definiciones con las operaciones que ya tenemos en $\mathbb{Z}$? Ahora tenemos todo lo necesario para poder formalizar oraciones como «negativo por negativo es positivo», o «positivo más positivo es positivo.

Proposición. En $\mathbb{Z}$ se cumple todo lo siguiente:

  • Si $\overline{(a,b)}$ y $\overline{(c,d)}$ están en $P$, entonces su suma está en $P$ y su producto también.
  • Si $\overline{(a,b)}$ y $\overline{(c,d)}$ están en $-P$, entonces su suma está en $-P$ y su producto está en $P$.

Demostración. Todas estas afirmaciones se traducen a proposiciones que debemos demostrar en $\mathbb{N}$. En el caso de la primera, debemos ver que si $a>b$ y $c>d$, entonces $a+c>b+d$ y que $ac+bd>ad+bc$. Lo primero es sencillo, pues sale de la compatibilidad de $>$ con la suma de $\mathbb{N}$. Demostremos entonces que $ac+bd>ad+bc$.

Como $a>b$, existe un natural $k>0$ tal que $a=b+k$. Como $c>d$, existe un natural $l>0$ tal que $c=d+l$. Haciendo estas substituciones de $a$ y $c$ en $ac+bd>ad+bc$, obtenemos la siguiente cadena de desigualdades que son equivalentes a lo que debemos demostrar:

\begin{align*}
ac+bd&>ad+bc\\
(b+k)(d+l)+bd&>(b+k)d+b(d+l)\\
bd+bl+kd+kl+bd&>bd+kd+bd+bl.
\end{align*}

La última de estas desigualdades se cumple pues a la izquierda tenemos todos los sumandos que del lado derecho, y además el sumando $kl$ que como $k>0$ y $l>0$, entonces cumple $kl>0$.

Las demostraciones para cuando los elementos son negativos quedan como tarea moral.

$\square$

Al conjunto de enteros positivos también se le conoce en ocasiones como $\mathbb{Z}^+$, y al de enteros positivos también se le conoce como $\mathbb{Z}^-$.

El orden en $\mathbb{Z}$

Estamos listos para definir el orden en $\mathbb{Z}$. Aprovecharemos que ya podemos restar para poner la definición de orden en términos de esta operación.

Definición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ diremos que $\overline{(c,d)}<\overline{(a,b)}$ si $\overline{(a,b)}-\overline{(c,d)}$ es un entero positivo.

En realidad la expresión $\overline{(a,b)}-\overline{(c,d)}$ es simplemente $\overline{(a+c,b+d)}$, así que otra forma de escribir la condición de la definición es simplemente pedir que $a+c>b+d$. Como siempre sucede que o bien $a+c>b+d$, o que $a+c<b+d$, o que $a+c=b+d$ (y sólo una de ellas), entonces de manera inmediata obtenemos la tricotomía en $\mathbb{Z}$.

Proposición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ siempre sucede exactamente alguna de las siguientes:

  • $\overline{(a,b)}<\overline{(c,d)}$
  • $\overline{(c,d)}<\overline{(a,b)}$
  • $\overline{(a,b)}=\overline{(c,d)}$

Como en el caso de los naturales, a partir de la definición de «menor estricto» es sencillo obtener la noción de «menor o igual».

Definición. Para $\overline{(a,b)}$ y $\overline{(c,d)}$ elementos en $\mathbb{Z}$ diremos que $\overline{(c,d)}\leq \overline{(a,b)}$ si o bien $\overline{(a,b)}-\overline{(c,d)}$ es un entero positivo, o bien $\overline{(a,b)}=\overline{(c,d)}$.

Lo anterior es equivalente a pedir que $a+c\geq b+d$.

Proposición. La relación $\leq$ es un orden parcial en $\mathbb{Z}$.

Demostración. Es inmediato que esta relación $\leq$ es reflexiva, pues $\overline{(a,b)}\leq \overline{(a,b)}$ se obtiene de manera inmediata de la segunda parte de la definición.

Para ver que es antisimétrica, si tuviéramos $\overline{(c,d)}\leq \overline{(a,b)}$ y $\overline{(a,b)}\leq \overline{(c,d)}$, entonces tendríamos las desigualdades $a+c\geq b+d$ y $b+d\geq a+c$, que por la antisimetría en $\mathbb{N}$ implican que $a+c=b+d$, que justo es $\overline{(a,b)}=\overline{(c,d)}$.

Finalmente, para ver que $\leq$ es una relación transitiva, comenzamos con enteros $\overline{(a,b)}, \overline{(c,d)}, \overline{(e,f)}$ tales que $\overline{(e,f)}\leq \overline{(c,d)}$ y $\overline{(c,d)}\leq \overline{(a,b)}$.

De la primer desigualdad obtenemos $c+f\geq e+d$ y de la segunda obtenemos que $a+d\geq b+c$. Sumando ambas desigualdades, obtenemos que $c+f+a+d\geq b+c+e+d$. De aquí podemos deducir que $a+f\geq b+e$. Esto precisamente nos dice que $\overline{(e,f)}\leq \overline{(a,b)}$, como queríamos.

$\square$

Las dos proposiciones anteriores se pueden resumir en el siguiente enunciado.

Teorema. La relación $\leq$ es un orden total en $\mathbb{Z}$.

Compatibilidad del orden con las operaciones en $\mathbb{Z}$

Lo último que nos queda por mencionar es cómo se comporta la relación $\leq$ en $\mathbb{Z}$ con sus operaciones de suma y producto. A continuación mencionamos algunas de las propiedades que se cumplen, aunque hay varias cosas más que se pueden demostrar.

Proposición. En $\mathbb{Z}$ se cumple lo siguiente:

  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}\leq \overline{(g,h)}$, entonces $$\overline{(a,b)}+\overline{(e,f)}\leq \overline{(c,d)}+\overline{(g,h)}.$$
  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es positivo, entonces $$\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(e,f)}.$$
  • Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es negativo, entonces $$\overline{(c,d)}\overline{(e,f)}\leq \overline{(a,b)}\overline{(e,f)}$$

Demostración.

