Archivo de la etiqueta: formas cuadráticas

Cálculo Diferencial e Integral III: Formas cuadráticas

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior hablamos de formas bilineales. A partir de esta noción podemos introducir otra más: la de formas cuadráticas. Las formas cuadráticas son cruciales, pues es a partir de ellas que podemos hacer geometría en espacios vectoriales.

Formas bilineales simétricas

Hay unas formas bilineales que son especiales pues al intercambiar los vectores argumento no cambian de valor.

Definición. Una forma bilineal $b\in B(\mathbb{R}^n)$ es simétrica si $b(\bar{u},\bar{v})=b(\bar{v},\bar{u})$ para todos los $\bar{u},\bar{v}\in \mathbb{R}^n$.

Cuando una forma bilineal es simétrica, la matriz que la representa también. En efecto, si $A$ es una representación matricial de la forma bilineal $b$ en la base $\beta$, podemos escribir: \[b(\bar{u},\bar{v})=[\bar{u}]^{t}A[\bar{v}]=\left( [\bar{u}]^{t}A[\bar{v}] \right) ^{t}=[\bar{v}]^{t}A^{t}[\bar{u}].\]

En la igualdad de en medio usamos que $[\bar{u}]^{t}A[\bar{v}] \in \mathbb{R}$ para obtener que este producto matricial es igual a su transpuesta (¿por qué?). Así pues, si $b$ es simétrica: \[ [\bar{v}]^{t}A^{t}[\bar{u}]=b\left( \bar{u},\bar{v} \right)=b\left( \bar{v},\bar{u}\right)=[\bar{v}]^{t}A[\bar{u}],\]

para todo $\bar{u},\bar{v}\in \mathbb{R}^n$. En particular, al evaluar $b(\bar{e}_i,\bar{e}_j)$ para $\bar{e}_i,\bar{e}_j$ una pareja de elementos de la base $\beta$ obtenemos que $A$ y $A^{t}$ coinciden en cualquier entrada $(i,j)$. Por lo tanto $A=A^{t}$, entonces $A$ es simétrica.

Formas cuadráticas y su forma polar

Una forma cuadrática se obtiene de evaluar una forma bilineal usando el mismo vector para ambas entradas. Formalmente, tenemos lo siguiente.

Definición. Una función $q:\mathbb{R}^n \to \mathbb{R}$ es una forma cuadrática si existe una forma bilineal $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}$ en $\mathbb{R}^n$. A $q$ le llamamos la forma cuadrática asociada a $b$.

Es posible que una misma forma cuadrática pueda ser creada por dos formas bilineales distintas.

Ejemplo. Tomemos la forma bilineal $b_1((x_1,x_2),(y_1,y_2))=0$ para todos $\bar{u},\bar{v}\in \mathbb{R}^2$ y la forma bilineal $b_2((x_1,x_2),(y_1,y_2))=x_1y_2-x_2y_1$. Si $q_1$ es la forma cuadrática asociada a $b_1$ y $q_2$ es la forma cuadrática asociada a $b_2$, se tiene que $q_1((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$, y también se tiene que $q_2((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$ (verifícalo). Así, aunque $b_1\neq b_2$, se tiene que $q_1=q_2$.

$\triangle$

Si agregamos la hipótesis adicional de que la forma bilineal que se usa sea simétrica, entonces sí tenemos unicidad. De hecho, podemos saber exactamente de qué forma bilineal simétrica $b$ viene una forma cuadrática dada $q$. Este es el contenido del siguiente teorema, que se llama el teorema de la identidad de polarización.

Teorema. Si $q$ es una forma cuadrática en $\mathbb{R}^n$, entonces existe una única forma bilineal $b$ simétrica tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}\in \mathbb{R}^n$. Más aún, \[ \begin{equation} b(\bar{u},\bar{v})=\frac{1}{2}\left(q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right). \end{equation}.\]

Demostración. Haremos sólo parte de la demostración: la de la unicidad. El resto puede consultarse, por ejemplo, en la entrada Formas cuadráticas, propiedades, polarización y teorema de Gauss. Supongamos que $q$ es forma cuadrática y que viene de la forma bilineal simétrica $B$. Desarrollando el lado derecho de la ecuación tenemos

\begin{align*}
\frac{1}{2}\left( q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right) &= \frac{1}{2}\left( B(\bar{u}+\bar{v},\bar{u}+\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\&=\frac{1}{2}\left(B(\bar{u}+\bar{v},\bar{u})+B(\bar{u}+\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(B(\bar{u},\bar{u})+B(\bar{v},\bar{u})+B(\bar{u},\bar{v})+B(\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(2B(\bar{u},\bar{v})\right)=B(\bar{u},\bar{v}).
\end{align*}

Esto muestra que la expresión del teorema es la única que podría servir para obtener la forma bilineal simétrica de la que viene $q$. El resto de la demostración consiste en ver que, en efecto, la expresión propuesta es bilineal y es simétrica.

$\square$

Por el teorema de la identidad de polarización, podemos siempre suponer que una forma cuadrática viene de una forma bilineal simétrica $b$, a la que le llamaremos su forma polar.

Forma matricial de una forma cuadrática

Definición. Sea $q$ una forma cuadrática de $\mathbb{R}^n$ y $\beta$ una base de $\mathbb{R}^n$. La forma matricial de $q$ en la base $\beta$ será la forma matricial de su forma polar en la base $\beta$.

Por lo visto anteriormente, si $b$ es simétrica, se representa por una matriz simétrica $A=a_{ij}$. Así, las formas matriciales de formas cuadráticas siempre son simétricas. Para evaluar $q$, podemos hacer lo siguiente:

\begin{align*}
q(\bar{v})&=b(\bar{v},\bar{v})\\
&=[\bar{v}]^{t}A[\bar{v}]\\
&=\begin{pmatrix}x_{1} & \dots & x_{n}\end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}
\end{align*}

Desarrollando el producto obtenemos $$q(\bar{v})=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}+2\sum_{i<j}a_{ij}x_{i}x_{j}.$$

Esta última ecuación en las variables $x_{i}$ se denomina el polinomio cuadrático correspondiente a la matriz simétrica $A$.

Nota que si la matriz $A$ es diagonal, entonces $q$ tendrá el siguiente polinomio cuadrático: \[ \begin{equation} q(\bar{v})=[\bar{v}]^{t}A[\bar{v}]=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}. \end{equation} \]

Este es un polinomio muy sencillo: no tendrá términos con «productos cruzados».

Teorema de Gauss para formas cuadráticas

Enseguida presentamos un teorema muy importante de formas cuadráticas. Su importancia radica en que siempre deseamos simplificar los objetos que tenemos.

Teorema. Sea $b$ una forma bilineal simétrica en $V$, un espacio vectorial de dimensión finita $n$ sobre $\mathbb{R}$. Entonces $V$ tiene una base $\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$ en la que $b$ se representa por una matriz diagonal, es decir, $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

Demostración. Procederemos por inducción sobre $n=\dim V$. Si $\dim V=1$, se cumple claramente (¿Por qué?). Por tanto, podemos suponer $\dim V>1$. Si $b=0$, también la afirmación es cierta inmediatamente, pues $b$ se representa por una matriz de puros ceros. Si $q(\bar{v})=b(\bar{v},\bar{v})=0$ para todo $\bar{v}\in V$, al escribir $b$ en su forma polar se obtiene que $b=0$ . Por esta razón se puede suponer que existe un vector $\bar{v}_{1}\in V$ tal que $b(\bar{v}_{1},\bar{v}_{1})\neq0$. Sean $U$ el subespacio generado por $\bar{v}_{1}$ y $W$ el conjunto de aquellos vectores $\bar{v}\in V$ para los que $b(\bar{v}_{1},\bar{v})=0$. Afirmamos que $V=U\oplus W$.

