Archivo de la etiqueta: forma polar

Cálculo Diferencial e Integral III: Formas cuadráticas

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior hablamos de formas bilineales. A partir de esta noción podemos introducir otra más: la de formas cuadráticas. Las formas cuadráticas son cruciales, pues es a partir de ellas que podemos hacer geometría en espacios vectoriales.

Formas bilineales simétricas

Hay unas formas bilineales que son especiales pues al intercambiar los vectores argumento no cambian de valor.

Definición. Una forma bilineal $b\in B(\mathbb{R}^n)$ es simétrica si $b(\bar{u},\bar{v})=b(\bar{v},\bar{u})$ para todos los $\bar{u},\bar{v}\in \mathbb{R}^n$.

Cuando una forma bilineal es simétrica, la matriz que la representa también. En efecto, si $A$ es una representación matricial de la forma bilineal $b$ en la base $\beta$, podemos escribir: \[b(\bar{u},\bar{v})=[\bar{u}]^{t}A[\bar{v}]=\left( [\bar{u}]^{t}A[\bar{v}] \right) ^{t}=[\bar{v}]^{t}A^{t}[\bar{u}].\]

En la igualdad de en medio usamos que $[\bar{u}]^{t}A[\bar{v}] \in \mathbb{R}$ para obtener que este producto matricial es igual a su transpuesta (¿por qué?). Así pues, si $b$ es simétrica: \[ [\bar{v}]^{t}A^{t}[\bar{u}]=b\left( \bar{u},\bar{v} \right)=b\left( \bar{v},\bar{u}\right)=[\bar{v}]^{t}A[\bar{u}],\]

para todo $\bar{u},\bar{v}\in \mathbb{R}^n$. En particular, al evaluar $b(\bar{e}_i,\bar{e}_j)$ para $\bar{e}_i,\bar{e}_j$ una pareja de elementos de la base $\beta$ obtenemos que $A$ y $A^{t}$ coinciden en cualquier entrada $(i,j)$. Por lo tanto $A=A^{t}$, entonces $A$ es simétrica.

Formas cuadráticas y su forma polar

Una forma cuadrática se obtiene de evaluar una forma bilineal usando el mismo vector para ambas entradas. Formalmente, tenemos lo siguiente.

Definición. Una función $q:\mathbb{R}^n \to \mathbb{R}$ es una forma cuadrática si existe una forma bilineal $b:\mathbb{R}^n\times \mathbb{R}^n\to \mathbb{R}$ tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}$ en $\mathbb{R}^n$. A $q$ le llamamos la forma cuadrática asociada a $b$.

Es posible que una misma forma cuadrática pueda ser creada por dos formas bilineales distintas.

Ejemplo. Tomemos la forma bilineal $b_1((x_1,x_2),(y_1,y_2))=0$ para todos $\bar{u},\bar{v}\in \mathbb{R}^2$ y la forma bilineal $b_2((x_1,x_2),(y_1,y_2))=x_1y_2-x_2y_1$. Si $q_1$ es la forma cuadrática asociada a $b_1$ y $q_2$ es la forma cuadrática asociada a $b_2$, se tiene que $q_1((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$, y también se tiene que $q_2((x_1,x_2))=0$ para todo $(x_1,x_2)$ en $\mathbb{R}^2$ (verifícalo). Así, aunque $b_1\neq b_2$, se tiene que $q_1=q_2$.

$\triangle$

Si agregamos la hipótesis adicional de que la forma bilineal que se usa sea simétrica, entonces sí tenemos unicidad. De hecho, podemos saber exactamente de qué forma bilineal simétrica $b$ viene una forma cuadrática dada $q$. Este es el contenido del siguiente teorema, que se llama el teorema de la identidad de polarización.

