Archivo de la etiqueta: lineal

Inversas de matrices de 2×2 con reducción gaussiana

Introducción

Es posible que sepas que una matriz $$A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$$de $2\times 2$ es invertible si y sólo si $ad-bc=0$, y que en ese caso la inversa está dada por $$B=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$ De hecho, una vez que se propone a $B$ como esta matriz, es sencillo hacer la multiplicación de matrices y verificar que en efecto tanto $AB$ como $BA$ son la matriz identidad de $2\times 2$.

Sin embargo, la idea de esta entrada es deducir que $ad-bc$ tiene que ser distinto de $0$ para que $A$ sea invertible y que, en ese caso, la inversa tiene que ser de la forma que dijimos. En esta deducción no usaremos nunca la definición ni propiedades de determinantes.

El procedimiento

Lo que haremos es aplicar el procedimiento de reducción gaussiana para encontrar inversas, es decir, le haremos reducción gaussiana a la matriz $A’=\begin{pmatrix}
a & b & 1 & 0\\
c & d & 0 & 1
\end{pmatrix}$ obtenida de «pegar» a la matriz $A$ una matriz identidad a su derecha. Es un resultado conocido que si $A$ es invertible, entonces al terminar la reducción gaussiana de $A’$ la matriz de $2\times 2$ que queda a la izquierda será la identidad y la que quede a la derecha será la inversa de $A$.

Empecemos con una matriz $A=\begin{pmatrix}
a & b\\
c & d
\end{pmatrix}$ de $2\times 2$ cualquiera. Si ambos $a$ y $c$ son iguales a $0$, entonces la primer columna de $BA$ es $0$ para toda $B$, y por lo tanto $A$ no puede tener inversa. Así, una primera condición para que $A$ tenga inversa es que $a$ o $c$ sean distintos de cero. Si $a$ fuera $0$, el primer paso de reducción gaussiana sería intercambiar las filas, así que podemos suponer sin pérdida de generalidad que $a$ no es $0$. De este modo, el primer paso de reducción gaussiana es multiplicar la primer fila por $1/a$ para que el pivote sea $1$: $$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
c & d & 0 & 1
\end{pmatrix}$$

El siguiente paso es hacer al resto de las entradas en la columna de ese primer pivote iguales a $0$. Para eso basta restar a la segunda fila $c$ veces la primera:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & d – \frac{bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}=\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & \frac{ad-bc}{a} & -\frac{c}{a} & 1
\end{pmatrix}.$$

Si $ad-bc=0$, entonces el pivote de la segunda fila ya no quedaría en la segunda columna, y la forma escalonada reducida no tendría a la identidad a la izquierda. Así que una segunda condición para que $A$ sea invertible es que $ad-bc$ no sea cero. Notemos que si $ad-bc$ no es cero, entonces tampoco $a$ y $c$ son simultaneamente $0$, así que nuestra condición anterior ya está capturada con pedir que $ad-bc$ no sea cero.

Sabiendo que $ad-bc$ no es cero, el siguiente paso en la reducción gaussiana es multiplicar la segunda fila por $a/(ad-bc)$ para hacer el pivote igual a $1$:

$$\begin{pmatrix}
1 & \frac{b}{a}& \frac{1}{a} & 0\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Finalmente, para que el pivote de la segunda columna sea la única entrada no cero, tenemos que restar a la primera fila la segunda multiplicada por $-b/a$:

$$\begin{pmatrix}
1 & 0 & \frac{1}{a}+\frac{bc}{a(ad-bc)} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\begin{pmatrix}
1 & 0 & \frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
0 & 1 & -\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}.$$

Así, basta pedir $ad-bc$ para que la reducción gaussiana deje a la identidad en la matriz de $2\times 2$ de la izquierda y, al terminar el procedimiento, tenemos a la derecha a la inversa de $A$ que es la matriz:

$$\begin{pmatrix}
\frac{d}{ad-bc} & -\frac{b}{ad-bc}\\
-\frac{c}{ad-bc} & \frac{a}{ad-bc}
\end{pmatrix}=\frac{1}{ad-bc}\begin{pmatrix}
d & -b\\
-c & a
\end{pmatrix}.$$

Esto es a lo que queríamos llegar. Por supuesto, el camino fue largo y hay formas de llegar al mismo resultado de manera más corta, pero usando más teoría.

¿Ahora qué?

Si te gustó esta entrada, puedes compartirla o revisar otras relacionadas con matemáticas a nivel universitario:

Álgebra Lineal II: Polinomio característico

Introducción

En el transcurso de esta unidad hemos construido varios de los objetos algebraicos que nos interesan. En primer lugar, dejamos claro qué quería decir evaluar un polinomio en una matriz o transformación lineal. Esto nos llevó a preguntarnos por aquellos polinomios que anulan a una matriz o transformación lineal. De manera natural, descubrimos que aquellos polinomios que anulan son múltiplos de un polinomio especial asociado a la matriz o transformación lineal llamado polinomio mínimo.

De manera un poco separada, comenzamos a estudiar los eigenvalores, eigenvectores y eigenespacios de una transformación lineal y en la entrada anterior nos enfocamos en varias de sus propiedades principales. Uno de los resultados clave que encontramos es que los eigenvalores de una matriz o transformación lineal son las raíces del polinomio mínimo que estén en el campo en el que estemos trabajando.

Aunque este resultado sea interesante de manera teórica, en la práctica debemos hacer algo diferente pues no es tan sencillo encontrar el polinomio mínimo de una matriz o transformación lineal. Es por esto que ahora estudiaremos con profundidad otro objeto que resultará fundamental en nuestro estudio: el polinomio característico. Ya nos encontramos con él anteriormente. Si $A$ es una matriz en $M_n(F)$, dicho polinomio en la variable $\lambda$ es el determinante $\det(\lambda I_n-A)$.

Esta entrada es más bien una introducción, así que nos enfocaremos en probar las cosas más básicas de este objeto. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

Definición de polinomio característico

Comencemos con una matriz $A\in M_n(F)$. Vimos que encontrar los eigenvalores de $A$ se reduce a encontrar las soluciones de la ecuación

\begin{align*}
\det(\lambda I_n-A)=0
\end{align*}

en $F$. Vamos a estudiar más a detalle la expresión de la izquierda.

El siguiente teorema va un poco más allá y de hecho estudia expresiones un poco más generales.

