Álgebra lineal II: Repaso de producto interior

Introducción

Como mencionamos en la entrada anterior, una de las aplicaciones más útiles de las formas cuadráticas es que a base de ellas se puede definir un concepto sumamente importante, el producto interior (también llamado producto interno o producto punto en algunos casos específicos).

Utilizando esto podemos introducir otro par de conceptos igualmente importantes (si no es que más), siendo estos norma y distancia, estos sin embargo salen del interés de esta materia por lo que sólo los mencionaremos sin abundar en ellos.

Producto interior

Antes de empezar con esta definición, debemos agregar un par de condiciones extra a las formas cuadráticas.

Definición

Sea $V$ un espacio vectorial en $\mathbb{R}$, $b: V \times V \rightarrow \mathbb{R}$ una forma bilineal simétrica y $q: V \rightarrow \mathbb{R}$

Diremos que $b$ es positiva si
\begin{align*} \forall x \in V \text{ se tiene que } b(x,x) \geq 0. \end{align*}
Diremos que $b$ es definida positiva si
\begin{align*} \forall x \in V-\{ 0 \} \text{ se tiene que } b(x,x) > 0 \end{align*}
Dándose la igualdad únicamente si $v=0$.

De una manera semejante

Diremos que $q$ es positiva si su forma polar es positiva.

Diremos que $q$ es definida positiva si su forma polar es definida positiva.

Notemos que para saber si una forma cuadrática NO es positiva (ni definida positiva) no siempre es necesario conocer su polar, basta encontrar un vector tal que al calcular $q(x)$ este sea negativo, ya que esto garantiza que al calcular $b(x,x)$ será igualmente negativa.

En los siguientes ejemplos sea $V=\mathbb{R}^3$ espacio vectorial sobre $\mathbb{R}$.

Ejemplo

$q (x_1, x_2, x_3) = x_1x_2+x_2x_3+x_3x_1$.

Notemos que esta no es positiva, ya que tomando al vector $(-1,1,0) $ tenemos que
\begin{align*} q(-1,1,0)= -1 \end{align*}
Ejemplo

$q (x_1, x_2, x_3) = x_1^2+2(x_2-x_3) ^2+3(x_3-x_1) ^2$.

Calculemos la polar de esto, para ello recordemos la identidad de polarización que vimos aquí
\begin{align*} b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2} \end{align*}
Calculemos por separado $q(x+y)$ y $-q(x)-q(y)$
\begin{align*} q(x+y)=(x_1+y_1)^2+2(x_2+y_2-x_3-y_3)^2+3(x_3+y_3-x_1-y_1)^2 \\
-q(x)-q(y)=-x_1^2-2(x_2-x_3)^2-3(x_3-x_1)^2-y_1^2-2(y_2-y_3)^2-3(y_3-y_1)^2 \end{align*}
y notamos que por la desigualdad del triángulo tenemos que, para cualesquiera $x,y \in \mathbb{R}$
\begin{align*}(x_1+y_1)^2 \geq x_1^2 +y_1^2 \end{align*}
y también
\begin{align*}2(x_2+y_2-x_3-y_3) ^2 \geq 2(x_2-x_3)^2+2(y_2-y_3)^2 \\
3(x_3+y_3-x_1-y_1)^2 \geq 3(x_3-x_1)^2+3(y_3-y_1)^2 \end{align*}
Al juntar estas 3 desigualdades obtenemos
\begin{align*}q(x+y) \geq q(x) + q(y) \end{align*}
Por lo que
\begin{align*} b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2} \geq 0 \end{align*}
Para cualesquiera $x,y \in \mathbb{C}$, entonces $b$ es positiva, por lo que $q$ es positiva, finalmente, revisemos si es definida positiva, para esto, veamos si hay un vector no cero tal que $q (x_1, x_2, x_3) =0$.

Sea $x \in \mathbb{C}$ tal que $q(x)=0$ esto nos arrojaría el siguiente sistema
\begin{align} x_1=0 \nonumber \\
x_2-x_3=0 \nonumber \\
x_3-x_1=0 \nonumber \end{align}
De donde se concluye que $x_1=x_2=x_3=0$ y finalmente $x=0$ por lo que el único vector que anula esta forma cuadrática es el $0$, por lo tanto $q$ es definida positiva.

Teniendo una buena idea de las formas cuadráticas, prosigamos con la definición titular de esta entrada.

Definición

Sea $V$ un espacio vectorial sobre $\mathbb{R}$, llamaremos a $b: V \times V \rightarrow \mathbb{R}$ un producto interno si $b$ es una forma bilineal, simétrica y definida positiva.

Diremos que $V$ es un espacio euclidiano si es un espacio vectorial sobre $\mathbb{R}$ de dimensión finita y con un producto interno.

Como una curiosidad, abundemos un poco sobre este nombre, el término espacio euclidiano originalmente se refería al espacio tridimensional con la geometría euclidiana, usado para modelar el espacio alrededor de nosotros. Tras la introducción de geometrías no euclidianas, se redefinió axiomáticamente, otra forma de definirlo es como lo hemos hecho aquí que se ha mostrado ser equivalente a su antigua definición axiomática. Fuente.

