Archivo de la etiqueta: lineal

Álgebra Superior I: Determinante de matrices y propiedades

Por Eduardo García Caballero

Introducción

Uno de los conceptos más importantes en el álgebra lineal es la operación conocida como determinante. Si bien este concepto se extiende a distintos objetos, en esta entrada lo revisaremos como una operación que se puede aplicar a matrices cuadradas. Como veremos, el determinante está muy conectado con otros conceptos que hemos platicado sobre matrices

Definición para matrices de $2\times 2$

A modo de introducción, comenzaremos hablando de determinantes para matrices de $2\times 2$. Aunque este caso es sencillo, podremos explorar algunas de las propiedades que tienen los determinantes, las cuales se cumplirán de manera más genera. Así, comencemos con la siguiente definición.

Definición. Para una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, definimos su determinante como
\[
\operatorname{det}(A) = ad – bc.
\]

Basándonos en esta definición, podemos calcular los determinantes
\[
\operatorname{det}
\begin{pmatrix} 9 & 3 \\ 5 & 2 \end{pmatrix}=9\cdot 2 – 3\cdot 5 = 3
\]
y
\[
\operatorname{det}
\begin{pmatrix} 4 & -3 \\ 12 & -9 \end{pmatrix}
=
4\cdot (-9)-(-3)\cdot 12= 0.
\]

Otra notación que podemos encontrar para determinantes es la notación de barras. Lo que se hace es que la matriz se encierra en barras verticales, en vez de paréntesis. Así, los determinantes anteriores también se pueden escribir como
\[
\begin{vmatrix} 9 & 3 \\ 5 & 2 \end{vmatrix} = 3
\qquad
\text{y}
\qquad
\begin{vmatrix} 4 & -3 \\ 12 & -9 \end{vmatrix} = 0.
\]

Primeras propiedades del determinante

El determinante de una matriz de $2\times 2$ ayuda a detectar cuándo una matriz es invertible. De hecho, esto es algo que vimos previamente, en la entrada de matrices invertibles. En ella, dijimos que una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si se cumple que $ad – bc \ne 0$. ¡Aquí aparece el determinante! Podemos reescribir el resultado de la siguiente manera.

Teorema. Una matriz de la forma $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si $\det(A) \ne 0$. Cuando el determinante es distinto de cero, la inversa es $A^{-1} = \frac{1}{\det(A)}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Otra propiedad muy importante que cumple el determinante para matrices de $2\times 2$ es la de ser multiplicativo; es decir, para matrices $A$ y $B$ se cumple que $\operatorname{det}(AB) = \operatorname{det}(A) \operatorname{det}(B)$. La demostración de esto se basa directamente en las definiciones de determinante y de producto de matrices. Hagamos las cuentas a continuación para matrices $A=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}$ y $B=\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.$

Tenemos que:
\begin{align*}
\operatorname{det}(AB)
&=
\operatorname{det}
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22})-(a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21})
\\[5pt]
&=
a_{11}a_{22}b_{11}b_{22} – a_{12}a_{21}b_{11}b_{22} – a_{11}a_{22}b_{12}b_{21} + a_{12}a_{21}b_{12}b_{21}
\\[5pt]
&=
(a_{11}a_{22} – a_{12}a_{21})(b_{11}b_{22} – b_{12}b_{21})
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\operatorname{det}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{det}(A)\operatorname{det}(B).
\end{align*}

Interpretación geométrica del determinante de $2\times 2$

El determinante también tiene una interpretación geométrica muy interesante. Si tenemos una matriz de $2\times 2$, entonces podemos pensar a cada una de las columnas de esta matriz como un vector en el plano. Resulta que el determinante es igual al área del paralelogramo formado por estos vectores.

Por ejemplo, si consideramos la matriz
\[
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix},
\]
podemos ver que el vector asociado a su primera columna es el vector $(4,1)$, mientras que el vector asociado a su segunda columna es $(2,3)$:

Así, el paralelogramo $ABDC$ de la figura anterior formado por estos dos vectores tiene área igual a
\[
\operatorname{det}
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}
= 4\cdot 3 – 2\cdot 1 = 10.
\]

No daremos la demostración de este hecho, pues se necesita hablar más sobre la geometría del plano. Sin embargo, las ideas necesarias para este resultado pueden consultarse en un curso de Geometría Analítica I.

Definición recursiva

También nos interesa hablar de determinantes de matrices más grandes. De hecho, nos interesa hablar del determinante de cualquier matriz cuadrada. La definición formal requiere de varios conocimientos de Álgebra Lineal I. Sin embargo, por el momento podemos platicar de cómo se obtienen los determinantes de matrices recursivamente. Con esto queremos decir que para calcular el determinante de matrices de $3\times 3$, necesitaremos calcular varios de matrices de $2\times 2$. Así mismo, para calcular el de matrices de $4\times 4$ requeriremos calcular varios de matrices de $3\times 3$ (que a su vez requieren varios de $2\times 2$).

Para explicar cómo es esta relación de poner determinantes de matrices grandes en términos de matrices más pequeñas, primeramente definiremos la función $\operatorname{sign}$, la cual asigna a cada pareja de enteros positivos $(i,j)$ el valor
\[
\operatorname{sign}(i,j) = (-1)^{i+j}.
\]
A partir de la función $\operatorname{sign}$ podemos hacer una matriz cuya entrada $a_{ij}$ es $\operatorname{sign}(i,j)$. Para visualizarla más fácilmente, podemos pensar que a la entrada $a_{11}$ (la cual se encuentra en la esquina superior izquierda) le asigna el signo “$+$”, y posteriormente va alternando los signos del resto de entradas. Por ejemplo, los signos correspondientes a las entradas de la matriz de $3 \times 3$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + \\
– & + & – \\
+ & – & +
\end{pmatrix},
\]
mientras que los signos correspondientes a las entradas de la matriz de $4 \times 4$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + & – \\
– & + & – & + \\
+ & – & + & – \\
– & + & – & +
\end{pmatrix}.
\]

Ya que entendimos cómo se construyen estas matrices, el cálculo de determinantes se realiza como sigue.

Estrategia. Realizaremos el cálculo de determinante de una matriz de $n \times n$ descomponiéndola para realizar el cálculo de determinantes de matrices de $(n-1) \times (n-1)$. Eventualmente llegaremos al calcular únicamente determinantes de matrices de $2 \times 2$, para las cuales ya tenemos una fórmula. Para esto, haremos los siguientes pasos repetidamente.

  1. Seleccionaremos una fila o columna arbitraria de la matriz original (como en este paso no importa cuál fila o columna seleccionemos, buscaremos una que simplifique las operaciones que realizaremos; generalmente nos convendrá seleccionar una fila o columna que cuente en su mayoría con ceros).
  2. Para cada entrada $a_{ij}$ en la fila o columna seleccionada, calculamos el valor de
    \[
    \operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
    \]
    donde $A_{ij}$ es el la matriz que resulta de quitar la fila $i$ y la columna $j$ a la matriz original.
  3. El determinante de la matriz será la suma de todos los términos calculados en el paso anterior.

Veamos algunos ejemplos de cómo se utiliza la estrategia recién descrita.

Ejemplo con matriz de $3\times 3$

Consideremos la matriz de $3 \times 3$
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

A primera vista no hay alguna fila o columna que parezca simplificar los cálculos, por lo cual podemos proceder con cualquiera de estas; nosotros seleccionaremos la primera fila.
\[
\begin{pmatrix}
\fbox{3} & \fbox{1} & \fbox{-1} \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

Para cada término de la primera fila, calculamos el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{i,j}),
\]
obteniendo
\begin{align*}
\operatorname{sign}(1,1) \cdot (a_{11}) \cdot \operatorname{det}(A_{11})
&= +(3)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
\blacksquare & -1 & -2 \\
\blacksquare & -3 & -2
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det} \begin{pmatrix} -1 & -2 \\ -3 & -2 \end{pmatrix}
\\[5pt]
&= +(3)[(-1)(-2) – (-2)(-3)]
\\[5pt]
&= +(3)(-4)
\\[5pt]
&= -12,
\\[10pt]
\operatorname{sign}(1,2) \cdot (a_{12}) \cdot \operatorname{det}(A_{12})
&= -(1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & \blacksquare & -2 \\
4 & \blacksquare & -2
\end{pmatrix}
\\[5pt]
&= -(1)\operatorname{det}
\begin{pmatrix} 6 & -2 \\ 4 & -2 \end{pmatrix}
\\[5pt]
&=-(1)[(6)(-2) – (-2)(4)]
\\[5pt]
&=-(1)(-4)
\\[5pt]
&=4,
\\[10pt]
\operatorname{sign}(1,3) \cdot (a_{13}) \cdot \operatorname{det}(A_{13})
&= +(-1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & -1 & \blacksquare \\
4 & -3 & \blacksquare
\end{pmatrix}
\\[5pt]
&= +(-1)\operatorname{det} \begin{pmatrix} 6 & -1 \\ 4 & -3 \end{pmatrix}
\\[5pt]
&= +(-1)[(6)(-3) – (-1)(4)]
\\[5pt]
&= +(-1)(-14)
\\[5pt]
&= 14.
\end{align*}

Finalmente, el determinante de nuestra matriz original será la suma de los términos calculados; es decir,
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -1
\end{pmatrix}
=
(-12) + (4) + (14) = 6.
\]

Ejemplo con matriz de $4\times 4$

En el siguiente ejemplo veremos cómo el escoger una fila o columna en específico nos puede ayudar a simplificar mucho los cálculos.