Teorema. Si $q$ es una forma cuadrática en $\mathbb{R}^n$, entonces existe una única forma bilineal $b$ simétrica tal que $q(\bar{v})=b(\bar{v},\bar{v})$ para todo $\bar{v}\in \mathbb{R}^n$. Más aún, \[ \begin{equation} b(\bar{u},\bar{v})=\frac{1}{2}\left(q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right). \end{equation}.\]

Demostración. Haremos sólo parte de la demostración: la de la unicidad. El resto puede consultarse, por ejemplo, en la entrada Formas cuadráticas, propiedades, polarización y teorema de Gauss. Supongamos que $q$ es forma cuadrática y que viene de la forma bilineal simétrica $B$. Desarrollando el lado derecho de la ecuación tenemos

\begin{align*}
\frac{1}{2}\left( q(\bar{u}+\bar{v})-q(\bar{u})-q(\bar{v})\right) &= \frac{1}{2}\left( B(\bar{u}+\bar{v},\bar{u}+\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\&=\frac{1}{2}\left(B(\bar{u}+\bar{v},\bar{u})+B(\bar{u}+\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(B(\bar{u},\bar{u})+B(\bar{v},\bar{u})+B(\bar{u},\bar{v})+B(\bar{v},\bar{v})-B(\bar{u},\bar{u})-B(\bar{v},\bar{v})\right)\\
&=\frac{1}{2}\left(2B(\bar{u},\bar{v})\right)=B(\bar{u},\bar{v}).
\end{align*}

Esto muestra que la expresión del teorema es la única que podría servir para obtener la forma bilineal simétrica de la que viene $q$. El resto de la demostración consiste en ver que, en efecto, la expresión propuesta es bilineal y es simétrica.

$\square$

Por el teorema de la identidad de polarización, podemos siempre suponer que una forma cuadrática viene de una forma bilineal simétrica $b$, a la que le llamaremos su forma polar.

Forma matricial de una forma cuadrática

Definición. Sea $q$ una forma cuadrática de $\mathbb{R}^n$ y $\beta$ una base de $\mathbb{R}^n$. La forma matricial de $q$ en la base $\beta$ será la forma matricial de su forma polar en la base $\beta$.

Por lo visto anteriormente, si $b$ es simétrica, se representa por una matriz simétrica $A=a_{ij}$. Así, las formas matriciales de formas cuadráticas siempre son simétricas. Para evaluar $q$, podemos hacer lo siguiente:

\begin{align*}
q(\bar{v})&=b(\bar{v},\bar{v})\\
&=[\bar{v}]^{t}A[\bar{v}]\\
&=\begin{pmatrix}x_{1} & \dots & x_{n}\end{pmatrix} \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}
\end{align*}

Desarrollando el producto obtenemos $$q(\bar{v})=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}+2\sum_{i<j}a_{ij}x_{i}x_{j}.$$

Esta última ecuación en las variables $x_{i}$ se denomina el polinomio cuadrático correspondiente a la matriz simétrica $A$.

Nota que si la matriz $A$ es diagonal, entonces $q$ tendrá el siguiente polinomio cuadrático: \[ \begin{equation} q(\bar{v})=[\bar{v}]^{t}A[\bar{v}]=a_{11}x_{1}^{2}+a_{22}x_{2}^{2}+\dots +a_{nn}x_{n}^{2}. \end{equation} \]

Este es un polinomio muy sencillo: no tendrá términos con «productos cruzados».

Teorema de Gauss para formas cuadráticas

Enseguida presentamos un teorema muy importante de formas cuadráticas. Su importancia radica en que siempre deseamos simplificar los objetos que tenemos.