  • Las hipótesis se pueden escribir como $a+d\leq b+c$ y $e+h\leq f+g$. Sumando ambas y asociando de un modo que nos convenga, obtenemos que $(a+e)+(d+h)\leq (b+f)+(c+g)$. Esto lo que nos dice es que $\overline{(a+e,b+f)}\leq $\overline{(c+g,d+h)}$, que es precisamente lo que queríamos demostrar.
  • Por la hipótesis, tenemos que $\overline{(c,d)}-\overline{(a,b)}$ es positivo y que $\overline{(e,f)}$ también. Por lo que ya vimos antes, el producto de estos dos enteros debe ser entonces positivo. Por distributividad, este producto es $\overline{(c,d)}\overline{(e,f)}-\overline{(a,b)}\overline{(e,f)}$. Así, $\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(e,f)},$ como queríamos.
  • Por la hipótesis, tenemos que $\overline{(c,d)}-\overline{(a,b)}$ es positivo y que $\overline{(e,f)}$ es negativo. Entonces $\overline{(f,e)}=-\overline{(e,f)}$ es positivo. Por lo que ya vimos antes, el producto de estos dos enteros debe ser entonces positivo. Por distributividad, este producto es $\overline{(c,d)}\overline{(f,e)}-\overline{(a,b)}\overline{(f,e)}$. Esta expresión se puede escribir de manera alternativa como $\overline{(a,b)}\overline{(e,f)}-\overline{(c,d)}\overline{(e,f)}$. Como es positiva, obtenemos justo lo que queríamos.

$\square$

En los ejercicios de la tarea moral explorarás más propiedades de la relación $\leq$ y cómo interactúa con las operaciones en $\mathbb{Z}$.

Más adelante…

Ya tenemos todo lo que necesitamos en los enteros: su definición, sus operaciones y su noción de orden. Sin embargo, aún tenemos una gran dificultad: es muy difícil escribirlos. Cada que queremos referirnos a un entero, debemos usar la clase de equivalencia de una pareja de naturales. Nos gustaría que los enteros fueran algo mucho más intuitivo: los naturales y sus negativos. Lo que haremos en la siguiente entrada es ver cómo formalizar esta idea para que podamos, finalmente, abandonar la notación de parejas de naturales y relaciones de equivalencia. Esto será bastante útil para después entrar en muchas otras propiedades que nos interesan de los enteros como la noción de divisibilidad y otras propiedades aritméticas.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Completa las demostraciones de las nociones de positivo, negativo y orden en $\mathbb{Z}$ están bien definidas.
  2. Demuestra que la suma de dos enteros negativos es un entero negativo y que su producto es un entero positivo. Haz una demostración que funcione en general, pero luego verifícalo «a mano» para los enteros $\overline{(3,7)}$ y $\overline{(9,11)}$.
  3. En la entrada dimos la definición formal de $<$ y de $\leq$ en $\mathbb{Z}$, pero aún no hemos definido ni usado los símbolos $>$ y $\geq$ en $\mathbb{Z}$. Formaliza una definición para ellos. Demuestra que $\geq$ también es un orden total en $\mathbb{Z}$.
  4. Demuestra que en $\mathbb{Z}$, si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}$ es negativo, entonces $$\overline{(a,b)}\overline{(e,f)}\geq \overline{(c,d)}\overline{(e,f)}.$$
  5. Determina si la siguiente propiedad del producto y el orden en $\mathbb{Z}$ siempre es verdadera, o bien si hay ocasiones en las que falla: «Si $\overline{(a,b)}\leq \overline{(c,d)}$ y $\overline{(e,f)}\leq \overline{(g,h)}$, entonces $$\overline{(a,b)}\overline{(e,f)}\leq \overline{(c,d)}\overline{(g,h)}.»

Entradas relacionadas

Álgebra Superior II: Construcción de los enteros y su suma

Por Ana Ofelia Negrete Fernández

Introducción

Ya que se construyeron los números naturales, podríamos intentar usarlos para plantear ecuaciones con ellos y ver si se pueden resolver. Un tipo de ecuaciones muy sencillas son las de la forma $a=b+x$, en donde $a$ y $b$ son valores dados y lo que se espera es encontrar el valor de $x$. En los números naturales no hemos definido la resta, así que no es tan sencillo resolver esta ecuación como simplemente decir que la solución es $a-b$.

Lo que sí hicimos en entradas anteriores es ver que la ecuación $a=b+x$ con $a$ y $b$ en $\mathbb{N}$ tiene una solución $x$ en $\mathbb{N}$ si y sólo si $a\geq b$. Cuando $a<b$, no existe solución. Por ejemplo, no existe ninguna $x \in \mathbb{N}$ tal que $3 = 7 + x$.

Pensando esto de manera más intuitiva, $\mathbb{N}$ está conformado por el cero y demás números estrictamente positivos, pero en ocasiones eso no basta para realizar algunas cuentas. Consideremos el siguiente problema:

Una rana está en una posición inicial $0$ y salta dos unidades hacia la derecha. A continuación salta $3$ unidades hacia la izquierda. Luego vuelve a saltar $2$ unidades hacia la derecha y seguido de esto vuelve a saltar $3$ unidades a la izquierda. Una última vez, la rana salta $2$ unidades a la derecha seguidas de $3$ unidades a la izquierda. ¿En qué posición se encuentra la rana ahora?

La cuenta intuitiva, usando los números que conocemos desde educación básica, nos dice que la rana queda en la posición $-3$. Sin embargo, este es un número negativo, y dentro de nuestra construcción de $\mathbb{N}$ nunca hemos hablado de estos números.

La necesidad de que existan soluciones para las ecuaciones sencillas que mencionamos arriba y de que existan números para hacer cuentas como las de la rana es motivación suficiente para querer construir el conjunto de números enteros, denotado $\mathbb{Z}$. Lo que buscamos es que toda ecuación de la forma $a=b+x$ tenga una solución. Es decir, querremos que el conjunto de entero satisfaga que «para cualesquiera $a,b\in \mathbb{Z}$ existe $x\in \mathbb{Z}$ tal que $a= b+x$».

En esta entrada y las siguientes, describiremos la construcción de $\mathbb{Z}$, de sus operaciones y de su orden. Para hacer esto de la manera más formal posible, aprovecharemos la construcción que ya hemos hecho de $\mathbb{N}$.

A grandes rasgos, debemos de pasar por los siguientes pasos.