  1. $U\cap W=\{\bar{0} \}$. Supongamos $\bar{u}\in U\cap W$. Como $\bar{u}\in U$, $\bar{u}=k\bar{v}_{1}$ para algún escalar $k\in \mathbb{R}$. Como $\bar{u}\in W$, $0=b(\bar{v}_{1},\bar{u})=b(\bar{v}_{1},k\bar{v}_{1})=kb(\bar{v}_{1},\bar{v}_{1})$. Pero $b(\bar{v}_{1},\bar{v}_{1})\neq 0$; luego $k=0$ y por consiguiente $\bar{u}=\bar{0}$. Así $U\cap W=\{ \bar{0}\}$.
  2. Veamos que $V=U+W$. Sea $\bar{v}\in V$. Consideremos $\bar{w}$ definido como: \[ \bar{w}=\bar{v}-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}\bar{v}_{1}.\] Entonces \[ b(\bar{v}_{1},\bar{w})=b(\bar{v}_{1},\bar{v})-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}b(\bar{v}_{1},\bar{v}_{1})=0. \] Así $\bar{w}\in W$. Por tanto $\bar{v}$ es la suma de un elemento de $U$ y uno de $W$. Entonces se cumple $V=U+W$.
    Ahora $b$ restringida a $W$ es una forma bilineal simétrica en $W$. Pero $\dim W=n-1$, luego existe una base $\{ \bar{v}_{2},\dots ,\bar{v}_{n} \}$ de $W$ tal que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$ y $2\leq i,j\leq n$. Por la propia definición de $W$, $b(\bar{v}_{1},\bar{v}_{j})=0$ para $j=2,\dots n$. Por tanto, la base $\{\bar{v}_{1},\dots ,\bar{v}_{n} \}$ de $V$ tiene la propiedad requerida de que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

$\square$

Tenemos pues que para toda forma bilineal simétrica tenemos una representación matricial diagonal. Dicho en otras palabras, para cualquier matriz simétrica $A$ en $M_n(\mathbb{R})$, se tiene que es congruente a alguna matriz diagonal. También de aquí se tiene que para toda forma cuadrática tenemos una representación matricial diagonal.

Formas cuadráticas positivas y positivas definidas

Otra noción importante para formas cuadráticas es la siguiente.

Definición. Diremos que una forma cuadrática $q:\mathbb{R}^n\to \mathbb{R}$ es positiva si se cumple que $q(\bar{x})\geq 0$ para todo $\bar{x}\in \mathbb{R}^n$. Diremos que es positiva definida si se cumple que $q(\bar{x})>0$ para todo $\bar{x}\in \mathbb{R}^n \setminus \{\bar{0}\}$.

Si $b$ es la forma bilineal simétrica que define a $q$ y $A$ es una matriz que represente a $b$ en alguna base $\beta$, se puede ver que $q$ es positiva si y sólo si $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Así mismo, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$. Esto motiva la siguiente definición para matrices.

Definición. Sea $A\in \mathbb{R}^n$ una matriz simétrica. Diremos que es positiva si se cumple que $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Diremos que es, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$.

Una propiedad importante que queda como tarea moral es que la propiedad de ser positiva (o positiva definida) es invariante bajo congruencia de matrices.

Hay otras maneras de saber si una matriz es positiva, o positiva definida. De hecho, en la entrada de Matrices positivas y congruencia de matrices de nuestro curso de Álgebra Lineal II puedes encontrar la siguiente caracterización:

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. $A$ es congruente a una matriz diagonal con puras entradas mayores o iguales a cero.
  3. $A$ puede ser escrita de la forma $B^{t}B$ para alguna matriz $B\in M_n(\mathbb{R})$.

Hay otro resultado más que relaciona a las matrices positivas definidas con sus eigenvalores.

Teorema. Si $A$ es una matriz simétrica en $M_n(\mathbb{R})$ y es positiva definida, entonces todos sus eigenvalores son positivos.

Matriz Hessiana

Veamos cómo se aplican algunas de las ideas vistas en cálculo. Retomemos la discusión de la entrada Polinomio de Taylor para campos escalares. Hacia el final de la entrada enunciamos el teorema de Taylor en el caso especial de grado $2$. Al tomar un campo escalar $f$ y un punto $\bar{a}$, el polinomio de Taylor de grado $2$ estaba dado como sigue:

$$T_{2,\bar{a}}(\bar{a}+\bar{v})=f(\bar{a})+\frac{(\bar{v}\cdot \triangledown )f(\bar{a})}{1!}+\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}.$$

Donde

$$\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}=\sum_{i=1}^{n}\sum_{j=1}^n v_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(\bar{a}).$$

Observa que este sumando se puede pensar como una forma cuadrática:

\[ q(\bar{v})=\begin{pmatrix}v_{1} & \dots & v_n\end{pmatrix}\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a})\\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a}) \end{pmatrix}\begin{pmatrix} v_{1} \\ \vdots \\ v_n\end{pmatrix}\]

La matriz de esta forma cuadrática tiene una importancia especial en el cálculo de varias variables, y por ello tiene su propia definición.

Definición. Sea $f$ un campo escalar definido sobre algún subconjunto abierto de $\mathbb{R}^{n}$. Si $f$ tiene derivadas parciales de segundo orden en el punto $\bar{a}$, a la siguiente matriz la llamamos la matriz hessiana de $f$ en $\bar{a}$:

\[ H_f(\bar{a})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a})\end{pmatrix}.\]

Cuando hablemos de optimización, esta matriz tomará un significado especial. Por ahora, enfoquémonos en entender cómo obtenerla.

Ejemplo. Encontraremos la matriz Hessiana del campo escalar $f(x,y)=\sin(xy)$ en el punto $\left( 1,\frac{\pi}{4} \right)$. Para ello, calculamos las siguientes derivadas parciales de orden $1$ y $2$:

\[ \frac{\partial f}{\partial x}=y\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x^{2}}=-y^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y\partial x}=\cos(xy)-xy\sin(xy) \]

\[ \frac{\partial f}{\partial y}=x\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y^{2}}=-x^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x\partial y}=\cos(xy)-xy\sin(xy).\]

Por lo tanto

\[ H(x,y)=\begin{pmatrix} -y^{2}\sin(xy) &\cos(xy)-xy\sin(xy) \\ \cos(xy)-xy\sin(xy) & -x^{2}\sin(xy) \end{pmatrix}.\]

Evaluando en el punto $\left(1,\frac{\pi}{4} \right),$

\[ H\left(1,\frac{\pi}{4} \right)=\begin{pmatrix} -\frac{\pi ^{2}}{16}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) \\ \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) & -\frac{\sqrt{2}}{2} \end{pmatrix}.\]

$\triangle$

Mas adelante…

Con esto terminamos nuestro repaso de álgebra lineal, y con ello tenemos las herramientas necesarias para poder retomar nuestro estudio de las funciones en varias variables. En la siguiente entrada comenzaremos con el concepto de diferenciabilidad. A lo largo de las siguientes entradas, iremos viendo por qué las herramientas de álgebra lineal que desarrollamos son importantes.

