Cálculo Diferencial e Integral III: Formas cuadráticas

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior hablamos de formas bilineales. A partir de esta noción podemos introducir otra más: la de formas cuadráticas. Las formas cuadráticas son cruciales, pues es a partir de ellas que podemos hacer geometría en espacios vectoriales.

Formas bilineales simétricas

Hay unas formas bilineales que son especiales pues al intercambiar los vectores argumento no cambian de valor.

Definición. Una forma bilineal $b\in B(\mathbb{R}^n)$ es simétrica si $b(\bar{u},\bar{v})=b(\bar{v},\bar{u})$ para todos los $\bar{u},\bar{v}\in \mathbb{R}^n$.

Cuando una forma bilineal es simétrica, la matriz que la representa también. En efecto, si $A$ es una representación matricial de la forma bilineal $b$ en la base $\beta$, podemos escribir: \[b(\bar{u},\bar{v})=[\bar{u}]^{t}A[\bar{v}]=\left( [\bar{u}]^{t}A[\bar{v}] \right) ^{t}=[\bar{v}]^{t}A^{t}[\bar{u}].\]

En la igualdad de en medio usamos que $[\bar{u}]^{t}A[\bar{v}] \in \mathbb{R}$ para obtener que este producto matricial es igual a su transpuesta (¿por qué?). Así pues, si $b$ es simétrica: \[ [\bar{v}]^{t}A^{t}[\bar{u}]=b\left( \bar{u},\bar{v} \right)=b\left( \bar{v},\bar{u}\right)=[\bar{v}]^{t}A[\bar{u}],\]

para todo $\bar{u},\bar{v}\in \mathbb{R}^n$. En particular, al evaluar $b(\bar{e}_i,\bar{e}_j)$ para $\bar{e}_i,\bar{e}_j$ una pareja de elementos de la base $\beta$ obtenemos que $A$ y $A^{t}$ coinciden en cualquier entrada $(i,j)$. Por lo tanto $A=A^{t}$, entonces $A$ es simétrica.

Formas cuadráticas y su forma polar

Una forma cuadrática se obtiene de evaluar una forma bilineal usando el mismo vector para ambas entradas. Formalmente, tenemos lo siguiente.

Definición. Una función $q:\mathbb{R}^n \to \mathbb{R}$ es una forma cuadrática si existe una forma bilineal $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}$ en $\mathbb{R}^n$. A $q$ le llamamos la forma cuadrática asociada a $b$.

Es posible que una misma forma cuadrática pueda ser creada por dos formas bilineales distintas.

Ejemplo. Tomemos la forma bilineal $b_1((x_1,x_2),(y_1,y_2))=0$ para todos $\bar{u},\bar{v}\in \mathbb{R}^2$ y la forma bilineal $b_2((x_1,x_2),(y_1,y_2))=x_1y_2-x_2y_1$. Si $q_1$ es la forma cuadrática asociada a $b_1$ y $q_2$ es la forma cuadrática asociada a $b_2$, se tiene que $q_1((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$, y también se tiene que $q_2((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$ (verifícalo). Así, aunque $b_1\neq b_2$, se tiene que $q_1=q_2$.

$\triangle$

Si agregamos la hipótesis adicional de que la forma bilineal que se usa sea simétrica, entonces sí tenemos unicidad. De hecho, podemos saber exactamente de qué forma bilineal simétrica $b$ viene una forma cuadrática dada $q$. Este es el contenido del siguiente teorema, que se llama el teorema de la identidad de polarización.

