Archivo de la etiqueta: suma

Álgebra Superior II: Construcción de los enteros y su suma

Introducción

Ya que se construyeron los números naturales, podríamos intentar usarlos para plantear ecuaciones con ellos y ver si se pueden resolver. Un tipo de ecuaciones muy sencillas son las de la forma $a=b+x$, en donde $a$ y $b$ son valores dados y lo que se espera es encontrar el valor de $x$. En los números naturales no hemos definido la resta, así que no es tan sencillo resolver esta ecuación como simplemente decir que la solución es $a-b$.

Lo que sí hicimos en entradas anteriores es ver que la ecuación $a=b+x$ con $a$ y $b$ en $\mathbb{N}$ tiene una solución $x$ en $\mathbb{N}$ si y sólo si $a\geq b$. Cuando $a<b$, no existe solución. Por ejemplo, no existe ninguna $x \in \mathbb{N}$ tal que $3 = 7 + x$.

Pensando esto de manera más intuitiva, $\mathbb{N}$ está conformado por el cero y demás números estrictamente positivos, pero en ocasiones eso no basta para realizar algunas cuentas. Consideremos el siguiente problema:

Una rana está en una posición inicial $0$ y salta dos unidades hacia la derecha. A continuación salta $3$ unidades hacia la izquierda. Luego vuelve a saltar $2$ unidades hacia la derecha y seguido de esto vuelve a saltar $3$ unidades a la izquierda. Una última vez, la rana salta $2$ unidades a la derecha seguidas de $3$ unidades a la izquierda. ¿En qué posición se encuentra la rana ahora?

La cuenta intuitiva, usando los números que conocemos desde educación básica, nos dice que la rana queda en la posición $-3$. Sin embargo, este es un número negativo, y dentro de nuestra construcción de $\mathbb{N}$ nunca hemos hablado de estos números.

La necesidad de que existan soluciones para las ecuaciones sencillas que mencionamos arriba y de que existan números para hacer cuentas como las de la rana es motivación suficiente para querer construir el conjunto de números enteros, denotado $\mathbb{Z}$. Lo que buscamos es que toda ecuación de la forma $a=b+x$ tenga una solución. Es decir, querremos que el conjunto de entero satisfaga que «para cualesquiera $a,b\in \mathbb{Z}$ existe $x\in \mathbb{Z}$ tal que $a= b+x$».

En esta entrada y las siguientes, describiremos la construcción de $\mathbb{Z}$, de sus operaciones y de su orden. Para hacer esto de la manera más formal posible, aprovecharemos la construcción que ya hemos hecho de $\mathbb{N}$.

A grandes rasgos, debemos de pasar por los siguientes pasos.

  1. Definiremos una relación en $\mathbb{N}\times \mathbb{N}$, en donde dos parejas $(a,b)$ y $(c,d)$ de enteros estarán relacionadas si $a+d=b+c$.
  2. Veremos que esto es una relación de equivalencia. Un número entero será una clase de equivalencia de esta relación, es decir, en símbolos será un conjunto de la siguiente forma: \[ \overline{(a,b)}:= \left\{ (c,d) \in \mathbb{N}\times\mathbb{N} : \left(a + d = b +c \right) \right\}, \] en donde $a$ y $b$ son números naturales.
  3. El conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas, en símbolos: \[ \mathbb{Z} := \left\{ \overline{(a,b)} : (a,b) \in \mathbb{N}\times\mathbb{N} \right\}.\]
  4. A este conjunto le daremos operaciones de suma, producto y un orden. Enunciaremos y demostraremos varias de sus propiedades.

Ya que hagamos todo esto, podremos pasar a una siguiente etapa de esta unidad, en donde daremos una introducción a la teoría de números, que es un área de las matemáticas que se dedica a estudiar propiedades aritméticas de $\mathbb{Z}$.

¿Qué es un número entero?

Comencemos tomando una pareja ordenada $(a,b) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$. Para esta pareja, la ecuación

\begin{equation}
a = b + x
\end{equation}

tiene una solución en $\mathbb{N}$. Sin embargo, existen más parejas que tienen la misma solución, es decir, parejas $(c,d)$ tales que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x \in \mathbb{N}$. Por ejemplo, si tomamos $a = 7$, $b = 3$ la ecuación correspondiente es $$7=3+x,$$ cuya solución es $x=4$. Si tomamos $c = 15$ y $d = 11$, entonces la ecuación es $$15=11+x,$$ cuya solución también es $x=4$.

En realidad, muchas más parejas de naturales pueden encontrarse tales que la solución $x$ sea la misma en las ecuaciones representadas por su pareja ordenada asociada. En el ejemplo anterior, otras parejas con la misma solución serían $(5, 1)$, $(31, 27)$, $(100, 96)$, etc. Lo que buscamos al construir a los números enteros es «agrupar» a las parejas con la misma solución $x$. Sin embargo, para que más adelante podamos también «considerar a los negativos», tendremos que cambiar un poco el enfoque.

La siguiente proposición nos permite describir quiénes son todas las parejas $(c,d) \in \mathbb{N} \times \mathbb{N}$ que tienen la misma solución.

Proposición. Sean $(a,b) \in \mathbb{N} \times \mathbb{N}$ y $(c,d) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$ y $c\geq d$. Se tiene que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x$ si y sólo si $a+d = b+c$.

Demostración. $\Longrightarrow )$ Comencemos suponiendo que las ecuaciones $a=b+x$ y $c=d+x$ tienen una misma solución $x$. Esto en símbolos quiere decir que

\begin{align*} a &= b+x \\ d + x &= c \end{align*}

Sumando ambas ecuaciones, obtenemos lo siguiente (aquí ya estamos usando las propiedades conmutativa y asociativa de la suma):

$$a + d + x = b + c + x.$$

En entradas anteriores ya demostramos que se cumple la ley de la cancelación en $\mathbb{N}$. Cancelando $x$ de ambos lados de la igualdad anterior, obtenemos $$a+d=b+c,$$ que era lo que queríamos.

$\Longleftarrow )$ Ahora comencemos con parejas $(a,b)$ y $(c,d)$ tales que $a+d=b+c$. Sea $k \in \mathbb{N}$ una solución de la ecuación $a = b + x$. Es decir, $a = b + k$. Sumando $d$ de ambos lados y usando la hipótesis, tenemos lo siguiente

\begin{align*} b + d + k &= a + d\\
&= b+c.
\end{align*}

Usando la ley de la cancelación en el término $b$, obtenemos que $d+k=c$, es decir, que $k$ también es solución de la ecuación $c=d+x$.

$\square$

La proposición anterior motiva entonces la siguiente definición para todas las parejas $(a,b)$, no sólo para aquellas con $a\geq b$.

Definición. Sean $(a,b)$ y $(c,d)$ parejas de números naturales. Diremos que $(a,b)\sim(c,d)$ si y sólo si $a + d = b + c$.

Probemos una propiedad fundamental de $\sim$.

Proposición. La relación $\sim$ en $\mathbb{N}\times \mathbb{N}$ es una relación de equivalencia.

Demostración. Debemos demostrar que $\sim$ es reflexiva, simétrica y transitiva.

  1. Reflexividad. Veamos que para toda $(a,b)\in \mathbb{N}\times \mathbb{N}$ se cumple que $(a,b)\sim (a,b)$. Por la conmutatividad de la suma en $\mathbb{N}$, $a + b = b + a$. Así, $(a,b) \sim (a,b)$.
  2. Simetría. Veamos que para cualesquiera $(a,b),(c,d) \in \mathbb{N}\times\mathbb{N}$, si $(a,b)\sim (c,d)$, entonces $(a,b) \sim (c,d)$. Sean $(a,b)$ y $(c,d)$. Si $(a,b)=(c,d)$, entonces $a+d = b+c$. Nuevamente por la conmutatividad de la suma en $\mathbb{N}$, se desprende que $c + b = d + a$. Esto es precisamente la definición de $(c,d)\sim(a,b)$.
  3. Transitividad. Veamos que para cualesquiera $(a,b), (c,d),(e,f) \in \mathbb{N}\times \mathbb{N}$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$, se obtiene que $(a,b)\sim (e,f)$. Sean $(a,b)$, $(c,d)$ y $(e,f)$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$. Esto quiere decir que $a+d=b+c$ y que $c+f=d+e$. Sumando ambas ecuaciones, se obtiene $$a+f+c+d=b+e+c+d.$$ Usando la ley de cancelación en $c+d$ obtenemos la ecuación $$a+f=b+e,$$ la cual precisamente corresponde a la relación $(a,b)\sim (e,f)$.