Teorema. Sean $A,B\in M_n(F)$ dos matrices. Existe un polinomio $P\in F[X]$ tal que para todo $x\in F$ se cumple

\begin{align*}
P(x)=\det(xA+B).
\end{align*}

Si denotamos a este polinomio por $P(X)=\det(XA+B)$, entonces

\begin{align*}
\det(XA+B)=\det(A)X^{n}+\alpha_{n-1}X^{n-1}+\dots+\alpha_1 X+\det B
\end{align*}

para algunas expresiones polinomiales $\alpha_1,\dots, \alpha_{n-1}$ con coeficientes enteros en las entradas de $A$ y $B$.

Demostración. Consideremos el siguiente polinomio en la variable $X$ y coeficientes en $F$, es decir, el siguiente polinomio en $F[X]$:

\begin{align*}
P(X)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(a_{1\sigma(1)} X+b_{1\sigma(1)}\right)\cdots \left(a_{n\sigma(n)}X+b_{n\sigma(n)}\right).
\end{align*}

Por construcción, $P$ es un polinomio cuyos coeficientes son expresiones polinomiales enteras en las entradas de $A$ y $B$. Más aún, se cumple que $P(x)=\det(xA+B)$ para $x\in F$ (podría ser útil revisar la entrada sobre determinantes para convencerte de ello). El término constante lo obtenemos al evaluar en $X=0$, pero eso no es más que $P(0)=\det(0\cdot A+B)=\det(B)$. Finalmente para cada $\sigma\in S_n$ tenemos que el primer término de cada sumando es

\begin{align*}
\operatorname{sign}(\sigma)(a_{1\sigma(1)}X+b_{1\sigma(1)})\cdots (a_{n\sigma(n)} X+b_{n\sigma(n)})= \operatorname{sign}(\sigma) a_{1\sigma(1)}\cdots a_{n\sigma(n)}X^{n}+\dots
\end{align*}

En efecto, los términos «ocultos en los puntos suspensivos» todos tienen grado a lo más $n-1$. Agrupando todos los sumandos y comparando con la definición del determinante llegamos a que $$P(X)=\det(A)X^{n}+\ldots,$$ es decir el término de orden $n$ es en efecto $\det(A)$.

$\square$

Del teorema se sigue que si $A$ y $B$ tienen entradas enteras o racionales, $\det(XA+B)$ tiene coeficientes enteros o racionales respectivamente.

Enseguida podemos definir (gracias al teorema) el siguiente objeto:

Definición. El polinomio característico de la matriz $A\in M_n(F)$ es el polinomio $\chi_A\in F[X]$ definido por

\begin{align*}
\chi_A(X)=\det(X\cdot I_n-A).
\end{align*}

Una observación inmediata es que, de acuerdo al teorema, el coeficiente principal de $\chi_A(X)$ tiene coeficiente $\det(I_n)=1$. En otras palabras, acabamos de demostrar la siguiente propiedad fundamental del polinomio característico.

Proposición. El polinomio característico de una matriz en $M_n(F)$ siempre tiene grado exactamente $n$ y además es un polinomio mónico, es decir, que el coeficiente que acompaña al término de grado $n$ es iguala $1$.

Veamos un ejemplo sencillo.

Ejemplo. Si queremos calcular el polinomio característico de

\begin{align*}
A=\begin{pmatrix} 1 & -1\\ 1 &0\end{pmatrix}\in M_2(\mathbb{R})
\end{align*}

entonces usamos la definición

\begin{align*}
\chi_A(X)&=\det(X\cdot I_2-A)\\&=\begin{vmatrix} X-1 & 1\\ -1 & X\end{vmatrix}\\&= X(X-1)+1.
\end{align*}

Y así los eigenvalores de $A$ son las raíces reales de $\chi_A(X)$. Es decir, tenemos que resolver

\begin{align*} 0=x(x-1)+1=x^2-x+1.\end{align*}

Sin embargo, el discriminante de esta ecuación cuadrática es $(-1)^2-4(1)(1)=-3$, el cual es un real negativo, por lo que no tenemos eigenvalores reales. Si estuviéramos trabajando en $\mathbb{C}$ tendríamos dos eigenvalores complejos:

\begin{align*}
x_{1,2}= \frac{1\pm i\sqrt{3}}{2}.
\end{align*}

De aquí, ¿cómo encontramos los eigenvectores y eigenespacios? Basta con resolver los sistemas lineales homogéneos de ecuaciones $(A-x_1I_2)X=0$ para encontrar el $x_1$-eigenespacio y $(A-x_2)X=0$ para encontrar el $x_2$-eigenespacio.

$\square$

Algunos cálculos de polinomios característicos

Ya que calcular polinomios característicos se reduce a calcular determinantes, te recomendamos fuertemente que recuerdes las propiedades que tienen los determinantes. Sobre todo, aquellas que permiten calcularlos.

¡A calcular polinomios característicos!

Problema. Encuentra el polinomio característico y los eigenvalores de $A$ dónde $A$ es

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0 & 0\\
2 & 0 & -1 & 0\\
0 & 7 & 0 &6\\
0 & 0 & 3 & 0
\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. Usamos la expansión de Laplace respecto al primer renglón:

\begin{align*}
\chi_A(X)&=\det(XI_4-A)\\&= \begin{vmatrix}
X & -1 & 0 & 0\\
-2 & X & 1 & 0\\
0 & -7 & X & -6\\
0 & 0 & -3 & X\end{vmatrix}\\
&= X\begin{vmatrix} X & 1 & 0\\ -7 & X & -6\\ 0 & -3 & X\end{vmatrix}+ \begin{vmatrix}
-2 & 1 & 0\\ 0 & X& -6\\ 0 &-3 & X\end{vmatrix}\\
&= X(X^3-11X)-2(X^2-18)\\
&= X^4-13X^2+36.
\end{align*}

Después, para encontrar los eigenvalores de $A$ tenemos que encontrar las raíces reales de la ecuación

\begin{align*}
x^4-13x^2+36=0.
\end{align*}

Sin embargo, no hay que desalentarse por ver una ecuación de grado $4$. Si hacemos el cambio $y=x^2$ podemos llevar nuestro problema a resolver

\begin{align*}
y^2-13y+36=0.
\end{align*}

¡Es una ecuación de segundo orden! Esta la podemos resolver usando ‘la chicharronera’ y obtenemos como soluciones $y_1=4$ y $y_2=9$. Pero todavía tenemos que resolver $x^2=y_1$ y $x^2=y_2$. Al resolver estas últimas dos ecuaciones obtenemos que $x=\pm 2,\pm 3$ son los eigenvalores de $A$.