Consideremos la matriz
\[
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}.
\]

Observemos que el valor de tres de las entradas de la segunda columna es $0$. Por esta razón, seleccionaremos esta columna para descomponer la matriz:
\[
\begin{pmatrix}
4 & \fbox{0} & 2 & 2 \\
-1 & \fbox{3} & -2 & 5 \\
-2 & \fbox{0} & 2 & -3 \\
1 & \fbox{0} & 4 & -1
\end{pmatrix}.
\]

El siguiente paso será calcular el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
\]
para cada entrada de esta columna. Sin embargo, por la elección de columna que hicimos, podemos ver que el valor de $a_{ij}$ es 0 para tres de las entradas, y por tanto también lo es para el producto que deseamos calcular. De este modo, únicamente nos restaría calcular el producto
\begin{align*}
\operatorname{sign}(2,2) \cdot a_{22} \cdot \operatorname{det}(A_{22})
&=
+(3)\operatorname{det}
\begin{pmatrix}
4 & \blacksquare & 2 & 2 \\
\blacksquare & \blacksquare & \blacksquare & \blacksquare \\
-2 & \blacksquare & 2 & -3 \\
1 & \blacksquare & 4 & -1
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det}
\begin{pmatrix}
4 & 2 & 2 \\
-2 & 2 & -3 \\
1 & 4 & -1
\end{pmatrix}.
\end{align*}
Se queda como ejercicio al lector concluir que el resultado de este último producto es 30.

De este modo, obtenemos que
\[
\operatorname{det}
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}
= 0 + 30 + 0 + 0 = 30.
\]

Aunque esta definición recursiva nos permite calcular el determinante de una matriz cuadrada de cualquier tamaño, rápidamente se vuelve un método muy poco práctico (para obtener el determinante de una matriz de $6 \times 6$ tendríamos que calcular hasta 60 determinantes de matrices de $2 \times 2$). En el curso de Álgebra Lineal I se aprende otra definición de determinante a través de permutaciones, de las cuales se desprenden varios métodos más eficientes para calcular determinante. Hablaremos un poco de estos métodos en la siguiente entrada.

Las propiedades de $2\times 2$ también se valen para $n\times n$

Las propiedades que enunciamos para matrices de $2\times 2$ también se valen para determinantes de matrices más grandes. Todo lo siguiente es cierto, sin embargo, en este curso no contamos con las herramientas para demostrar todo con la formalidad apropiada:

  • El determinante es multiplicativo: Si $A$ y $B$ son matrices de $n\times n$, entonces $\operatorname{det}(AB) = \operatorname{det}(A)\operatorname{det}(B)$.
  • El determinante detecta matrices invertibles: Una matriz $A$ de $n\times n$ es invertible si y sólo si su determinante es distinto de $0$.
  • El determinante tiene que ver con un volumen: Los vectores columna de una matriz $A$ de $n\times n$ hacen un paralelepípedo $n$-dimensional cuyo volumen $n$-dimensional es justo $\det{A}$.

Más adelante…

En esta entrada conocimos el concepto de determinante de matrices, vimos cómo calcularlo para matrices de distintos tamaños y revisamos cómo se interpreta cuando consideramos las matrices como transformaciones de flechas en el plano. En la siguiente entrada enunciaremos y aprenderemos a usar algunas de las propiedades que cumplen los determinantes.

Tarea moral

  1. Calcula los determinantes de las siguientes matrices:
    • $\begin{pmatrix} 5 & 8 \\ 3 & 9 \end{pmatrix}, \begin{pmatrix} 10 & 11 \\ -1 & 9 \end{pmatrix}, \begin{pmatrix} 31 & 38 \\ 13 & -29 \end{pmatrix}$
    • $\begin{pmatrix} 1 & 5 & 2 \\ 3 & -1 & 8 \\ 0 & 2 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 8 & 4 \\ 0 & 5 & -3 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$
    • $\begin{pmatrix} 5 & 7 & -1 & 2 \\ 3 & 0 & 1 & 0 \\ 2 & -2 & 2 & -2 \\ 5 & 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$
  2. Demuestra que para una matriz $A$ y un entero positivo $n$ se cumple que $\det(A^n)=\det(A)^n$.
  3. Sea $A$ una matriz de $3\times 3$. Muestra que $\det(A)=\det(A^T)$.
  4. Sea $A$ una matriz invertible de $2\times 2$. Demuestra que $\det(A)=\det(A^{-1})^{-1}$.
  5. ¿Qué le sucede al determinante de una matriz $A$ cuando intercambias dos filas? Haz algunos experimentos para hacer una conjetura, y demuéstrala.

Entradas relacionadas

Álgebra Superior I: Los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$

Por Eduardo García Caballero

Introducción

A lo largo de esta unidad nos hemos enfocado en estudiar los vectores, las operaciones entre estos y sus propiedades. Sin embargo, hasta ahora solo hemos ocupado una definición provisional de vectores —listas ordenadas con entradas reales—, pero no hemos dado una definición formal de estos. En esta entrada definiremos qué es un espacio vectorial y exploraremos algunas de las propiedades de dos ejemplos importantes de espacios vectoriales: $\mathbb{R}^2$ y $\mathbb{R}^3$-

Las propiedades de espacio vectorial

En entradas anteriores demostramos que los pares ordenados con entradas reales (es decir, los elementos de $\mathbb{R}^2$), en conjunto con la suma entrada a entrada y el producto escalar, cumplen las siguientes propiedades:

1. La suma es asociativa:
\begin{align*}
(u+v)+w &= ((u_1,u_2) + (v_1,v_2)) + (w_1,w_2) \\
&= (u_1,u_2) + ((v_1,v_2) + (w_1,w_2)) \\
&= u+(v+w).\end{align*}

2. La suma es conmutativa:
\begin{align*}u+v &= (u_1,u_2) + (v_1,v_2) \\&= (v_1,v_2) + (u_1,u_2) \\&= v+u.\end{align*}

3. Existe un elemento neutro para la suma:
\begin{align*}
u + 0 &= (u_1,u_2) + (0,0) \\&= (0,0) + (u_1,u_2) \\&= (u_1,u_2) \\&= u.
\end{align*}

4. Para cada par ordenado existe un elemento inverso:
\begin{align*}
u + (-u) &= (u_1,u_2) + (-u_1,-u_2) \\&= (-u_1,-u_2) + (u_1,u_2) \\&= (0,0) \\&= 0.
\end{align*}

5. La suma escalar se distribuye bajo el producto:
\begin{align*}
(r+s)u &= (r+s)(u_1,u_2) \\&= r(u_1,u_2) + s(u_1,u_2) \\&= ru + su.
\end{align*}

6. La suma de pares ordenados se distribuye bajo el producto escalar:
\begin{align*}
r(u + v) &= r((u_1,u_2) + (v_1,v_2)) \\&= r(u_1,u_2) + r(v_1,v_2) \\&= ru + rv.
\end{align*}

7. El producto escalar es compatible con el producto de reales:
\[
(rs)u = (rs)(u_1,u_2) = r(s(u_1,u_2)) = r(su).
\]

8. Existe un elemento neutro para el producto escalar, que justo es el neutro del producto de reales:
\[
1u = 1(u_1,u_2) = (u_1,u_2) = u.
\]

Cuando una colección de objetos matemáticos, en conjunto con una operación de suma y otra operación de producto, cumple las ocho propiedades anteriormente mencionadas, decimos que dicha colección forma un espacio vectorial. Teniendo esto en consideración, los objetos matemáticos que pertenecen a la colección que forma el espacio vectorial los llamaremos vectores.

Así, podemos ver que los pares ordenados con entradas reales, en conjunto con la suma entrada a entrada y el producto escalar, forman un espacio vectorial, al cual solemos denominar $\mathbb{R}^2$. De este modo, los vectores del espacio vectorial $\mathbb{R}^2$ son exactamente los pares ordenados con entradas reales.

Como recordarás, anteriormente también demostramos que las ternas ordenadas con entradas reales, en conjunto con su respectiva suma entrada a entrada y producto escalar, cumplen las ocho propiedades antes mencionadas (¿puedes verificarlo?). Esto nos indica que $\mathbb{R}^3$ también es un espacio vectorial, y sus vectores son las ternas ordenadas con entradas reales. En general, el que un objeto matemático se pueda considerar o no como vector dependerá de si este es elemento de un espacio vectorial.

Como seguramente sospecharás, para valores de $n$ distintos de 2 y de 3 también se cumple que $\mathbb{R}^n$ forma un espacio vectorial. Sin embargo los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$ son muy importantes pues podemos visualizarlos como el plano y el espacio, logrando así describir muchas de sus propiedades. Por esta razón, en esta entrada exploraremos algunas de las principales propiedades de $\mathbb{R}^2$ y $\mathbb{R}^3$.

Observación. Basándonos en la definición, el hecho de que una colección de elementos se pueda considerar o no como espacio vectorial depende también a las operaciones de suma y producto. Por esta razón, es común (y probablemente más conveniente) encontrar denotado el espacio vectorial $\mathbb{R}^2$ como $(\mathbb{R}^2,+,\cdot)$. Más aún, a veces será importante destacar a los elementos escalares y neutros, encontrando el mismo espacio denotado como $(\mathbb{R}^2, \mathbb{R}, +, \cdot, 0, 1)$. Esto lo veremos de manera más frecuente cuando trabajamos con más de un espacio vectorial, sin embargo, cuando el contexto nos permite saber con qué operaciones (y elementos) se está trabajando, podemos omitir ser explícitos y denotar el espacio vectorial simplemente como $\mathbb{R}^2$ o $\mathbb{R}^3$.

Combinaciones lineales

Como vimos en entradas anteriores, la suma de vectores en $\mathbb{R}^2$ la podemos visualizar en el plano como el resultado de poner una flecha seguida de otra, mientras que el producto escalar lo podemos ver como redimensionar y/o cambiar de dirección una flecha.

En el caso de $\mathbb{R}^3$, la intuición es la misma, pero esta vez en el espacio.

Si tenemos varios vectores, podemos sumar múltiplos escalares de ellos para obtener otros vectores. Esto nos lleva a la siguiente definición.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos una combinación lineal de estos vectores como el resultado de la operación
\[
r_1v_1 + r_2v_2 + \cdots + r_nv_n,
\]
donde $r_1, \ldots, r_n$ son escalares.

Ejemplo. En $\mathbb{R}^2$, las siguientes son combinaciones lineales:
\begin{align*}
4(9,-5) + 7(-1,0) + 3(-4,2) &= (17,-14), \\[10pt]
5(1,0) + 4(-1,-1) &= (1,-4), \\[10pt]
-1(1,0) + 0(-1,-1) &= (-1,0), \\[10pt]
5(3,2) &= (15,10).
\end{align*}
De este modo podemos decir que $(17,-14)$ es combinación lineal de los vectores $(9,-5)$, $(-1,0)$ y $(-4,2)$; los vectores $(1,-4)$ y $(-1,0)$ son ambos combinación lineal de los vectores $(1,0)$ y $(-1,-1)$; y $(15,10)$ es combinación lineal de $(3,2)$.