  1. Definiremos una relación en $\mathbb{N}\times \mathbb{N}$, en donde dos parejas $(a,b)$ y $(c,d)$ de enteros estarán relacionadas si $a+d=b+c$.
  2. Veremos que esto es una relación de equivalencia. Un número entero será una clase de equivalencia de esta relación, es decir, en símbolos será un conjunto de la siguiente forma: \[ \overline{(a,b)}:= \left\{ (c,d) \in \mathbb{N}\times\mathbb{N} : \left(a + d = b +c \right) \right\}, \] en donde $a$ y $b$ son números naturales.
  3. El conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas, en símbolos: \[ \mathbb{Z} := \left\{ \overline{(a,b)} : (a,b) \in \mathbb{N}\times\mathbb{N} \right\}.\]
  4. A este conjunto le daremos operaciones de suma, producto y un orden. Enunciaremos y demostraremos varias de sus propiedades.

Ya que hagamos todo esto, podremos pasar a una siguiente etapa de esta unidad, en donde daremos una introducción a la teoría de números, que es un área de las matemáticas que se dedica a estudiar propiedades aritméticas de $\mathbb{Z}$.

¿Qué es un número entero?

Comencemos tomando una pareja ordenada $(a,b) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$. Para esta pareja, la ecuación

\begin{equation}
a = b + x
\end{equation}

tiene una solución en $\mathbb{N}$. Sin embargo, existen más parejas que tienen la misma solución, es decir, parejas $(c,d)$ tales que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x \in \mathbb{N}$. Por ejemplo, si tomamos $a = 7$, $b = 3$ la ecuación correspondiente es $$7=3+x,$$ cuya solución es $x=4$. Si tomamos $c = 15$ y $d = 11$, entonces la ecuación es $$15=11+x,$$ cuya solución también es $x=4$.

En realidad, muchas más parejas de naturales pueden encontrarse tales que la solución $x$ sea la misma en las ecuaciones representadas por su pareja ordenada asociada. En el ejemplo anterior, otras parejas con la misma solución serían $(5, 1)$, $(31, 27)$, $(100, 96)$, etc. Lo que buscamos al construir a los números enteros es «agrupar» a las parejas con la misma solución $x$. Sin embargo, para que más adelante podamos también «considerar a los negativos», tendremos que cambiar un poco el enfoque.

La siguiente proposición nos permite describir quiénes son todas las parejas $(c,d) \in \mathbb{N} \times \mathbb{N}$ que tienen la misma solución.

Proposición. Sean $(a,b) \in \mathbb{N} \times \mathbb{N}$ y $(c,d) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$ y $c\geq d$. Se tiene que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x$ si y sólo si $a+d = b+c$.

Demostración. $\Longrightarrow )$ Comencemos suponiendo que las ecuaciones $a=b+x$ y $c=d+x$ tienen una misma solución $x$. Esto en símbolos quiere decir que

\begin{align*} a &= b+x \\ d + x &= c \end{align*}

Sumando ambas ecuaciones, obtenemos lo siguiente (aquí ya estamos usando las propiedades conmutativa y asociativa de la suma):

$$a + d + x = b + c + x.$$

En entradas anteriores ya demostramos que se cumple la ley de la cancelación en $\mathbb{N}$. Cancelando $x$ de ambos lados de la igualdad anterior, obtenemos $$a+d=b+c,$$ que era lo que queríamos.

$\Longleftarrow )$ Ahora comencemos con parejas $(a,b)$ y $(c,d)$ tales que $a+d=b+c$. Sea $k \in \mathbb{N}$ una solución de la ecuación $a = b + x$. Es decir, $a = b + k$. Sumando $d$ de ambos lados y usando la hipótesis, tenemos lo siguiente

\begin{align*} b + d + k &= a + d\\
&= b+c.
\end{align*}

Usando la ley de la cancelación en el término $b$, obtenemos que $d+k=c$, es decir, que $k$ también es solución de la ecuación $c=d+x$.

$\square$

La proposición anterior motiva entonces la siguiente definición para todas las parejas $(a,b)$, no sólo para aquellas con $a\geq b$.

Definición. Sean $(a,b)$ y $(c,d)$ parejas de números naturales. Diremos que $(a,b)\sim(c,d)$ si y sólo si $a + d = b + c$.

Probemos una propiedad fundamental de $\sim$.

Proposición. La relación $\sim$ en $\mathbb{N}\times \mathbb{N}$ es una relación de equivalencia.

Demostración. Debemos demostrar que $\sim$ es reflexiva, simétrica y transitiva.

  1. Reflexividad. Veamos que para toda $(a,b)\in \mathbb{N}\times \mathbb{N}$ se cumple que $(a,b)\sim (a,b)$. Por la conmutatividad de la suma en $\mathbb{N}$, $a + b = b + a$. Así, $(a,b) \sim (a,b)$.
  2. Simetría. Veamos que para cualesquiera $(a,b),(c,d) \in \mathbb{N}\times\mathbb{N}$, si $(a,b)\sim (c,d)$, entonces $(a,b) \sim (c,d)$. Sean $(a,b)$ y $(c,d)$. Si $(a,b)=(c,d)$, entonces $a+d = b+c$. Nuevamente por la conmutatividad de la suma en $\mathbb{N}$, se desprende que $c + b = d + a$. Esto es precisamente la definición de $(c,d)\sim(a,b)$.
  3. Transitividad. Veamos que para cualesquiera $(a,b), (c,d),(e,f) \in \mathbb{N}\times \mathbb{N}$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$, se obtiene que $(a,b)\sim (e,f)$. Sean $(a,b)$, $(c,d)$ y $(e,f)$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$. Esto quiere decir que $a+d=b+c$ y que $c+f=d+e$. Sumando ambas ecuaciones, se obtiene $$a+f+c+d=b+e+c+d.$$ Usando la ley de cancelación en $c+d$ obtenemos la ecuación $$a+f=b+e,$$ la cual precisamente corresponde a la relación $(a,b)\sim (e,f)$.

$\square$

Con sólo estas dos proposiciones ya debería quedar más claro de dónde sale la noción formal de número entero, que es la siguiente.