Teorema. Sea $b$ una forma bilineal simétrica en $V$, un espacio vectorial de dimensión finita $n$ sobre $\mathbb{R}$. Entonces $V$ tiene una base $\{\bar{v}_{1},\dots ,\bar{v}_{n}\}$ en la que $b$ se representa por una matriz diagonal, es decir, $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

Demostración. Procederemos por inducción sobre $n=\dim V$. Si $\dim V=1$, se cumple claramente (¿Por qué?). Por tanto, podemos suponer $\dim V>1$. Si $b=0$, también la afirmación es cierta inmediatamente, pues $b$ se representa por una matriz de puros ceros. Si $q(\bar{v})=b(\bar{v},\bar{v})=0$ para todo $\bar{v}\in V$, al escribir $b$ en su forma polar se obtiene que $b=0$ . Por esta razón se puede suponer que existe un vector $\bar{v}_{1}\in V$ tal que $b(\bar{v}_{1},\bar{v}_{1})\neq0$. Sean $U$ el subespacio generado por $\bar{v}_{1}$ y $W$ el conjunto de aquellos vectores $\bar{v}\in V$ para los que $b(\bar{v}_{1},\bar{v})=0$. Afirmamos que $V=U\oplus W$.

  1. $U\cap W=\{\bar{0} \}$. Supongamos $\bar{u}\in U\cap W$. Como $\bar{u}\in U$, $\bar{u}=k\bar{v}_{1}$ para algún escalar $k\in \mathbb{R}$. Como $\bar{u}\in W$, $0=b(\bar{v}_{1},\bar{u})=b(\bar{v}_{1},k\bar{v}_{1})=kb(\bar{v}_{1},\bar{v}_{1})$. Pero $b(\bar{v}_{1},\bar{v}_{1})\neq 0$; luego $k=0$ y por consiguiente $\bar{u}=\bar{0}$. Así $U\cap W=\{ \bar{0}\}$.
  2. Veamos que $V=U+W$. Sea $\bar{v}\in V$. Consideremos $\bar{w}$ definido como: \[ \bar{w}=\bar{v}-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}\bar{v}_{1}.\] Entonces \[ b(\bar{v}_{1},\bar{w})=b(\bar{v}_{1},\bar{v})-\frac{b(\bar{v}_{1},\bar{v})}{b(\bar{v}_{1},\bar{v}_{1})}b(\bar{v}_{1},\bar{v}_{1})=0. \] Así $\bar{w}\in W$. Por tanto $\bar{v}$ es la suma de un elemento de $U$ y uno de $W$. Entonces se cumple $V=U+W$.
    Ahora $b$ restringida a $W$ es una forma bilineal simétrica en $W$. Pero $\dim W=n-1$, luego existe una base $\{ \bar{v}_{2},\dots ,\bar{v}_{n} \}$ de $W$ tal que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$ y $2\leq i,j\leq n$. Por la propia definición de $W$, $b(\bar{v}_{1},\bar{v}_{j})=0$ para $j=2,\dots n$. Por tanto, la base $\{\bar{v}_{1},\dots ,\bar{v}_{n} \}$ de $V$ tiene la propiedad requerida de que $b(\bar{v}_{i},\bar{v}_{j})=0$ para $i\neq j$.

$\square$

Tenemos pues que para toda forma bilineal simétrica tenemos una representación matricial diagonal. Dicho en otras palabras, para cualquier matriz simétrica $A$ en $M_n(\mathbb{R})$, se tiene que es congruente a alguna matriz diagonal. También de aquí se tiene que para toda forma cuadrática tenemos una representación matricial diagonal.

Formas cuadráticas positivas y positivas definidas

Otra noción importante para formas cuadráticas es la siguiente.

Definición. Diremos que una forma cuadrática $q:\mathbb{R}^n\to \mathbb{R}$ es positiva si se cumple que $q(\bar{x})\geq 0$ para todo $\bar{x}\in \mathbb{R}^n$. Diremos que es positiva definida si se cumple que $q(\bar{x})>0$ para todo $\bar{x}\in \mathbb{R}^n \setminus \{\bar{0}\}$.

Si $b$ es la forma bilineal simétrica que define a $q$ y $A$ es una matriz que represente a $b$ en alguna base $\beta$, se puede ver que $q$ es positiva si y sólo si $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Así mismo, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$. Esto motiva la siguiente definición para matrices.