Las combinaciones lineales también tienen un significado geométrico. Por ejemplo, la siguiente figura muestra cómo se vería que $(1,-4)$ es combinación lineal de $(1,0)$ y $(-1,-1)$:

$\triangle$

Ejemplo. En el caso de $\mathbb{R}^3$, observamos que $(7,13,-22)$ es combinación lineal de los vectores $(8,1,-5)$, $(1,0,2)$ y $(9,-3,2)$, pues
\[
4(8,1,-5) + 2(1,0,2) + (-3)(9,-3,2) = (7,13,-22).
\]

$\triangle$

Espacio generado

La figura de la sección anterior nos sugiere cómo entender a una combinación lineal de ciertos vectores dados. Sin embargo, una pregunta natural que surge de esto es cómo se ve la colección de todas las posibles combinaciones lineales de una colección de vectores dados.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), definimos al espacio generado por ellos como el conjunto de todas sus posibles combinaciones lineales. Al espacio generado por estos vectores podemos encontrarlo denotado como $\operatorname{span}(v_1, \ldots, v_n)$ o $\langle v_1, \ldots, v_n \rangle$ (aunque esta última notación a veces se suele dejar para otra operación del álgebra lineal).

¿Cómo puede verse el espacio generado por algunos vectores? Puede demostrarse que en el caso de $\mathbb{R}^2$ tenemos los siguientes casos.

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de 0 y todos los vectores se encuentran alineados. La recta será precisamente aquella formada por los múltiplos escalares de $u$.
  • Todo $\mathbb{R}^2$: esto sucede si al menos dos vectores $u$ y $v$ de nuestro conjunto no son cero y además no están alineados. Intenta convencerte que en efecto en este caso puedes llegar a cualquier vector del plano sumando un múltiplo de $u$ y uno de $v$.

En $\mathbb{R}^3$, puede mostrarse que el espacio generado se ve como alguna de las siguientes posibilidades:

  • Un punto: esto sucede si y sólo si todos los vectores del conjunto son iguales al vector $0$.
  • Una recta: esto sucede si al menos un vector $u$ es distinto de $0$ y todos los vectores se encuentran alineados con $u$. La recta consiste precisamente de los reescalamientos de $u$.
  • Un plano: esto sucede si al menos dos vectores $u$ y $v$ no son cero y no están alineados, y además todos los demás están en el plano generado por $u$ y $v$ estos dos vectores.
  • Todo $\mathbb{R}^3$: esto sucede si hay tres vectores $u$, $v$ y $w$ que cumplan que ninguno es el vector cero, no hay dos de ellos alineados, y además el tercero no está en el plano generado por los otros dos.

Muchas veces no sólo nos interesa conocer la forma del espacio generado, sino también obtener una expresión que nos permita conocer qué vectores pertenecen a este. Una forma en la que podemos hacer esto es mediante ecuaciones.

Ejemplo. Por ejemplo, observemos que el espacio generado el vector $(3,2)$ en $\mathbb{R}^2$ corresponde a los vectores $(x,y)$ que son de la forma
\[
(x,y) = r(2,3),
\]
donde $r \in \mathbb{R}$ es algún escalar. Esto se cumple si y sólo si
\[
(x,y) = (2r,3r),
\]
lo cual a su vez se cumple si y sólo si $x$ y $y$ satisfacen el sistema de ecuaciones
\[
\begin{cases}
x = 2r \\
y = 3r
\end{cases}.
\]
Si despejamos $r$ en ambas ecuaciones y las igualamos, llegamos a que
\[
\frac{x}{2} = \frac{y}{3},
\]
de donde podemos expresar la ecuación de la recta en su forma homogénea:
\[
\frac{1}{2}x – \frac{1}{3}y = 0;
\]
o bien en como función de $y$:
\[
y = \frac{3}{2}x.
\]

$\triangle$

La estrategia anterior no funciona para todos los casos, y tenemos que ser un poco más cuidadosos.

Ejemplo. El espacio generado por $(0,4)$ corresponde a todos los vectores $(x,y)$ tales que existe $r \in \mathbb{R}$ que cumple
\begin{align*}
(x,y) &= r(0,4) \\
(x,y) &= (0,4r),
\end{align*}
es decir,
\[
\begin{cases}
x = 0 \\
y = 4r
\end{cases}.
\]
En este caso, la única recta que satisface ambas ecuaciones es la recta $x = 0$, la cual no podemos expresar como función de $y$.

En la siguiente entrada veremos otras estrategias para describir de manera analítica el espacio generado.

$\triangle$

El saber si un vector está o no en el espacio generado por otros es una pregunta que se puede resolver con un sistema de ecuaciones lineales.

Ejemplo. ¿Será que el vector $(4,1,2)$ está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$? Para que esto suceda, necesitamos que existan reales $r$ y $s$ tales que $r(2,3,1)+s(1,1,1)=(4,1,2)$. Haciendo las operaciones vectoriales, esto quiere decir que $(2r+s,3r+s,r+s)=(4,1,2)$, de donde tenemos el siguiente sistema de ecuaciones:

$$\left\{\begin{matrix} 2r+s &=4 \\ 3r+s&=1 \\ r+s &= 2.\end{matrix}\right.$$

Este sistema no tiene solución. Veamos por qué. Restando la primera igualdad a la segunda, obtendríamos $r=1-4=-3$. Restando la tercera igualdad a la primera, obtendríamos $r=2-4=-2$. Así, si hubiera solución tendríamos la contradicción $-2=r=-3$. De este modo no hay solución.

Así, el vector $(4,1,2)$ no está en el espacio generado por los vectores $(2,3,1)$ y $(1,1,1)$. Geométricamente, $(4,1,2)$ no está en el plano en $\mathbb{R}^3$ generado por los vectores $(2,3,1)$ y $(1,1,1)$.

$\triangle$

Si las preguntas de espacio generado tienen que ver con sistemas de ecuaciones lineales, entonces seguramente estarás pensando que todo lo que hemos aprendido de sistemas de ecuaciones lineales nos servirá. Tienes toda la razón. Veamos un ejemplo importante.

Ejemplo. Mostraremos que cualquier vector en $\mathbb{R}^2$ está en el espacio generado por los vectores $(1,2)$ y $(3,-1)$. Para ello, tomemos el vector $(x,y)$ que nosotros querramos. Nos gustaría (fijando $x$ y $y$) poder encontrar reales $r$ y $s$ tales que $r(1,2)+s(3,-1)=(x,y)$. Esto se traduce al sistema de ecuaciones

$$\left \{ \begin{matrix} r+3s&=x\\2r-s&=y. \end{matrix} \right.$$

En forma matricial, este sistema es $$\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$

Como la matriz $\begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$ tiene determinante $1(-1)-(3)(2)=-7$, entonces es invertible. ¡Entonces el sistema siempre tiene solución única en $r$ y $s$ sin importar el valor de $x$ y $y$! Hemos con ello demostrado que cualquier vector $(x,y)$ es combinación lineal de $(1,2)$ y $(3,-1)$ y que entonces el espacio generado por ambos es todo $\mathbb{R}^2$.

$\triangle$

Independencia lineal

Mientras platicábamos en la sección anterior de las posibilidades que podía tener el espcio generado de un conjunto de vectores en $\mathbb{R}^2$ y $\mathbb{R}^3$, fuimos haciendo ciertas precisiones: «que ningún vector sea cero», «que nos vectores no estén alineados», «que ningún vector esté en los planos por los otros dos», etc. La intuición es que si pasaba lo contrario a alguna de estas cosas, entonces los vectores no podían generar «todo lo posible». Si sí se cumplían esas restricciones, entonces cierta cantidad de vectores sí tenía un espacio generado de la dimensión correspondiente (por ejemplo, $2$ vectores de $\mathbb{R}^3$ no cero y no alineados sí generan un plano, algo de dimensión $2$). Resulta que todas estas restricciones se pueden resumir en una definición muy importante.

Definición. Dado un conjunto de $n$ vectores $v_1, \ldots, v_n$ en $\mathbb{R}^2$ o ($\mathbb{R}^3$), diremos que son linealmente independientes si es imposible escribir al vector $0$ como combinación lineal de ellos, a menos que todos los coeficientes de la combinación lineal sean iguales a $0$. En otras palabras, si sucede que $$r_1v_1 + r_2v_2 + \cdots + r_nv_n=0,$$ entonces forzosamente fue porque $r_1=r_2=\ldots=r_n=0$.

Puede mostrarse que si un conjunto de vectores es linealmente independiente, entonces ninguno de ellos se puede escribir como combinación lineal del resto de vectores en el conjunto. Así, la intuición de que «generan todo lo que pueden generar» se puede justificar como sigue: como el primero no es cero, genera una línea. Luego, como el segundo no es múltiplo del primero, entre los dos generarán un plano. Y si estamos en $\mathbb{R}^3$, un tercer vector quedará fuera de ese plano (por no ser combinación lineal de los anteriores) y entonces generarán entre los tres a todo el espacio.

La independencia lineal también se puede estudiar mediante sistemas de ecuaciones lineales.