$\square$

Con sólo estas dos proposiciones ya debería quedar más claro de dónde sale la noción formal de número entero, que es la siguiente.

Definición. Un número entero es una clase de equivalencia de $\sim$, es decir, es un conjunto de la siguiente forma:

\begin{equation}
\overline{(a,b)} := \left\{(c,d)\in \mathbb{N}\times \mathbb{N} : a+d = b+c \right\}.
\end{equation}

Ejemplo. ¿Quién es el número entero $\overline{(0,0)}$? Es el conjunto de parejas $(c,d)$ para las cuales $0+d=c+0$, es decir, aquellas en donde $c=d$. De esta forma, $$\overline{(a,b)}=\{(0,0),(1,1),(2,2),(3,3),\ldots\}.$$

¿Cuándo dos números enteros son iguales? Para esto, debe suceder como conjuntos que $\overline{(a,b)}=\overline{(c,d)}$. Como $\sim$ es reflexiva, se tiene que $(a,b)\in \overline{(a,b)}$. Así, $(a,b)$ debe estar en $\overline{(c,d)}$ para que pueda darse la igualdad de conjuntos. Es decir, se necesita que $(a,b)\sim (c,d)$. Es fácil convencerse de que esto es una condición necesaria y suficiente.

El conjunto de los números enteros

En la definición de número entero podemos ir cambiando la pareja $(a,b)$ para ir obteniendo distintos conjuntos. Como $\sim$ es una relación de equivalencia en $\mathbb{N}\times \mathbb{N}$, al variar sobre todas las posibles parejas, estos conjuntos del estilo $\overline{(a,b)}$ forman una partición de $\mathbb{N}\times \mathbb{N}$. Si quieres recordar por qué, puedes ver las entradas correspondientes en el curso de Álgebra Superior I. El conjunto de todas las clases de equivalencia será nuestro conjunto de números naturales.

Definición. Para $(a,b) \in \mathbb{N}\times \mathbb{N}$, el conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas. En símbolos, definimos lo siguiente:

\begin{equation}
\mathbb{Z} := \left\{ \overline{(a,b)} : (a,b)\in \mathbb{N}\times \mathbb{N} \right\}.
\end{equation}

De ahora en adelante, abreviaremos la notación de clase de equivalencia por $\overline{(a,b)}$ (sin la tilde), para facilitar escribir las demostraciones. Otra notación usada comúnmente en la literatura es $[(a,b)]$, sin la tilde.

La suma de los números enteros

Hasta ahora los elementos del conjunto $\mathbb{Z}$ son clases de equivalencia y esto está algo alejado de nuestra noción de números. Definamos operaciones en $\mathbb{Z}$ para que de nuevo los pensemos como un sistema numérico. Comenzamos definiendo la suma de enteros como sigue.

Definición. La suma en los enteros es la función $ \widehat+ : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} $ tal que $$\overline{(a,b)} \enspace \widehat+ \overline{(c,d)} = \overline{(a+c,b+d)}.$$

De manera intuitiva, lo que esta suma refleja es que si tenemos dos ecuaciones $a = b + x$ y $c = d + y$, y las sumamos, entonces se obtiene la ecuación:

$$ a + c = (b + d) + (x + y),$$ la cual correspondería a la clase de equivalencia $\overline{(a+c,b+d)}$.

En la definición utilizamos símbolos distintos para la suma. El símbolo $+$ se refiere al símbolo de suma en $\mathbb{N}$ al cual estamos muy bien acostumbrados. El símbolo $\widehat +$ se refiere al símbolo en $\mathbb{Z}$ que estamos definiendo y que será la suma en $\mathbb{Z}$, para la cual aún tenemos que probar que se cumplan las propiedades que queremos. De ahora en adelante simplemente estaremos usando el símbolo $+$ para ambas, así que es muy importante que en cada momento te preguntes si se refiere al símbolo en $\mathbb{N}$ o en $\mathbb{Z}$, lo cual será claro por el contexto.

Un problema que podríamos tener con la definición de suma es que no estuviera bien definida. Es decir, que si tomamos diferentes representantes de la clase de equivalencia, al hacer la suma obtengamos un resultado diferente. A continuación mostramos que esto en realidad no es un problema.

Proposición. La suma en los enteros está bien definida. Es decir, si $(a,b)\sim (a’,b’)$ y $(c,d)\sim (c’,d’)$, entonces $(a+d,b+c)\sim(a’+d’,b’+c’)$.

Demostración. Las hipótesis corresponden a que $a+b’=b+a’$ y a que $c+d’=d+c’$, que escribiremos como $d+c’=c+d’$. Sumando la primera igualdad con la tercera, reordenando y agrupando términos, obtenemos que $$(a+d)+(b’+c’)=(b+c)+(a’+d’),$$

lo que significa que, como se quería, $(a+d , b+c) \sim (a’+d’, b’+c’).$ Es decir, $\overline{(a+d , b+c)} = \overline{(a’+d’ , b’+c’)}$, de modo que el resultado final de la suma no depende de los representantes que elegimos para hacerla.

$\square$

Propiedades de la suma en $\mathbb{Z}$

Como estamos definiendo una nueva operación de suma, hay que revisar de nuevo que tenga las propiedades que se necesitan para poder trabajar con ella de la manera usual. En esta sección hacemos esto.

Proposición. Se satisfacen las siguientes propiedades para la operación de suma en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}+\overline{(c,d)}=\overline{(c,d)}+\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}+\overline{(m,n)}=\overline{(a,b)}.$$
  • Inversos. Para cualquier entero $\overline{(a,b)}$ existe un entero $\overline{(c,d)}$ tal que la suma $\overline{(a,b)}+\overline{(c,d)}$ es el neutro de la propiedad anterior.

Demostración. La asociatividad se sigue de la siguiente cadena de igualdades.

\begin{align*}
(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}&=\overline{(a+c,b+d)}+\overline{(e,f)}\\
&=\overline{((a+c)+e,(b+d)+f)}\\
&=\overline{(a+(c+e),b+(d+f))}\\
&=\overline{(a,b)}+\overline{(c+d,d+f)}\\
&=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).
\end{align*}

En la primera, segunda, penúltima y última igualdades estamos usando la definición de suma en $\mathbb{Z}$. En la tercer igualdad estamos usando la asociatividad de la suma en $\mathbb{N}$.

Para demostrar la conmutatividad de la suma en $\mathbb{Z}$ usamos la conmutatividad de la suma en $\mathbb{N}$ en la segunda igualdad de la siguiente cadena:

\begin{align*}
\overline{(a,b)}+\overline{(c,d)}&=\overline{(a+c,b+d)}\\
&=\overline{(c+a,d+b)}\\
&=\overline{(c,d)}+\overline{(a,b)}.
\end{align*}

El elemento neutro de la suma en $\mathbb{Z}$ es el entero $\overline{(0,0)}$ pues, en efecto, si tomamos cualquier entero $\overline{(a,b)}$, tenemos que $$\overline{(a,b)}+\overline{(0,0)}=\overline{(a+0,b+0)}=\overline{(a,b)}.$$

Aquí estamos usando que en los naturales el $0$ es neutro para la suma.