Teorema. Si $q$ es una forma cuadrática en $\mathbb{R}^n$, entonces existe una única forma bilineal $b$ simétrica tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}\in \mathbb{R}^n$. Más aún, \[ \begin{equation} b(\bar{u},\bar{v})=\frac{1}{2}\left(q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right). \end{equation}.\]

Demostración. Haremos sólo parte de la demostración: la de la unicidad. El resto puede consultarse, por ejemplo, en la entrada Formas cuadráticas, propiedades, polarización y teorema de Gauss. Supongamos que $q$ es forma cuadrática y que viene de la forma bilineal simétrica $B$. Desarrollando el lado derecho de la ecuación tenemos

\begin{align*}
\frac{1}{2}\left( q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right) &= \frac{1}{2}\left( B(\bar{u}+\bar{v},\bar{u}+\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\&=\frac{1}{2}\left(B(\bar{u}+\bar{v},\bar{u})+B(\bar{u}+\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(B(\bar{u},\bar{u})+B(\bar{v},\bar{u})+B(\bar{u},\bar{v})+B(\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(2B(\bar{u},\bar{v})\right)=B(\bar{u},\bar{v}).
\end{align*}

Esto muestra que la expresión del teorema es la única que podría servir para obtener la forma bilineal simétrica de la que viene $q$. El resto de la demostración consiste en ver que, en efecto, la expresión propuesta es bilineal y es simétrica.

$\square$

Por el teorema de la identidad de polarización, podemos siempre suponer que una forma cuadrática viene de una forma bilineal simétrica $b$, a la que le llamaremos su forma polar.

Forma matricial de una forma cuadrática

Definición. Sea $q$ una forma cuadrática de $\mathbb{R}^n$ y $\beta$ una base de $\mathbb{R}^n$. La forma matricial de $q$ en la base $\beta$ será la forma matricial de su forma polar en la base $\beta$.

Por lo visto anteriormente, si $b$ es simétrica, se representa por una matriz simétrica $A=a_{ij}$. Así, las formas matriciales de formas cuadráticas siempre son simétricas. Para evaluar $q$, podemos hacer lo siguiente:

\begin{align*}
q(\bar{v})&=b(\bar{v},\bar{v})\\
&=[\bar{v}]^{t}A[\bar{v}]\\
&=\begin{pmatrix}x_{1} & \dots & x_{n}\end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}
\end{align*}

Desarrollando el producto obtenemos $$q(\bar{v})=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}+2\sum_{i<j}a_{ij}x_{i}x_{j}.$$

Esta última ecuación en las variables $x_{i}$ se denomina el polinomio cuadrático correspondiente a la matriz simétrica $A$.

Nota que si la matriz $A$ es diagonal, entonces $q$ tendrá el siguiente polinomio cuadrático: \[ \begin{equation} q(\bar{v})=[\bar{v}]^{t}A[\bar{v}]=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}. \end{equation} \]

Este es un polinomio muy sencillo: no tendrá términos con «productos cruzados».

Teorema de Gauss para formas cuadráticas

Enseguida presentamos un teorema muy importante de formas cuadráticas. Su importancia radica en que siempre deseamos simplificar los objetos que tenemos.

Teorema. Sea $b$ una forma bilineal simétrica en $V$, un espacio vectorial de dimensión finita $n$ sobre $\mathbb{R}$. Entonces $V$ tiene una base $\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$ en la que $b$ se representa por una matriz diagonal, es decir, $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

Demostración. Procederemos por inducción sobre $n=\dim V$. Si $\dim V=1$, se cumple claramente (¿Por qué?). Por tanto, podemos suponer $\dim V>1$. Si $b=0$, también la afirmación es cierta inmediatamente, pues $b$ se representa por una matriz de puros ceros. Si $q(\bar{v})=b(\bar{v},\bar{v})=0$ para todo $\bar{v}\in V$, al escribir $b$ en su forma polar se obtiene que $b=0$ . Por esta razón se puede suponer que existe un vector $\bar{v}_{1}\in V$ tal que $b(\bar{v}_{1},\bar{v}_{1})\neq0$. Sean $U$ el subespacio generado por $\bar{v}_{1}$ y $W$ el conjunto de aquellos vectores $\bar{v}\in V$ para los que $b(\bar{v}_{1},\bar{v})=0$. Afirmamos que $V=U\oplus W$.