Definición. Un número entero es una clase de equivalencia de $\sim$, es decir, es un conjunto de la siguiente forma:

\begin{equation}
\overline{(a,b)} := \left\{(c,d)\in \mathbb{N}\times \mathbb{N} : a+d = b+c \right\}.
\end{equation}

Ejemplo. ¿Quién es el número entero $\overline{(0,0)}$? Es el conjunto de parejas $(c,d)$ para las cuales $0+d=c+0$, es decir, aquellas en donde $c=d$. De esta forma, $$\overline{(a,b)}=\{(0,0),(1,1),(2,2),(3,3),\ldots\}.$$

¿Cuándo dos números enteros son iguales? Para esto, debe suceder como conjuntos que $\overline{(a,b)}=\overline{(c,d)}$. Como $\sim$ es reflexiva, se tiene que $(a,b)\in \overline{(a,b)}$. Así, $(a,b)$ debe estar en $\overline{(c,d)}$ para que pueda darse la igualdad de conjuntos. Es decir, se necesita que $(a,b)\sim (c,d)$. Es fácil convencerse de que esto es una condición necesaria y suficiente.

El conjunto de los números enteros

En la definición de número entero podemos ir cambiando la pareja $(a,b)$ para ir obteniendo distintos conjuntos. Como $\sim$ es una relación de equivalencia en $\mathbb{N}\times \mathbb{N}$, al variar sobre todas las posibles parejas, estos conjuntos del estilo $\overline{(a,b)}$ forman una partición de $\mathbb{N}\times \mathbb{N}$. Si quieres recordar por qué, puedes ver las entradas correspondientes en el curso de Álgebra Superior I. El conjunto de todas las clases de equivalencia será nuestro conjunto de números naturales.

Definición. Para $(a,b) \in \mathbb{N}\times \mathbb{N}$, el conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas. En símbolos, definimos lo siguiente:

\begin{equation}
\mathbb{Z} := \left\{ \overline{(a,b)} : (a,b)\in \mathbb{N}\times \mathbb{N} \right\}.
\end{equation}

De ahora en adelante, abreviaremos la notación de clase de equivalencia por $\overline{(a,b)}$ (sin la tilde), para facilitar escribir las demostraciones. Otra notación usada comúnmente en la literatura es $[(a,b)]$, sin la tilde.

La suma de los números enteros

Hasta ahora los elementos del conjunto $\mathbb{Z}$ son clases de equivalencia y esto está algo alejado de nuestra noción de números. Definamos operaciones en $\mathbb{Z}$ para que de nuevo los pensemos como un sistema numérico. Comenzamos definiendo la suma de enteros como sigue.

Definición. La suma en los enteros es la función $ \widehat+ : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} $ tal que $$\overline{(a,b)} \enspace \widehat+ \overline{(c,d)} = \overline{(a+c,b+d)}.$$

De manera intuitiva, lo que esta suma refleja es que si tenemos dos ecuaciones $a = b + x$ y $c = d + y$, y las sumamos, entonces se obtiene la ecuación:

$$ a + c = (b + d) + (x + y),$$ la cual correspondería a la clase de equivalencia $\overline{(a+c,b+d)}$.

En la definición utilizamos símbolos distintos para la suma. El símbolo $+$ se refiere al símbolo de suma en $\mathbb{N}$ al cual estamos muy bien acostumbrados. El símbolo $\widehat +$ se refiere al símbolo en $\mathbb{Z}$ que estamos definiendo y que será la suma en $\mathbb{Z}$, para la cual aún tenemos que probar que se cumplan las propiedades que queremos. De ahora en adelante simplemente estaremos usando el símbolo $+$ para ambas, así que es muy importante que en cada momento te preguntes si se refiere al símbolo en $\mathbb{N}$ o en $\mathbb{Z}$, lo cual será claro por el contexto.

Un problema que podríamos tener con la definición de suma es que no estuviera bien definida. Es decir, que si tomamos diferentes representantes de la clase de equivalencia, al hacer la suma obtengamos un resultado diferente. A continuación mostramos que esto en realidad no es un problema.

Proposición. La suma en los enteros está bien definida. Es decir, si $(a,b)\sim (a’,b’)$ y $(c,d)\sim (c’,d’)$, entonces $(a+d,b+c)\sim(a’+d’,b’+c’)$.

Demostración. Las hipótesis corresponden a que $a+b’=b+a’$ y a que $c+d’=d+c’$, que escribiremos como $d+c’=c+d’$. Sumando la primera igualdad con la tercera, reordenando y agrupando términos, obtenemos que $$(a+d)+(b’+c’)=(b+c)+(a’+d’),$$

lo que significa que, como se quería, $(a+d , b+c) \sim (a’+d’, b’+c’).$ Es decir, $\overline{(a+d , b+c)} = \overline{(a’+d’ , b’+c’)}$, de modo que el resultado final de la suma no depende de los representantes que elegimos para hacerla.

$\square$

Propiedades de la suma en $\mathbb{Z}$

Como estamos definiendo una nueva operación de suma, hay que revisar de nuevo que tenga las propiedades que se necesitan para poder trabajar con ella de la manera usual. En esta sección hacemos esto.

Proposición. Se satisfacen las siguientes propiedades para la operación de suma en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}+\overline{(c,d)}=\overline{(c,d)}+\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}+\overline{(m,n)}=\overline{(a,b)}.$$
  • Inversos. Para cualquier entero $\overline{(a,b)}$ existe un entero $\overline{(c,d)}$ tal que la suma $\overline{(a,b)}+\overline{(c,d)}$ es el neutro de la propiedad anterior.

Demostración. La asociatividad se sigue de la siguiente cadena de igualdades.

\begin{align*}
(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}&=\overline{(a+c,b+d)}+\overline{(e,f)}\\
&=\overline{((a+c)+e,(b+d)+f)}\\
&=\overline{(a+(c+e),b+(d+f))}\\
&=\overline{(a,b)}+\overline{(c+d,d+f)}\\
&=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).
\end{align*}

En la primera, segunda, penúltima y última igualdades estamos usando la definición de suma en $\mathbb{Z}$. En la tercer igualdad estamos usando la asociatividad de la suma en $\mathbb{N}$.

Para demostrar la conmutatividad de la suma en $\mathbb{Z}$ usamos la conmutatividad de la suma en $\mathbb{N}$ en la segunda igualdad de la siguiente cadena:

\begin{align*}
\overline{(a,b)}+\overline{(c,d)}&=\overline{(a+c,b+d)}\\
&=\overline{(c+a,d+b)}\\
&=\overline{(c,d)}+\overline{(a,b)}.
\end{align*}

El elemento neutro de la suma en $\mathbb{Z}$ es el entero $\overline{(0,0)}$ pues, en efecto, si tomamos cualquier entero $\overline{(a,b)}$, tenemos que $$\overline{(a,b)}+\overline{(0,0)}=\overline{(a+0,b+0)}=\overline{(a,b)}.$$

Aquí estamos usando que en los naturales el $0$ es neutro para la suma.