Finalmente, dado cualquier entero $\overline{(a,b)}$, notamos que su inverso aditivo sería el entero $\overline{(b,a)}$. En efecto, su suma sería $$\overline{(a,b)}+\overline{(b,a)}=\overline{(a+b,a+b)}=\overline{(0,0)}.$$

La primer igualdad está usando la conmutatividad de la suma en $\mathbb{N}$ y la última el hecho de que $(a+b,a+b)\sim (0,0)$.

$\square$

Como los inversos aditivos se usan frecuentemente, usamos un símbolo especial para ellos: el símbolo de menos. Usamos también este símbolo en la definición de la función resta.

Definición. Para un entero $\overline{(a,b)}$ definimos $-\overline{(a,b)}:=\overline{(b,a)}$.

Para restar enteros, simplemente a un entero le sumamos el inverso del otro.

Definición. La resta de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ es el entero

\begin{align*}
\overline{(a,b)}-\overline{(c,d)}:&=\overline{(a,b)}+(-\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(d,c)}\\
&=\overline{(a+d,b+c)}.
\end{align*}

Cerrando el círculo

Finalizamos esta entrada observando que en $\mathbb{Z}$ ahora sí cualquier ecuación de la forma $r = w + s$ tiene una solución $w$ sin importar los valores de $r$ y $s$.

Proposición. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que existe un entero $\overline{(x,y)}$ tal que $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}.$$

Demostración. La solución es el entero $\overline{(x,y)}=\overline{(a,b)}-\overline{(c,d)}$. En efecto, usando las propiedades de la suma en $\mathbb{Z}$ y la definición de resta, tenemos que:

\begin{align*}
\overline{(x,y)}+\overline{(c,d)}&=(\overline{(a,b)}-\overline{(c,d)})+\overline{(c,d)}\\
&=\overline{(a,b)}+(-\overline{(c,d)}+\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(0,0)}\\
&=\overline{(a,b)}.
\end{align*}

Tarea moral

  1. Repasa por qué las clases de equivalencia inducidas por una relación de equivalencia sobre un conjunto $X$ forman una partición del conjunto $X$.
  2. Encuentra la solución a la siguiente ecuación en los enteros $$\overline{(5,3)}=\overline{(x,y)}+\overline{(1,8)}.$$ Tu respuesta debe ser un número entero, es decir, un conjunto de parejas de naturales. ¿Cuáles son esas parejas?
  3. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, muestra que la solución $\overline{(x,y)}$ a la ecuación $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}$$ es única. Concluye que tanto el neutro aditivo de $\mathbb{Z}$, como los inversos aditivos en $\mathbb{Z}$ son únicos.
  4. Demuestra que para cualquier entero $\overline{(a,b)}$ se tiene que $-(-\overline{(a,b)})=\overline{(a,b)}$.
  5. Demuestra que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que $$-(\overline{(a,b)}+\overline{(c,d)})=(-\overline{(a,b)})+(-\overline{(c,d)}).$$

Más adelante

En esta entrada definimos a los enteros, al conjunto de números enteros y a la operación de suma. Vimos también que la suma tiene buenas propiedades. La estructura algebraica de $\mathbb{Z}$ es todavía más rica. Dentro de $\mathbb{Z}$ también se puede definir un producto y una relación de orden. Haremos esto en las siguientes entradas, enunciaremos las propiedades que tienen y las demostraremos.

Entradas relacionadas

Álgebra Superior II: Compatibilidad del orden con las operaciones de los naturales

Introducción.

En las entradas anteriores, nos encargamos de definir con toda formalidad la estructura con la que hemos estado familiarizados desde hace mucho; sin embargo, en principio, la forma en que definimos el orden y las distintas operaciones, no parece ser que

Para finalizar con el estudio de los números naturales, veremos las importantes relaciónes que hay entre el orden que definimos para $\mathbb{N}$ en la entrada anterior, y las operaciones que hemos trabajado a lo largo de este tema. Para esto, nuevamente ocuparemos el Principio de Inducción.

Una equivalencia del orden

Aunque como mencionamos en la introducción, la forma en que definimos el orden, no parece tener mucha relación con las operaciones definidas, usando la definición de la suma, podemos dar una definición equivalente del orden en $\mathbb{N}$, en el siguiente teorema, demostramos que en efecto, ambas caracterizaciones son equivalentes.

Teorema.Si $n,m$ son números naturales, se tiene que $n<m$ si y sólo si existe $k\in\mathbb{N}\setminus\{0\}$ tal que n+k=m

Demostración. Procedamos por inducción sobre $n$.

Si $n=0$, si $0<m$, entonces $m\in \mathbb{N}\setminus\{0\}$ y $n+m=0+m=m$. Recíprocamente, si existe $k\in\mathbb{N}\setminus\{0\}$ tal que $0+k=m$, tendremos que $k=m$, por lo que $m\neq 0$ y por lo tanto $0<m$. Con esto probamos la base de inducción.

Supongamos que el resultado es válido para alguna $n$ y probemos que el resultado para $\sigma(n)$ es decir, que si $m\in\mathbb{N}$ se tiene que $\sigma(n)<m\Leftrightarrow$ existe $k\in\mathbb{N}\setminus\{0\}$ tal que $\sigma(n)+k=m$.

Verifiquemos la ida de la demostración. Supongamos que $\sigma(n)<m$, entonces $n<m$, por lo que por la hipótesis de inducción concluimos que existe $k\neq 0$ tal que $n+k=m$, como $k\neq0$, existe $k’$ tal que $\sigma(k’)=k$, entonces tenemos que

\begin{align*}
m&=n+k\\
&=n+\sigma(k’)\\
&=\sigma(n)+k’
\end{align*}

Notemos además que $k’\neq 0 $, ya que si $k’=0$, entonces $m=\sigma(n)$ lo cual es un contradicción.

Para el regreso, supongamos que existe $k\neq 0$ tal que $\sigma(n)+k=m$ y demostremos que $\sigma(n)\in m$. Como $\sigma(n)+k=m$, concluimos que $n+ \sigma(k)=m$, por lo que $n<m$ y por lo visto en la entrada de La relación de orden en los naturales, tendremos que $\sigma(n)\leq m$. Si $\sigma(n)=m$, entonces cancelando, obtenemos que $k=0$, lo cual es absurdo, entonces solo queda que $\sigma(n)<m$. Con esto concluimos la inducción y la prueba

$\square$

El orden y las operaciones

Con el anterior resultado, es más fácil ver las relaciones que tendrán el orden con las operaciones, por ejemplo, la siguiente.

Teorema. Si $n<m$ y $l\in\mathbb{N}$, entonces $n+l<m+l$

Demostración. Como $n<m$, entonces existe $k\neq 0$ tal que $n+k=m$, de donde $n+l+k=m+l$, pero justo esa es la definición de que $n+l<m+l$

$\square$

Corolario. Si $a<b$ y $c<d$, entonces $a+c<b+d$

Demostración. Como $a<b$, entonces $a+c<b+c$, y como $c<d$, tenemos que $b+c<b+d$. Por la transitividad del orden, obtenemos el resultado

$\square$

Finalizamos la entrada, marcando la relación entre el orden y la multiplicación.

Teorema. Si $n<m$ y $l\in\mathbb{N}\setminus\{0\}$, entonces $n\cdot l<m\cdot l$

Demostración. Como $n<m$ entonces existe $k\neq 0$ tal que $n+k=m$, por lo que $nl+lk=ml$, sin embargo, como $l$ y $k$ son distintos de cero, entonces $lk$ también es distinto de cero, por lo que $nl<ml$ justo como debíamos probar.