$\square$

Problema. Calcula el polinomio característico y los eigenvalores de la matriz

\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 &1 \end{pmatrix}\in M_3(F_2).
\end{align*}

Solución. Nota que estamos trabajando en el campo de dos elementos $F_2$, por lo que $-1=1$. Usando la definición:

\begin{align*}
\chi_A(X)&=\det(XI_3-A)\\&= \begin{vmatrix} X-1 & 0 & -1\\ -1 & X-1 & 0\\ -1 & 0 &X-1\end{vmatrix}\\
&= \begin{vmatrix} X+1 & 0 & 1\\ 1 & X+1& 0 \\ 1 & 0 &X+1\end{vmatrix}.
\end{align*}

Aquí estamos usando repetidamente $-1=1$. Usamos otra vez la expansión de Laplace en el primer renglón para llegar a

\begin{align*}
\chi_A(X)&= (X+1)\begin{vmatrix} X+1 & 0 \\ 0 & X+1\end{vmatrix}+\begin{vmatrix} 1 & X+1\\ 1 & 0\end{vmatrix}\\
&= (X+1)^3-(X+1).
\end{align*}

Luego, si queremos encontrar los eigenvalores de $A$ tenemos que resolver

\begin{align*}
(x+1)^3-(x+1)=0.
\end{align*}

Si bien existen varias maneras de resolver la ecuación, podemos simplemente sustituir los únicos valores posibles de $x$ : $0$ o $1$. Sustituyendo es fácil ver que ambos satisfacen la ecuación, por lo que los eigenvalores de $A$ son $0$ y $1$.

$\square$

Tarea moral

  • Demuestra que $0$ es un eigenvalor de una matriz $A$ si y sólo si $\det(A)=0$.
  • ¿Una matriz compleja de tamaño $n$ tiene necesariamente $n$ eigenvalores distintos?
  • Calcular el polinomio característico y los eigenvalores de
    \begin{align*}A=\begin{pmatrix} 1 & 2 & 0\\ 0 & 1 &2\\ 2 & 0 & 1\end{pmatrix}\in M_3(F_3).
    \end{align*}
  • Usando la fórmula del determinante para matrices de tamaño $2$, encuentra un criterio simple para saber si una matriz con entradas reales de tamaño $2$ tiene dos, uno o ningún eigenvalor real.
  • Da un criterio simple para saber si una matriz de tamaño $2$ con entradas complejas tiene eigenvalores puramente imaginarios.

Más adelante

En la próxima entrada calcularemos el polinomio característico de una variedad de matrices importantes: triangulares superiores, nilpotentes, etc. Esto nos permitirá entender mejor al polinomio característico y lidiar con muchos casos para facilitarnos los cálculos más adelante.

Álgebra Lineal II: Aplicar polinomios a transformaciones lineales y matrices

Introducción

Varios de los resultados fundamentales de Álgebra Lineal se obtienen al combinar las idea de transformaciones lineales con la de polinomios. El objetivo de esta entrada es introducir el concepto de «aplicar polinomios a matrices» o equivalentemente «aplicar polinomios a transformaciones lineales». La idea fundamental es simple: las potencias en los polinomios se convierten en repetidas aplicaciones de la transformación y las constantes en múltiplos de la identidad. Si bien esta idea es simple, más adelante veremos aplicaciones importantes y con un gran alcance. Uno de los resultados cruciales que surge de esta idea es el conocido teorema de Cayley-Hamilton.

Primeras construcciones

Sea $V$ un espacio vectorial sobre un campo $F$, y sea $T:V\to V$ una transformación lineal. Definimos a la transformación $T^n:V\to V$ para cualquier $n\in \mathbb{N}$ inductivamente a través de

\begin{align*}
T^0=\operatorname{Id}, \hspace{5mm} T^{i+1}= T\circ T^{i},
\end{align*}

donde, recordamos, $\operatorname{Id}$ es la transformación identidad. Intuitivamente, $T^n$ es la «$n$-ésima composición» de $T$. Por ejemplo, $T^3(v)$ no es más que $T(T(T(v)))$ y $T^0(v)$ es simplemente «no usar $T$ para nada», es decir, $\operatorname{Id}(v)=v$. Al componer iteradamente $T$, sigue siendo una transformación lineal de $V$ a $V$, así que $T^n$ es transformación lineal de $V$ a $V$ para todo entero $n\geq 0$.

Ya que hablamos de «potencias» de una transformación lineal, podemos rápidamente hacer sentido de un «polinomio evaluado en una transformación lineal». Si $$P(X)=a_0+a_1X+a_2X^2+\dots + a_n X^n\in F[X]$$ es un polinomio, definimos $P(T):V\to V$ como

\begin{align*}
P(T):= a_0 T^{0}+ a_1 T^1+ a_2 T^2+\dots +a_n T^n.
\end{align*}

Como las transformaciones lineales de $V$ a $V$ son cerradas bajo combinaciones lineales, entonces $P(T)$ también es una transformación lineal de $V$ a $V$.

Ejemplo. Tomemos a la transformación $T:\mathbb{R}^2\to \mathbb{R}^2$ dada por $T(x,y)=(2x-2y,x+y)$. Tomemos al polinomio $P(x)=x^3-2x+4$. ¿Quién es la transformación $P(T)$? Calculemos primero las «potencias» de $T$:

\begin{align*}
T^0(x,y)&=(x,y)\\
T^1(x,y)&=T(x,y)\\
&=(2x-2y,x+y)\\
T^2(x,y)&=T(T(x,y))\\
&=T(2x-2y,x+y)\\
&=(2(2x-2y)-2(x+y),(2x-2y)+(x+y))\\
&=(2x-6y,3x-y)\\
T^3(x,y)&=T(2x-6y,3x-y)\\
&=(-2x-10y,5x-7y).
\end{align*}

Ahora sí, ya podemos saber qué hace $P(T)$. Tenemos:

\begin{align*}
P(T)(x,y)&=(T^3-2T+4\text{Id})(x,y)\\
&=(-2x-10y,5x-7y)-2(2x-2y,x+y)+4(x,y)\\
&=(-2x-6y,3x-5y).
\end{align*}

$\square$

Sumas y productos de polinomios

Las operaciones suma y producto de polinomios se traducen, respectivamente, a suma y composición de las evaluaciones en transformaciones lineales. Esta es una linda propiedad que podemos hacer precisa gracias a la siguiente proposición.

Proposición. Si $P_1, P_2\in F[X]$ son dos polinomios y $T:V\to V$ es una transformación lineal, entonces

  1. $ (P_1+P_2)(T)=P_1(T)+P_2(T)$,
  2. $(P_1P_2)(T)=P_1(T)\circ P_2(T)$.