Así mismo, cuando lleves un curso de Cálculo Diferencial e Integral IV también retomaras una parte importante de la teoría que hemos repasado.

Tarea moral

  1. Responder en la primer definición porque $[\bar{u}]^{t}A[\bar{v}]\in \mathbb{R}$.
  2. Demostrar que el espacio $W$ del último teorema es un subespacio vectorial de $V$.
  3. Explicar en la demostración del último teorema por qué éste se cumple cuando $b=0$ o $\dim V=1$.
  4. Explicar porque $\dim W=n-1$.
  5. Verifica que si una matriz $A$ es positiva definida, entonces cualquier matriz $B$ congruente a $A$ también es positiva definida.
  6. Demuestra el último teorema de esta entrada, es decir, que las matrices simétricas positivas definidas tienen eigenvalores positivos.

Entradas relacionadas

Álgebra Lineal II: Formas cuadráticas hermitianas

Por Diego Ligani Rodríguez Trejo

Introducción

El análogo complejo a las formas cuadráticas son las formas cuadráticas hermitianas. En esta entrada las definiremos, enfatizaremos algunas diferencias con el caso real y veremos algunas de sus propiedades.

Al final enunciaremos una versión compleja del teorema de Gauss.

Formas cuadráticas hermitianas

Definición Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\varphi$ una forma sesquilineal hermitiana de $V$. La forma cuadrática hermitiana correspondiente a $\varphi$ es la función $\Phi: V\to \mathbb{C}$ tal que para cualquier $x$ en $V$ se tiene que

\begin{align*} \Phi(x)=\varphi (x,x) \end{align*}

Observa que aquí, de entrada, estamos pidiendo que $\varphi$ sea sesquilineal. Esto entra en contraste con el caso real, en donde no nos importaba si la forma bilineal que tomábamos inicialmente era simétrica o no. Como veremos un poco más abajo, dada la forma cuadrática hermitiana $\Phi$, hay una única forma sesquilineal hermitiana de la que viene. Por esta razón, llamaremos a la función $\varphi$ la forma polar de $\Phi$.

Problema 1. Sea $V=\mathbb{C}^n$ y $\Phi : V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(x_1, \ldots, x_n)= |x_1|^2 + \cdots + |x_n|^2.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. Recordemos que para cualquier $z \in \mathbb{C}$ se tiene $|z|^2=z \overline{z}$. Así propongamos $\varphi$ como sigue:

\begin{align*}
\varphi(x,y):= (\overline{x_1})(y_1) + \cdots + (\overline{x_n})(y_n).
\end{align*}

Es sencillo mostrar que $\varphi$ así definida es una forma sesquilineal hermitiana, y queda como ejercicio.

$\square$

Problema 2. Sea $V$ el espacio de funciones continuas del intervalo $[0,1]$ a $\mathbb{C}$ y $\Phi: V \rightarrow \mathbb{C}$ definida por
\begin{align*} \Phi(f)= \int_0^1|f(t)|^2 dt.\end{align*} Muestra que $\Phi$ es una forma cuadrática.

Solución. La solución es muy parecida. Proponemos $\varphi$ como sigue:

\begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt \end{align*}

Es sencillo mostrar que $\varphi(f,f)=\Phi(f)$ y que $\varphi$ es forma sesquilineal hermitiana. Ambas cosas quedan como ejercicio.

$\square$

Propiedades básicas de formas cuadráticas hermitianas

Veamos algunas propiedades de las formas cuadráticas hermitianas.

Proposición. Sea $V$ un espacio vectorial sobre $\mathbb{C}$, $\varphi$ una forma sesquilinear hermitiana y $\Phi(x)$ su forma cuadrática asociada.

  1. Para todo $x\in V$, se tiene que $\Phi(x)=\varphi(x,x)$ siempre es un número real.
  2. Para todo $x\in V$ y $a\in \mathbb{C}$ se tiene que $\Phi(ax)=|a|\Phi(x)$.
  3. Para cualesquiera $x,y$ en $V$ se tiene que $\Phi(x+y)=\Phi(x)+\Phi(y)+2\text{Re}(\varphi(x,y))$.

Demostración. Los incisos 1) y 2) son consecuencia inmediata de los ejercicios de la entrada anterior. Para el inciso 3) usamos que la suma de un número con su conjugado es el doble de su parte real para obtener la siguiente cadena de igualdades:

\begin{align*}
\Phi(x+y)&=\varphi(x+y,x+y)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\varphi(y,x)\\
&=\varphi(x,x)+ \varphi(y,y)+ \varphi(x,y)+\overline{\varphi(x,y)}\\
&=\Phi(x) + \Phi(y) + 2\text{Re}(\varphi(x,y)).
\end{align*}

$\square$

Identidad de polarización compleja

Para demostrar que una función es una forma cuadrática hermitiana, usualmente necesitamos a una función que sea la candidata a ser la forma sesquilineal hermitiana que la induzca. Es decir, necesitamos un método para proponer la forma polar. Podemos hacer esto mediante la identidad de polarización compleja.

Proposición (Identidad de polarización). Sea $\Phi: V \rightarrow \mathbb{C}$ una forma cuadrática hermitiana. Existe una única forma sesquilineal hermitiana $\varphi: V \times V \rightarrow \mathbb{C}$ tal que $\Phi(x)=\varphi(x,x)$ para todo $x \in V$.

Más aún, ésta se puede encontrar de la siguiente manera:

\begin{align*} \varphi(x,y)= \frac{1}{4}\sum_{k=0}^4 i^k \Phi (y+i^kx)\end{align*}

Aquí $i$ es el complejo tal que $i^2=-1$. Esta suma tiene cuatro sumandos, correspondientes a las cuatro potencias de $i$: $1,i,-1,-i$.

Demostración. Por definición, como $\Phi$ es una forma cuadrática hermitiana, existe $s:V\times V\to \mathbb{C}$ una forma sesquilineal hermitiana tal que $\Phi(x)=s(x,x)$. Veamos que la fórmula propuesta en el enunciado coincide con $s$. La definición en el enunciado es la siguiente:

\begin{align*} \varphi(x,y)=\frac{1}{4}\sum_{k=0}^4 i^k \Phi (y+i^kx)\end{align*}

Como $\Phi(x)=s(x,x)$ podemos calcular $\varphi$ como sigue
\begin{align*} \varphi(x,y)=\frac{1}{4}\sum_{k=0}^4 i^k s(y+i^kx,y+i^kx)\end{align*}

Desarrollando los sumandos correspondientes a $k=0$ y $k=2$, y simplificando, se obtiene

\begin{align*}2s(y,x) + 2s(x,y).\end{align*}

Del mismo modo, los sumandos para $k=1$ y $k=3$ quedan como

\begin{align*} 2s(x,y) – 2s(y,x) \end{align*}

Sustituyendo esto en la definición original de $\varphi$ tenemos que

\begin{align*} \varphi(x,y)&=\frac{ 2s(y,x) + 2s(x,y) + 2s(x,y) – 2s(y,x) }{4}\\&=s(x,y). \end{align*}

De esta igualdad podemos concluir que $\varphi = s$, por lo que 1) $\varphi$ es forma sesquilineal hermitiana y 2) la forma cuadrática hermitiana de $\varphi$ es $\Phi$. Esta forma debe ser única pues si hubiera otra forma sesquilineal hermitiana tal que $s'(x,x)=\Phi(x)$, los pasos anteriores darían $s'(x,x)=\varphi(x,y)$ nuevamente.