  1. $U\cap W=\{\bar{0} \}$. Supongamos $\bar{u}\in U\cap W$. Como $\bar{u}\in U$, $\bar{u}=k\bar{v}_{1}$ para algún escalar $k\in \mathbb{R}$. Como $\bar{u}\in W$, $0=b(\bar{v}_{1},\bar{u})=b(\bar{v}_{1},k\bar{v}_{1})=kb(\bar{v}_{1},\bar{v}_{1})$. Pero $b(\bar{v}_{1},\bar{v}_{1})\neq 0$; luego $k=0$ y por consiguiente $\bar{u}=\bar{0}$. Así $U\cap W=\{ \bar{0}\}$.
  2. Veamos que $V=U+W$. Sea $\bar{v}\in V$. Consideremos $\bar{w}$ definido como: \[ \bar{w}=\bar{v}-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}\bar{v}_{1}.\] Entonces \[ b(\bar{v}_{1},\bar{w})=b(\bar{v}_{1},\bar{v})-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}b(\bar{v}_{1},\bar{v}_{1})=0. \] Así $\bar{w}\in W$. Por tanto $\bar{v}$ es la suma de un elemento de $U$ y uno de $W$. Entonces se cumple $V=U+W$.
    Ahora $b$ restringida a $W$ es una forma bilineal simétrica en $W$. Pero $\dim W=n-1$, luego existe una base $\{ \bar{v}_{2},\dots ,\bar{v}_{n} \}$ de $W$ tal que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$ y $2\leq i,j\leq n$. Por la propia definición de $W$, $b(\bar{v}_{1},\bar{v}_{j})=0$ para $j=2,\dots n$. Por tanto, la base $\{\bar{v}_{1},\dots ,\bar{v}_{n} \}$ de $V$ tiene la propiedad requerida de que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

$\square$

Tenemos pues que para toda forma bilineal simétrica tenemos una representación matricial diagonal. Dicho en otras palabras, para cualquier matriz simétrica $A$ en $M_n(\mathbb{R})$, se tiene que es congruente a alguna matriz diagonal. También de aquí se tiene que para toda forma cuadrática tenemos una representación matricial diagonal.

Formas cuadráticas positivas y positivas definidas

Otra noción importante para formas cuadráticas es la siguiente.

Definición. Diremos que una forma cuadrática $q:\mathbb{R}^n\to \mathbb{R}$ es positiva si se cumple que $q(\bar{x})\geq 0$ para todo $\bar{x}\in \mathbb{R}^n$. Diremos que es positiva definida si se cumple que $q(\bar{x})>0$ para todo $\bar{x}\in \mathbb{R}^n \setminus \{\bar{0}\}$.

Si $b$ es la forma bilineal simétrica que define a $q$ y $A$ es una matriz que represente a $b$ en alguna base $\beta$, se puede ver que $q$ es positiva si y sólo si $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Así mismo, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$. Esto motiva la siguiente definición para matrices.

Definición. Sea $A\in \mathbb{R}^n$ una matriz simétrica. Diremos que es positiva si se cumple que $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Diremos que es, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$.

Una propiedad importante que queda como tarea moral es que la propiedad de ser positiva (o positiva definida) es invariante bajo congruencia de matrices.

Hay otras maneras de saber si una matriz es positiva, o positiva definida. De hecho, en la entrada de Matrices positivas y congruencia de matrices de nuestro curso de Álgebra Lineal II puedes encontrar la siguiente caracterización:

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. $A$ es congruente a una matriz diagonal con puras entradas mayores o iguales a cero.
  3. $A$ puede ser escrita de la forma $B^{t}B$ para alguna matriz $B\in M_n(\mathbb{R})$.

Hay otro resultado más que relaciona a las matrices positivas definidas con sus eigenvalores.

Teorema. Si $A$ es una matriz simétrica en $M_n(\mathbb{R})$ y es positiva definida, entonces todos sus eigenvalores son positivos.