Definición. Sea $A\in \mathbb{R}^n$ una matriz simétrica. Diremos que es positiva si se cumple que $X^{t}AX\geq 0$ para todo $X\in \mathbb{R}^n$. Diremos que es, es positiva definida si y sólo si $X^{t}AX>0$ para todo $X\neq 0$ en $\mathbb{R}^n$.

Una propiedad importante que queda como tarea moral es que la propiedad de ser positiva (o positiva definida) es invariante bajo congruencia de matrices.

Hay otras maneras de saber si una matriz es positiva, o positiva definida. De hecho, en la entrada de Matrices positivas y congruencia de matrices de nuestro curso de Álgebra Lineal II puedes encontrar la siguiente caracterización:

Teorema. Sea $A$ una matriz simétrica en $M_n(\mathbb{R})$. Las siguientes afirmaciones son equivalentes:

  1. $A$ es positiva.
  2. $A$ es congruente a una matriz diagonal con puras entradas mayores o iguales a cero.
  3. $A$ puede ser escrita de la forma $B^{t}B$ para alguna matriz $B\in M_n(\mathbb{R})$.

Hay otro resultado más que relaciona a las matrices positivas definidas con sus eigenvalores.

Teorema. Si $A$ es una matriz simétrica en $M_n(\mathbb{R})$ y es positiva definida, entonces todos sus eigenvalores son positivos.

Matriz Hessiana

Veamos cómo se aplican algunas de las ideas vistas en cálculo. Retomemos la discusión de la entrada Polinomio de Taylor para campos escalares. Hacia el final de la entrada enunciamos el teorema de Taylor en el caso especial de grado $2$. Al tomar un campo escalar $f$ y un punto $\bar{a}$, el polinomio de Taylor de grado $2$ estaba dado como sigue:

$$T_{2,\bar{a}}(\bar{a}+\bar{v})=f(\bar{a})+\frac{(\bar{v}\cdot \triangledown )f(\bar{a})}{1!}+\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}.$$

Donde

$$\frac{(\bar{v}\cdot \triangledown)^{2}f(\bar{a})}{2!}=\sum_{i=1}^{n}\sum_{j=1}^n v_{i}v_{j}\frac{\partial ^{2}f}{\partial x_{j}\partial x_{i}}(\bar{a}).$$

Observa que este sumando se puede pensar como una forma cuadrática:

\[ q(\bar{v})=\begin{pmatrix}v_{1} & \dots & v_n\end{pmatrix}\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(a) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a})\\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a}) \end{pmatrix}\begin{pmatrix} v_{1} \\ \vdots \\ v_n\end{pmatrix}\]

La matriz de esta forma cuadrática tiene una importancia especial en el cálculo de varias variables, y por ello tiene su propia definición.

Definición. Sea $f$ un campo escalar definido sobre algún subconjunto abierto de $\mathbb{R}^{n}$. Si $f$ tiene derivadas parciales de segundo orden en el punto $\bar{a}$, a la siguiente matriz la llamamos la matriz hessiana de $f$ en $\bar{a}$:

\[ H_f(\bar{a})=\begin{pmatrix} \frac{\partial ^{2}f}{\partial x_{1}^{2}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{1}\partial x_{_{n}}}(\bar{a}) \\ \vdots & \ddots & \vdots \\ \frac{\partial ^{2}f}{\partial x_{_{n}}\partial x_{1}}(\bar{a}) & \dots & \frac{\partial ^{2}f}{\partial x_{_{n}}^{2}}(\bar{a})\end{pmatrix}.\]

Cuando hablemos de optimización, esta matriz tomará un significado especial. Por ahora, enfoquémonos en entender cómo obtenerla.