Te invitamos a demostrar esta proposición. Advertimos que, sin embargo, no se cumplen identidades como $$P(T_1+T_2)=P(T_1)+P(T_2)$$ o bien $$P(T_1\circ T_2)=P(T_1)\circ P(T_2).$$ Un contraejemplo para la primera identidad podría ser tomar$P(X)=X^2$ y $T_1=T_2=\operatorname{Id}$. En este caso

\begin{align*}
P(T_1+T_2)&=(T_1+T_2)^2\\&= 4\operatorname{Id}\\&\neq 2\operatorname{Id}\\&=P(T_1)+P(T_2).
\end{align*}

Dejamos como ejercicio el verificar que la segunda identidad tampoco es cierta en general. Fijando $T$, podemos juntar a todas las transformaciones de la forma $P(T)$ para algún $P$ en la siguiente estructura.

Definición. La $F$-álgebra generada por la transformación $T$ es el conjunto

\begin{align*}
F[T]=\lbrace P(T)\mid P\in F[X]\rbrace.
\end{align*}

Una consecuencia de la proposición anterior (es más, ¡una mera traducción!) es la siguiente.

Proposición. Para cualesquiera $x,y\in F[T]$ y $c\in F$ se cumple que $x+cy\in F[T]$ y $x\circ y\in F[T].$ Es decir, $F[T]$ es un subespacio del espacio de todas las transformaciones lineales de $V$ en $V$ que además es estable bajo composición.

También puedes verificar que $F[T]$ es el subespacio más chico (en el sentido de contención) del espacio de transformaciones lineales en $V$ que contiene a $T$, a $\operatorname{Id}$ y que es cerrado bajo composiciones.

Lo mismo pero con matrices

Desde Álgebra Lineal I sabemos que una transformación lineal se corresponde de manera biunívoca (fijando una base) con una matriz. Nuestra discusión previa se puede adaptar a este vocabulario, y eso es lo que haremos ahora.

Si $A\in M_n(F)$ es una matriz cuadrada de orden $n$ con coeficientes en $F$, podemos entender a $A^n$ simplemente como el $n$-ésimo producto de $A$ consigo misma. Luego si $$P(X)=a_0+a_1X+a_2 X^2+\dots +a_n X^n\in F[X]$$ es un polinomio, definimos

\begin{align*}
P(A):= a_0 I_n +a_1 A+ a_2 A^2+\dots+ a_n A^n.
\end{align*}

Se cumple que $(PQ)(A)=P(A)\cdot Q(A)$ para cualesquiera polinomios $P,Q$ y cualquier matriz $A$. Similarmente el álgebra generada por $A$ se define como

\begin{align*}
F[A]=\lbrace P(A)\mid P\in F[X]\rbrace,
\end{align*}

y es un subespacio de $M_n(F)$ que es cerrado bajo producto de matrices.

Ejemplo. Consideremos la matriz $A=\begin{pmatrix}2&-2\\1&1\end{pmatrix}$. Consideremos el polinomio $P(x)=x^3-2x+4$. ¿Quién es la matriz $P(A)$? Usando la definición, primero nos enfocaremos en encontrar las potencias de $A$. Puedes verificar por tu cuenta que:

\begin{align*}
A^0&=\begin{pmatrix}1&0\\0&1\end{pmatrix}\\
A^1&=\begin{pmatrix}2&-2\\1&1\end{pmatrix}\\
A^2&=\begin{pmatrix}2&-6\\3&-1\end{pmatrix}\\
A^3&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix}
\end{align*}

De esta manera,

\begin{align*}
P(A)&=A^3-2A+4I_2\\
&=\begin{pmatrix}-2&-10\\5&-7\end{pmatrix} – 2 \begin{pmatrix}2&-2\\1&1\end{pmatrix} + 4 \begin{pmatrix}1&0\\0&1\end{pmatrix}\\
&=\begin{pmatrix}-2&-6 \\ 3 & -5 \end{pmatrix}.
\end{align*}

$\square$

Este ejemplo se parece mucho al ejemplo que hicimos cuando evaluamos un polinomio en una transformación $T$. Esto no es casualidad, y se puede resumir en la siguiente observación.

Observación. Si $A$ es la matriz asociada a $T$ en alguna base, entonces $P(A)$ es la matriz asociada a $P(T)$ en dicha base.

Unos problemas para calentar

A continuación veremos algunos unos cuantos problemas resueltos para que te familiarices con los conceptos que acabamos de ver de manera un poco más teórica.

Problema.

  1. Si $A,B\in M_n(F)$ son matrices con $B$ invertible, demuestra que para cualquier $P\in F[X]$ se cumple
    \begin{align*}
    P(BAB^{-1})=BP(A)B^{-1}.
    \end{align*}
  2. Demuestra que si $A,B\in M_n(F)$ son similares, entonces $P(A)$ y $P(B)$ son similares para cualquier $P\in F[X]$.

Solución.

  1. Primero supongamos que $P(X)=X^k$ para alguna $k\geq 1$. Necesitamos demostrar que $\left(BAB^{-1}\right)^{k}= BA^{k}B^{-1}$, y esto lo podemos verificar sencillamente pues
    \begin{align*}
    (BAB^{-1})\cdot (BAB^{-1})\cdots (BAB^{-1})&= BA(B^{-1} B) A \cdots (B^{-1}B)AB^{-1}\\
    &= BA^{k}B^{-1},
    \end{align*}
    donde usamos que $BB^{-1}=I_n$. Más generalmente, si $P(X)=a_0+a_1 X+a_2X^2+\dots +a_n X^n$ entonces
    \begin{align*}
    P(BAB^{-1})&= \sum_{i=0}^{n} a_i (BAB^{-1})^{i}\\
    &= \sum_{i=0}^{n}a_i BA^{i}B^{-1}\\
    &= B\left(\sum_{i=0}^{n} a_i A^{i}\right)B^{-1}\\
    &= BP(A)B^{-1}
    \end{align*}
    que es lo que queríamos demostrar.
  2. Como $A$ y $B$ son similares, existe $C$ invertible tal que $A=CBC^{-1}$. Por el inciso anterior tenemos
    \begin{align*}
    P(A)=P(CBC^{-1})=CP(B)C^{-1}.
    \end{align*}
    Así, $P(A)$ y $P(B)$ son similares.

$\square$

Problema. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix}
\end{align*}

así como el polinomio $P(X)=X^2+2X-1$. Calcula $P(A)$.