$\square$

Tarea moral

  • Demuestra que si $a<b$ y $c<d$, entonces $ac<bd$, no es necesario suponer que los números son distintos de cero
  • Si $n<m$ y $l\neq 0$, entonces $n^l<m^l$. Sugerencia, usa inducción sobre $l$
  • Si $n<m$ y $l\neq 0$, entonces $l^n<l^m$
  • Si $n<m$, entonces $n!<m!$
  • Demuestra que si $n,m\in\mathbb{N}\setminus\{0\}$, entonces $(1+m)^n\geq 1+nm$

Más adelante

Con esta entrada, terminamos el estudio de los números naturales, por lo que en la siguiente entrada empezaremos con el estuidio de los números enteros, sin embargo, toda la teoría que hemos desarrollado hasta el momento, será la base para poder dar una definición precisa de qué son los números enteros, y sus operaciones, por lo que es importante seguir practicando.

Hay que hacer una especial mención a los principios de inducción y de buen orden, ya que jugarán un papel crucial a la hora de estudiar las propiedades de los enteros, que nos servirán para desarrollar lo que conocemos como teoría de números.

Entradas relacionadas

Álgebra Superior II: Definición de la suma y sus propiedades básicas

Introducción

Para continuar con nuestra tarea de construir las operaciones más elementales de los números naturales, en esta entrada definimos la conocida operación suma. Un buen ejercicio antes de empezar con el contenido de la entrada, es pensar ¿Cómo podemos definir la suma de dos números enteros? De nuevo nos encontramos con el problema de intentar definir formalmente algo que ha sido intuitivo para nosotros durante la mayor parte de nuestra vida.

Sin embargo, todo el trabajo que hicimos en las entradas anteriores, especialmente en la demostración del teorema de Recursión, nos servirán para poder dar una definición precisa de qué es la suma. Además, usando el principio de Inducción, podremos demostrar las propiedades que nos han sido tan familiares desde hace mucho tiempo.

La idea intuitiva de la suma

La primera forma en la que aprendimos a sumar, al menos de manera intuitiva y tal vez limitada, fue usando nuestros dedos. Ocuparemos esta idea como hilo conductor, para poder llegar a la definición recursiva de la suma. Con esta forma de pensar, si queríamos sumar $3+4$, poníamos frente a nosotros nuestras manos con los dedos abajo, e instantáneamente mencionábamos la palabra «tres«. Después estirábamos un primer dedo y al mismo tiempo, mencionábamos la palabra «cuatro» (a quien ahora conocemos como el sucesor de $3$), después alzábamos un segundo dedo y decíamos «cinco» (el sucesor de $4$) , y continuábamos de la misma manera hasta que tuviéramos cuatro dedos totalmente extendidos; momento en el cual, decíamos el resultado: «siete«.

Analicemos un poco qué es lo que queremos decir con «continuábamos de la misma manera«. Entre cada número que contábamos, varias cosas pasaban por nuestra mente. Al mencionar un número, lo primero que hacíamos era cerciorarnos que aún tuviéramos extendidos menos dedos de los que queríamos añadir. Si esta condición se satisfacía, teníamos que grabarnos el número que habíamos mencionado justo en ese instante (el olvidar dicho número, tenía como consecuencia empezar el procedimiento desde el inicio), después alzábamos el siguiente dedo, y mencionábamos el sucesor del número memorizado (es por esto que recordar ese número era tan importante). Muy a grandes rasgos esto es lo mismo que lo que haremos de manera formal.

Definición de la suma

Esperamos que en los párrafos anteriores puedas encontrar una analogía entre el algoritmo que usábamos para sumar cotidianamente, y el método recursivo que describiremos a continuación. Antes de precisar la definición de la suma, hay que aclarar que no definiremos «de golpe» qué quiere decir «sumar dos números». Más bien, lo que haremos es, para cada natural, decir qué quiere decir «sumarle otro». Lo haremos de esta manera pues esto es lo que nos permite hacer el teorema de Recursión. Así, para cada número natural $m$ (fijo) obtendremos una función que nos sume a ese número fijo, una cantidad arbitraria.

Definición: Sea $m\in\mathbb{N}$. Definimos la función $s_{m}:\mathbb{N}\longrightarrow\mathbb{N}$, como la única función que satisface las propiedades siguientes:

  1. $s_{m}(0)=m$
  2. $s_{m}(\sigma(n))=\sigma(s_{m}(n))$.

Denotaremos $s_{m}(n)$ como $m+n$.

Vale la pena hacer un par de comentarios de la definición anterior. Primero mencionamos que esta definición depende totalmente del teorema de Recursión Débil. Si regresas al enunciado del teorema, podemos notar que la función $s_m$ se obtiene tomando $X=\mathbb{N}$, $x_{0}=m$, $f=\sigma$ y $g=s_{m}$.

En segundo lugar, hay que remarcar que a pesar de nuestra intuición, los papeles de $m$ y $n$ en la expresión $m+n$, no son intercambiables. Por definición $m+n=s_{m}(n)$, mientras que $n+m=s_{n}(m)$. A primera vista, estos valores no tienen por qué coincidir. Veremos que en efecto esta y otras propiedades sí son válidas, para que posteriormente podamos utilizarlas de manera directa.

Aprender a sumar cero

De aquí en adelante probaremos varias propiedades de la suma. Debido a la definición recursiva de esta función, la mayor herramienta que ocuparemos es el principio de Inducción.

Antes de lanzarnos a demostrar la primer propiedad, nota que directamente de las definiciones de las funciones $s_{m}$ y de la notación que estamos usando, se tiene que $m+0=s_m(0)=m$. Ahora nos gustaría ver que también $0+m=m$, pero como aún no sabemos que la suma sea conmutativa, tendremos que probarlo por inducción.

Proposición: Para todo $n\in\mathbb{N}$ se tiene que $s_{0}(n)=n$, es decir, $0+n=n$

Demostración. Como se mencionó, procedamos por inducción sobre $n$.

Base inductiva: Por el punto (1) de la definición de $s_0$, tenemos que s_{0}(0)=0.

Hipótesis inductiva: Supongamos que para algún $n\in\mathbb{N}$, se tiene que $s_{0}(n)=n$

Paso inductivo: Demostremos que $s_{0}(\sigma(n))=\sigma(n)$.

La demostración se sigue de la siguiente cadena de igualdades, las cuales justificamos una a una abajo:

\begin{align*}
s_{0}(\sigma(n))&=\sigma(s_{0}(n)) \\&\overset{\text{H.I.}}{=}\sigma(n).
\end{align*}

La primera igualdad sucede por el punto (2) de la definición de $s_0$. La segunda igualdad sucede por la hipótesis inductiva, lo cual estamos indicando con un «H.I.» sobre el símbolo de igualdad.

Esto termina el paso inductivo y entonces la proposición se vale para todos los naturales.

$\square$

Así, ya sabemos «sumar cero».

Aprender a sumar uno

Veamos ahora que nuestra intuición de «sumar uno» en efecto coincide de manera formal con «ir al sucesor».

Observación: Tenemos la siguiente cadena de igualdades \[n+1=s_{n}(1)=s_{n}(\sigma(0))=\sigma(s_{n}(0))=\sigma(n).\]

La primera es por nuestra elección de notación. La segunda por la definición del símbolo 1, pues simplemente es el sucesor de 0. La tercera es por el punto (2) de la definición de $s_n$. Finalmente, la última es por el punto (1) de la definición de $s_n$.

$\square$

Proposición: Para todo $n\in\mathbb{N}$ se tiene que $s_{1}(n)=\sigma(n)$, es decir, que al juntarlo con la observación anterior obtenemos $1+n=\sigma(n)=n+1$.

Demostración. Demostremos que $s_1(n)=\sigma(n)$ por inducción sobre $n$. Tenemos que $s_{1}(0)=1=\sigma(0)$ por el punto (1) de la definición de $s_1$ y por la definición de 1. Esto muestra que la igualdad se cumple en el caso base $n=0$.

Nuestra hipótesis de inducción es suponer que $s_{1}(n)=\sigma(n)$ y a partir de ella debemos demostrar que $s_{1}(\sigma(n))=\sigma(\sigma(n))$. Esto lo logramos mediante la siguiente cadena de igualdades:

\begin{align*}
s_{1}(\sigma(n))&=\sigma(s_{1}(n))\\ &= \sigma(\sigma(n))
\end{align*}

La primera igualdad se debe al punto (2) de la definición de $s_1$. La segunda, a la hipótesis inductiva.