Finalmente, dado cualquier entero $\overline{(a,b)}$, notamos que su inverso aditivo sería el entero $\overline{(b,a)}$. En efecto, su suma sería $$\overline{(a,b)}+\overline{(b,a)}=\overline{(a+b,a+b)}=\overline{(0,0)}.$$

La primer igualdad está usando la conmutatividad de la suma en $\mathbb{N}$ y la última el hecho de que $(a+b,a+b)\sim (0,0)$.

$\square$

Como los inversos aditivos se usan frecuentemente, usamos un símbolo especial para ellos: el símbolo de menos. Usamos también este símbolo en la definición de la función resta.

Definición. Para un entero $\overline{(a,b)}$ definimos $-\overline{(a,b)}:=\overline{(b,a)}$.

Para restar enteros, simplemente a un entero le sumamos el inverso del otro.

Definición. La resta de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ es el entero

\begin{align*}
\overline{(a,b)}-\overline{(c,d)}:&=\overline{(a,b)}+(-\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(d,c)}\\
&=\overline{(a+d,b+c)}.
\end{align*}

Cerrando el círculo

Finalizamos esta entrada observando que en $\mathbb{Z}$ ahora sí cualquier ecuación de la forma $r = w + s$ tiene una solución $w$ sin importar los valores de $r$ y $s$.

Proposición. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que existe un entero $\overline{(x,y)}$ tal que $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}.$$

Demostración. La solución es el entero $\overline{(x,y)}=\overline{(a,b)}-\overline{(c,d)}$. En efecto, usando las propiedades de la suma en $\mathbb{Z}$ y la definición de resta, tenemos que:

\begin{align*}
\overline{(x,y)}+\overline{(c,d)}&=(\overline{(a,b)}-\overline{(c,d)})+\overline{(c,d)}\\
&=\overline{(a,b)}+(-\overline{(c,d)}+\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(0,0)}\\
&=\overline{(a,b)}.
\end{align*}

Más adelante…

En esta entrada definimos a los enteros, al conjunto de números enteros y a la operación de suma. Vimos también que la suma tiene buenas propiedades. La estructura algebraica de $\mathbb{Z}$ es todavía más rica. Dentro de $\mathbb{Z}$ también se puede definir un producto y una relación de orden. Haremos esto en las siguientes entradas, enunciaremos las propiedades que tienen y las demostraremos.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Repasa por qué las clases de equivalencia inducidas por una relación de equivalencia sobre un conjunto $X$ forman una partición del conjunto $X$.
  2. Encuentra la solución a la siguiente ecuación en los enteros $$\overline{(5,3)}=\overline{(x,y)}+\overline{(1,8)}.$$ Tu respuesta debe ser un número entero, es decir, un conjunto de parejas de naturales. ¿Cuáles son esas parejas?
  3. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, muestra que la solución $\overline{(x,y)}$ a la ecuación $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}$$ es única. Concluye que tanto el neutro aditivo de $\mathbb{Z}$, como los inversos aditivos en $\mathbb{Z}$ son únicos.
  4. Demuestra que para cualquier entero $\overline{(a,b)}$ se tiene que $-(-\overline{(a,b)})=\overline{(a,b)}$.
  5. Demuestra que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que $$-(\overline{(a,b)}+\overline{(c,d)})=(-\overline{(a,b)})+(-\overline{(c,d)}).$$

Entradas relacionadas

Álgebra Superior II: Compatibilidad del orden con las operaciones de los naturales

Por Roberto Manríquez Castillo

Introducción

En las entradas anteriores, nos encargamos de definir con toda formalidad la estructura con la que hemos estado familiarizados desde hace mucho; sin embargo, en principio, la forma en que definimos el orden y las distintas operaciones, no parece ser que

Para finalizar con el estudio de los números naturales, veremos las importantes relaciónes que hay entre el orden que definimos para $\mathbb{N}$ en la entrada anterior, y las operaciones que hemos trabajado a lo largo de este tema. Para esto, nuevamente ocuparemos el Principio de Inducción.

Una equivalencia del orden

Aunque como mencionamos en la introducción, la forma en que definimos el orden, no parece tener mucha relación con las operaciones definidas, usando la definición de la suma, podemos dar una definición equivalente del orden en $\mathbb{N}$, en el siguiente teorema, demostramos que en efecto, ambas caracterizaciones son equivalentes.

Teorema.Si $n,m$ son números naturales, se tiene que $n<m$ si y sólo si existe $k\in\mathbb{N}\setminus\{0\}$ tal que n+k=m

Demostración. Procedamos por inducción sobre $n$.

Si $n=0$, si $0<m$, entonces $m\in \mathbb{N}\setminus\{0\}$ y $n+m=0+m=m$. Recíprocamente, si existe $k\in\mathbb{N}\setminus\{0\}$ tal que $0+k=m$, tendremos que $k=m$, por lo que $m\neq 0$ y por lo tanto $0<m$. Con esto probamos la base de inducción.

Supongamos que el resultado es válido para alguna $n$ y probemos que el resultado para $\sigma(n)$ es decir, que si $m\in\mathbb{N}$ se tiene que $\sigma(n)<m\Leftrightarrow$ existe $k\in\mathbb{N}\setminus\{0\}$ tal que $\sigma(n)+k=m$.

Verifiquemos la ida de la demostración. Supongamos que $\sigma(n)<m$, entonces $n<m$, por lo que por la hipótesis de inducción concluimos que existe $k\neq 0$ tal que $n+k=m$, como $k\neq0$, existe $k’$ tal que $\sigma(k’)=k$, entonces tenemos que

\begin{align*}
m&=n+k\\
&=n+\sigma(k’)\\
&=\sigma(n)+k’
\end{align*}

Notemos además que $k’\neq 0 $, ya que si $k’=0$, entonces $m=\sigma(n)$ lo cual es un contradicción.