Solución. Es cuestión de hacer los cálculos. Vemos que

\begin{align*}
A^2= \begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix}
\end{align*}

y así

\begin{align*}
P(A)&=A^2+2A-I_3\\&=\begin{pmatrix}
-2 & 0 & -1\\
0 & -2 & 14\\
0 & 0 & 16
\end{pmatrix} + 2\begin{pmatrix}
0 & 1 & -1\\
-2 & 0 & 3\\
0 & 0 & 4
\end{pmatrix} -\begin{pmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{pmatrix}\\
&=\begin{pmatrix}
-3 & 2 & -3\\
-4 & -3 & 20\\
0 & 0 & 23
\end{pmatrix}.
\end{align*}

$\square$

Problema. Si $A$ es simétrica, demuestra que $P(A)$ es simétrica para cualquier polinomio $P$.

Solución. La demostración se basa en los siguientes hechos:

  1. Si $A=(a_{ij})$ y $B=(b_{ij})$ son matrices simétricas y $c\in F$ es un escalar, entonces $A+cB$ es simétrica, puesto que
    \begin{align*}
    (A+cB)_{ij}= a_{ij}+cb_{ij}= a_{ji}+cb_{ji}= (A+cB)_{ji}.
    \end{align*}
  2. Si $A,B$ son simétricas, su producto es una matriz simétrica. De nuevo, basta con hacer el cálculo
    \begin{align*}
    (AB)_{ij}=\sum_{k=1}^{n} a_{ik}b_{kj}=\sum_{k=1}^{n} b_{jk}a_{ki}= (AB)_{ji} .
    \end{align*}
  3. Usando el inciso anterior, se sigue que si $A$ es simétrica, entonces $A^{k}$ es simétrica para toda $k\geq 1$. Además, $I_n$ es simétrica y por el primer punto tenemos que toda combinación lineal de matrices simétricas es simétrica. En particular $P(A)$ es simétrica.

$\square$

Problema. Sea $V$ el espacio vectorial de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ infinitamente diferenciables. Sea $T:V\to V$ dada por $T:f\mapsto f’$. ¿Puedes encontrar un polinomio $P\in \mathbb{R}(X)$ distinto de cero tal que $P(T)=0$?

Solución. No es posible encontrar dicho polinomio. Suponiendo que sí, tendríamos que $P(T)$ es una ecuación diferencial polinomial de orden $n$, es decir, a cada función la evaluamos en una combinación

\begin{align*}
a_0f+a_1f’+a_2f»+\dots + a_n f^{n}
\end{align*}

donde $f^n$ es la $n$-ésima derivada. Si $P(T)$ es idénticamente cero, tenemos que toda función suave $f$ satisface esta ecuación. En particular tenemos que la constante $g(x)=1$ la satisface. Así $g’=g»=\dots=g^{n}=0$ y entonces

\begin{align*}
P(T)(g)= a_0 g+a_1g+\dots +a_ng^{n}=a_0=0.
\end{align*}

Concluimos que $a_0=0$. Luego, si consideramos a la función identidad $h(x)=x$ entonces también se tiene que cumplir la ecuación (recordamos que ya eliminamos el término $a_0$). Así

\begin{align*}
P(T)(h)= a_1h’+a_2h»+\dots +a_nh^{n}= a_1=0,
\end{align*}

donde usamos que $h'(x)=1$ y todas las derivadas de orden superior son cero. Continuando con este proceso (evaluando en $x^2,x^3,\ldots$) llegamos a que todos los coeficientes $a_i$ son cero. Esto quiere decir que el polinomio era nulo en primer lugar.

$\square$

Más adelante

En entradas subsecuentes estudiaremos polinomios de matrices con propiedades especiales, como por ejemplo el polinomio mínimo, que se distinguen por sus deseables propiedades algebraicas. Este es el primer paso hacia el teorema de Cayley-Hamilton.

Tarea moral

Aquí hay unos ejercicios para que practiques lo visto en esta entrada.

  1. Compara el ejemplo que se dio de evaluar un polinomio en una transformación $T$ con el de evaluar un polinomio en una matriz $A$. ¿Por qué se parecen tanto?
  2. Considera $V$ el espacio vectorial de funciones $C^\infty$ en el intervalo $[0,2\pi]$ y $D:V\to V$ a la transformación que manda una función a su derivada, es decir $D(f)=f’$. Encuentra un polinomio $P$ tal que $P(D)(\sin(x)+\cos(x))$ sea la función cero.
  3. Demuestra que si $A$ es una matriz diagonal, $P(A)$ también es diagonal.
  4. Si
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2\\
    0 &-1\end{pmatrix}
    \end{align*}
    y $P(X)=X^3-X^2+X-1$, calcula $P(A)$.
  5. Generaliza el último problema de la entrada como sigue: Si $V$ es un espacio vectorial y $T:V\to V$ es tal que existen elementos $v_i$ con $i\in \mathbb{N}$ que cumplen $T^{i}(v_i)\neq 0$ y $T^{j}(v_i)=0$ para $j>i$, entonces no existe $P$ no nulo tal que $P(T)$ sea cero.

Álgebra Lineal I: Problemas de espacios, subespacios y sumas directas

Introducción

En esta entrada resolvemos más problemas para reforzar y aclarar los conceptos vistos anteriormente. Específicamente, resolvemos problemas acerca de espacios vectoriales, subespacios vectoriales y sumas directas.

Problemas resueltos

Problema. Muestra que el conjunto de las funciones continuas $f:[0,1]\to \mathbb{R}$ tales que $f\left(\frac{1}{2}\right)=0$ con las operaciones usuales es un espacio vectorial.

Solución: Primero observamos que nuestras operaciones están bien definidas: sabemos que la suma de funciones continuas es continua y si $f$ es continua y $\lambda\in \mathbb{R}$ es un escalar, entonces $\lambdaf$ es continua. Más aún, si $f\left(\frac{1}{2}\right)=0$ y $g\left(\frac{1}{2}\right)=0$, entonces $(f+g) \left( \frac{1}{2}\right) =f\left( \frac{1}{2}\right) + g\left( \frac{1}{2}\right)=0+0=0$ y $\lambda f\left(\frac{1}{2}\right)=\lambda \cdot 0 =0$. En otras palabras, estos argumentos muestran que el conjunto es cerrado bajo las operaciones propuestas.