Matriz Hessiana

Veamos cómo se aplican algunas de las ideas vistas en cálculo. Retomemos la discusión de la entrada Polinomio de Taylor para campos escalares. Hacia el final de la entrada enunciamos el teorema de Taylor en el caso especial de grado $2$. Al tomar un campo escalar $f$ y un punto $\bar{a}$, el polinomio de Taylor de grado $2$ estaba dado como sigue:

$$T_{2,\bar{a}}(\bar{a}+\bar{v})=f(\bar{a})+\frac{(\bar{v}\cdot \triangledown )f(\bar{a})}{1!}+\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}.$$

Donde

$$\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}=\sum_{i=1}^{n}\sum_{j=1}^n v_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(\bar{a}).$$

Observa que este sumando se puede pensar como una forma cuadrática:

\[ q(\bar{v})=\begin{pmatrix}v_{1} & \dots & v_n\end{pmatrix}\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a})\\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a}) \end{pmatrix}\begin{pmatrix} v_{1} \\ \vdots \\ v_n\end{pmatrix}\]

La matriz de esta forma cuadrática tiene una importancia especial en el cálculo de varias variables, y por ello tiene su propia definición.

Definición. Sea $f$ un campo escalar definido sobre algún subconjunto abierto de $\mathbb{R}^{n}$. Si $f$ tiene derivadas parciales de segundo orden en el punto $\bar{a}$, a la siguiente matriz la llamamos la matriz hessiana de $f$ en $\bar{a}$:

\[ H_f(\bar{a})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a})\end{pmatrix}.\]

Cuando hablemos de optimización, esta matriz tomará un significado especial. Por ahora, enfoquémonos en entender cómo obtenerla.

Ejemplo. Encontraremos la matriz Hessiana del campo escalar $f(x,y)=\sin(xy)$ en el punto $\left( 1,\frac{\pi}{4} \right)$. Para ello, calculamos las siguientes derivadas parciales de orden $1$ y $2$:

\[ \frac{\partial f}{\partial x}=y\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x^{2}}=-y^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y\partial x}=\cos(xy)-xy\sin(xy) \]

\[ \frac{\partial f}{\partial y}=x\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y^{2}}=-x^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x\partial y}=\cos(xy)-xy\sin(xy).\]

Por lo tanto

\[ H(x,y)=\begin{pmatrix} -y^{2}\sin(xy) &\cos(xy)-xy\sin(xy) \\ \cos(xy)-xy\sin(xy) & -x^{2}\sin(xy) \end{pmatrix}.\]

Evaluando en el punto $\left(1,\frac{\pi}{4} \right),$

\[ H\left(1,\frac{\pi}{4} \right)=\begin{pmatrix} -\frac{\pi ^{2}}{16}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) \\ \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) & -\frac{\sqrt{2}}{2} \end{pmatrix}.\]

$\triangle$

Mas adelante…

Con esto terminamos nuestro repaso de álgebra lineal, y con ello tenemos las herramientas necesarias para poder retomar nuestro estudio de las funciones en varias variables. En la siguiente entrada comenzaremos con el concepto de diferenciabilidad. A lo largo de las siguientes entradas, iremos viendo por qué las herramientas de álgebra lineal que desarrollamos son importantes.

Así mismo, cuando lleves un curso de Cálculo Diferencial e Integral IV también retomaras una parte importante de la teoría que hemos repasado.

Tarea moral

  1. Responder en la primer definición porque $[\bar{u}]^{t}A[\bar{v}]\in \mathbb{R}$.
  2. Demostrar que el espacio $W$ del último teorema es un subespacio vectorial de $V$.
  3. Explicar en la demostración del último teorema por qué éste se cumple cuando $b=0$ o $\dim V=1$.
  4. Explicar porque $\dim W=n-1$.
  5. Verifica que si una matriz $A$ es positiva definida, entonces cualquier matriz $B$ congruente a $A$ también es positiva definida.
  6. Demuestra el último teorema de esta entrada, es decir, que las matrices simétricas positivas definidas tienen eigenvalores positivos.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.