Ejemplo. ¿Serán los vectores $(3,-1,-1)$, $(4,2,1)$ y $(0,-10,-7)$ linealmente independientes? Para determinar esto, queremos saber si existen escalares $r,s,t$ tales que $r(3,-1,-1)+s(4,2,1)+t(0,-10,-7)=(0,0,0)$ en donde al menos alguno de ellos no es el cero. Esto se traduce a entender las soluciones del siguiente sistema de ecuaciones:

$$\left\{ \begin{array} 33r + 4s &= 0 \\ -r +2s -10t &= 0 \\ -r + s -7t &= 0.\end{array} \right. $$

Podemos entender todas las soluciones usando reducción Gaussiana en la siguiente matriz:

$$\begin{pmatrix} 3 & 4 & 0 & 0 \\ -1 & 2 & -10 & 0 \\ -1 & 1 & -7 & 0 \end{pmatrix}.$$

Tras hacer esto, obtenemos la siguiente matriz:

$$\begin{pmatrix}1 & 0 & 4 & 0\\0 & 1 & -3 & 0\\0 & 0 & 0 & 0 \end{pmatrix}.$$

Así, este sistema de ecuaciones tiene a $t$ como variable libre, que puede valer lo que sea. De aquí, $s=3t$ y $r=-4t$ nos dan una solución. Así, este sistema tiene una infinidad de soluciones. Tomando por ejemplo $t=1$, tenemos $s=3$ y $r=-4$. Entonces hemos encontrado una combinación lineal de los vectores que nos da el vector $(0,0,0)$. Puedes verificar que, en efecto, $$(-4)(3,-1,-1)+3(4,2,1)+(0,-10,-7)=(0,0,0).$$

Concluimos que los vectores no son linealmente independientes.

$\triangle$

Si la única solución que hubiéramos obtenido es la $r=s=t=0$, entonces la conclusión hubiera sido que sí, que los vectores son linealmente independientes. También podemos usar lo que hemos aprendido de matrices y determinantes en algunos casos para poder decir cosas sobre la independencia lineal.

Ejemplo. Mostraremos que los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. ¿Qué sucede si una combinación lineal de ellos fuera el vector cero? Tendríamos que $r(2,3,1)+s(0,5,2)+t(0,0,1)=(0,0,0)$, que se traduce en el sistema de ecuaciones $$\left\{ \begin{array} 2r &= 0 \\ 3r + 5s &= 0 \\ r + 2s + t &= 0. \end{array}\right.$$

La matriz asociada a este sistema de ecuaciones es $\begin{pmatrix} 2 & 0 & 0 \\ 3 & 5 & 0 \\ 1 & 2 & 1 \end{pmatrix}$, que por ser triangular inferior tiene determinante $2\cdot 5 \cdot 1 = 10\neq 0$. Así, es una matriz invertible, de modo que el sistema de ecuaciones tiene una única solución. Como $r=s=t$ sí es una solución, esta debe ser la única posible. Así, los vectores $(2,3,1)$, $(0,5,2)$ y $(0,0,1)$ son linealmente independientes. Geométricamente, ninguno de ellos está en el plano hecho por los otros dos.

$\triangle$

Bases

Como vimos anteriormente, existen casos en los que el espacio generado por vectores en $\mathbb{R}^2$ (o $\mathbb{R}^3$) no genera a todo el plano (o al espacio). Por ejemplo, en ambos espacios vectoriales, el espacio generado por únicamente un vector es una recta. Esto también puede pasar aunque tengamos muchos vectores. Si todos ellos están alineados con el vector $0$, entonces su espacio generado sigue siendo una recta también. En la sección anterior platicamos que intuitivamente el problema es que los vectores no son linealmente independientes. Así, a veces unos vectores no generan todo el espacio que pueden generar.

Hay otras ocasiones en las que unos vectores sí generan todo el espacio que pueden generar, pero lo hacen de «manera redundante», en el sentido de que uno o más vectores se pueden poner de más de una forma como combinación lineal de los vectores dados.

Ejemplo. Si consideramos los vectores $(2,1)$, $(1,0)$ y $(2,3)$, observamos que el vector $(2,3)$ se puede escribir como
\[
0(2,1)+3(1,0) + 2(2,3) = (7,6)
\]
o
\[
3(2,2) + 1(1,0) + 0(2,3)= (7,6),
\]
siendo ambas combinaciones lineales del mismo conjunto de vectores.

$\triangle$

Uno de los tipos de conjuntos de vectores más importantes en el álgebra lineal son aquellos conocidos como bases, que evitan los dos problemas de arriba. Por un lado, sí generan a todo el espacio. Por otro lado, lo hacen sin tener redundancias.

Definición. Diremos que un conjunto de vectores es base de $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) si su espacio generado es todo $\mathbb{R}^2$ (resp. $\mathbb{R}^3$) y además son linealmente independientes.

El ejemplo de base más inmediato es el conocido como base canónica.

Ejemplo. En el caso de $\mathbb{R}^2$, la base canónica es $(1,0)$ y $(0,1)$. En \mathbb{R}^3$ la base canónica es $(1,0,0)$, $(0,1,0)$ y $(0,0,1)$.

Partiendo de las definiciones dadas anteriormente, vamos que cualquier vector $(a,b)$ en $\mathbb{R}$ se puede escribir como $a(1,0) + b(0,1)$; y cualquier vector $(a,b,c)$ en $\mathbb{R}^3$ se puede escribir como $a(1,0,0) + b(0,1,0) + c(0,0,1)$.

Más aún, es claro que los vectores $(1,0)$ y $(0,1)$ no están alineados con el origen. Y también es claro que $(1,0,0),(0,1,0),(0,0,1)$ son linealmente idependientes, pues la combinación lineal $r(1,0,0)+s(0,1,0)+t(0,0,1)=(0,0,0)$ implica directamente $r=s=t=0$.

$\triangle$

Veamos otros ejemplos.

Ejemplo. Se tiene lo siguiente:

  • Los vectores $(3,4)$ y $(-2,0)$ son base de $\mathbb{R}^2$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^2$.
  • Los vectores $(8,5,-1)$, $(2,2,7)$ y $(-1,0,9)$ son base de $\mathbb{R}^3$ pues son linealmente independientes y su espacio generado es todo $\mathbb{R}^3$.

¡Ya tienes todo lo necesario para demostrar las afirmaciones anteriores! Inténtalo y haz dibujos en $\mathbb{R}^2$ y $\mathbb{R}^3$ de dónde se encuentran estos vectores.

$\triangle$

Como podemos observar, las bases de un espacio vectorial no son únicas, sin embargo, las bases que mencionamos para $\mathbb{R}^2$ coinciden en tener dos vectores, mientras que las bases para $\mathbb{R}^3$ coinciden en tener tres vectores. ¿Será cierto que todas las bases para un mismo espacio vectorial tienen la misma cantidad de vectores?

Más adelante…

En esta entrada revisamos qué propiedades debe cumplir una colección de objetos matemáticos para que sea considerado un espacio vectorial, además de que analizamos con más detalle los espacios vectoriales $\mathbb{R}^2$ y $\mathbb{R}^3$.

Como seguramente sospecharás, para otros valores de $n$ también se cumple que $\mathbb{R}^n$, en conjunto con sus respectivas suma entrada a entrada y producto escalar, forman un espacio vectorial. Sin embargo, en contraste con los espacios $\mathbb{R}^2$ y $\mathbb{R}^3$, este espacio es más difícil de visualizar. En la siguiente entrada generalizaremos para $\mathbb{R}^n$ varias de las propiedades que aprendimos en esta entrada.

Tarea moral

  1. Realiza lo siguiente:
    • De entre los siguientes vectores, encuentra dos que sean linealmente independientes: $(10,16),(-5,-8),(24,15),(10,16),(15,24),(-20,-32)$.
    • Encuentra un vector de $\mathbb{R}^2$ que genere a la recta $2x+3y=0$.
    • Determina qué es el espacio generado por los vectores $(1,2,3)$ y $(3,2,1)$ de $\mathbb{R}^3$.
    • Da un vector $(x,y,z)$ tal que $(4,0,1)$, $(2,1,0)$ y $(x,y,z)$ sean una base de $\mathbb{R}^3$.
  2. Demuestra que $(0,0)$ es el único vector $w$ en $\mathbb{R}^2$ tal que para todo vector $v$ de $\mathbb{R}^2$ se cumple que $v+w=v=w+v$.
  3. Prueba las siguientes dos afirmaciones:
    • Tres o más vectores en $\mathbb{R}^2$ nunca son linealmente independientes.
    • Dos o menos vectores en $\mathbb{R}^3$ nunca son un conjunto generador.
  4. Sean $u$ y $v$ vectores en $\mathbb{R}^2$ distintos del vector cero. Demuestra que $u$ y $v$ son linealmente independientes si y sólo si $v$ no está en la línea generada por $u$.
  5. Encuentra todas las bases de $\mathbb{R}^3$ en donde las entradas de cada uno de los vectores de cada base sean iguales a $0$ ó a $1$.

Entradas relacionadas

Investigación de Operaciones: El problema de producción e inventario

Por Aldo Romero

Introducción

Ya hemos visto algunos ejemplos en los que se plantea un problema de programación lineal a partir de un contexto específico. Hemos visto el problema de la dieta, el problema de la mochila y el problema del transporte. Hay algunos problemas que parecen un poco más complicados y que no es tan evidente desde el inicio que se pueden plantear como problemas de programación lineal. En esta ocasión veremos uno de ellos: el problema de producción e inventario.

Abundan las aplicaciones de la programación lineal para planificar la producción y para controlar inventarios. El siguiente es solo una de múltiples aplicaciones que se les puede dar a este tipo de problemas.

A grandes rasgos, el problema consiste en modelar una fábrica que necesita tener lista cierta cantidad de inventario de un producto en determinados momentos del año. La fábrica puede producir cierta cantidad de producto que depende de la temporada del año. Quizás haya temporadas en las que puede producir más de lo que necesita, pero si hace eso incurrirá en costos de almacenaje. ¿Cómo puede distribuir su producción, almacenaje y despacho la fábrica para minimizar el costo y cumplir con su compromiso de inventario? Veamos a continuación que esta situación se puede plantear en términos de un problema de programación lineal.

Ejemplo del problema de producción e inventario

Una empresa productora de videojuegos indie acaba de finalizar su último gran lanzamiento y está lista para producirlo en masa en su formato físico. La siguiente tabla indica la demanda de los primeros 3 meses de lanzamiento.

Meses transcurridos a
partir del lanzamiento
012
Demanda en miles de copias
del mes en curso
806040
Productividad disponible del
mes en curso
1105030

Como el primer mes de lanzamiento es el más importante, la empresa decide que se pueden producir hasta 110 mil copias ese mes, y gradualmente va a reducir su productividad a 50 mil copias el segundo mes y 30 mil el tercer mes; esto con la finalidad de enfocar más tiempo y recursos en otras producciones.