Ejemplo. Encontraremos la matriz Hessiana del campo escalar $f(x,y)=\sin(xy)$ en el punto $\left( 1,\frac{\pi}{4} \right)$. Para ello, calculamos las siguientes derivadas parciales de orden $1$ y $2$:

\[ \frac{\partial f}{\partial x}=y\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x^{2}}=-y^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y\partial x}=\cos(xy)-xy\sin(xy) \]

\[ \frac{\partial f}{\partial y}=x\cos(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial y^{2}}=-x^{2}\sin(xy),\hspace{0.3cm}\frac{\partial ^{2}f}{\partial x\partial y}=\cos(xy)-xy\sin(xy).\]

Por lo tanto

\[ H(x,y)=\begin{pmatrix} -y^{2}\sin(xy) &\cos(xy)-xy\sin(xy) \\ \cos(xy)-xy\sin(xy) & -x^{2}\sin(xy) \end{pmatrix}.\]

Evaluando en el punto $\left(1,\frac{\pi}{4} \right),$

\[ H\left(1,\frac{\pi}{4} \right)=\begin{pmatrix} -\frac{\pi ^{2}}{16}\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) \\ \frac{\sqrt{2}}{2}\left( 1-\frac{\pi}{4}\right) & -\frac{\sqrt{2}}{2} \end{pmatrix}.\]

$\triangle$

Mas adelante…

Con esto terminamos nuestro repaso de álgebra lineal, y con ello tenemos las herramientas necesarias para poder retomar nuestro estudio de las funciones en varias variables. En la siguiente entrada comenzaremos con el concepto de diferenciabilidad. A lo largo de las siguientes entradas, iremos viendo por qué las herramientas de álgebra lineal que desarrollamos son importantes.

Así mismo, cuando lleves un curso de Cálculo Diferencial e Integral IV también retomaras una parte importante de la teoría que hemos repasado.

Tarea moral

  1. Responder en la primer definición porque $[\bar{u}]^{t}A[\bar{v}]\in \mathbb{R}$.
  2. Demostrar que el espacio $W$ del último teorema es un subespacio vectorial de $V$.
  3. Explicar en la demostración del último teorema por qué éste se cumple cuando $b=0$ o $\dim V=1$.
  4. Explicar porque $\dim W=n-1$.
  5. Verifica que si una matriz $A$ es positiva definida, entonces cualquier matriz $B$ congruente a $A$ también es positiva definida.
  6. Demuestra el último teorema de esta entrada, es decir, que las matrices simétricas positivas definidas tienen eigenvalores positivos.

Entradas relacionadas

Álgebra Superior II: Forma polar y cambios de coordenadas de un complejo

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores comenzamos a hablar acerca de cómo resolver algunas ecuaciones en $\mathbb{C}$. Platicamos de ecuaciones cuadráticas y la fórmula general. Luego, vimos sistemas de ecuaciones lineales y varios métodos para resolverlos. Lo siguiente que haremos será resolver ecuaciones de la forma $z^n=w$, en donde $w$ en $\mathbb{C}$ y $n$ en $\mathbb{N}$ están dados y $z$ es la variable a determinar. Antes de resolver esta ecuación, necesitamos entender mejor la multiplicación en $\mathbb{C}$, y para ello vamos a estudiar la forma polar de un complejo.

En esta entrada comenzaremos recordando las coordenadas rectangulares de un número complejo, además definiremos sus coordenadas polares. Veremos cómo pasar de coordenadas rectangulares a polares de manera biyectiva, con lo cual podremos definir qué es la forma polar.

Más adelante, la forma polar nos ayudará a entender mejor la geometría de la multiplicación y exponenciación en $\mathbb{C}$. Esto será muy útil cuando queramos «sacar raíces $n$-ésimas», lo cual necesitaremos para resolver ecuaciones del estilo $z^n=w$.

De coordenadas rectangulares a coordenadas polares

Tomemos un número complejo $z=x+yi$ y pensémoslo como un punto del plano complejo, es decir, como el punto $(x,y)$ . Diremos que $(x,y)$ son las coordenadas rectangulares de $z$. Es recomendable recordar la siguiente figura, y regresar a ella frecuentemente.

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

El número complejo $z$ tiene norma $r=\sqrt{x^2+y^2}$. Además, si $z\neq 0$, tenemos que $z$ define un ángulo $\theta$ con el eje real positivo, medido en el sentido contrario al avance de las manecillas del reloj a partir del eje real positivo, al cual le llamaremos el argumento de $z$ y lo denotaremos por $\text{arg}(z)$. Todos los ángulos que manejamos están en radianes.