Para el regreso, supongamos que existe $k\neq 0$ tal que $\sigma(n)+k=m$ y demostremos que $\sigma(n)\in m$. Como $\sigma(n)+k=m$, concluimos que $n+ \sigma(k)=m$, por lo que $n<m$ y por lo visto en la entrada de La relación de orden en los naturales, tendremos que $\sigma(n)\leq m$. Si $\sigma(n)=m$, entonces cancelando, obtenemos que $k=0$, lo cual es absurdo, entonces solo queda que $\sigma(n)<m$. Con esto concluimos la inducción y la prueba

$\square$

El orden y las operaciones

Con el anterior resultado, es más fácil ver las relaciones que tendrán el orden con las operaciones, por ejemplo, la siguiente.

Teorema. Si $n<m$ y $l\in\mathbb{N}$, entonces $n+l<m+l$

Demostración. Como $n<m$, entonces existe $k\neq 0$ tal que $n+k=m$, de donde $n+l+k=m+l$, pero justo esa es la definición de que $n+l<m+l$

$\square$

Corolario. Si $a<b$ y $c<d$, entonces $a+c<b+d$

Demostración. Como $a<b$, entonces $a+c<b+c$, y como $c<d$, tenemos que $b+c<b+d$. Por la transitividad del orden, obtenemos el resultado

$\square$

Finalizamos la entrada, marcando la relación entre el orden y la multiplicación.

Teorema. Si $n<m$ y $l\in\mathbb{N}\setminus\{0\}$, entonces $n\cdot l<m\cdot l$

Demostración. Como $n<m$ entonces existe $k\neq 0$ tal que $n+k=m$, por lo que $nl+lk=ml$, sin embargo, como $l$ y $k$ son distintos de cero, entonces $lk$ también es distinto de cero, por lo que $nl<ml$ justo como debíamos probar.

$\square$

Más adelante…

Con esta entrada, terminamos el estudio de los números naturales, por lo que en la siguiente entrada empezaremos con el estuidio de los números enteros. Sin embargo, toda la teoría que hemos desarrollado hasta el momento será la base para poder dar una definición precisa de qué son los números enteros. También nos ayudará a definir sus operaciones, así que nos encontraremos con más oportunidades para practicar nociones de los números naturales.

Hay que hacer una especial mención a los principios de inducción y de buen orden, ya que jugarán un papel crucial a la hora de estudiar las propiedades de los enteros, que nos servirán para desarrollar lo que conocemos como teoría de números.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Demuestra que si $a<b$ y $c<d$, entonces $ac<bd$, no es necesario suponer que los números son distintos de cero
  2. Si $n<m$ y $l\neq 0$, entonces $n^l<m^l$. Sugerencia, usa inducción sobre $l$
  3. Si $n<m$ y $l\neq 0$, entonces $l^n<l^m$
  4. Si $n<m$, entonces $n!<m!$
  5. Demuestra que si $n,m\in\mathbb{N}\setminus\{0\}$, entonces $(1+m)^n\geq 1+nm$

Entradas relacionadas

Álgebra Superior II: Definición de la suma y sus propiedades básicas

Por Roberto Manríquez Castillo

Introducción

Para continuar con nuestra tarea de construir las operaciones más elementales de los números naturales, en esta entrada definimos la conocida operación suma. Un buen ejercicio antes de empezar con el contenido de la entrada, es pensar ¿Cómo podemos definir la suma de dos números enteros? De nuevo nos encontramos con el problema de intentar definir formalmente algo que ha sido intuitivo para nosotros durante la mayor parte de nuestra vida.

Sin embargo, todo el trabajo que hicimos en las entradas anteriores, especialmente en la demostración del teorema de Recursión, nos servirán para poder dar una definición precisa de qué es la suma. Además, usando el principio de Inducción, podremos demostrar las propiedades que nos han sido tan familiares desde hace mucho tiempo.

La idea intuitiva de la suma

La primera forma en la que aprendimos a sumar, al menos de manera intuitiva y tal vez limitada, fue usando nuestros dedos. Ocuparemos esta idea como hilo conductor, para poder llegar a la definición recursiva de la suma. Con esta forma de pensar, si queríamos sumar $3+4$, poníamos frente a nosotros nuestras manos con los dedos abajo, e instantáneamente mencionábamos la palabra «tres«. Después estirábamos un primer dedo y al mismo tiempo, mencionábamos la palabra «cuatro» (a quien ahora conocemos como el sucesor de $3$), después alzábamos un segundo dedo y decíamos «cinco» (el sucesor de $4$) , y continuábamos de la misma manera hasta que tuviéramos cuatro dedos totalmente extendidos; momento en el cual, decíamos el resultado: «siete«.

Analicemos un poco qué es lo que queremos decir con «continuábamos de la misma manera«. Entre cada número que contábamos, varias cosas pasaban por nuestra mente. Al mencionar un número, lo primero que hacíamos era cerciorarnos que aún tuviéramos extendidos menos dedos de los que queríamos añadir. Si esta condición se satisfacía, teníamos que grabarnos el número que habíamos mencionado justo en ese instante (el olvidar dicho número, tenía como consecuencia empezar el procedimiento desde el inicio), después alzábamos el siguiente dedo, y mencionábamos el sucesor del número memorizado (es por esto que recordar ese número era tan importante). Muy a grandes rasgos esto es lo mismo que lo que haremos de manera formal.

Definición de la suma

Esperamos que en los párrafos anteriores puedas encontrar una analogía entre el algoritmo que usábamos para sumar cotidianamente, y el método recursivo que describiremos a continuación. Antes de precisar la definición de la suma, hay que aclarar que no definiremos «de golpe» qué quiere decir «sumar dos números». Más bien, lo que haremos es, para cada natural, decir qué quiere decir «sumarle otro». Lo haremos de esta manera pues esto es lo que nos permite hacer el teorema de Recursión. Así, para cada número natural $m$ (fijo) obtendremos una función que nos sume a ese número fijo, una cantidad arbitraria.

Definición: Sea $m\in\mathbb{N}$. Definimos la función $s_{m}:\mathbb{N}\longrightarrow\mathbb{N}$, como la única función que satisface las propiedades siguientes:

  1. $s_{m}(0)=m$
  2. $s_{m}(\sigma(n))=\sigma(s_{m}(n))$.

Denotaremos $s_{m}(n)$ como $m+n$.