La empresa productora y las tiendas donde se venden tiene un contrato que establece en particular dos cosas:

  • Las tiendas tienen que tener en stock la cantidad de copias demandas cada mes, y esta cantidad de copias será las que la empresa productora entregó este mes junto con las que sobraron el mes pasado
    • Si se entregan más copias que las demandadas por la tienda, se cobrará un costo de almacenamiento de \$2000 al mes por cada mil copias que están siendo almacenadas en tienda fuera de la demanda establecida.

El costo de producción de cada mil copias es de \$20000. Se desea determinar el plan de producción e inventario que satisfaga el contrato con estas tiendas a fin de minimizar los costos.

Variables de decisión

De manera intuitiva, vamos a hacer nuestras variables de decisión las miles de copias que se van a producir el mes en curso desde el lanzamiento del juego.

$x_i$ = miles de copias a producir en el mes $i$ desde el lanzamiento del juego. $(i \in \{1, 2, 3\})$.

Función objetivo

Como se mencionó, el plan de producción tiene que minimizar los costos para la empresa, tanto los gastos de producción de sus videojuegos como el almacenamiento de estos.

El costo de producción es simplemente el número de copias producidas por cada mes, multiplicado por el costo de fabricación de cada copia ($\$20$). Esto es: $20(x_1 + x_2 + x_3)$.

Y luego consideramos el costo de almacenamiento de las copias que no fueron demandadas por la empresa en ese mes. Entonces, para el primer mes, $x_1 – 80$ son las miles de copias que la empresa tiene que cubrir en gastos de almacenamiento. Para el segundo mes, las copias demandadas al momento son las acumuladas del primer y segundo mes ($140000$) y los juegos producidos son solamente $x_1 + x_2$. Entonces, los miles de juegos por los que hay que cubrir el costo de almacenamiento son $x_1 + x_2 – 140$. Y para el tercer mes, las copias demandadas son las acumuladas de los primeros 3 meses ($180000$) y los juegos producidos serán $x_1 + x_2 + x_3$ en miles de copias, y así, los costos de almacenamiento para el tercer mes serán $x_1 + x_2 + x_3 – 180$.

Entonces, el número de miles de copias por las que hay que cubrir costos de almacenamiento para estos 3 meses será: $(x_1 – 80) + (x_1 + x_2 – 140) + (x_1 + x_2 + x_3 -180)$. Y esta cantidad la multiplicamos por el costo de almacenamiento mensual por millar de copias (\$2000).

Entonces, juntando las expresiones, el costo total que hay que minimizar sería:

$$Min \quad z = 20000(x_1 + x_2 + x_3) + 2000[(x_1 – 80) + (x_1 + x_2 – 140) + (x_1 + x_2 + x_3 – 180)]$$

O si lo queremos poner de la forma más resumida posible, esto es:

$$Min \quad z = 26000x_1 + 24000x_2 + 22000x_3 – 800000$$

Restricciones del problema de producción e inventario

Primero, vayamos con las restricciones de oferta:

\begin{align*}
x_1 \leq 110\\
x_2 \leq 50\\
x_3 \leq 30\\
\end{align*}

Después, vayamos con las restricciones de demanda:

\begin{align*}
x_1 \geq 80\\
x_2 + (x_1 – 80) \geq 60\\
x_3 + (x_1 + x_2 – 140) \geq 40\\
\end{align*}

Recordemos que la razón de la última restricción es para que la empresa productora no se quede ninguna copia más de las demandadas para que no haya cuota por almacenamiento en las tiendas para el cuarto mes.

Y naturalmente nuestras variables de decisión son no negativas ya que hablamos de la cantidad de unidades que tenemos de un producto.

Resumen de formulación del problema de producción e inventario

En resumen, nuestro problema de programación lineal quedaría planteado así:

\begin{align*}
Min \quad z = 20000(x_1 + x_2 + x_3) &+ 2000[(x_1 – 80) + (x_1 + x_2 – 140) + (x_1 + x_2 + x_3 – 180)]\\
&s.a\\
x_1 &\leq 110\\
x_2 &\leq 50\\
x_3 &\leq 30\\
x_1 &\geq 80\\
x_2 + (x_1 – 80) &\geq 60\\
x_3 + (x_1 + x_2 – 140) &\geq 40\\
x_i &\geq 0, i \in \{1, 2, 3\}\\
\end{align*}

Más adelante…

La siguiente entrada muestra nuestro último ejemplo introductorio: el problema de la ruta más corta. Como veremos, en este problema también es necesario aprovechar la situación del problema de manera creativa para poder llevarlo a un contexto lineal.

Tarea

  1. El problema se vuelve mucho más sencillo si únicamente hay dos periodos. Plantea un problema que refleje esta situación en el caso particular de la entrada y resuélvelo. Es decir, determina en esos dos periodos (el primer y segundo mes) cuál es la cantidad correcta de unidades a producir por mes, para minimizar el costo total.
  2. Cambia el planteamiento dado en la entrada por uno en el que el costo de almacenaje en las tiendas sea de \$0. En ese caso, ¿cuál sería el plan de producción e inventario óptimo?
  3. En esta entrada dimos la formulación de un caso particular del problema de producción e inventario. Sin embargo, ya tienes todas las herramientas para plantear el problema de manera general. Realiza una formulación general en la que:
    1. Se tengan n periodos con demanda de unidades$d_1, d_2, \ldots, d_n$ por cada periodo.
    2. Se tengan capacidades de producción $o_1, o_2, \ldots, o_n$ unidades en cada periodo.
    3. Se tengan costos $P$ y $A$, de producir y almacenar una unidad de producto respectivamente.
  4. En un problema general de producción e inventario. ¿Por qué podría ser mala idea producir mucho más de lo necesario en las temporadas en las que se puede? Intenta justificar intuitivamente, y luego encuentra algunos casos particulares del problema que apoyen tus argumentos.

Respuestas

1.- Si eliminamos un mes del problema, tendríamos la siguiente tabla de productividad y demanda:

Meses transcurridos a
partir del lanzamiento
01
Demanda en miles de copias
del mes en curso
8060
Productividad disponible del
mes en curso
11050

Tenemos las mismas variables de decisión: $x_i$ = miles de copias a producir el mes $i$ desde el lanzamiento del juego. $i \in \{1, 2\}$

Para la función objetivo, el costo de producción de las copias va a ser: $20000(x_1 + x_2)$. Los gastos de almacenamiento del primer y segundo mes serán: $2000[(x_1 – 80) + (x_1 + x_2 – 140)]$.

Entonces la función objetivo queda de la siguiente manera:

$$Min \quad z = 24000x_1 + 22000x_2 – 440000$$

Las restricciones de oferta y de demanda serían:

\begin{align*}
x_1 &\leq 110\\
x_2 &\leq 50\\
x_1 &\geq 80\\
x2 + (x_1 – 80) &\geq 60\\
\end{align*}

Entonces, el problema con dos periodos de tiempo quedaría planteado de la siguiente manera:

\begin{align*}
Min \quad z &= 24000x_1 + 22000x_2 – 440000\\
&s.a\\
x_1 &\leq 110\\
x_2 &\leq 50\\
x_1 &\geq 80\\
x_2 + (x_1 – 80) &\geq 60\\
x_i &\geq 0, i \in \{1, 2\}\\
\end{align*}

Ahora, una posible solución a este problema sea satisfacer la demanda del primer mes, con tal de que sobren solamente la menor cantidad de copias que al sumarlas con la producción del segundo mes, nos cumplan también la demanda exacta de ese mes. Es decir, producir en el primer mes 90000 copias, almacenar 10000 que sobrarían en tienda y producir hasta el límite de producción el segundo mes que son 50000 copias y juntos con las 10000 que había almacenadas, se cumplirá la demanda que tenemos para el segundo periodo que son 60000 copias. De esta manera no se incurre en gastos innecesarios de almacenamiento, ya que para el tercer mes no hay copias por almacenar que nos generen ese gasto.

2.- Si no hubiera costo por almacenamiento tenemos varias soluciones que podrían ser óptimas, pero en realidad lo sería cualquiera donde se cumplan los valores de demanda al mínimo, es decir, que se produzcan las unidades que nos piden por los tres meses y ni una más.

3.- Sea una empresa tiene que producir un producto y este producto se vende en n periodos de tiempo, con su respectiva demanda ($d_1, \ldots, d_n$) y oferta de productos ($o_1, \ldots, o_n$) en cada uno de ellos.

Se tiene un costo $P$ de fabricación por producto y un costo A de almacenamiento por producto de un periodo a otro.

Se quiere determinar el plan de producción e inventario que satisfaga la demanda y minimice los costos.

Variables de decisión: $x_i$ = número de unidades a producir en el periodo $i$. $i \in \{1, \ldots, n\}$

Función objetivo:

$$Min \quad z = P(x_1 + \ldots + x_n) + A[(x_1-d_1) + (x_1 + x_2 – d_1 – d_2) + \ldots + (\sum_{i=1}^n{x_i} – \sum_{i=1}^n{d_i})]$$

Y por último, las restricciones serían:

\begin{align*}
x_1 &\leq o_1\\
x_2 &\leq o_2\\
&\vdots\\
x_n &\leq o_n\\
x_1 &\geq d_1\\
x_1 + x_2 – d_1 &\geq d_2\\
\vdots\\
\end{align*}

$$(\sum_{i=1}^n{x_i} – \sum_{i=1}^{n-1}{d_i}) \geq \sum_{i=1}^n{d_i}$$

$$x_i \geq 0,\quad i \in \{1, \ldots, n\}$$

4.- Dependería del problema pero en general como se intenta minimizar los costos, esto también sería minimizar los costos que conlleva el almacenaje de productos y si se producen muchos cada periodo, esto incurrirá en el aumento de los gastos mencionados y no será lo optimo para el objetivo que tenemos.

Entradas relacionadas

Álgebra Lineal II: Aplicaciones del teorema de Cayley-Hamilton

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya enunciamos y demostramos el teorema de Cayley-Hamilton. Veremos ahora algunas aplicaciones de este resultado.