Sin embargo, este ángulo no es único. El complejo $z$ define al ángulo $\theta$ pero, por ejemplo, también define al ángulo $\theta+2\pi$, pues la suma de $2\pi$ corresponde a dar una vuelta completa alrededor del origen. Por ello, pensaremos que el argumento de $z$ toma todos los valores $$\{\theta+2k\pi:k\in \mathbb{Z}\}.$$ Así, $\text{arg}(z)$ es una multifunción, algo así como una función, pero que toma varios valores. Cuando digamos que un complejo tiene argumento $\theta$, nos referiremos a $\theta$ o cualquier otro ángulo que difiera un múltiplo entero de $2\pi$ Más adelante hablaremos de esto con detalle.

Aunque haya varios ángulos que le correspondan a $z$, hay uno único en el intervalo $[0,2\pi)$.

Definición. Definimos las coordenadas polares de un número complejo $z=x+yi$ como sigue:

  • Si $z=0$, sus coordenadas polares son $(0,0)$.
  • Si $z\neq 0$, entonces tomamos $r=\Vert z \Vert = \sqrt{x^2+y^2}$ y $\theta$ el único ángulo en $[0,2\pi)$ que hace $z$ con el eje real positivo. Las coordenadas polares de $z$ son $(r,\theta)$.

Observa que $r$ siempre es no negativo y es cero si y sólo si $z=0$. Además por trigonometría para el ángulo $\theta$ se cumple que \begin{align*}\sin \theta &= \frac{y}{r}\\ \cos \theta &= \frac{x}{r},\end{align*} lo cual nos da la siguiente forma práctica para encontrar $\theta$:

  • Calculamos $\frac{y}{r}$ o $\frac{x}{r}$ (el que parezca más sencillo).
  • Aplicamos una función trigonométrica inversa para reducir el problema a dos opciones.
  • Elegimos la opción correcta de acuerdo al signo de $x$ o $y$.

Ejemplo. Tomemos al complejo $z=3-3\sqrt{3}i$. Vamos a pasarlo a forma polar. Su norma es $\sqrt{9+27}=\sqrt{36}=6$. Para determinar el ángulo $\theta$ que define con el eje real, podemos notar que $$\cos{\theta}=\frac{3}{6}=\frac{1}{2},$$ así que $\theta = \frac{\pi}{3}$ ó $\theta= 2\pi-\frac{\pi}{3}=\frac{5\pi}{3}$, pues son los únicos ángulos en $[0,2\pi)$ con ese coseno. Como la parte imaginaria es negativa, se da el segundo caso. Por lo tanto, las coordenadas polares de $z$ son $\left(6,\frac{5\pi}{3}\right)$.

$\triangle$

De coordenadas polares a coordenadas rectangulares

También hay una forma de pasar de coordenadas polares a coordenadas rectangulares. En efecto, tomemos un real no negativo $r$ y consideremos la pregunta ¿quienes son los números complejos de norma $r$?

Por un lado, si $r=0$, necesitamos que $x^2+y^2=0^2=0$, de donde $x=y=0$, así que las coordenadas rectangulares deben ser $(0,0)$. Por otro lado, si $r>0$, se necesita que $$x^2+y^2=r^2,$$ lo cual, por el teorema de Pitágoras, define una circunferencia de radio $r$ con centro en el origen.

Circunferencia de complejos de norma r.
Circunferencia de complejos de norma $r$

Si además elegimos un ángulo, $\theta$ en $[0,2\pi)$, que el complejo haga con el eje real, entonces queda determinado de manera única. Supongamos que este complejo es $z=x+yi$

Por trigonometría, tenemos que
\begin{align*}x&=r\cos \theta\\ y &= r\sin \theta.\end{align*}

Problema. Determina en la forma $x+yi$ al número complejo cuyas coordenadas polares son $\left(7,\frac{3\pi}{4}\right)$.