$\square$

La suma es asociativa

Con los resultados probados en las dos secciones anteriores, continuamos ahora probando propiedades más interesantes de la suma. Aunque las aprendimos desde la educación básica, ahora será momento de justificar por qué se deducen de lo que hemos construido. Empezamos por la asociatividad.

Proposición (asociatividad): Si $a, b, n$, son naturales arbitrarios, entonces $(a+b)+n=a+(b+n)$.

Como es usual, aquí los paréntesis significan «hacer esa operación primero». Si quisiéramos usar la notación formal, tendríamos que enunciar la asociatividad como $$s_{a+b}(n)=s_a(s_b(n)),$$ y cuando hagamos la demostración aprovecharemos la definición de estas funciones $s_{a+b}$, $s_a$ y $s_b$.

Demostración. Procedamos por inducción. Tenemos tres variables naturales. ¿Sobre cuál hacemos inducción? Esto es una decisión importante y el hacer una elección incorrecta puede dificultar la prueba o impedir concluirla. Haremos inducción sobre $n$, pero te recomendamos que intentes hacerlo sobre las otras variables para detectar las dificultades que pueden surgir.

Base inductiva: $(a+b)+0=a+b=a+(b+0)$. En el primer paso usamos el punto (1) de la definición de $s_{a+b}$ y en el segundo usamos el punto (1) de la definición de $s_b$.

Hipótesis inductiva: Supongamos que $(a+b)+n=a+(b+n)$. Recuerda que en una prueba inductiva sólo se hace la hipótesis inductiva para un valor fijo de $n$, pero lo que se quiere suponer es que se vale para todo valor de $n$. Así, no estamos suponiendo que cualquier $n$ pueda asociarse con cualesquiera dos números, solo estamos suponiendo que una $n$ fija puede asociarse con los valores fijos de $a$ y de $b$; más aún, el orden de $a$ y $b$ importa, ya que no hemos demostrado aún la conmutatividad.

Paso inductivo: Demostremos que $(a+b)+\sigma(n)=a+(b+\sigma(n))$.

Hagamos esto mediante la siguiente cadena de igualdades:

\begin{align*}
(a+b)+\sigma(n)&=\sigma((a+b)+n)\\
&\overset{\text{H.I}}{=}\sigma(a+(b+n))\\
&=a+\sigma(b+n)\\
&=a+(b+\sigma(n)).
\end{align*}

Aquí las igualdades se siguen, respectivamente, de la definición de $s_{a+b}$, de la hipótesis inductiva, de la definición de $s_a$ y de la definición de $s_b$. Con esto, concluimos la prueba del paso inductivo y con ello la prueba por inducción.

$\square$

En la demostración anterior ya no estamos siendo tan específicos con exactamente qué parte de la definición de las funciones estamos usando. Sin embargo, te sugerimos completar estos detalles pues te ayudarán a entender mucho mejor por qué cada uno de los pasos tiene su justificación.

La suma es conmutativa

Otra de las propiedades de la suma que nos enseñan en educación básica es que «el orden de los factores no afecta el resultado». Esto tiene un nombre en matemáticas formales: conmutatividad. El objetivo de la siguiente proposición es demostrar que en efecto la suma es conmutativa.

Proposición (conmutatividad): Si, $n, m$ son naturales, entonces $n+m=m+n$.

En términos de las funciones que construimos mediante el teorema de recursión esto se ve como $s_n(m)=s_m(n)$.

Demostración. De nuevo, procedamos por inducción sobre $n$, por la misma razón remarcamos que entonces $m$ es un número arbitrario pero fijo.

Base inductiva. Por la primer proposición que probamos, tenemos que $0+m=m=m+0$.

Hipótesis de Inducción: Supongamos que $n$ cumple que $n+m=m+n$.

Paso inductivo: Demostremos que $\sigma(n)+m=m+\sigma(n)$.

Hagamos esto mediante la siguiente cadena de igualdades:

\begin{align*}
m+\sigma(n)&=\sigma(m+n)\\
&\overset{H.I.}{=}\sigma(n+m)\\
&=n+\sigma(m)\\
&=n+(1+m)\\
&=(n+1)+m\\
&=\sigma(n)+m.
\end{align*}

Como siempre, es importante justificar cada igualdad. Pero ahora es tu turno. ¿Cuáles son las justificaciones de cada una de estas igualdades? Nota que algunas serán las definiciones, algunas serán la notación que estamos usando y finalmente otras se deducen de propiedades que ya demostramos (como la asociatividad).

$\square$

La suma se cancela

Imagina por un momento que tenemos una igualdad del estilo $x+8=y+8$ en los números naturales. Nos gustaría poder concluir que $x=y$. Sin embargo, no podemos hacer el «truco tradicional» de «restar 8» en cada lado de la igualdad para cancelar al 8, pues en los naturales no existe la operación de resta. Nos encontraremos con ella más adelante, hasta que trabajemos con los números enteros.

Aunque no podamos restar, de cualquier forma podemos realizar cancelaciones de este estilo. La siguiente proposición formaliza este hecho.

Proposición (cancelación por la derecha): Si, $a, b, n$ son naturales, tales que $a+n=b+n$, entonces $a=b$.

Demostración. Como ya esperábamos, sean $a$ y $b$ arbitrarios, y procedamos por inducción sobre $n$.

Base inductiva. Si $a+0=b+0$, por definición de $s_a$ y $s_b$ obtenemos $a=b$.

Hipótesis inductiva. Supongamos que $n$ es tal que cada vez que tengamos $a+n=b+n$, obtenemos que $a=b$.

Paso inductivo. Demostremos que si $a+\sigma(n)=b+\sigma(n)$, entonces $a=b$.

Entonces supongamos que $a+\sigma(n)=b+\sigma(n)$. Por definición $a+\sigma(n)=\sigma(a+n)$ y $b+\sigma(n)=\sigma(b+n)$. Por nuestra hipótesis tendríamos entonces que $\sigma(a+n)=\sigma(b+n)$. Usando el cuarto axioma de Peano, obtendríamos entonces que $a+n=b+n$. Finalmente, la hipótesis inductiva nos garantiza que entonces $a=b$, como buscábamos.

$\square$

Podemos enunciar el resultado anterior en una forma un poco más «funcional».

Corolario: Las funciones $s_{m}$ con $m\in \mathbb{N}$ son inyectivas.

Demostración: Con todas las herramientas que hemos desarrollado, ya no será necesario ocupar la inducción.

Si $s_{m}(a)=s_{m}(b)$, por la conmutatividad de la suma, tenemos que $s_{m}(a)=s_{a}(m)$ y $s_{m}(b)=s_{b}(m)$. Esto quiere decir que $a+m=b+m$, y por la proposición anterior, $a=b$.

$\square$

Con esto hemos demostrado las propiedades más fundamentales de la suma, a partir de las cuales podremos probar muchas más.

Resumen de propiedades de la suma

Para recapitular, en esta entrada demostramos las siguientes propiedades de la suma y por lo tanto podremos usarlas directamente de aquí en adelante:

  • Para todo $n$ natural, se tiene $0+n=n=n+0$.
  • Para todo $n$ natural, se tiene $1+n=\sigma(n)=n+1$.
  • Para $m$ y $n$ naturales cualesquiera, se tiene $m+n=n+m$.
  • Para $l,m,n$ naturales cualesquiera, se tiene que $l+(m+n)=(l+m)+n$.
  • Para $l,m,n$ naturales cualesquiera, si $m+l=n+l$, entonces $m=n$.