Generalmente, cuando se habla de productos internos la notación usual es $<x,y>$ en vez de $b(x,y)$.

Finalmente, definamos un concepto sumamente importante, la norma.

Definición

Sea $V$ un espacio vectorial sobre $\mathbb{R}$ con $b$ un producto interno en $V$, la norma de $x \in V$ es
\begin{align*} ||x||=\sqrt{b(x,x)}=\sqrt{q(x)} \end{align*}
Con $q$ la forma cuadrática con polar $b$.

Ejemplos

  • $\mathbb{R}^n$ con el producto interno canónico
    \begin{align} <x,y>= \sum_{i=1}^nx_iy_i. \nonumber \end{align}
  • Sea $V=\mathcal{C}^0[a,b]$ el espacio de funciones reales continuas en [a,b].
    \begin{align} <f,g>= \int_a^bf(x)g(x)dx. \nonumber \end{align}

Algo que vale la pena notar es que esta definición difiere un poco de la definición usual de norma, como es de esperarse, al final ambas describen el mismo objeto, pero eso lo abordaremos un poco más adelante.

Desigualdades de Cauchy-Schwarz y Minkowski

Ya con esto, procedamos a las desigualdades prometidas.

Proposición (Desigualdad de Cauchy-Schwarz)

Sea $q: V \rightarrow \mathbb{R}$ una forma cuadrática y $b$ su polar.

  • Si $b$ es positiva, entonces para cualesquiera $x,y \in V$
    \begin{align*} b(x,y)^2 \leq q(x)q(y). \end{align*}
  • Más aún, si $b$ es definida positiva y $b(x,y)^2=q(x)q(y)$ para algún par $x,y \in V$ entonces $x,y$ son linealmente dependientes.

Demostración

Definamos una nueva función como sigue
\begin{align*} F: \mathbb{R} \rightarrow \mathbb{R} \text{ dada por } F(t)=q(x+ty) \end{align*}
Aplicando que $b$ es bilinear y simétrica
\begin{align*} F(t)=b(x+ty, x+ty)=b(x,x)+2tb(x,y)+t^2b(y,y) \end{align*}
De aquí notemos que $F(t)$ es un polinomio de segundo grado en la variable $t$, además como $b$ es positiva tenemos que
\begin{align*} F(t) \geq 0 \end{align*}
Por lo que, calculando el discriminante de $F(t)$
\begin{align*} 4b(x,y)^2 -4b(x,x)b(y,y)=4b(x,y)^2 -4q(x)q(y) \leq 0 \end{align*}
Que finalmente, pasando $4q(x)q(y)$ y dividiendo entre $4$ obtenemos la desigualdad deseada
\begin{align*} b(x,y)^2 \leq q(x)q(y). \end{align*}
Para el inciso b), si $x=0$ o $y=0$ sabemos que $x,y$ son linealmente dependientes, por lo que supongamos que $x,y \neq 0 $, por lo que $q(y)>0$ ya que $q$ es definida positiva, lo que nos asegura que $F(t)$ es una ecuación de segundo grado en $t$, así volviendo a calcular su discriminante tenemos
\begin{align*} 4b(x,y)^2 -4q(x)q(y) = 0 \end{align*}
Ya que $b(x,y)^2=q(x)q(y)$, que a su vez nos indica que $F(t)$ tiene una única solución real, sea esta $t_1$ entonces
\begin{align*} F(t_1)=q(x+t_1y)=0 \end{align*}
Finalmente, como $q$ es definida positiva se debe tener que
\begin{align*} x+t_1y = 0 \end{align*}
Que nos da una combinación lineal de $0$ con coeficientes no todos cero, por lo tanto $x,y$ son linealmente dependientes.

$\square$

Si ya has visto previamente esta desigualdad, probablemente la forma de plantearla y demostrarla no resulte muy familiar, veamos un corolario y un par de ejemplos que tal vez te ayuden a reconocer mejor esta desigualdad y sus usos.

Corolario

Sea $V=$ un espacio vectorial sobre $\mathbb{R}$ con producto interno $<,>$, entonces para cualesquiera $x,y \in V$
\begin{align*}|<x,y>| \leq ||x|| \cdot ||y||. \end{align*}

Ejemplos

Recordando el ejemplo usado arriba, tenemos que $\mathcal{C}^0[a,b]$ el espacio de funciones reales continuas en $[a,b]$ tiene un producto interno y por lo tanto una norma, así, aplicando el corolario tenemos que
\begin{align*} (\int_a^bf(x)g(x))^2 \leq (\int_a^bf(x)^2dx) \cdot (\int_a^bg(x)^2dx).\end{align*}
Que es como probablemente estudiarás esta desigualdad en cursos posteriores.