$\square$

En particular, esta identidad nos dice que formas sesquilineales hermitianas distintas van a formas cuadráticas hermitianas distintas. Es por ello que podemos llamar a la función $\varphi$ dada por la fórmula en el enunciado la forma polar de $\Phi$.

Teorema de Gauss complejo

Enunciamos a continuación la versión compleja del teorema de Gauss.

Teorema. Sea $\Phi$ una función cuadrática hermitiana $\mathbb{C}^n$. Existen $\alpha_1, \cdots , \alpha_r$ números complejos y formas lineales $l_1, \cdots l_r$ linealmente independiente de $\mathbb{C}^n$ tales que para todo $x$ en $\mathbb{C}^n$ se tiene:

\begin{align*} \Phi(x_1, \cdots , x_n ) = \sum_{i=1}^r \alpha_i |l_i(x)|^2. \end{align*}

Observa que en la expresión de la derecha no tenemos directamente a las formas lineales, sino a las normas de éstas.

Más adelante…

Ya hablamos de formas bilineales y de formas sesquilineales. ¿Habrá una forma alternativa de representarlas? Cuando teníamos transformaciones lineales entre espacios vectoriales, podíamos representarlas por matrices. Resulta que a las formas bilineales también podemos representarlas por matrices. Veremos cómo hacer esto (y cuáles son las ventajas de hacer eso) en las siguientes dos entradas. En una veremos los resultados correspondientes a formas bilineales y en la otra los resultados correspondientes a formas sesquilineales.

Un poco más adelante aprovecharemos esta representación matricial para retomar el estudio de los productos interiores.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso. Sin embargo, sirven de ayuda para repasar los conceptos vistos en esta entrada.

  1. Sea $V=\mathbb{C}^n$ y definamos $\varphi:V\times V \to \mathbb{C}$ como sigue:
    \begin{align*} \varphi(x,y)= \overline{x_1}y_1 + \cdots + \overline{x_n}y_n, \end{align*}
    para cualquier par $x,y \in V$ con $x=(x_1, \cdots x_n)$ y $y=(y_1, \cdots y_n)$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  2. Sea $V$ el espacio de funciones continuas del intevalo $[0,1]$ a $\mathbb{C}$ y $\varphi: V\times V \to \mathbb{C}$ definida como sigue:
    \begin{align*} \varphi(f_1,f_2)= \int_0^1\overline{f_1(t)} f_2(t) dt,\end{align*}
    para cualquier par $f_1, f_2 \in V$. Demuestra que $\varphi$ es una forma sesquilineal hermitiana.
  3. Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y $\Phi$ una forma cuadrática hermitiana. Prueba la siguiente identidad (identidad del paralelogramo)
    \begin{align*} \Phi(x+y) + \Phi(x-y) = 2(\Phi(x) + \Phi(y)).\end{align*} ¿Cómo se compara con la identidad del paralelogramo real?
  4. Compara la identidad de polarización real con la identidad de polarización compleja. ¿Por qué son tan distintas entre sí?
  5. Demuestra el Teorema de Gauss para formas cuadráticas hermitianas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Seminario de Resolución de Problemas: El teorema espectral y matrices positivas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada hablaremos de matrices simétricas y de matrices positivas. Nos enfocaremos en el caso en el que sus entradas sean números reales. Ambos tipos de matrices son fundamentales en la teoría de álgebra lineal. Tanto para las matrices simétricas como para las positivas hay resultados de caracterización que podemos utilizar en varios problemas matemáticos.

El teorema espectral para matrices simétricas reales

Si $A$ es una matriz de $m\times n$, su transpuesta $^tA$ es la matriz de $n\times m$ que se obtiene de reflejar a las entradas de $A$ en su diagonal principal. Otra forma de decirlo es que si en términos de entradas tenemos $A=[a_{ij}]$, entonces $^tA=[a_{ji}]$. Una matriz y su transpuesta comparten muchas propiedades, como su determinante, su polinomio característico, su rango, sus eigenvalores, etc.

Decimos que una matriz es simétrica si es igual a su transpuesta. Una matriz es ortogonal si es invertible y $^tA = A^{-1}$. Las matrices simétricas y ortogonales con entradas reales son muy importantes y cumplen propiedades bonitas.

Teorema (teorema espectral). Si $A$ es una matriz de $n\times n$ con entradas reales y simétrica, entonces:

  • Sus eigenvalores $\lambda_1,\ldots,\lambda_n$ (contando multiplicidades), son todos reales.
  • Existe una matriz ortogonal $P$ de $n\times n$ y con entradas reales tal que si tomamos a $D$ la matriz diagonal de $n\times n$ cuyas entradas en la diagonal principal son $\lambda_1,\ldots,\lambda_n$, entonces $$A=P^{-1}DP.$$

No todas las matrices se pueden diagonalizar. Cuando una matriz sí se puede diagonalizar, entonces algunas operaciones se hacen más sencillas. Por ejemplo si $A=P^{-1}DP$ como en el teorema anterior, entonces
\begin{align*}
A^2&=(P^{-1}DP)(P^{-1}DP)\\
&=P^{-1}DDP\\
&=P^{-1}D^2P,
\end{align*}

y de manera inductiva se puede probar que $A^k=P^{-1}D^kP$. Elevar la matriz $D$ a la $k$-ésima potencia es sencillo, pues como es una matriz diagonal, su $k$-ésima potencia consiste simplemente en elevar cada una de las entradas en su diagonal a la $k$.

Problema. Sea $A$ una matriz de $n\times n$ simétrica y de entradas reales. Muestra que si $A^k = O_n$ para algún entero positivo $k$, entonces $A=O_n$.

Sugerencia pre-solución. La discusión anterior te permite enunciar la hipótesis en términos de los eigenvalores de $A$. Modifica el problema a demostrar que todos ellos son cero.

Solución. Como $A$ es simétrica y de entradas reales, entonces sus eigenvalores $\lambda_1,\ldots, \lambda_n$ son reales y es diagonalizable. Digamos que su diagonalización es $P^{-1} D P$. Tenemos que $$O_n = A^k = P^{-1} D^k P.$$ Multiplicando por la matriz $P$ a la izquierda, y la matriz $P^{-1}$ a la derecha, tenemos que $D^k=O_n$. Las entradas de $D^k$ son $\lambda_1^k,\ldots,\lambda_n^k$, y la igualdad anterior muestra que todos estos números son iguales a cero. De este modo, $$\lambda_1=\ldots=\lambda_n=0.$$

Concluimos que $D=O_n$, y que por lo tanto $A=P^{-1} O_n P = O_n$.

$\square$

Veamos ahora un bello problema que motiva una fórmula para los números de Fibonacci desde la teoría del álgebra lineal.

Problema. Toma la matriz $$A=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$ Calcula las primeras potencias de $A$ a mano. Conjetura y muestra cómo es $A^n$ en términos de la sucesión de Fibonacci. A partir de esto, encuentra una fórmula para el $n$-ésimo término de la sucesión de Fibonacci.