Vale la pena hacer un par de comentarios de la definición anterior. Primero mencionamos que esta definición depende totalmente del teorema de Recursión Débil. Si regresas al enunciado del teorema, podemos notar que la función $s_m$ se obtiene tomando $X=\mathbb{N}$, $x_{0}=m$, $f=\sigma$ y $g=s_{m}$.

En segundo lugar, hay que remarcar que a pesar de nuestra intuición, los papeles de $m$ y $n$ en la expresión $m+n$, no son intercambiables. Por definición $m+n=s_{m}(n)$, mientras que $n+m=s_{n}(m)$. A primera vista, estos valores no tienen por qué coincidir. Veremos que en efecto esta y otras propiedades sí son válidas, para que posteriormente podamos utilizarlas de manera directa.

Aprender a sumar cero

De aquí en adelante probaremos varias propiedades de la suma. Debido a la definición recursiva de esta función, la mayor herramienta que ocuparemos es el principio de Inducción.

Antes de lanzarnos a demostrar la primer propiedad, nota que directamente de las definiciones de las funciones $s_{m}$ y de la notación que estamos usando, se tiene que $m+0=s_m(0)=m$. Ahora nos gustaría ver que también $0+m=m$, pero como aún no sabemos que la suma sea conmutativa, tendremos que probarlo por inducción.

Proposición: Para todo $n\in\mathbb{N}$ se tiene que $s_{0}(n)=n$, es decir, $0+n=n$

Demostración. Como se mencionó, procedamos por inducción sobre $n$.

Base inductiva: Por el punto (1) de la definición de $s_0$, tenemos que s_{0}(0)=0.

Hipótesis inductiva: Supongamos que para algún $n\in\mathbb{N}$, se tiene que $s_{0}(n)=n$

Paso inductivo: Demostremos que $s_{0}(\sigma(n))=\sigma(n)$.

La demostración se sigue de la siguiente cadena de igualdades, las cuales justificamos una a una abajo:

\begin{align*}
s_{0}(\sigma(n))&=\sigma(s_{0}(n)) \\&\overset{\text{H.I.}}{=}\sigma(n).
\end{align*}

La primera igualdad sucede por el punto (2) de la definición de $s_0$. La segunda igualdad sucede por la hipótesis inductiva, lo cual estamos indicando con un «H.I.» sobre el símbolo de igualdad.

Esto termina el paso inductivo y entonces la proposición se vale para todos los naturales.

$\square$

Así, ya sabemos «sumar cero».

Aprender a sumar uno

Veamos ahora que nuestra intuición de «sumar uno» en efecto coincide de manera formal con «ir al sucesor».

Observación: Tenemos la siguiente cadena de igualdades \[n+1=s_{n}(1)=s_{n}(\sigma(0))=\sigma(s_{n}(0))=\sigma(n).\]

La primera es por nuestra elección de notación. La segunda por la definición del símbolo 1, pues simplemente es el sucesor de 0. La tercera es por el punto (2) de la definición de $s_n$. Finalmente, la última es por el punto (1) de la definición de $s_n$.

$\square$

Proposición: Para todo $n\in\mathbb{N}$ se tiene que $s_{1}(n)=\sigma(n)$, es decir, que al juntarlo con la observación anterior obtenemos $1+n=\sigma(n)=n+1$.

Demostración. Demostremos que $s_1(n)=\sigma(n)$ por inducción sobre $n$. Tenemos que $s_{1}(0)=1=\sigma(0)$ por el punto (1) de la definición de $s_1$ y por la definición de 1. Esto muestra que la igualdad se cumple en el caso base $n=0$.

Nuestra hipótesis de inducción es suponer que $s_{1}(n)=\sigma(n)$ y a partir de ella debemos demostrar que $s_{1}(\sigma(n))=\sigma(\sigma(n))$. Esto lo logramos mediante la siguiente cadena de igualdades:

\begin{align*}
s_{1}(\sigma(n))&=\sigma(s_{1}(n))\\ &= \sigma(\sigma(n))
\end{align*}

La primera igualdad se debe al punto (2) de la definición de $s_1$. La segunda, a la hipótesis inductiva.

$\square$

La suma es asociativa

Con los resultados probados en las dos secciones anteriores, continuamos ahora probando propiedades más interesantes de la suma. Aunque las aprendimos desde la educación básica, ahora será momento de justificar por qué se deducen de lo que hemos construido. Empezamos por la asociatividad.

Proposición (asociatividad): Si $a, b, n$, son naturales arbitrarios, entonces $(a+b)+n=a+(b+n)$.

Como es usual, aquí los paréntesis significan «hacer esa operación primero». Si quisiéramos usar la notación formal, tendríamos que enunciar la asociatividad como $$s_{a+b}(n)=s_a(s_b(n)),$$ y cuando hagamos la demostración aprovecharemos la definición de estas funciones $s_{a+b}$, $s_a$ y $s_b$.

Demostración. Procedamos por inducción. Tenemos tres variables naturales. ¿Sobre cuál hacemos inducción? Esto es una decisión importante y el hacer una elección incorrecta puede dificultar la prueba o impedir concluirla. Haremos inducción sobre $n$, pero te recomendamos que intentes hacerlo sobre las otras variables para detectar las dificultades que pueden surgir.

Base inductiva: $(a+b)+0=a+b=a+(b+0)$. En el primer paso usamos el punto (1) de la definición de $s_{a+b}$ y en el segundo usamos el punto (1) de la definición de $s_b$.

Hipótesis inductiva: Supongamos que $(a+b)+n=a+(b+n)$. Recuerda que en una prueba inductiva sólo se hace la hipótesis inductiva para un valor fijo de $n$, pero lo que se quiere suponer es que se vale para todo valor de $n$. Así, no estamos suponiendo que cualquier $n$ pueda asociarse con cualesquiera dos números, solo estamos suponiendo que una $n$ fija puede asociarse con los valores fijos de $a$ y de $b$; más aún, el orden de $a$ y $b$ importa, ya que no hemos demostrado aún la conmutatividad.

Paso inductivo: Demostremos que $(a+b)+\sigma(n)=a+(b+\sigma(n))$.

Hagamos esto mediante la siguiente cadena de igualdades:

\begin{align*}
(a+b)+\sigma(n)&=\sigma((a+b)+n)\\
&\overset{\text{H.I}}{=}\sigma(a+(b+n))\\
&=a+\sigma(b+n)\\
&=a+(b+\sigma(n)).
\end{align*}

Aquí las igualdades se siguen, respectivamente, de la definición de $s_{a+b}$, de la hipótesis inductiva, de la definición de $s_a$ y de la definición de $s_b$. Con esto, concluimos la prueba del paso inductivo y con ello la prueba por inducción.