Otro ejemplo, sea $V$ un espacio vectorial sobre $\mathbb{R}$ con producto interno $<,>$ por el corolario tenemos que
\begin{align*} -1 \leq \frac{<u,v>}{||u||\cdot||v||} \leq 1 \end{align*}
Para cualesquiera $u,v \in \mathbb{V} – \{0\}$, por lo que existe un único ángulo $\theta \in [0, \pi]$ tal que
\begin{align*} cos \theta =\frac{<u,v>}{||u||\cdot||v||}\end{align*}
De donde se definía a $\theta$ como el ángulo entre los vectores $u,v$.
Con esto, procedamos a la siguiente desigualdad.

Proposición (Desigualdad de Minkowski)
Sea $V$ un espacio vectorial sobre $\mathbb{R}$ y $q$ una forma cuadrática positiva en $V$, entonces, para cualesquiera $x,y \in V$
\begin{align} \sqrt{q(x)} + \sqrt{q(y)} \geq \sqrt{q(x+y)}. \nonumber \end{align}
Demostración

Sea $b$ la polar de $q$, por la desigualdad de Cauchy-Schwarz tenemos que
\begin{align*} b(x,y)^2 \leq q(x)q(y) \end{align*}
Que sacando raíz de ambos lados y ya que $b$ es positiva, nos arroja
\begin{align*} b(x,y) \leq \sqrt{q(x)q(y)} \end{align*}
Además, recordando la identidad de polarización, sabemos que
\begin{align*} q(x+y)=q(x)+q(y)+2b(x,y) \end{align*}
Utilizando la desigualdad anterior, se tiene
\begin{align*} q(x+y)=q(x)+q(y)+2b(x,y) \leq q(x)+q(y)+2\sqrt{q(x)q(y)} \end{align*}
Factorizando el lado derecho obtenemos
\begin{align*} q(x+y) \leq (\sqrt{q(x)}+\sqrt{q(y)})^2 \end{align*}
que finalmente, despejando el lado derecho arroja
\begin{align*} \sqrt{q(x+y)} \leq \sqrt{q(x)}+\sqrt{q(y)}.\end{align*}

$\square$

Finalicemos hablando rápidamente de la otra definición de norma que seguramente ya has visto o verás proximamente.

Definición

Sea $V$ un espacio vectorial sobre $\mathbb{R}$ llamaremos norma a $|| \cdot ||: V \rightarrow \mathbb{R}$ una función que cumple las siguientes propiedades:

  • $||v|| \geq 0$ para todo $v \in V$, la igualdad se da si y solo si $v=0$.
  • $||av||=|a|\cdot||v||$ para todo $v \in V$ y para todo $a \in \mathbb{R}$.
  • $||v+w||\leq ||v||+||w||$ para todo $v,w \in V$.

Notemos que en nuestra definición de norma cumple estas tres propiedades, recordemos que $||v||=\sqrt{b(x,x)} $, así la primera se cumple debido a que $b$ se pidió definida positiva, la segunda debido a que $b$ es bilineal y la desigualdad de Minkowski nos garantiza la tercera propiedad.
Más aún, estas dos definiciones son equivalentes, esto de nuevo sale del interés de nuestro curso, pero no estaría de más que lo intentaras demostrar por tu cuenta.

Más adelante

Con esto concluimos nuestro pequeño repaso de producto interno y una de las grandes aplicaciones de las formas bilineales. Como probablemente sabes, los conceptos de producto interno y norma dan pie a un sin fin de teoría muy interesante y útil y poder llegar a ellos desde un enfoque puramente algebraico nos muestra el poder que tiene este campo de estudio.

Procederemos volviendo a la raíz del álgebra lineal y empezaremos a estudiar la relación entre formas bilineales y matrices, brindándonos tal vez un mejor entendimiento de ambas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{R}^3$ espacio vectorial sobre $\mathbb{R}$ y definamos $q: V \rightarrow \mathbb{R}$
    \begin{align*} q(x,y,z)= x^2+y^2+z^2-xy-yz-xz. \end{align*}
    ¿Es $q$ positiva? ¿Es definida positiva?
  2. Sea $V$ el espacio de polinomios con coeficientes reales cuyos grados no excedan $n \in \mathbb{N}$ prueba que
    \begin{align*} <P.Q>=\sum_{i=0}^nP(i)Q(i) \end{align*}
    Es un producto interno en $V$.
  3. Demuestra el corolario de la desigualdad de Cauchy-Schwarz.
  4. Sea $V$ un $\mathbb{C}$-espacio vectorial, y $\Phi$ una forma cuadrática hermitiana en $V$, asumamos que $\Phi$ es definida positiva ($\Phi(v) >0$ para todo $v$ no cero) con $\varphi$ su polar.
    Prueba la desigualdad de Cauchy-Schwarz, es decir, para todo $x,y \in V$
    \begin{align*} |\varphi(x,y)|^2 \leq \Phi(x)\Phi(y) \end{align*}
    Y la igualdad sucede si y sólo si $x,y$ son linealmente dependientes.
  5. Con la misma notación del ejercicio anterior, prueba la desigualdad de Minkowski, es decir, para todos $x,y \in V$
    \begin{align*} \sqrt{\Phi(x+y)} \leq \sqrt{\Phi(x)} + \sqrt{\Phi(y)}. \end{align*}

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.