Encontrar inversas de matrices

El teorema de Cayley-Hamilton nos puede ayudar a encontrar la inversa de una matriz haciendo únicamente combinaciones lineales de potencias de la matriz. Procedemos como sigue. Supongamos que una matriz $A$ en $M_n(F)$ tiene polinomio característico $$\chi_A(x)=x^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0.$$ Como $a_0=\det(A)$, si $a_0=0$ entonces la matriz no es invertible. Supongamos entonces que $a_0\neq 0$. Por el teorema de Cayley-Hamilton tenemos que $$A^n+a_{n-1}A^{n-1}+\ldots+a_1A+a_0I_n=O_n.$$ De aquí podemos despejar la matriz identidad como sigue:

\begin{align*}
I_n&=-\frac{1}{a_0}\left( A^n+a_{n-1}A^{n-1}+\ldots+a_1A \right)\\
&=-\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1 I\right) A.
\end{align*}

Estos cálculos muestran que la inversa de $A$ es la matriz $$ -\frac{1}{a_0}\left(A^{n-1}+a_{n-1}A^{n-2}+\ldots+a_1 I\right).$$

Ejemplo. Supongamos que queremos encontrar la inversa de la siguiente matriz $$A=\begin{pmatrix} 2 & 2 & 0 \\ 0 & -1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$ Su polinomio característico es $\lambda^3-2\lambda^2 – \lambda +2$. Usando la fórmula de arriba, tenemos que

$$A^{-1}=-\frac{1}{2}(A^2-2A-I).$$

Necesitamos entonces $A^2$, que es:

$$A^2=\begin{pmatrix} 4 & 2 & 0 \\ 0 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}.$$

De aquí, tras hacer las cuentas correspondientes, obtenemos que:

$$A^{-1}=\begin{pmatrix} \frac{1}{2} & 1 & 0 \\ 0 & -1 & 0 \\ -\frac{1}{2} & 0 & 1\end{pmatrix}.$$

Puedes verificar que en efecto esta es la inversa de $A$ realizando la multiplicación correspondiente.

$\triangle$

El método anterior tiene ciertas ventajas y desventajas. Es práctico cuando es sencillo calcular el polinomio característico, pero puede llevar a varias cuentas. En términos de cálculos, en general reducción gaussiana funciona mejor para matrices grandes. Como ventaja, el resultado anterior tiene corolarios teóricos interesantes. Un ejemplo es el siguiente resultado.

Corolario. Si $A$ es una matriz con entradas en los enteros y determinante $1$ ó $-1$, entonces $A^{-1}$ tiene entradas enteras.

Encontrar el polinomio mínimo de una matriz

Otra de las consecuencias teóricas del teorema de Cayley-Hamilton con aplicaciones prácticas ya la discutimos en la entrada anterior.

Proposición. El polinomio mínimo de una matriz (o transformación lineal) divide a su polinomio característico.

Esto nos ayuda a encontrar el polinomio mínimo de una matriz: calculamos el polinomio característico y de ahí intentamos varios de sus divisores polinomiales para ver cuál de ellos es el de grado menor y que anule a la matriz. Algunas consideraciones prácticas son las siguientes:

  • Si el polinomio característico se factoriza totalmente sobre el campo y conocemos los eigenvalores, entonces conocemos todos los factores lineales. Basta hacer las combinaciones posibles de factores lineales para encontrar el polinomio característico (considerando posibles multiplicidades).
  • Además, para cada eigenvalor $\lambda$ ya vimos que $\lambda$ debe ser raíz no sólo del polinomio característico, sino también del polinomio mínimo. Así, debe aparecer un factor $x-\lambda$ en el polinomio mínimo para cada eigenvalor $\lambda$.

Ejemplo 1. Encontramos el polinomio mínimo de la siguiente matriz:

$$B=\begin{pmatrix} 2 & 0 & 4 \\ 3 & -1 & -1 \\0 & 0 & 2 \end{pmatrix}.$$

Una cuenta estándar muestra que el polinomio característico es $(x-2)^2(x+1)$. El polinomio mínimo debe ser mónico, dividir al polinomio característico y debe contener forzosamente a un factor $(x-2)$ y un factor $(x+1)$. Sólo hay dos polinomios con esas condiciones: $(x-2)(x+1)$ y $(x-2)^2(x+1)$. Si $(x-2)(x+1)$ anula a $B$, entonces es el polinomio mínimo. Si no, es el otro. Haciendo las cuentas:

\begin{align*}
(B-2I_3)(B+I_3)&=\begin{pmatrix}0 & 0 & 4 \\ 3 & -3 & -1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 3 & 0 & 4 \\ 3 & 0 & -1 \\ 0 & 0 & 3 \end{pmatrix}\\
&=\begin{pmatrix} 0 & 0 & 12 \\ 0 & 0 & 12 \\ 0 & 0 & 0 \end{pmatrix}.
\end{align*}

Así, $(x-2)(x+1)$ no anula a la matriz y por lo tanto el polinomio mínimo es justo el polinomio característico $(x-2)^2(x+1)$.

$\triangle$

Ejemplo 2. Consideremos la matriz $C=\begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{pmatrix}$. Su polinomio característico es $(x-3)^3$. Así, su polinomio mínimo es $x-3$, $(x-3)^2$ ó $(x-3)^3$. Nos damos cuenta rápidamente que $x-3$ sí anula a la matriz pues $A-3I_3=O_3$. De este modo, el polinomio mínimo es $x-3$.

$\triangle$

Clasificación de matrices con alguna condición algebraica

Si sabemos que una matriz cumple una cierta condición algebraica, entonces el teorema de Cayley-Hamilton puede ayudarnos a entender cómo debe ser esa matriz, es decir, a caracterizar a todas las matrices que cumplan la condición.

Por ejemplo, ¿quienes son todas las matrices en $M_n(\mathbb{R})$ que son su propia inversa? La condición algebraica es $A^2=I_2$. Si el polinomio característico de $A$ es $x^2+bx+c$, entonces por el teorema de Cayley-Hamilton y la hipótesis tenemos que $O_2=A^2+bA+cI_2=bA+(c+1)I_2$. De aquí tenemos un par de casos:

  • Si $b\neq 0$, podemos despejar a $A$ como $A=-\frac{c+1}{b}I_2$, es decir $A$ debe ser un múltiplo de la identidad. Simplificando la notación, $A=xI_2$. Así, la condición $A^2=I_2$ se convierte en $x^2I_2=I_2$, de donde $x^2=1$ y por lo tanto $x=\pm 1$. Esto nos da las soluciones $A=I_2$ y $A=-I_2$.
  • Si $b=0$, entonces $O_2=(c+1)I_2$, de donde $c=-1$. De este modo, el polinomio característico es $x^2-1=(x+1)(x-1)$. Se puede demostrar que aquí las soluciones son las matices semejantes a la matriz $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$, y sólo esas.

Más adelante…

El teorema de Cayley-Hamilton es un resultado fundamental en álgebra lineal. Vimos dos demostraciones, pero existen varias más. Discutimos brevemente algunas de sus aplicaciones, pero tiene otras tantas. De hecho, más adelante en el curso lo retomaremos para aplicarlo nuevamente.

Por ahora cambiaremos ligeramente de tema. De manera muy general, veremos cómo llevar matrices a otras matrices que sean más simples. En las siguientes entradas haremos esto mediante similaridades de matrices. Más adelante haremos esto mediante congruencias de matrices. Hacia la tercer unidad del curso encontraremos un resultado aún más restrictivo, en el que veremos que cualquier matriz simétrica real puede ser llevada a una matriz diagonal mediante una matriz que simultáneamente da una similaridad y una congruencia.

Tarea moral

  1. Encuentra el polinomio mínimo de la matriz $\begin{pmatrix}-3 & 1 & 0 & 0 \\ 0 & -3 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2\end{pmatrix}$.
  2. Encuentra la inversa de la siguiente matriz usando las técnica usada en esta entrada: $$\begin{pmatrix} 0 & 1 & 1 \\ 1 & -1 & 2\\ 2 & 2 & 1 \end{pmatrix}.$$
  3. Demuestra el corolario de matrices con entradas enteras. De hecho, muestra que es un si y sólo si: una matriz invertibles con entradas enteras cumple que su inversa tiene únicamente entradas enteras si y sólo si su determinante es $1$ ó $-1$.
  4. ¿Cómo son todas las matrices en $M_2(\mathbb{R})$ tales que $A^2=A$?
  5. ¿Cómo son todas las matrices en $M_3(\mathbb{R})$ de determinante $0$ tales que $A^3=O_3$?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Cálculo Diferencial e Integral II: Propiedades de la integral definida

Por Moisés Morales Déciga

Introducción

En las entradas anteriores se dio la motivación de la construcción de la integral y la definición de la integral de Riemann. Para que cierta integral exista, necesitamos que el ínfimo de ciertas sumas superiores coincida con el supremo de ciertas sumas inferiores. Vimos algunas condiciones que garantizan que esto suceda, por ejemplo, que exista el límite de las sumas superiores e inferiores para las particiones homogéneas, y que dicho límite sea el mismo en ambos casos. Lo que haremos ahora es estudiar más propiedades de la integral.

Las propiedades que veremos nos permitirán concluir la existencia de ciertas integrales de manera sencilla y, a la vez, nos permitirán manipular algebraicamente a las integrales. En caso de necesitar un recordatorio de la definición de integral, te recomendamos consultar la entrada anterior.

Integrabilidad de familias de funciones especiales

Hay algunas propiedades de funciones que se estudian desde Cálculo I que implican la integrabilidad. A continuación presentamos un par de ejemplos.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es acotada y monótona en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Supondremos que $f$ es estrictamente creciente. Otras variantes de monotonía (no decreciente, no creciente, estrictamente decreciente) tienen una demostración similar, que puedes hacer por tu cuenta.