$\square$

En la demostración anterior ya no estamos siendo tan específicos con exactamente qué parte de la definición de las funciones estamos usando. Sin embargo, te sugerimos completar estos detalles pues te ayudarán a entender mucho mejor por qué cada uno de los pasos tiene su justificación.

La suma es conmutativa

Otra de las propiedades de la suma que nos enseñan en educación básica es que «el orden de los factores no afecta el resultado». Esto tiene un nombre en matemáticas formales: conmutatividad. El objetivo de la siguiente proposición es demostrar que en efecto la suma es conmutativa.

Proposición (conmutatividad): Si, $n, m$ son naturales, entonces $n+m=m+n$.

En términos de las funciones que construimos mediante el teorema de recursión esto se ve como $s_n(m)=s_m(n)$.

Demostración. De nuevo, procedamos por inducción sobre $n$, por la misma razón remarcamos que entonces $m$ es un número arbitrario pero fijo.

Base inductiva. Por la primer proposición que probamos, tenemos que $0+m=m=m+0$.

Hipótesis de Inducción: Supongamos que $n$ cumple que $n+m=m+n$.

Paso inductivo: Demostremos que $\sigma(n)+m=m+\sigma(n)$.

Hagamos esto mediante la siguiente cadena de igualdades:

\begin{align*}
m+\sigma(n)&=\sigma(m+n)\\
&\overset{H.I.}{=}\sigma(n+m)\\
&=n+\sigma(m)\\
&=n+(1+m)\\
&=(n+1)+m\\
&=\sigma(n)+m.
\end{align*}

Como siempre, es importante justificar cada igualdad. Pero ahora es tu turno. ¿Cuáles son las justificaciones de cada una de estas igualdades? Nota que algunas serán las definiciones, algunas serán la notación que estamos usando y finalmente otras se deducen de propiedades que ya demostramos (como la asociatividad).

$\square$

La suma se cancela

Imagina por un momento que tenemos una igualdad del estilo $x+8=y+8$ en los números naturales. Nos gustaría poder concluir que $x=y$. Sin embargo, no podemos hacer el «truco tradicional» de «restar 8» en cada lado de la igualdad para cancelar al 8, pues en los naturales no existe la operación de resta. Nos encontraremos con ella más adelante, hasta que trabajemos con los números enteros.

Aunque no podamos restar, de cualquier forma podemos realizar cancelaciones de este estilo. La siguiente proposición formaliza este hecho.

Proposición (cancelación por la derecha): Si, $a, b, n$ son naturales, tales que $a+n=b+n$, entonces $a=b$.

Demostración. Como ya esperábamos, sean $a$ y $b$ arbitrarios, y procedamos por inducción sobre $n$.

Base inductiva. Si $a+0=b+0$, por definición de $s_a$ y $s_b$ obtenemos $a=b$.

Hipótesis inductiva. Supongamos que $n$ es tal que cada vez que tengamos $a+n=b+n$, obtenemos que $a=b$.

Paso inductivo. Demostremos que si $a+\sigma(n)=b+\sigma(n)$, entonces $a=b$.

Entonces supongamos que $a+\sigma(n)=b+\sigma(n)$. Por definición $a+\sigma(n)=\sigma(a+n)$ y $b+\sigma(n)=\sigma(b+n)$. Por nuestra hipótesis tendríamos entonces que $\sigma(a+n)=\sigma(b+n)$. Usando el cuarto axioma de Peano, obtendríamos entonces que $a+n=b+n$. Finalmente, la hipótesis inductiva nos garantiza que entonces $a=b$, como buscábamos.

$\square$

Podemos enunciar el resultado anterior en una forma un poco más «funcional».

Corolario: Las funciones $s_{m}$ con $m\in \mathbb{N}$ son inyectivas.

Demostración: Con todas las herramientas que hemos desarrollado, ya no será necesario ocupar la inducción.

Si $s_{m}(a)=s_{m}(b)$, por la conmutatividad de la suma, tenemos que $s_{m}(a)=s_{a}(m)$ y $s_{m}(b)=s_{b}(m)$. Esto quiere decir que $a+m=b+m$, y por la proposición anterior, $a=b$.

$\square$

Con esto hemos demostrado las propiedades más fundamentales de la suma, a partir de las cuales podremos probar muchas más.

Resumen de propiedades de la suma

Para recapitular, en esta entrada demostramos las siguientes propiedades de la suma y por lo tanto podremos usarlas directamente de aquí en adelante:

  • Para todo $n$ natural, se tiene $0+n=n=n+0$.
  • Para todo $n$ natural, se tiene $1+n=\sigma(n)=n+1$.
  • Para $m$ y $n$ naturales cualesquiera, se tiene $m+n=n+m$.
  • Para $l,m,n$ naturales cualesquiera, se tiene que $l+(m+n)=(l+m)+n$.
  • Para $l,m,n$ naturales cualesquiera, si $m+l=n+l$, entonces $m=n$.

Más adelante…

Ya que conocemos las propiedades de la suma, podemos pasar a definir el producto, y análogamente, a como lo hicimos antes, estudiaremos sus propiedades usando el principio de Inducción.

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Demuestra que si $a, b\in \mathbb{N}$, y $a+b=0$, entonces $a=b=0$.
  2. Demuestra que si $a+a=b+b$, entonces $a=b$. ¡Ten cuidado! En los números naturales no se vale «dividir», así que más bien tendrás que hacer una prueba inductiva.
  3. Sean $m,n,l$ naturales cualesquiera. Demuestra, usando sólo las propiedades que ya mostramos (ya sin inducción), que todas las siguientes expresiones son iguales:
    \begin{align*}
    m+(n+l)\\
    (l+m)+n\\
    n+(m+l)\\
    (n+l)+m\\
    \end{align*}
  4. ¿Cuáles de las funciones $s_{m}$ tienen inversa? ¿Qué significa esto?
  5. Antes de dominar las tablas de multiplicar de memoria, ¿Cómo multiplicabas? Ocupa esta idea para motivar una definición recursiva del producto de números naturales.

Entradas relacionadas