Tarea moral

  1. Demuestra que si $a, b\in \mathbb{N}$, y $a+b=0$, entonces $a=b=0$.
  2. Demuestra que si $a+a=b+b$, entonces $a=b$. ¡Ten cuidado! En los números naturales no se vale «dividir», así que más bien tendrás que hacer una prueba inductiva.
  3. Sean $m,n,l$ naturales cualesquiera. Demuestra, usando sólo las propiedades que ya mostramos (ya sin inducción), que todas las siguientes expresiones son iguales:
    \begin{align*}
    m+(n+l)\\
    (l+m)+n\\
    n+(m+l)\\
    (n+l)+m\\
    \end{align*}
  4. ¿Cuáles de las funciones $s_{m}$ tienen inversa? ¿Qué significa esto?
  5. Antes de dominar las tablas de multiplicar de memoria, ¿Cómo multiplicabas? Ocupa esta idea para motivar una definición recursiva del producto de números naturales.

Más adelante…

Ya que conocemos las propiedades de la suma, podemos pasar a definir el producto, y análogamente, a como lo hicimos antes, estudiaremos sus propiedades usando el principio de Inducción.

Entradas relacionadas

Álgebra Superior II: Problemas de operaciones con polinomios

Introducción

En una entrada anterior ya construimos el anillo de polinomios con coeficientes reales. Para hacer esto, tomamos las sucesiones que consisten casi de puros ceros, después les definimos las operaciones de suma y producto. Ahora practicaremos estos nuevos conceptos, resolviendo algunos problemas de operaciones con polinomios.

Problema de suma de polinomios

Comenzamos con un ejemplo de suma de polinomios del libro de Álgebra Superior de Bravo, Rincón y Rincón.

Ejercicio 399. Haz la suma de los siguientes polinomios:
\begin{align*}
p(x)&=(-85,0,-37,-35, 97, 50, \overline{0})\\
q(x)&=(56,49,0,57,\overline{0}).
\end{align*}

En el video se hace la suma de dos formas distintas. Primero, se hace la suma directamente de la definición, es decir, sumando los polinomios entrada a entrada como sucesiones. Después, se hace la suma en la notación de $x$ y potencias, que tal vez conozcas mejor.

Es importante entender que la notación de sucesiones sirve para establecer los fundamentos de los polinomios, pero no es práctica para hacer operaciones con polinomios concretas. Dependiendo del tipo de problema que se quiere resolver, a veces hay que usar una notación u otra.

Suma de polinomios

Problemas de producto de polinomios

A continuación se resuelven dos ejercicios de producto de polinomios.

Ejercicio. Multiplicar los polinomios $(2,0,3,\overline{0})$ y $(0,1,\overline{0})$.

En el video se hace la multiplicación usando directamente la definición, paso a paso. Sin embargo, los pasos para realizar la multiplicación se pueden realizar en una tabla, como la que usamos en entradas anteriores. Después del video ponemos la tabla correspondiente a la multiplicación.

Para hacer la multiplicación con una tabla, ponemos a las entradas del primer polinomio en la primer fila de una tabla, y a las del segundo polinomio en la primer columna de la tabla. Luego, hacemos las multiplicaciones «en cada casilla» como sigue:

$2$$0$$3$
$0$$0$$0$$0$
$1$$2$$0$$3$

De aquí, se puede leer el producto «por diagonales». La primer diagonal es $0$, la segunda $2+0=2$, la tercera $0+0=0$ y la cuarta $3$. Concluimos que el polinomio es $$(0,2,0,3,\overline{0}).$$

Veamos un ejemplo más, usando la notación de $x$ y sus potencias.

Ejercicio. Encuentra el producto de polinomios $(1+3x)(1-2x+3x^2)$.

Problema de división de polinomios

Finalmente, hacemos un ejemplo de división de polinomios. La técnica que se hace en el video es la de «dividir con casita», que es una forma visual de representar el algoritmo de la división para polinomios. Hablaremos un poco más adelante de este algoritmo, y de por qué siempre nos da un residuo cero o de grado menor.

Cuando se hace la «división con casita», hay que recordar dejar los espacios correspondientes a los términos que tengan coeficiente $0$.

Ejercicio. Divide el polinomio $x^5+x^3+3x$ entre el polinomio $x^2-x+1$.

División de polinomios

Tarea moral

  • Realiza la suma $(-10,0,3,-4,1,\overline{0})+(14,0,0,0,-5,0,3,\overline{0})$.
  • Realiza el producto $(-1,1,\overline{0})(1,1,1,1,\overline{0})$.
  • Realiza el producto $(x^3+4x^2-3)(2x^2+x-3)$.
  • Realiza la división $(x^5+3x^4+x^3+5x^2-5x+1)/(x^2+3x-1)$.
  • Realiza la división $(x^4+2x^3+2x^2+11x)/(x^2+3)$.

Más adelante

Aunque esta entrada la dedicamos para que pudieras practicar tus habilidades operando polinomios, te recomendamos seguir practicando, ya que estas operaciones serán la base de la teoría. A partir de aquí veremos los teoremas importantes sobre los polinomios.

Entradas relacionadas

Álgebra Superior II: El anillo de polinomios con coeficientes reales

Introducción

Estamos listos para la cuarta y última parte del curso, en donde construiremos el anillo de polinomios con coeficientes reales. Los elementos de este anillo son polinomios, los cuales aparecen en numerosas áreas de las matemáticas. Tras su construcción, aprenderemos varias herramientas para trabajar con ellos.

En las tres primeras partes del curso ya trabajamos con otras estructuras algebraicas. Hasta ahora, hemos hablado de lo siguiente:

  • Naturales: Construimos a partir de teoría de conjuntos al conjunto $\mathbb{N}$ de números naturales, sus operaciones y orden. De lo más relevante es que dentro de los naturales podemos hacer definiciones por recursión y pruebas por indución.
  • Enteros: Con $\mathbb{N}$ construimos a los enteros $\mathbb{Z}$, sus operaciones y orden. Hablamos de divisibilidad y factorización. Esto dio pie a construir $\mathbb{Z}_n$, los enteros módulo $n$, junto con su aritmética. Aprendimos a resolver ecuaciones en $\mathbb{Z}$ y sistemas de congruencias.
  • Racionales y reales: Mencionamos brevemente cómo se construye $\mathbb{Q}$ a partir de $\mathbb{Z}$ y cómo se construye $\mathbb{R}$ a partir de $\mathbb{Q}$. Tanto $\mathbb{R}$ como $\mathbb{Q}$ son campos, así que ahí se pueden hacer sumas, restas, multiplicaciones y divisiones.
  • Complejos: A partir de $\mathbb{R}$ construimos el campo $\mathbb{C}$ de los números complejos. Definimos suma, multiplicación, inversos, norma y conjugados. Luego, desarrollamos herramientas para resolver varios tipos de ecuaciones en $\mathbb{C}$. Finalmente, construimos las funciones exponenciales, logarítmicas y trigonométricas.

Quizás a estas alturas del curso ya veas un patrón de cómo estamos trabajando. Aunque varias de estas estructuras ya las conocías desde antes, hay una primer parte importante que consiste en formalizar cómo se construyen. Luego, vimos cómo se definen las operaciones en cada estructura y qué propiedades tienen. Haremos algo muy parecido con los polinomios.

Intuición de los polinomios

La idea de esta entrada es llegar a los polinomios que ya conocemos, es decir, a expresiones como la siguiente: $$4+5x+\frac{7}{2}x^2-x^4+3x^5.$$ Lo que tenemos que formalizar es qué significa esa «x», y cómo le hacemos para sumar y multiplicar expresiones de este tipo.