Ahora veamos que se cumplen los axiomas de espacio vectorial. Recuerda que para mostrar la igualdad de dos funciones, basta con mostrar que son iguales al evaluarlas en cada uno de los elementos de su dominio. En las siguientes demostraciones, $x$ es un real arbitrario en $[0,1]$

  1. Si $f,g,h$ son parte de nuestro conjunto, entonces
    \begin{align*}
    \left(f+(g+h)\right)(x)&= f(x)+(g+h)(x)\\ &= f(x)+g(x)+h(x) \\ &= (f+g)(x) +h(x)\\ &= ((f+g)+h)(x).
    \end{align*}
    Aquí estamos usando la asociatividad de la suma en $\mathbb{R}$
  2. Si $f,g$ son como en las condiciones, dado que la suma en números reales es conmutativa, $(f+g)(x)= f(x)+g(x)= g(x)+f(x)=(g+f)(x)$.
  3. La función constante $0$ es un neutro para la suma. Sí está en el conjunto pues la función $0$ en cualquier número (en particular en $\frac{1}{2}$) tiene evaluación $0$.
  4. Dada $f$ continua que se anula en $\frac{1}{2}$, $-f$ también es continua y se anula en $\frac{1}{2}$ y $f+(-f)= (-f)+f=0$.
  5. Si $a,b\in \mathbb{R}$ entonces $a(bf)(x)= a(bf(x))= (ab)f(x)$, por la asociatividad del producto en $\mathbb{R}$.
  6. Es claro que la constante $1$ satisface que $1\cdot f=f$, pues $1$ es una identidad para el producto en $\mathbb{R}$.
  7. $(a+b)f(x)= af(x)+bf(x)$, por la distributividad de la suma en $\mathbb{R}$
  8. $a\cdot (f+g)(x) = a\cdot (f(x)+g(x))= a\cdot f(x)+a\cdot g(x)$, también por la distributividad de la suma en $\mathbb{R}$.

Observa como las propiedades se heredan de las propiedades de los números reales: En cada punto usamos que las operaciones se definen puntualmente, luego aplicamos las propiedades para los números reales, y luego concluimos el resultado (como por ejemplo, en la prueba de la conmutatividad).

$\square$

Problema. Muestra que ninguno de los siguientes es un subespacio vectorial de $\mathbb{R}^3$.

  1. El conjunto $U$ de los vectores $x=(x_1, x_2, x_3)$ tales que $x_1^2+x_2^2+x_3^2=1$.
  2. El conjunto $V$ de todos los vectores en $\mathbb{R}^3$ con números enteros por coordenadas.
  3. El conjunto $W$ de todos los vectores en $\mathbb{R}^3$ que tienen al menos una coordenada igual a cero.

Solución:

  1. Notamos que el conjunto $U$ no es cerrado bajo sumas: En efecto, el vector $(1,0,0)\in U$, pues $1^2+0^2+0^2=1$, así como $(-1,0,0)\in U$, pues $(-1)^2+0^2+0^2=1$. Sin embargo su suma es $(0,0,0)$, que no es un elemento de $U$.
  2. Mientras que $V$ si es cerrado bajo sumas, no es cerrado bajo producto por escalares. Por ejemplo, $(2,8,1)\in V$, sin embargo $\frac{1}{2} (2,8,1)= \left(1,4,\frac{1}{2}\right)\notin V$, pues la última coordenada no es un número entero.
  3. El conjunto si es cerrado bajo producto por escalares, pero no bajo sumas: Tomando $(1,1,0)$ y $(0,0,1)$ en $W$, tenemos que $(1,1,0)+(0,0,1)=(1,1,1)\notin W$.

$\square$

Problema. Sea $V$ el conjunto de todas las funciones $f:\mathbb{R}\to \mathbb{R}$ dos veces diferenciables (es decir, que tienen segunda derivada) que cumplen para todo $x\in \mathbb{R}$:

\begin{align*}
f»(x)+x^2 f'(x)-3f(x)=0.
\end{align*}

¿Es $V$ un subespacio de las funciones de $\mathbb{R}$ en $\mathbb{R}$ ?

Solución: En efecto, podemos verificar que $V$ cumple las condiciones de subespacio:

  1. Observamos que la función $f\equiv 0$ es dos veces diferenciable y satisface
    \begin{align*}
    f»(x)+x^2 f'(x)-3f(x)=0+x^2 \cdot 0 -3\cdot 0=0.
    \end{align*}
    Es decir $0\in V$. Esto muestra que $V$ es no vacío.
  2. Sean $f,g\in V$. Sabemos que entonces $f+g$ también es dos veces diferenciable (por ejemplo, de un curso de cálculo). Además
    \begin{align*}
    &(f+g)»(x)+x^2 (f+g)'(x)-3(f+g)(x)\\ & = f»(x)+g»(x)+x^2 f'(x)+x^2 g'(x)-3f(x)-3g(x)\\& = f»(x)+x^2f(x)-3f(x)+ g»(x)+x^2g(x)-3g(x)\\& =0+0=0.
    \end{align*}
    Así $f+g\in V$.
  3. Finalmente sea $f\in V$ y sea $\lambda \in \mathbb{R}$ un escalar. Sabemos que $\lambda f$ es dos veces diferenciable, y además
    \begin{align*}
    &\left(\lambda f\right)»(x)+x^2\left(\lambda f\right)(x)-3(\lambda f)(x)\\ &= \lambda f»(x)+\lambda x^2 f'(x)-\lambda 3f(x)\\ &= \lambda (f»(x)+x^2f'(x)-3f(x))\\ &= \lambda \cdot 0 =0.
    \end{align*}
    Luego $\lambda f\in V$.

$\square$

El ejemplo anterior es crucial para la intuición de tu formación matemática posterior. En él aparece una ecuación diferencial lineal homogénea. La moraleja es que «las soluciones a una ecuación diferencial lineal homogénea son un subespacio vectorial». En este curso no nos enfocaremos en cómo resolver estas ecuaciones, pues esto corresponde a un curso del tema. Sin embargo, lo que aprendas de álgebra lineal te ayudará mucho para cuando llegues a ese punto.

Problema. Sea $V$ el espacio de todas las funciones de $\mathbb{R}$ en $\mathbb{R}$ y sea $W$ el subconjunto de $V$ formado por todas las funciones $f$ tales que $f(0)+f(1)=0$.