Sugerencia pre-solución. Para empezar, haz las primeras potencias y busca un patrón. Luego, para la demostración de esa parte, procede por inducción. Hay varias formas de escribir a la sucesión de Fibonacci, usa una notación que sea cómoda.

Solución. Al calcular las primeras potencias de la matriz $A$ obtenemos:

\begin{align*}
A&=\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix},\\
A^2&=\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix},\\
A^3&=\begin{pmatrix} 1 & 2 \\ 2& 3 \end{pmatrix},\\
A^4&=\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix},\\
A^5&=\begin{pmatrix} 3 & 5 \\ 5 & 8 \end{pmatrix}.
\end{align*}

Al parecer, en las entradas de $A$ van apareciendo los números de Fibonacci. Seamos más concretos. Definimos $F_0=0$, $F_1=1$ y para $n\geq 0$ definimos $$F_{n+2}=F_{n}+F_{n+1}.$$ La conjetura es que para todo entero $n\geq 1$, se tiene que $$A^n=\begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1}\end{pmatrix}.$$

Esto se puede probar por inducción. Arriba ya hicimos el caso $n=1$. Supongamos la conjetura cierta hasta un entero $n$ dado, y consideremos la matriz $A^{n+1}$. Tenemos haciendo el producto de matrices, usando la hipótesis inductiva y la recursión de Fibonacci, que

\begin{align*}
A^{n+1}&=AA^n\\
& =\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} F_{n-1} & F_n \\ F_n & F_{n+1} \end{pmatrix}\\
&= \begin{pmatrix} F_n & F_{n+1} \\ F_{n-1} + F_n & F_n + F_{n+1} \end{pmatrix}\\
&=\begin{pmatrix} F_n & F_{n+1} \\ F_{n+1} & F_{n+2} \end{pmatrix}.
\end{align*}

Esto termina el argumento inductivo y prueba la conjetura.

Para encontrar una fórmula para los Fibonaccis, lo que haremos ahora es usar el teorema espectral. Esto lo podemos hacer pues la matriz $A$ es de entradas reales y simétrica. Para encontrar la matriz diagonal de la factorización, necesitamos a los eigenvalores de $A$. Su polinomio característico es $$\begin{vmatrix} \lambda & -1 \\ – 1 & \lambda -1 \end{vmatrix}=\lambda^2-\lambda -1.$$

Usando la fórmula cuadrática, las raíces de este polinomio (y por tanto, los eigenvalores de $A$) son $$\frac{1\pm \sqrt{5}}{2}.$$ Por el momento, para simplificar la notación, llamemos $\alpha$ a la de signo más y $\beta$ a la raíz de signo menos. Por el teorema espectral, existe una matriz invertible $P$ de $2\times 2$ tal que $$A=P^{-1}\begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} P.$$

De esta forma, $$A^n = P^{-1}\begin{pmatrix} \alpha^n & 0 \\ 0 & \beta^n \end{pmatrix} P.$$

Aquí no es tan importante determinar concretamente $P$ ni realizar las cuentas, sino darnos cuenta de que tras realizarlas cada entrada será una combinación lineal de $\alpha^n$ y $\beta^n$ y de que los coeficientes de esta combinación lineal ya no dependen de $n$, sino sólo de las entradas de $P$. En particular, la entrada superior derecha de $A^n$ por un lado es $F_n$, y por otro lado es $r\alpha^n + s\beta ^n$.

¿Cómo obtenemos los valores de $\alpha$ y $\beta$? Basta substituir $n=1$ y $n=2$ para obtener un sistema de ecuaciones en $\alpha$ y $\beta$. Aquí abajo usamos que como $\alpha$ y $\beta$ son raíces de $x^2-x-1$, entonces $\alpha^2=\alpha+1$, $\beta^2=\beta+1$ y $\alpha+\beta = 1$.

$$\begin{cases}
1= F_1 = r \alpha + s \beta \\
1= F_2 = r \alpha^2 + s \beta^2 = r + s + 1.
\end{cases}$$

De aquí, obtenemos la solución
\begin{align*}
r&=\frac{1}{\alpha-\beta} = \frac{1}{\sqrt{5}}\\
s&=-r = -\frac{1}{\sqrt{5}}.
\end{align*}

Finalmente, todo este trabajo se resume a que una fórmula para los números de Fibonacci es $$F_n=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^n – \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

$\square$

Matrices positivas y positivas definidas

Por definición, una matriz simétrica $A$ de $n\times n$ con entradas reales es positiva si para cualquier vector (columna) $v$ en $\mathbb{R}^n$ se tiene que $$^t v A v \geq 0.$$ Aquí $^tv$ es la transposición de $v$, es decir, el mismo vector, pero como vector fila.

Si además la igualdad se da sólo para el vector $v=0$, entonces decimos que $A$ es positiva definida. Un ejemplo sencillo de matriz positiva es la matriz $A=\begin{pmatrix} 1 & -1 \\ -1 & 1\end{pmatrix},$ pues para cualquier vector $v=(x,y)$ se tiene que $$^t v A v = x^2-2xy+y^2=(x-y)^2\geq 0.$$ Sin embargo, esta matriz no es positiva definida pues la expresión anterior se anula en vectores no cero como $(1,1)$. Como puedes verificar, un ejemplo de matriz positiva definida es $$B=\begin{pmatrix} 3 & 0 \\ 0 & 4 \end{pmatrix}.$$

Las matrices reales que son positivas definidas son importantes pues caracterizan todos los productos interiores en $\mathbb{R}^n$. Una vez que se tiene un producto interior en un espacio vectorial de dimensión finita, se pueden aprovechar muchas de sus propiedades o consecuencias, por ejemplo, la desigualdad de Cauchy-Schwarz o la existencia de bases ortogonales para hacer descomposiciones de Fourier.

Para cuando se quieren resolver problemas, es muy útil conocer varias equivalencias de que una matriz sea positiva.

Equivalencias para matrices positivas

El siguiente resultado enuncia algunas de las equivalencias para que una matriz sea positiva

Teorema. Sea $A$ una matriz simétrica. Entonces todas las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. Todos los eigenvalores de $A$ son no negativos.
  3. $A=B^2$ para alguna matriz simétrica $B$ en $M_n(\mathbb{R})$.
  4. $A= {^tC} C$ para alguna matriz $C$ en $M_n(\mathbb{R})$.

Hay un resultado análogo para cuando se quiere determinar si una matriz $A$ es positiva definida. En ese caso, los eigenvalores tienen que ser todos positivos. Para los puntos $3$ y $4$ se necesita además que $B$ y $C$ sean invertibles.

Problema. Sea $A$ una matriz de $n\times n$ con entradas reales, simétrica y positiva. Muestra que si $$\text{tr}(A) = n \sqrt[n]{\det(A)},$$ entonces $A$ conmuta con cualquier matriz de $n\times n$.

Sugerencia pre-solución. Necesitarás usar que matrices similares tienen la misma traza y el mismo determinante, o una versión particular para este problema.

Solución. Las siguientes son propiedades de la traza y el determinante:

  • El determinante de una matriz diagonal es el producto de las entradas en su diagonal.
  • Si tenemos dos matrices similares, entonces tienen la misma traza.