Intuitivamente, lo que queremos ese que en la suma «se sumen términos del mismo grado» y que en el producto «se haga la distribución y se agrupen términos del mismo grado». Por ejemplo, queremos que la suma funcione así

\begin{align*}
(1+&x-x^2+3x^3)+(-7+3x+x^2+2x^3+x^4)\\
&=(1-7)+(1+3)x+(-1+1)x^2+(3+2)x^3+(0+1)x^4\\
&=-6+4x+0x^2+5x^3+x^4\\
&=-6+4x+5x^3+x^4,
\end{align*}

y que la multiplicación funcione así

\begin{align*}
(2&+3x)(5+x+x^2)\\
&=2(5+x+x^2)+3x(5+x+x^2)\\
&=(10+2x+2x^2)+(15x+3x^2+3x^3)\\
&=10+(2+15)x+(2+3)x^2+3x^3\\
&=10+17x+5x^2+3x^3.
\end{align*}

El exponente más grande de una $x$ puede ser tan grande como queramos, pero no se vale que los polinomios tengan una infinidad de términos. Así, queremos descartar cosas del estilo $$1+x+x^2+x^3+x^4+\ldots,$$ en donde sumamos indefinidamente.

Construcción de polinomios

Para construir polinomios formalmente, tenemos que elegir de dónde van a venir sus coeficientes. Puede ser $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{Z}$ o incluso $\mathbb{Z}_7$, digamos. Nosotros nos enfocaremos en construir los polinomios con coeficientes en $\mathbb{R}$, que tiene la ventaja de ser un campo. Algunas de las propiedades que probaremos se valen para cualquier elección de coeficientes, pero otras no. No profundizaremos en estas diferencias, pero es bueno que lo tengas en mente para tu formación matemática posterior.

Una buena idea para formalizar el concepto de polinomio, es notar que un polinomio está determinado por la lista de sus coeficientes, con esta idea en mente, podemos relacionar nuestra búsqueda con un concepto conocido de Cálculo.

Definición. Dado un conjunto $X$, una sucesión de elementos de $X$ es una función $a:\mathbb{N}\to X$. Para $n$ en $\mathbb{N}$, a $a(n)$ usualmente lo denotamos simplemente por $a_n$, y a la sucesión $a$ por $\{a_n\}$.

Definición. El soporte de una sucesión es el conjunto de naturales $n$ tales que $a_n\neq 0$.

Podemos «visualizar» los primeros términos de una sucesión así: $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ en donde podemos poner tantos términos como queramos y los puntos suspensivos indican que «sigue y sigue». Por supuesto, usualmente esta visualización no puede guardar toda la información de la sucesión, pero puede ayudarnos a entenderla un poco mejor.

Ejemplo. Si tomamos la función identidad $\text{id}:\mathbb{N}\to \mathbb{N}$, obtenemos la sucesión $$(0,1,2,3,4,5,6,7,\ldots).$$

Al tomar la función $a:\mathbb{N}\to \mathbb{Z}$ tal que $a_n=(-1)^n$, obtenemos la sucesión $$(1,-1,1,-1,1,-1,\ldots).$$

$\square$

Los polinomios son aquellas sucesiones de reales que «después de un punto tienen puros ceros».

Definición. Un polinomio con coeficientes reales es una sucesión $\{a_n\}$ de reales tal que $a_n\neq 0$ sólo para una cantidad finita de naturales $n$.

En otras palabras, un polinomio es una sucesión con soporte finito. Si visualizamos a un polinomio como una sucesión, entonces es de la forma $$(a_0,a_1,a_2,a_3,a_4,a_5,\ldots),$$ en donde a partir de un punto ya tenemos puros ceros a la derecha. Por conveniencia, marcaremos ese punto con un $\overline{0}$.

Ejemplo. La sucesión $$\left(5,7,\frac{7}{2},0,-1,3,0,0,0,\ldots\right),$$ en la que después del $3$ ya todos los términos son ceros, representa a un polinomio. Con la convención de arriba, podemos escribirlo como $$\left(5,7,\frac{7}{2},0,-1,3,\overline{0}\right).$$ Su soporte consiste de aquellas posiciones en las que la sucesión no es cero, que son $0,1,2,4,5$.

La sucesión $$(1,-1,1,-1,1,-1,\ldots)$$ dada por $a_n=(-1)^n$ no es un polinomio, pues podemos encontrar una infinidad de términos no cero.

$\square$

Para que las definiciones de la siguiente sección te hagan sentido, puedes pensar de manera informal que la sucesión $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ representa al polinomio $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots.$$ La última condición en la definición de polinomio es la que garantiza que «tenemos un número finito de sumandos».

Definición. Definimos al conjunto de polinomios con coeficientes reales como $$\mathbb{R}[x]:=\{ p: p \text{ es polinomio con coeficientes reales}\}.$$

La igualdad de polinomios de define término a término, es decir.

Definición. Sean $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$. Decimos que $a=b$ si para todo natural se tiene $a_n=b_n$.

En las siguientes secciones definiremos las operaciones de suma y producto en $\mathbb{R}[x]$.

Suma y producto de polinomios

Los polinomios se suman «entrada a entrada».

Definición. Dados dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$, definimos su suma como el polinomio $$a+b:=\{a_n+b_n\},$$ o bien, en términos de sucesiones, como la sucesión $a+b:\mathbb{N}\to \mathbb{R}$ tal que $(a+b)(n)=a(n)+b(n)$.

Observa que nos estamos apoyando en la suma en $\mathbb{R}$ para esta definición.

Ejemplo. Los polinomios $$\left(0,2,0,4,-1,\frac{2}{3},\overline{0}\right)$$ y $$\left(1,-2,-1,-4,-2,\overline{0}\right)$$ tienen como suma al polinomio $$\left(0+1,2-2,0-1,4-4,-1-2,\frac{2}{3}+0,0+0,\ldots\right),$$ que es $$\left(1,0,-1,0,-3,\frac{2}{3},\overline{0}\right).$$

$\square$

La suma de dos polinomios sí es un polinomio pues claramente es una sucesión, y su soporte se queda contenido en la union de los soportes de los sumandos.

La siguiente definición guarda la idea de que para multiplicar queremos distribuir sumandos y agrupar términos del mismo grado. Tiene sentido si piensas en la asociación intuitiva informal que discutimos al final de la sección anterior.

Definición. Dados dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$ en $\mathbb{R}[x]$, definimos su producto como el polinomio $$ab:=\{c_n\},$$ en donde $c_n$ está dado por $$c_n:=\sum_{i+j=n} a_ib_j,$$ en otras palabras, $$c_n=a_0b_n+a_1b_{n-1}+\ldots+a_{n-1}b_1+a_nb_0.$$

Aquí nos estamos apoyando en la suma y producto en $\mathbb{R}$ para definir la multiplicación de polinomios.

Una forma práctica de hacer el producto es mediante una tabla. En la primer fila ponemos al primer polinomio y en la primer columna al segundo. Las entradas interiores son el producto de la fila y columna correspondiente. Una vez que hacemos esto, la entrada $c_j$ del producto es la suma de los elementos en la $j$-ésima «diagonal».

Ejemplo. Multipliquemos a los polinomios $$a=(3,-2,0,1,\overline{0})$$ y $$b=(0,2,7,\overline{0}).$$

Ponemos a $a$ y $b$ en la primer fila y columna respectivamente de la siguiente tabla:

$3$$-2$$0$$1$
$0$
$2$
$7$

Luego, en cada entrada interior de la tabla ponemos el producto de los coeficientes correspondientes:

$3$$-2$$0$$1$
$0$$3 \cdot 0$$-2 \cdot 0$$0\cdot 0$$1\cdot 0$
$2$$3 \cdot 2$$-2 \cdot 2$$0\cdot 2$$1\cdot 2$
$7$$3 \cdot 7$$-2 \cdot 7$$0\cdot 7$$1\cdot 7$

Después, hacemos las operaciones:

$3$$-2$$0$$1$
$0$$0$$0$$0$$0$
$2$$6$$-4$$0$$2$
$3$$21$$-14$$0$$7$

Finalmente, para encontrar el coeficiente $c_j$ del producto, hacemos la suma de las entradas en la $j$-ésima diagonal dentro de la tabla, es decir:
\begin{align*}
c_0&=0\\
c_1&=6+0=6\\
c_2&=21-4+0=17\\
c_3&=-14+0+0=-14\\
c_4&=0+2=2\\
c_5&=7.
\end{align*}

De esta forma, el polinomio producto es $$(0,6,17,-14,2,7,\overline{0}).$$ Es muy recomendable que notes que esto coincide con el producto (por ahora informal) \begin{align*}(3-&2x+x^3)(2x+7x^2)\\&=6x+17x^2-14x^3+2x^4+7x^5.\end{align*}

$\square$

El anillo de polinomios con coeficientes reales

Los polinomios y los enteros se parecen, en el sentido de que como estructura algebraica comparten muchas propiedades. La idea de esta sección es formalizar esta afirmación.