  1. Verifica que $W$ es un subespacio de $V$.
  2. Encuentra un subespacio $S$ de $W$ tal que $V=W\oplus S$.

Solución:

  1. Verificamos los axiomas de subespacio vectorial:
    1. Tenemos que $0\in W$, pues $0(0)+0(1)=0+0=0$. Entonces $W$ no es vacío.
    2. Si $f,g\in W$ entonces $(f+g)(0)+(f+g)(1)= f(1)+f(0)+g(1)+g(0)=0+0=0$.
    3. Si $f\in W$ y $\lambda \in \mathbb{R}$ entonces $\lambda f(0)+\lambda f(1)= \lambda(f(0)+f(1))=\lambda \cdot 0=0$.
  2. Proponemos $S$ como el subespacio de todas las funciones $h$ tales que $h(x)=ax$ con $a\in \mathbb{R}$. Verifiquemos que $V=W\oplus S$.
    1. Si $F\in W\cap S$ entonces $F(0)+F(1)=0$, es decir $F(0)=-F(1)$, pero como $F(x)=ax$ para algún $a\in \mathbb{R}$ entonces $F(0)=0=F(1)=a$. Luego $F(x)=0\cdot x=0$.
    2. Dada $f\in V$, definimos
      \begin{align*}
      \hat{f}(x)= f(x)-(f(0)+f(1))x.
      \end{align*}
      Observamos que $\hat{f}\in W$, pues
      \begin{align*}
      \hat{f}(0)+\hat{f}(1)= f(0)+f(1)-f(0)-f(1)=0.
      \end{align*}
      Además es claro que
      \begin{align*}
      f(x)&= f(x)-(f(0)+f(1))x+(f(0)+f(1))x\\&= \hat{f}(x)+\left(f(0)+f(1)\right)x
      \end{align*}
      donde el sumando de la derecha es de la forma $a\cdot x$. Así $S+W=V$.

$\square$

Tarea moral

Sea $A$ un conjunto no vacío. Sea $\mathcal{P}(A)$ el conjunto de todos los subconjuntos de $A$. Definimos las siguientes operaciones:
\begin{align*}
X+Y= X\Delta Y,\hspace{5mm} 1\cdot X=X,\hspace{5mm} 0\cdot X= \emptyset,\end{align*}
dónde $\Delta$ denota la operación de diferencia simétrica. Demuestra que así definido, $\mathcal{P}(A)$ es un espacio vectorial sobre el campo de dos elementos $\mathbb{F}_2$.

Entradas relacionadas

Álgebra Lineal I: Teorema espectral para matrices simétricas reales

Introducción

En esta entrada demostramos el teorema espectral para matrices simétricas reales en sus dos formas. Como recordatorio, lo que probaremos es lo siguiente.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Teorema. Sea $A$ una matriz simétrica en $\mathbb{R}^n$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $\mathbb{R}^n$, tales que $$A=P^{-1}DP.$$

Para ello, usaremos los tres resultados auxiliares que demostramos en la entrada de eigenvalores de matrices simétricas reales. Los enunciados precisos están en ese enlace. Los resumimos aquí de manera un poco informal.

  • Los eigenvalores complejos de matrices simétricas reales son números reales.
  • Si una transformación $T$ es simétrica y $W$ es un subespacio estable bajo $T$, entonces $W^\bot$ también lo es. Además, $T$ restringida a $W$ o a $W^\bot$ también es simétrica.
  • Es lo mismo que una matriz sea diagonalizable, a que exista una base formada eigenvectores de la matriz.

Además de demostrar el teorema espectral, al final de la entrada probaremos una de sus consecuencias más importantes. Veremos una clasificación de las matrices que inducen formas bilineales positivas.

Demostración de la primera versión del teorema espectral

Comenzamos mostrando la siguiente versión del teorema espectral.

Teorema. Sea $V$ un espacio euclideano y $T:V\to V$ una transformación simétrica. Entonces, existe una base ortonormal de $V$ que consiste de eigenvectores de $T$.

Demostración. Como $V$ es espacio Euclideano, entonces tiene cierta dimensión finita $n$. Haremos inducción fuerte sobre $n$. Si $n=1$, el polinomio característico de $T$ es de grado $1$ y con coeficientes reales, así que tiene una raíz $\lambda$ real. Si $v$ es un eigenvector de $T$ para $\lambda$, entonces $\frac{v}{\norm{v}}$ también es eigenvector de $T$ y conforma una base ortonormal para $V$.

Supongamos que el resultado es cierto para todo espacio Euclideano de dimensión menor a $n$ y tomemos $V$ espacio Euclideano de dimensión $n$. Por el teorema fundamental del álgebra, el polinomio característico de $T$ tiene por lo menos una raíz $\lambda$ en $\mathbb{C}$. Como $T$ es simétrica, cualquier matriz $A$ que represente a $T$ también, y $\lambda$ sería una raíz del polinomio característico de $A$. Por el resultado que vimos en la entrada anterior, $\lambda$ es real.

Consideremos el kernel $W$ de la transformación $\lambda \text{id} – T$. Si $W$ es de dimensión $n$, entonces $W=V$, y por lo tanto $T(v)=\lambda v$ para todo vector $v$ en $V$, es decir, todo vector no cero de $V$ es eigenvector de $T$. De esta forma, cualquier base ortonormal de $V$ satisface la conclusión. De esta forma, podemos suponer que $W\neq V$ y que por lo tanto $1\leq \dim W \leq n-1$, y como $$V=W\oplus W^\bot,$$ se obtiene que $1\leq \dim W^\bot \leq n-1$. Sea $B$ una base ortonormal de $W$, que por lo tanto está formada por eigenvectores de $T$ con eigenvalor $\lambda$.

Como la restricción $T_1$ de $T$ a $W^\bot$ es una transformación simétrica, podemos aplicar la hipótesis inductiva y encontrar una base ortonormal $B’$ de eigenvectores de $T_1$ (y por lo tanto de $T$) para $W^\bot$.

Usando de nuevo que $$V=W\oplus W^\bot,$$ tenemos que $B\cup B’$ es una base de $V$ formada por eigenvectores de $T$.

El producto interior de dos elementos distintos de $B$, o de dos elementos distintos de $B’$ es cero, pues individualmente son bases ortonormales. El producto de un elemento de $B$ y uno de $B’$ es cero pues un elemento está en $W$ y el otro en $W^\bot$. Además, todos los elementos de $B\cup B’$ tiene norma $1$, pues vienen de bases ortogonales. Esto muestra que $B\cup B’$ es una base ortonormal de $V$ que consiste de eigenvectores de $T$.

$\square$

Demostración de la segunda versión del teorema espectral

Veamos ahora la demostración del teorema espectral en su enunciado con matrices.