En particular, las hipótesis implican, por el teorema espectral, que $A$ se puede diagonalizar con matrices $A=P^{-1} D P$, donde $D$ es la matriz diagonal que tiene en su diagonal principal a los eigenvalores $\lambda_1,\ldots,\lambda_n$ de $A$, y $P^{-1}$ es una matriz invertible. Como $A$ y $D$ son similares, se tiene que
\begin{align*}
\text{tr}(A)=\text{tr}(D)=\lambda_1+\ldots+\lambda_n\\
\det(A)=\det(D)=\lambda_1\cdot\ldots\cdot\lambda_n.
\end{align*}

Como $A$ es positiva, entonces todos sus eigenvalores son no negativos, así que satisfacen la desigualdad MA-MG:

$$\frac{\lambda_1+\ldots+\lambda_n}{n} \geq \sqrt[n]{\lambda_1\cdot\ldots\cdot\lambda_n}.$$

Por la última hipótesis del problema, esta desigualdad es de hecho una igualdad. Pero la igualdad en MA-MG se alcanza si y sólo si todos los números son iguales entre sí. Tenemos entonces que todos los eigenvalores son iguales a un cierto valor $\lambda$, y entonces $D=\lambda I_n$. Como cualquier múltiplo escalar de la matriz identidad conmuta con cualquier matriz de $n\times n$, tendríamos entonces que

\begin{align*}
A&=P^{-1}D P \\
&=P^{-1}(\lambda I_n) P\\
&=(\lambda I_n) (P^{-1}P)\\
&=\lambda I_n.
\end{align*}

Con esto probamos que $A$ es de hecho un múltiplo de la matriz identidad, y por lo tanto conmuta con cualquier matriz de $n\times n$.

$\square$

Más problemas

Puedes encontrar más problemas del teorema espectral, de formas y matrices positivas en la Sección 10.2 y la Sección 10.8 del libro Essential Linear Algebra de Titu Andreescu.

Álgebra Lineal I: Problemas de formas cuadráticas y producto interior

Por Blanca Radillo

Introducción

En las últimas sesiones, hemos introducido el tema de formas bilineales y formas cuadráticas. Más adelante, hablamos de positividad de formas cuadráticas y de producto interior. Ahora veremos algunos problemas de formas cuadráticas y producto interior.

Problemas resueltos de formas cuadráticas

Sabemos que si $T:V\times V\rightarrow \mathbb{R}$ es una transformación lineal, $T$ no necesariamente es una forma bilineal (durante la clase del viernes se discutió un ejemplo), entonces una pregunta interesante es ¿qué información tenemos sobre el núcleo de una forma cuadrática? Es fácil ver que una forma cuadrática no es una transformación lineal, pero está asociada a una forma bilineal. Interesadas en esta pregunta, analizaremos algunas propiedades del núcleo de una forma bilineal y de una forma cuadrática.

Problema 1. a) Si $q$ es una forma cuadrática en $\mathbb{R}^n$, ¿el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ es un subespacio de $\mathbb{R}^n$?
b) Describe ${ x\in \mathbb{R}^n:q(x)=0}$ si:
1) $q(x,y)=x^2+y^2$,
2) $q(x,y,z)=xy+yz+zx$
3) $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.

Solución. a) La respuesta es: no, el conjunto $\{ x\in \mathbb{R}^n: q(x)=0 \}$ no necesariamente es un subespacio, ya que no necesariamente es cerrado bajo la suma. Daremos un ejemplo.

Sea $q:\mathbb{R}^2\rightarrow \mathbb{R}$ definido como $q((x,y))=x^2-y^2$. Sabemos que ésta es una forma cuadrática. Notemos que para todo $x,y \in\mathbb{R}$, si $v_1=(x,x),v_2=(y,-y)$, entonces $q(v_1)=x^2-x^2=0$ y $q(v_2)=y^2-(-y)^2=0$, entonces $v_1,v_2 \in \{ x\in \mathbb{R}^n: q(x)=0 \}$. Pero $v_1+v_2=(x+y,x-y)$ no pertenecen al núcleo de $q$, ya que $q(v_1+v_2)=q((x+y,x-y))=(x+y)^2-(x-y)^2=4xy\neq 0$ si $x,y\neq 0$.

b.1) Sea $(x,y)\in\mathbb{R}^2$ tal que $q((x,y))=x^2+y^2=0$. Como $x,y\in\mathbb{R}$, sabemos que la única posibilidad en que la suma de dos cuadrados sea cero es que ambos sean cero, por lo tanto $\{ x\in \mathbb{R}^2: q(x)=0 \}=\{(0,0)\}$.

b.2) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=xy+yz+zx=0$. Si $x=0$ entonces $yz=0$, esto es posible sólo si $y=0$ o $z=0$. Entonces el núcleo contiene a los ejes $(x,0,0)$, $(0,y,0)$ y $(0,0,z)$. Ahora, si $x=-y$, entonces $xy+yz+zx=-x^2-xz+zx=-x^2=0$, por lo tanto $x=0=y$, obteniendo nuevamente a los ejes. Ahora suponemos que $x+y\neq 0$. Entonces $xy+yz+zx=xy+z(x+y)=0$, obteniendo que $z=-\frac{xy}{x+y}$ (el cono elíptico). Por lo tanto el núcleo de $q$ son los ejes y el cono elíptico.

b.3) Sea $(x,y,z)\in\mathbb{R}^3$ tal que $q((x,y,z))=(x-y)^2+(y-z)^2+(z-x)^2=0$. Al igual que en el inciso (b.1), esto sólo es posible si $x-y=y-z=z-x=0$, entonces $x=y=z$. Por lo tanto, $\{ x\in \mathbb{R}^n: q(x)=0 \}=\{(x,x,x):x\in\mathbb{R}\}$.

$\triangle$

Problema 2. Sea $V=P_2(\mathbb{R})$ el espacio de polinomios en $[-1,1]$ con coeficientes reales de grado a lo más 2 y considera el mapeo $b:V\times V\rightarrow \mathbb{R}$ definido como

$b(f,g)=\int_{-1}^1 tf(t)g(t) dt.$

Prueba que $b$ es una forma bilineal simétrica de $V$. Si $q$ es la forma cuadrática asociada, encuentra las $f$ en $V$ tales que $q(f)=0$.

Solución. Mostrar que $b$ es bilineal es sencillo, y queda como tarea moral. Es fácil ver que es simétrica, ya que

\begin{align*}
b(f,g)&=\int_{-1}^1 tf(t)g(t) dt \\
&=\int_{-1}^1 tg(t)f(t)dt=b(g,f).
\end{align*}

Ahora, queremos encontrar las funciones $f$ tales que $q(f)=b(f,f)=\int_{-1}^1 tf^2(t)dt=0$. Como $f$ es un polinomio de grado $2$, es de la forma $f(x)=ax^2+bx+c$ para reales $a,b,c$ y entonces

\begin{align*}
0&=q(f)\\
&=\int_{-1}^1 tf^2(t)dt \\
&=\int_{-1}^1 t(at^2+bt+c)^2dt \\
& = \int_{-1}^1 t(a^2t^4+2abt^3+(b^2+2ac)t^2+2bct+c^2)dt \\
&=\int_{-1}^1 (a^2t^5+2abt^4+(b^2+2ac)t^3+2bct^2+c^2t)dt \\
&=\frac{4ab}{5}+\frac{4bc}{3}=0
\end{align*}

Esto implica que $4b(3a+5c)=0$, entonces $b=0$ o $3a+5c=0$. Por lo tanto $$\{f\in V:q(f)=0\}=\{ax^2+c \}\cup \{ax^2+bx-\frac{3a}{5}\}.$$

$\square$

Problemas resueltos de producto interior

Ahora recordemos que en la clase de ayer, definimos formas bilineales y cuadráticas positivas y definidas positivas, y a partir de ello, definimos qué es un producto interior. Así, en los siguientes problemas, veremos algunos ejemplos de estas definiciones.