Teorema. El conjunto $\mathbb{R}[x]$ con las operaciones de suma y producto arriba definidos forman un anillo.

Demostración. Por una parte, tenemos que mostrar que la suma es asociativa, conmutativa, que tiene neutro e inversos aditivos. Por otra parte, tenemos que mostrar que el producto es asociativo. Finalmente, tenemos que mostrar que se vale la ley distributiva.

Tomemos dos polinomios $a=\{a_n\}$, $b=\{b_n\}$ y un natural $n$. El término $n$ de $a+b$ es $a_n+b_n$ y el de $b+a$ es $b_n+a_n$, que son iguales por la conmutatividad de la suma en $\mathbb{R}$. De manera similar, se muestra que la suma es asociativa.

El polinomio $(\overline{0})$ es la identidad de la suma. Esto es sencillo de mostrar y se queda como tarea moral. Además, si $a=\{a_n\}$ es un polinomio, entonces $\{-a_n\}$ es una sucesión con el mismo soporte (y por lo tanto finito), que cumple que $$\{a_n\}+\{-a_n\}=(0,0,0,\ldots)=(\overline{0}),$$ así que la suma tiene inversos aditivos.

Ahora probemos la asociatividad del producto. Tomemos tres polinomios $a=\{a_n\}$, $b=\{b_n\}$, $c=\{c_n\}$ y un natural $n$. Hagamos el producto $(ab)c$. Para cada $i$, el $i$-ésimo término de $ab$ es un cierto $d_i$ dado por $$d_i = \sum_{k+l=i} a_k b_l.$$ El $n$-ésimo término de $(ab)c$ es entonces
\begin{align*}
\sum_{i+j=n}d_ic_j &= \sum_{i+j=n}\sum_{k+l=i} a_kb_lc_j\\
&=\sum_{k+l+j=n}a_kb_lc_j.
\end{align*}

Un argumento análogo muestra que el $n$-esimo término de $a(bc)$ es también \begin{align*}
\sum_{k+l+j=n}a_kb_lc_j,
\end{align*}

lo cual muestra que la multiplicación es asociativa.

Lo último que nos queda por probar es la ley distributiva. Tomemos tres polinomios $a=\{a_n\}$, $b=\{b_n\}$, $c=\{c_n\}$ y un natural $n$. Usamos las propiedades de las operaciones en $\mathbb{R}$ para ver que el $n$-ésimo término de $a(b+c)$ es
\begin{align*}
\sum_{i+j=n} a_i(b_j+c_j)&=\sum_{i+j=n} (a_ib_j+ a_i c_j)\\
&=\sum_{i+j=n} a_ib_j + \sum_{i+j=n} a_ic_j.
\end{align*}

A la derecha tenemos el $n$-ésimo término de $ab$ sumado con el $n$-ésimo término de $ac$, así que coincide con el $n$-ésimo término de la suma $ab+ac$. Esto muestra que $a(b+c)$ y $ab+ac$ son iguales término a término y por lo tanto son iguales como polinomios.

$\square$

Como de costumbre, al inverso aditivo de un polinomio $a$ le llamamos $-a$, y definimos $a-b:=a+(-b)$.

Proposición. La multiplicación en $\mathbb{R}[x]$ es conmutativa.

Demostración. Tomemos dos polinomios $a=\{a_n\}$ y $b=\{b_n\}$. Tenemos que ver que $ab$ y $ba$ son iguales término a término. Tomemos entonces un natural $n$. El término $c_n$ de $ab$ es $$c_n=\sum_{i+j=n} a_ib_j,$$ y el término $d_n$ de $ba$ es $$d_n=\sum_{i+j=n} b_ia_j.$$ Por la conmutatividad de la suma y el producto en $\mathbb{R}$, tenemos que $c_n=d_n$.

$\square$

Proposición. La multiplicación en $\mathbb{R}[x]$ tiene identidad.

Demostración. El polinomio $(1,\overline{0})$ es la identidad multiplicativa. Esto es sencillo de mostrar y se queda como tarea moral.

$\square$

Proposición. Si $a$ y $b$ son polinomios en $\mathbb{R}[x]$ distintos del polinomio $(\overline{0})$, entonces su producto también.

Demostración. Para ello, tomemos el mayor natural $m$ tal que $a_m\neq 0$ y el mayor natural $n$ tal que $b_n\neq 0$. Estos existen pues $a$ y $b$ no son el polinomio $(\overline{0})$, y su soporte es finito.

Cualquier pareja de naturales $k$ y $l$ tales que $k+l=m+n$ con $k\leq m-1$ cumple $l\geq n+1.$ Así, si $k+l=m+n$ tenemos que:

  • Si $k\leq m-1$, entonces $b_l=0$ y por lo tanto $a_kb_l=0$
  • Si $k\geq m+1$, entonces $a_k=0$ y por lo tanto $a_kb_l=0$
  • Finalmente, si $k=m$, entonces $l=n$ y $$a_kb_l=a_mb_n\neq 0.$$

De esta forma, el $(m+n)$-ésimo término de $ab$ es $$\sum_{k+l=m+n} a_k b_l=a_mb_n\neq 0,$$ de modo que $ab$ no es el polinomio $(\overline{0})$.

$\square$

Corolario. En $\mathbb{R}[x]$ se vale la regla de cancelación, es decir, si $a,b,c$ son polinomios, $a\neq 0$ y $ab=ac$, entonces $b=c$.

Demostración. De la igualdad $ab=ac$ obtenemos la igualdad $a(b-c)=0$. Como $a\neq 0$, por la proposición anterior debemos tener $b-c=0$, es decir, $b=c$.

$\square$

A un anillo conmutativo cuya multiplicación tiene identidad y en donde se vale la regla de cancelación se le conoce como un dominio entero.

Teorema. El anillo $\mathbb{R}[x]$ es un dominio entero.

Con esto terminamos la construcción de $\mathbb{R}[x]$ y de sus operaciones. Cuando trabajamos con los polinomios de manera práctica resulta engorroso mantener esta notación de sucesiones. En la siguiente entrada justificaremos el uso de la notación «usual» de los polinomios, en la que usamos la letra «x» y exponentes.

Tarea moral

  • Justifica por qué el soporte del producto de dos polinomios es finito.
  • Muestra que la suma en $\mathbb{R}[x]$ es asociativa.
  • Verifica que el polinomio $(\overline{0})$ es la identidad aditiva en $\mathbb{R}[x]$.
  • Verifica que el polinomio $(1,\overline{0})$ es la identidad multiplicativa en $\mathbb{R}[x]$.
  • Considera los polinomios $a=\left(\frac{1}{3},4,\frac{5}{7},8,\overline{0}\right)$ y $b=\left(0,0,\frac{2}{5},\frac{3}{4},\overline{0}\right)$. Determina $a+b$ y $a\cdot b$.

Más adelante

Ya que definimos el anillo de polinomios con coeficientes en los reales, y sus operaciones, el siguiente paso que haremos será practicar como operar polinomios.

Después de esto empezaremos a desarrollar la teoría sobre los polinomios. Como ya hemos mencionado, y como te podrás dar cuenta en las siguientes entradas, esta teoría será muy similar a la que desarrollamos para los números enteros cuando vimos los temas de teoría de números.

Entradas relacionadas