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Entonces, existe una matriz ortogonal $P$ y una matriz diagonal $D$, ambas en $M_n(\mathbb{R})$, tales que $$A=P^{-1}DP.$$

Demostración. Como $A$ es una matriz simétrica, la transformación $T:F^n\to F^n$ dada por $T(X)=AX$ es simétrica. Aplicando la primer versión del teorema espectral, existe una base ortonormal de $F^n$ que consiste de eigenvectores de $T$. Digamos que estos eigenvectores son $C_1,\ldots,C_n$. Por definición de $T$, estos eigenvectores de $T$ son exactamente eigenvectores de $A$.

Anteriormente demostramos que si construimos a una matriz $B$ usando a $C_1,\ldots,C_n$ como columnas y tomamos la matriz diagonal $D$ cuyas entradas son los eigenvalores correspondientes $\lambda_1,\ldots,\lambda_n$, entonces $$A=BDB^{-1}.$$

Afirmamos que la matriz $B$ es ortogonal. En efecto, la fila $j$ de la matriz $^t B$ es precisamente $C_j$. De esta forma, la entrada $(i,j)$ del producto ${^tB} B$ es precisamente el producto punto de $C_i$ con $C_j$. Como la familia $C_1,\ldots,C_n$ es ortonormal, tenemos que dicho producto punto es uno si $i=j$ y cero en otro caso. De aquí, se concluye que ${^tB} B=I_n$.

Si una matriz es ortogonal, entonces su inversa también. Esto es sencillo de demostrar y queda como tarea moral. Así, definiendo $P=B^{-1}$, tenemos la igualdad $$A=P^{-1}DP,$$ con $D$ diagonal y $P$ ortogonal, justo como lo afirma el teorema.

$\square$

Matrices positivas y positivas definidas

Una matriz $A$ simétrica en $M_n(\mathbb{R})$ induce una forma bilineal simétrica en $\mathbb{R}^n$ mediante la asignación $$(x,y) \mapsto {^t x} A y,$$ con forma cuadrática correspondiente $$x \mapsto {^t x} A x.$$

Definición. Una matriz $A$ en $M_n(\mathbb{R})$ es positiva o positiva definida si su forma bilineal asociada es positiva o positiva definida respectivamente.

Una de las aplicaciones del teorema espectral es que nos permite dar una clasificación de las matrices simétricas positivas.

Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
  4. $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.

Demostración. (1) implica (2). Supongamos que $A$ es positiva y tomemos $\lambda$ un eigenvalor de $A$. Tomemos $v$ un eigenvector de eigenvalor $\lambda$. Tenemos que:
\begin{align*}
\lambda \norm{v}^2 &=\lambda {^tv} v\\
&= {^t v} (\lambda v)\\
&={^t v} Av\\
&\geq 0.
\end{align*}

Como $\norm{v}^2\geq 0$, debemos tener $\lambda \geq 0$.

(2) implica (3). Como $A$ es matriz simétrica, por el teorema espectral tiene una diagonalización $A=P^{-1}DP$ con $P$ una matriz invertible y $D$ una matriz diagonal cuyas entradas son los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$. Como los eigenvalores son no negativos, podemos considerar la matriz diagonal $E$ cuyas entradas son los reales $\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n}.$ Notemos que $E^2=D$, así que si definimos a la matriz $B=P^{-1}EP$, tenemos que $$B^2=P^{-1}E^2 P = P^{-1}DP = A.$$

Además, $B$ es simétrica pues como $E$ es diagonal y $P$ es ortogonal, tenemos que
\begin{align*}
{^tB} &= {^t P} {^t E} {^t (P^{-1})}\\
&= P^{-1} E P\\
&= B.
\end{align*}

(3) implica (4). Es inmediato, tomando $C=B$ y usando que $B$ es simétrica.

(4) implica (1). Si $A= {^tC} C$ y tomamos un vector $v$ en $\mathbb{R}^n$, tenemos que

\begin{align*}
{^t v} A v &= {^tv} {^tC} C v\\
&= {^t(Cv)} (Cv)\\
&=\norm{Cv}^2\\
&\geq 0,
\end{align*}

lo cual muestra que $A$ es positiva.

$\square$

También hay una versión de este teorema para matrices simétricas positivas definidas. Enunciarlo y demostrarlo queda como tarea moral.

En una entrada final, se verá otra consecuencia linda del teorema espectral: el teorema de descomposición polar. Dice que cualquier matriz con entradas reales se puede escribir como el producto de una matriz ortogonal y una matriz simétrica positiva.

Más allá del teorema espectral

Durante el curso introdujimos varias de las nociones fundamentales de álgebra lineal. Con ellas logramos llegar a uno de los teoremas más bellos: el teorema espectral. Sin embargo, la teoría de álgebra lineal no termina aquí. Si en tu formación matemática profundizas en el área, verás otros temas y resultados fundamentales como los siguientes:

  • El teorema de Cayley-Hamiltón: toda matriz se anula en su polinomio característico.
  • La clasificación de matrices diagonalizables: una matriz es diagonalizable si y sólo si su polinomio característico se factoriza en el campo de la matriz, y la multiplicidad algebraica de sus eigenvalores corresponde con la multiplicidad geométrica.
  • El teorema de la forma canónica de Jordan: aunque una matriz no se pueda diagonalizar, siempre puede ser llevada a una forma estándar «bonita».
  • Productos interiores con imágenes en $\mathbb{C}$, a los que también se les conoce como formas hermitianas.
  • Los polinomios mínimos de matrices y transformaciones, que comparten varias propiedades con el polinomio característico, pero dan información un poco más detallada.

Tarea moral

  • Muestra que la inversa de una matriz ortogonal es ortogonal.
  • Encuentra una base ortonormal de $\mathbb{R}^3$ conformada por eigenvectores de la matriz $\begin{pmatrix}10 & 0 & -7\\ 0 & 3 & 0 \\ -7 & 0 & 10\end{pmatrix}.$
  • Determina si la matriz anterior es positiva y/o positiva definida.
  • Enuncia y demuestra un teorema de clasificación de matrices simétricas positivas definidas.
  • Muestra que la matriz $$\begin{pmatrix}5 & 1 & 7\\1 & 10 & -7\\7 & -7 & 18\end{pmatrix}$$ es positiva.

Más adelante…

En esta entrada discutimos dos demostraciones del teorema espectral. Sólo nos falta discutir cómo podemos aplicarlo. En la siguiente entrada trabajaremos con algunos problemas, por ejemplo, ver cómo se usa para demostrar que una matriz simétrica no es diagonalizable.

Finalmente, discutiremos cómo podemos pensar en las nociones de continuidad y acotamiento en el álgebra lineal.

Entradas relacionadas