Problema 3. Determina cuáles de las siguientes formas cuadráticas son positivas. ¿Cuáles también son definidas positivas?

  1. $q(x,y,z)=xy+yz+zx$.
  2. $q(x,y,z)=(x-y)^2+(y-z)^2+(z-x)^2$.
  3. $q(x,y,z)=x^2-y^2+z^2-xy+2yz-3zx$.

Solución. Sea $v=(x,y,z)\in\mathbb{R}^3$, recordemos que para cada uno de los incisos $q$ es positiva si $q(v)\geq 0$ para toda $v$ y es definida positiva si es positiva y $q(v)=0$ si y sólo si $v=0$.

1) Si escogemos a $v$ como $v=(1,-2,1)$ tenemos que
\begin{align*}q(v)&=q(1,-2,1)\\&=1(-2)+(-2)(1)+1(1)\\&=-2-2+1\\&=-3.\end{align*} Por lo tanto no es positiva ni definida positiva.

2) Dado que para todo $x,y,z$, tenemos que $(x-y)^2,(y-z)^2,(z-x)^2\geq 0$, entonces $q(v)\geq 0$ para todo $v\in\mathbb{R}^3$. Pero si $q(v)=0$, entonces $x=y=z$, pero no necesariamente son iguales a cero. Por lo tanto, $q$ es positiva pero no es definida positiva.

3) Si tomamos $v=(3,0,3)$, obtenemos que \begin{align*}q(v)&=(3)^2+(3)^2-3(3)(3)\\&=9+9-27\\&=-9\\&<0.\end{align*} Por lo tanto no es positiva ni definida positiva.

$\triangle$

Problema 4. Sea $V=C([a,b],\mathbb{R})$. Prueba que el mapeo $\langle \cdot , \cdot \rangle$ definido por $$\langle f,g \rangle = \int_a^b f(x)g(x) dx$$ es un producto interior en $V$.

Solución. Por lo visto en la clase de ayer, tenemos que un producto interior es una forma bilineal simétrica y definida positiva.
Es fácil ver que es forma bilineal simétrica. Basta con probar que es una forma definida positiva. Entonces $\langle f,f\rangle=\int_0^1 f^2(x)dx \geq 0$ ya que $f^2(x)\geq 0$ para toda $x$. Por lo tanto $\langle \cdot, \cdot \rangle$ es positiva. Como $f^2$ es continua y positiva, si $\int_0^1 f^2(x)dx=0$, implica que $f^2=0$, entonces $f=0$. Por lo tanto, $\langle \cdot , \cdot \rangle$ es definida positiva, y por ende, es un producto interior.

$\triangle$

Para finalizar, el siguiente problema es un ejemplo que pareciera ser producto interior, pero resulta que no serlo.

Problema 5. Sea $C^\infty([0,1],\mathbb{R})$ es el espacio de funciones suaves (funciones continuas cuyas derivadas de cualquier orden existen y son continuas). Definimos el espacio $V={ f\in C^\infty([0,1],\mathbb{R}): f(0)=f(1)=0 }$. Si definimos $$\langle f,g \rangle:=\int_0^1 (f(x)g'(x)+f'(x)g(x))dx,$$ ¿es $\langle \cdot , \cdot \rangle$ un producto interior en $V$?

Solución. Es claro ver que $\langle \cdot, \cdot \rangle$ es bilineal y simétrica, entonces falta demostrar si es o no es una forma definida positiva. Para $f\in V$, tenemos que $\langle f,f \rangle=\int_0^1 2f(x)f'(x)dx.$

Notemos que, por la regla de la cadena, $\frac{d}{dx}f^2(x)=2f(x)f'(x)$, entonces \begin{align*}\langle f,f \rangle&=\int_0^1 \frac{d}{dx} f^2(x) dx\\&=f^2(1)-f^2(0)\\&=0.\end{align*}

Por lo tanto $\langle f,f\rangle=0$ para toda $f$. Esto implica que no es definida positiva, y como consecuencia, no es producto interior de $V$.

$\triangle$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de transformaciones transpuestas y formas bilineales

Por Ayax Calderón

Introducción

En la entrada del miércoles pasado se definió el concepto de la transpuesta de una transformación lineal. Así mismo, se probó el impresionante y muy útil hecho de que si $A$ es la matriz asociada a la transformación $T$ con respecto a ciertas bases, entonces $^tA$ es la matriz asociada de la transformación $^tT$ con respecto a las bases duales. Comenzamos esta entrada con problemas de transformaciones transpuestas. Los problemas 1 y 2 de esta entrada nos servirán para repasar la teoría vista en esa clase.

Por otra parte, en la entrada del viernes pasado comenzamos con el estudio de las formas bilineales y también se definió la forma cuadrática asociada a una forma bilineal. Además, se presentó la identidad de polarización, la cuál dada una forma cuadrática $q$ nos recupera la única forma bilineal simétrica de la cuál viene $q$.

Para repasar esta teoría, en esta entrada se encuentran los problemas 3 y 4. El problema 4 es interesante porque introduce de manera sencilla los espacios de funciones $l_p$ , de los cuáles se hace un estudio mucho más profundo en un primer curso de análisis matemático. Además, para este problema hacemos uso de herramientas de convergencia de series.

Problemas resueltos

Veamos dos problemas de transformaciones transpuestas

Problema 1. Considera la transformación lineal $T:\mathbb{R}^3 \to \mathbb{R}^2$ dada por $$T(x,y,z)=(x+3y, x+y-z).$$
Sea $\mathcal{B}^*=\{e_1^*, e_2^*\}$ la base dual canónica de $\mathbb{R}^2$.
Calcula $^tT(e_1^*+e_2^*)$ y $^tT(e_1^*-e_2^*)$ en términos de la base dual canónica $\{f_1^\ast, f_2^\ast, f_3^\ast\}$ de $\mathbb{R}^3$.

Solución. Primero observemos que para un vector cualquiera de $\mathbb{R}^2$ se tiene que
\begin{align*}
e_1^*(x,y)&=x\\
e_2^*(x,y)&=y.
\end{align*}

entonces
\begin{align*}
(e_1^* + e_2^* )(x,y)&=x+y\\
(e_1^* – e_2^* )(x,y)&=x-y.
\end{align*}

Así,

\begin{align*}
(^tT(e_1^*&+e_2^*))(x,y,z)\\=&(e_1^* + e_2^*)(T(x,y,z))\\
=&(e_1^* + e_2^*)(x+3y, x+y-z)\\=&x+3y+x+y-z\\
=&2x+4y-z.
\end{align*}

Esto nos dice que $^tT(e_1^*+e_2^*)=2f_1^\ast+4f_2^\ast – f_3^\ast$.