Tomemos la partición homogénea $P_n$ del intervalo $[a,b]$. Definiendo $$x_j=a+j\frac{b-a}{n}$$ para $j=0,\ldots,n$, se tiene que las celdas son $$[x_0,x_1],[x_1,x_2],\ldots,[x_{n-1},x_n].$$

Las celdas tienen todas longitud $\frac{b-a}{n}$ y como la función es estrictamente creciente, el mínimo se alcanza al inicio de cada celda. De esta manera, la suma inferior para esta partición es:

\begin{align*}
\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right).
\end{align*}

Similarmente, el máximo se alcanza al final de cada celda. Por ello, la suma superior para esta partición es

\begin{align*}
\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right).
\end{align*}

Restando la suma inferior a la superior, obtenemos

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\left(\frac{b-a}{n}\left(f(x_1)+\ldots+f(x_n)\right)\right)-\left(\frac{b-a}{n}\left(f(x_0)+\ldots+f(x_{n-1})\right)\right)\\
&=\frac{b-a}{n}(f(x_n)-f(x_0))\\
&=\frac{(b-a)(f(b)-f(a))}{n}.
\end{align*}

De acuerdo a la condición de Riemann (enunciada en la entrada anterior), la función será integrable si logramos que esta diferencia sea tan pequeña como queramos. Tomemos entonces cualquier $\epsilon>0$ y $n$ un entero tan grande como para que $n>\frac{1}{\epsilon}(b-a)(f(b)-f(a))$. Para este $n$, se cumple que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{(b-a)(f(b)-f(a))}{n}<\epsilon,
\end{align*}

y por ello la función es integrable.

$\square$

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, entonces es Riemann integrable en $[a,b]$.

Demostración. Como primera observación, como $f$ es continua en el intervalo cerrado y acotado $[a,b]$, entonces es acotada, de modo que sí podemos hablar de sus sumas superiores e inferiores.

La estrategia que usaremos para ver que es integrable será verificar nuevamente la condición de Riemann, es decir, que para cualquier $\epsilon > 0$, existe una suma superior y una inferior cuya diferencia es menor que $\epsilon$. La intuición es que con una partición suficientemente fina, el máximo y mínimo de $f$ son muy cercanos porque los puntos que los alcanzan están en una celda muy chiquita (y entonces son muy cercanos). Para poder hacer esto «globalmente» en todas las celdas, necesitaremos una propiedad un poco más fuerte que continuidad: continuidad uniforme (puedes seguir el enlace para recordar este contenido aquí en el blog). Pero ésta se tiene pues las funciones continuas en intervalos cerrados y acotados son uniformemente continuas.

Tomemos entonces $\epsilon >0$. Como mencionamos, $f$ es uniformemente continua y el intervalo $[a,b]$ es cerrado y acotado, entonces $f$ es uniformememente continua. Así, existe una $\delta>0$ tal que si $|x-y|<\delta$, entonces $|f(x)-f(y)|<\frac{\epsilon}{b-a}$. Tomemos $n$ tan grande como para que $\frac{b-a}{n}<\delta$. Tras hacer esto, en cada celda $i$ de la partición homogénea $P_n$ los valores $m_i$ y $M_i$ donde $f$ alcanza el mínimo y máximo respectivamente cumplen que $|M_i-m_i|\leq \frac{b-a}{n}<\delta$ y por lo tanto para cada $i$ se tiene $f(M_i)-f(m_i)=|f(M_i)-f(m_i)|<\frac{\epsilon}{b-a}$.

Ya tenemos los ingredientes para realizar la cuenta de sumas superiores e inferiores.

Por un lado,

$$\overline{S}(f,P_n)=\frac{b-a}{n}\left(f(M_1)+\ldots+f(M_n)\right).$$

Por otro,

$$\underline{S}(f,P_n)=\frac{b-a}{n}\left(f(m_1)+\ldots+f(m_n)\right),$$

así que

\begin{align*}
\overline{S}(f,P_n)-\underline{S}(f,P_n)&=\frac{b-a}{n}\sum_{i=1}^n \left(f(M_i)-f(m_i)\right)\\
&<\frac{b-a}{n}\sum_{i=1}^n \frac{\epsilon}{b-a}\\
&=\frac{b-a}{n}\left(n\frac{\epsilon}{b-a}\right)\\
&=\epsilon.
\end{align*}

Esto muestra que podemos acercar una partición superior tanto como queramos a una inferior. Por el criterio de la entrada anterior, la función $f$ es integrable en $[a,b]$.

$\square$

Separación de la integral en intervalos

Enunciemos una propiedad importante de la integral: puede partirse en intervalos.

Proposición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sea $c$ cualquier valor entre $[a,b]$. Si la integral

$$\int \limits_{a}^{b} f(x) \ dx$$

existe, entonces las dos integrales

$$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$

también existen. Y viceversa, si estas dos integrales existen, entonces la primera también.

Cuando las tres integrales existen, se cumple además la siguiente igualdad:

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Demostración. Veamos primero que si la integral en todo $[a,b]$ existe, entonces las otras dos también. Trabajaremos usando la condición de Riemann. Sea $\epsilon>0$. Como $f$ es integrable en $[a,b]$, entonces existe una partición $P$ de $[a,b]$ tal que

$$\overline{S}(f,P)-\underline{S}(f,P)<\epsilon.$$

Podemos suponer que uno de los puntos de $P$ es el punto $c$, pues de no serlo, refinamos a $P$ incluyendo a $c$. Esto no aumenta la suma superior, ni disminuye la inferior, así que sigue cumpliendo la desigualdad anterior. Si $P=\{x_0,\ldots,x_n\}$, podemos entonces pensar que para alguna $k$ en $\{0\ldots,n\}$ se cumple que $x_k=c$, y entonces de esta partición de $[a,b]$ salen las particiones:

  • $P_1 = \{a=x_0, x_1, … , x_k=c\}$ de $[a,c]$ y
  • $P_2 = \{c={x_k}, x_{k+1}, … , x_n=b\}$ de $[c,b]$.

Como las celdas de $P$ son celdas de $P_1$ ó $P_2$, entonces las sumas superiores e inferiores cumplen:

\begin{align*}
\overline{S} (f,P_1) + \overline{S} (f,P_2) &= \overline{S} (f,P), \\
\underline{S} (f,P_1) + \underline{S} (f,P_2) &= \underline{S} (f,P) .\\
\end{align*}

Si se restan ambas sumas, se obtiene lo siguiente:

\begin{align*}
\left(\overline{S} (f,P_1) – \underline{S} (f,P_1)\right) + \left(\overline{S} (f,P_2) – \underline{S} (f,P_2)\right) = \overline{S} (f,P) \ – \ \underline{S} (f,P) < \epsilon.\\
\end{align*}

Ambos términos de la izquierda son positivos y su suma es menor que $\epsilon$, así que concluimos:

\begin{align*}
\overline{S} (f,P_1) – \underline{S} (f,P_1) &< \epsilon,\\
\overline{S} (f,P_2) – \underline{S} (f,P_2) &< \epsilon.\\
\end{align*}

De este modo, por el criterio de Riemann se tiene que $f$ es integrable en $[a,c]$ y en $[c,b]$.

Si la integrales en $[a,c]$ y $[c,b]$ existen, entonces puede hacerse una prueba similar: para cualquier $\epsilon$ habrá una partición $P$ de $[a,c]$ con diferencia de suma superior e inferior menor a $\epsilon/2$, y lo mismo para una partición $P’$ de $[c,b]$. Un argumento similar al de arriba ayudará a ver que $P\cup P’$ es una partición de $[a,b]$ que hace que la diferencia de la suma superior e inferior sea menor a $\epsilon$. Los detalles quedan para que los verifiques por tu cuenta.

Veamos ahora que cuando las integrales existen, entonces se cumple la igualdad

$$\int \limits_{a}^{b} f(x) \ dx = \int \limits_{a}^{c} f(x) \ dx \ + \int \limits_{c}^{b} f(x) \ dx .$$

Tomemos cualquier partición $P’$ de $[a,b]$. Tomemos el refinamiento $P=P’\cup \{c\}$ y escribamos $P=P_1\cup P_2$ como arriba. Usando que las integrales son ínfimos de sumas superiores (y por lo tanto son cotas inferiores), tenemos que:

\begin{align*}
\overline{S}(f,P’) & \geq \overline{S}(f,P)\\
&=\overline{S}(f,P_1) + \overline{S}(f,P_2)\\
&\geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.
\end{align*}

Por definición, $\int \limits_{a}^{b} f(x) \ dx$ es el ínfimo de las sumas superiores sobre todas las particiones $P’$ de $[a,b]$ y entonces es la mayor de las cotas inferiores. Como arriba tenemos que $\int_a^c f(x)\, dx + \int_c^b f(x) \,dx$ es cota inferior para todas estas sumas superiores, entonces:

$$\int_a^b f(x)\, dx \geq \int_a^c f(x)\, dx + \int_c^b f(x) \,dx.$$

Así mismo, para cualesquiera particiones $P_1$ y $P_2$ de $[a,c]$ y $[c,b]$ respectivamente, tenemos que $P_1\cup P_2$ es partición de $[a,b]$ y entonces

$$\overline{S}(f,P_1) + \overline{S}(f,P_2) = \overline{S}(f,P_1\cup P_2) \geq \int_a^b f(x)\,dx,$$

de donde

$$\overline{S}(f,P_1) \geq \int_a^b f(x)\,dx – \overline{S}(f,P_2).$$

Así, para cualquier partición $P_2$ fija, hemos encontrado que $\int_a^b f(x)\,dx – \overline{S}(f,P_2)$ es cota inferior para todas las sumas superiores de particiones $P_1$ de $[a,c]$. De este modo, por ser la integral en $[a,c]$ la mayor de estas cotas inferiores, se tiene

$$\int_a^c f(x)\, dx \geq \int_a^b f(x)\,dx – \overline{S}(f,P_2)$$

para cualquier partición $P_2$ de $[c,b]$. Pero entonces

$$\overline{S}(f,P_2) \geq \int_a^b f(x)\,dx – \int_a^c f(x)\, dx, $$

se cumple para toda partición $P_2$ de $[b,c]$, de donde concluimos

$$\int_b^c f(x)\, dx \geq \int_a^b f(x)\,dx – \int_a^c f(x)\, dx.$$

Despejando, obtenemos la desigualdad

$$\int_a^b f(x)\, dx + \int_b^c f(x)\, dx \geq \int_a^b f(x).$$

Junto con la desigualdad que mostramos arriba, se obtiene la desigualdad deseada.