Por otro lado,

\begin{align*}
(^tT(e_1^*&-e_2^*))(x,y,z)\\
=&(e_1^* – e_2^*)(T(x,y,z))\\
=&(e_1^* – e_2^*)(x+3y, x+y-z)\\
=&x+3y-x-y+z\\
=&2y+z.
\end{align*}

Por lo tanto, $ ^tT(e_1^*-e_2^*)) =2f_2^\ast+f_3^\ast.$

$\triangle$

Problema 2. Encuentra la matriz de $^tT$ con respecto a la base canónica de $\mathbb{R}^3$ sabiendo que

$T(x,y,z)=(x+y, y-z,x+2y-3z).$

Solución. Recordemos que para calcular la matriz asociada a una transformación con respecto a una base canónica sólo hace falta poner en la $i$-ésima columna la imagen del $i$-ésimo vector canónico. Por esto, calculamos los siguientes valores

$T(e_1)=T(1,0,0)=(1,0,1)$
$T(e_2)=T(0,1,0)=(1,1,2)$
$T(e_3)=(0,0,1)=(0,-1,-3).$

Entonces la matriz asociada a $T$ es

$A=\begin{pmatrix}
1 & 1 & 0\\
0 & 1 & -1\\
1 & 2 & -3\end{pmatrix}.$

Así, por Teorema 2 visto en la entrada de ortogonalidad y transformación transpuesta, sabemos que la matriz asociada a $^tT$ es justamente la matriz

$^tA=\begin{pmatrix}
1 & 0 & 1\\
1 & 1 & 2\\
0 & -1 & -3\end{pmatrix}$.

$\triangle$

Problemas de formas bilineales y cuadráticas

Problema 1. Demuestra que la transformación

$b:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$
$b((x,y),(z,t))=xt-yz$

es una forma bilineal sobre $\mathbb{R}^2$. Describe la forma cuadrática asociada.

Demostración. Sea $(x,y)\in \mathbb{R}^2$ fijo. Queremos ver que

$b((x,y), \cdot):\mathbb{R}^2 \to \mathbb{R}$
definida por
$(u,v)\mapsto b((x,y),(u,v))$
es lineal.

Sean $(u,v),(z,t)\in \mathbb{R}^2$.

\begin{align*}
b(&(x,y),(u,v)+(z,t))\\&=b((x,y),(u+z, v+t))\\&=x(v+t)-y(u+z)\\&=(xv-yu)+(xt-yz)\\
&=b((x,y),(u,v))+b((x,y),(z,t)).
\end{align*}

Sea $k \in \mathbb{R}$.
\begin{align*}
b((x,y),k(u,v))&=b((x,y),(ku,kv))\\
&=kxv-kyu\\
&=k(xv-yu)\\
&=kb((x,y),(u,v)).
\end{align*}

Así, $(u,v)\mapsto b((x,y),(u,v))$ es lineal.

Ahora veamos que dado $(u,v)\in\mathbb{R}^2$ fijo, la transformación $(x,y)\mapsto b((x,y),(u,v))$ es lineal.

Sean $(x,y),(z,t)\in\mathbb{R}^2$ y $k\in \mathbb{R}$. Tenemos que
\begin{align*}
b((x&,y)+k(z,t),(u,v))\\
=&b((x+kz,y+kt),(u,v))\\
=&(x+kz)v – (y+kt)u\\
=& xv-kzv-yu-ktu\\
=&(xv-yu)+k(zv-tu)\\
=&b((x,y),(u,v))+kb((z,t),(u,v)).
\end{align*}

Así, $(x,y)\mapsto b((x,y),(u,v))$ es lineal y por consiguiente $b$ es una forma bilineal.

Ahora, tomemos $q:\mathbb{R}^2\to \mathbb{R}$ definida por $$q(x,y)=b((x,y),(x,y)).$$
Entonces $q(x,y)=xy-yx=0$. Así, la forma cuadrática cero es la forma cuadrática asociada a la forma bilineal $b$.

$\square$

Problema 2. Para un real $p\geq 0$, definimos el espacio $$l_p:=\left\{(x_n)_{n\in\mathbb{N}} : x_n\in\mathbb{R} \forall n\in \mathbb{N} ; \displaystyle\sum_{i\in \mathbb{N}}|x_i| ^p < \infty \right\}.$$

Notemos que para $p\in[1,\infty)$, $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas de manera natural. La demostración no es totalmente trivial, pues hay que mostrar que este espacio es cerrado bajo la suma, y esto requiere de la desigualdad del triángulo para la norma $|\cdot |_p$. Puedes intentar demostrar esto por tu cuenta como tarea moral.

Ahora, considera $H:l_2\times l_2 \to\mathbb{R}$ definida por

$H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})=\displaystyle\sum_{n\in\mathbb{N}}x_ny_n$.


Demuestra que $H$ es una forma bilineal simétrica sobre $l_2$.

Demostración. Lo primero que haremos es mostrar que la forma bilineal que definimos en efecto tiene valores reales. Para ello, tenemos que ver que converge.

Observemos que para cada $n\in\mathbb{N}$ se tiene que

$0\leq(|x_n|- |y_n|)^2.$

Entonces ,
\begin{align*}
0&\leq |x_n| ^2 -2|x_ny_n|+ |y_n |^2\\
|x_n y_n|&\leq \frac{1}{2}(|x_n|^2 + |y_n|^2).
\end{align*}


Por consiguiente,

$\displaystyle\sum_{n\in\mathbb{N}}|x_n y_n|\leq \frac{1}{2}\left (\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 + \displaystyle\sum_{n\in\mathbb{N}}|y_n|^2 \right ) < \infty$.

Lo anterior se debe a que

$\displaystyle\sum_{n\in\mathbb{N}}|x_n|^2 < \infty$ ya que $(x_n)_{n\in \mathbb{N}}\in l_2$

y análogamente para $(y_n)_{n\in \mathbb{N}}$.

Así, $\displaystyle\sum_{n\in\mathbb{N}}x_n y_n < \infty$, pues converge absolutamente, y por lo tanto $H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ siempre cae en $\mathbb{R}$.

Ahora veamos que $H$ es bilineal. Sea $x=(x_n)_{n\in \mathbb{N}}\in l_2$ fija. Queremos ver que $$(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$$ es lineal.

Sean $y=(y_n)_{n\in \mathbb{N}},z=(z_n)_{n\in \mathbb{N}}\in l_2$ y $k\in \mathbb{R}$.

Entonces

\begin{align*}
H(x,&y+kz)\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n +kx_nz_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n + k\displaystyle\sum_{n\in\mathbb{N}}x_n z_n\\
&= H(x,y) + k H(x,z).
\end{align*}

Así, $(y_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

De manera análoga se ve que si $(y_n)_{n\in \mathbb{N}} \in l_2$ fija, entonces $(x_n)_{n\in \mathbb{N}} \mapsto H((x_n)_{n\in \mathbb{N}},(y_n)_{n\in \mathbb{N}})$ es lineal.

Además
\begin{align*}
H(x,y)&=\displaystyle\sum_{n\in\mathbb{N}}x_n y_n\\
&=\displaystyle\sum_{n\in\mathbb{N}}y_n x_n \\
&= H(y,x).
\end{align*}

Por lo tanto, $H$ es una forma bilineal simétrica sobre $l_2$.

$\square$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Muestra que en efecto $l_p$ es un espacio vectorial sobre $\mathbb{R}$ con las operaciones definidas entrada a entrada.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»