$\square$

Límites reales arbitrarios

Hasta ahora siempre hemos hablado de la existencia de la integral de una función en un intervalo $[a,b]$ con $a\leq b$. Cuando $a=b$, la integral que buscamos es en el intervalo $[a,a]$ y se puede mostrar que en este caso la integral siempre existe y es igual a cero, es decir, que $$\int_a^a f(x)\, dx = 0.$$

La siguiente definición nos dice qué hacer cuando en los límites de integración vamos de un número mayor a uno menor.

Definición. Sea $f:\mathbb{R}\to \mathbb{R}$ una función acotada. Sean $a<b$ reales. Si la integral de $f$ en el intervalo $[a,b]$ existe, entonces definimos la integral de $f$ de $b$ a $a$ como sigue: $$\int_b^a f(x)\,dx= – \int_a^b f(x)\, dx.$$

Esta definición es compatible con todo lo que hemos platicado, y nos permite extender la identidad $$\int \limits_{a}^{c} f(x) \ dx, \int \limits_{c}^{b} f(x) \ dx$$ de la proposición de la sección anterior a valores arbitrarios de $a,b,c$, sin importar en qué orden estén en la recta real (siempre y cuando las integrales existan, por supuesto). Por ejemplo, si $a>b>c$, entonces podemos proceder como sigue mediante lo que ya hemos demostrado y definido:

\begin{align*}
\int_a^b f(x)\, dx &= – \int_b^a f(x)\, dx \quad \text{Def. int. para $a>b$.}\\
&= – \left(\int_c^a f(x)\, dx – \int_c^b f(x)\, dx\right) \quad \text{Por prop. anterior pues $c<b<a$.}\\
&= – \int_c^a f(x)\, dx + \int_c^b f(x)\, dx \quad \text{Distribuir el $-$}\\
&= \int_a^c f(x)\, dx + \int)c^b f(x)\, dx \quad \text{Def. int. para $a>c$}.
\end{align*}

Aquí se ve como con un orden específico de $a,b,c$ se sigue cumpliendo la identidad buscada, aunque $c$ no quede entre $a$ y $b$ y no se cumpla que $a\leq b$. Siempre es posible hacer esto y te recomendamos pensar en cómo argumentar todos los casos posibles de $a,b,c$.

La intuición en áreas de que la integral $\int_b^a f(x)\, dx$ cambia de signo con respecto a $\int_a^b f(x)\, dx$ es que en una recorremos el área de izquierda a derecha y en la otra de derecha a izquierda. Entonces, «recorremos el área al revés» porque «graficamos hacia atrás». Por ejemplo, se tiene el intervalo $[5,1]$, la forma en que se recorrerá al momento de graficar sería del $5$ al $1$ y, si la función es positiva, la integral será negativa.

Linealidad de la integral

Tomemos dos funciones acotadas $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ y supongamos que son integrables en el intervalo $[a,b]$. Tomemos cualquier real arbitrario $\alpha$. A partir de esto, podemos construir la función $f+\alpha g$, que recordemos que su definición es que es una función de $[a,b]$ a $\mathbb{R}$ con regla de asignación $$(f+\alpha g)(x) = f(x) + \alpha g(x).$$

Si tomamos una partición $P$ de $[a,b]$, se puede verificar fácilmente que

\begin{align*}
\overline{S}(f+\alpha g, P)&=\overline{S}(f,P)+\alpha \overline{S}(g,P),\\
\underline{S}(f+\alpha g, P)&=\underline{S}(f,P)+\alpha \underline{S}(g,P).
\end{align*}

Restando ambas expresiones,

$$\overline{S}(f+\alpha g, P)- \underline {S}(f+\alpha g, P) = \left(\overline{S}(f,P) – \underline{S}(f,P)\right) + \alpha \left(\overline{S}(g,P) – \underline{S}(g,P)\right).$$

Intuitivamente (respaldados por el criterio de Riemann), el lado derecho puede ser tan pequeño como queramos pues $f$ y $g$ son integrables. Así que el lado izquierdo también. Esto muestra que $f+\alpha g$ también es integrable en $[a,b]$. Te recomendamos hacer una demostración formal.

Además, si $P_n$ es una sucesión de particiones en donde los tamaños de celda convergen a cero (y por lo tanto para las cuales las sumas superiores convergen a la integral para cada función de arriba), entonces:

\begin{align*}
\int_a^b (f+\alpha g)(x)\, dx &= \lim_{n\to \infty} \overline{S} (f+\alpha g, P_n)\\
&=\lim_{n\to \infty} \left(\overline{S}(f,P_n)+ \alpha\overline{S}(g,P_n)\right)\\
&=\lim_{n\to \infty} \overline{S}(f,P_n) + \alpha \lim_{n\to \infty} \overline{S}(g,P_n)\\
&=\int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.
\end{align*}

En resumen, hemos demostrado lo siguiente:

Teorema. La integral es lineal. Es decir, si $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ son funciones acotadas e integrables en $[a,b]$, entonces para cualquier real $\alpha$ también $f+\alpha g$ es integrable en $[a,b]$ y además se cumple $$\int_a^b (f+\alpha g)(x)\, dx = \int_a^b f(x)\, dx + \alpha \int_a^b g(x)\, dx.$$

Dos casos particulares de interés son los siguientes:

  • Si en el teorema anterior tomamos $\alpha=1$, entonces obtenemos que $\int_a^b (f+g)(x)=\int_a^b f(x)\, dx + \int_a^b g(x)\, dx$, es decir, la integral abre sumas.
  • Si en el teorema anterior tomamos $f$ como la función constante cero, entonces obtenemos que $\int_a^b \alpha g(x)\, dx = \alpha \int_a^b g(x)\, dx$, es decir la integral saca escalares.

La integral respeta desigualdades

Veamos que la integral, en cierto sentido, respeta desigualdades. Un primer paso que es muy sencillo de verificar es lo que sucede con la integral de funciones no negativas.

Proposición. Si $f:\mathbb{R}\to \mathbb{R}$ es una función integrable en el intervalo $[a,b]$ y se cumple $f(x)\geq 0$ para todo $x\in [a,b]$, entonces $$\int_a^b f(x)\, dx \geq 0.$$

Demostración. Como $f(x)\geq 0$, entonces claramente para cualquier partición $P$ se cumple que $\overline{S}(f,P)\geq 0$, pues aparecen puros términos positivos en la suma superior. Así, $0$ es una cota inferior para las sumas superiores. Como la integral es la máxima de dichas cotas superiores, entonces $$\int_a^b f(x)\, dx \geq 0,$$ como queríamos.

$\square$

De este resultado y las propiedades que hemos mostrado, podemos deducir algo mucho más general.

Teorema. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones integrables en un intervalo $[a,b]$, dentro del cual también se cumple que $f(x)\leq g(x)$. Entonces, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx.$$

Demostración. Como $f$ y $g$ son integrables en $[a,b]$, entonces la combinación lineal $g-f$ también lo es, y además $(g-f)(x)=g(x)-f(x)\geq 0$. Por la proposición anterior y la linealidad de la integral, tenemos entonces que: $$\int_a^b g(x)\, dx – \int_a^b f(x)\, dx = \int_a^b (g-f)(x)\, dx \geq 0.$$

De aquí, $$\int_a^b f(x)\, dx \leq \int_a^b g(x)\, dx,$$ como queríamos.

$\square$

Más adelante…

Todas las propiedades que hemos enunciado se utilizarán de aquí en adelante. Es importante que las tengas presentes. Son propiedades que nos permiten factorizar funciones para que al momento de integrar o que nos permiten partir una integral complicada en otras más sencillas con integración inmediata o ya conocida.

En la siguiente entrada enunciaremos y demostraremos el teorema del valor medio para la integral. Es un teorema muy relevante, pues será uno de los ingredientes en la demostración de otros teoremas importantes para el cálculo integral.

Tarea moral

  1. Utilizando las propiedades anteriores, resuelve las siguientes integrales.
    • $\int \limits_0^1 7(4+3x^2) ~dx.$
    • $\int \limits_2^0 \frac{1}{4}(32x-3x^2+6) ~dx.$
  2. Termina con detalle todas las demostraciones de la entrada que hayan quedado pendientes.
  3. Usndo las propiedades de esta entrada, demuestra que la integral $\int_{-10}^{10} x^7-x^5+3x^3+27x\, dx$ existe y determina su valor. Sugerencia. Muestra que la función dentro de la integral es continua y cumple $f(x)=-f(x)$. Usa varias de las propiedades de esta entrada.
  4. Demuestra la siguiente igualdad:
    $$ \int \limits_{a}^{b} \alpha \ f(x) \ dx \ + \int \limits_{a}^{b} \beta\ g(x) \ dx \ = \ \int \limits_{a}^{b} \alpha f(x) \ + \beta g(x) \ dx .$$
  5. Sean $a\leq b\leq c\leq d$ números reales. Sea $f:\mathbb{R}\to \mathbb{R}$ una función integrable en $[a,d]$. Demuestra que todas las integrales $$\int_a^c f(x)\, dx, \int_b^d f(x)\, dx, \int_a^d f(x)\,dx, \int_b^c f(x)\,dx$$
    existen y muestra que satisfacen la siguiente identidad:
    $$\int_a^c f(x)\, dx + \int_b^d f(x)\, dx = \int_a^d f(x)\,dx + \int_b^c f(x)\,dx.$$
  6. Sean $a<b$ reales. Demuestra que si la función $f:\mathbb{R}\to \mathbb{R}$ es continua en $[a,b]$, se cumple que $f(x)\geq 0$ para $x\in [a,b]$ y además existe por lo menos un punto $c$ tal que $f(c)>0$, entonces $\int_a^b f(x)\, dx >0$. Como sugerencia, demuestra que existe todo un intervalo (aunque sea muy chiquito) donde la función es positiva, y usa otras propiedades que hemos mostrado. Luego, encuentra un contraejemplo para esta afirmación en donde $f$ no sea continua.

Entradas relacionadas