Solución. Usamos las fórmulas obtenidas arriba. Tenemos que

\begin{align*}\\
x&=7\cos \frac{3\pi}{4}=7\cdot \left(-\frac{1}{\sqrt{2}}\right)=-\frac{7}{\sqrt{2}}\\
y &= 7\sin \frac{3\pi}{4}= 7\cdot \frac{1}{\sqrt{2}}=\frac{7}{\sqrt{2}}.
\end{align*}

De este modo, el complejo buscado es el $$-\frac{7}{\sqrt{2}}+\frac{7}{\sqrt{2}}.$$

$\square$

Los cambios de coordenadas son inversos entre sí

La primer sección explica cómo de coordenadas rectangulares podemos pasar a coordenadas polares. La anterior dice cómo pasar de coordenadas polares a rectangulares. Resulta que estas operaciones son inversas la una de la otra como veremos en la siguiente:

Proposición. Si tomamos coordenadas polares $(r,\theta)$ de un complejo, las pasamos a coordenadas rectangulares $(x,y)$ y luego éstas las pasamos a coordenadas polares $(r’,\theta’)$ de nuevo, tenemos que $$(r,\theta)=(r’,\theta’).$$

Demostración. En el caso $r=0$, sólo definimos coordenadas polares con $\theta=0$. Al ir a coordenadas rectangulares vamos al punto $(0,0)$, que de nuevo regresa a polares $(0,0)$. Podemos suponer entonces que $r>0$.

Como mencionamos en la segunda sección, las coordenadas rectangulares correspondientes a $(r,\theta)$ son exactamente $$(x,y)=(r\cos \theta,r\sin \theta).$$ Pasemos este complejo a coordenadas polares $(r’,\theta’)$. Usando la identidad pitagórica $\cos ^2\theta + \sin^2 \theta = 1$, la norma de este complejo es
\begin{align*}
\sqrt{r^2\cos^2\theta+r^2\sin^2 \theta} &= r\sqrt{\cos ^2\theta +\sin^2 \theta}\\
&=r\sqrt{1}\\
&=r,
\end{align*}

lo que prueba $r=r’$. Además, como discutimos en la primer sección, tenemos que
\begin{align*}
\sin \theta’ = \frac{r\sin \theta}{r} = \sin \theta\\
\cos \theta’ = \frac{r\cos \theta}{r}=\cos \theta.
\end{align*}

De esta forma, $\theta$ y $\theta’$ son ángulos en $[0,2\pi)$ con el mismo seno y coseno, lo cual implica $\theta=\theta’$.

$\square$

Corolario. El cambio de coordenadas rectangulares a polares , visto como una función de $$\mathbb{R}\times \mathbb{R}$$ a $$(\mathbb{R}^+\times [0,2\pi))\cup \{(0,0)\}$$ es biyectivo.

La forma polar de un número complejo

En las secciones anteriores pensamos a los complejos como parejas ordenadas. Podemos regresar los resultados obtenidos a la forma $x+yi$ de los complejos para justificar la siguiente definición.

Definición. La forma polar de un número complejo $z=x+yi$ es $z=r(\cos \theta + i\sin \theta)$, donde $(r,\theta)$ son las coordenadas polares de $(x,y)$.

Por costumbre, en la forma polar se pone $i$ antes de $\sin \theta$, a diferencia de la forma rectangular, en donde se pone $i$ después de $y$. A veces en expresiones como las de la forma polar aparecen ángulos $\theta$ fuera del rango $[0,2\pi)$. Podemos hacer las cuentas que necesitemos fuera de este rango sin problema. Al final podemos sumar o restar un múltiplo entero de $2\pi$ para caer en el rango $[0,2\pi)$. Esto no cambia el seno ni coseno del ángulo, por lo que no cambia al número complejo.

Como la expresión $ \cos \theta + i\sin \theta$ se usa mucho, usualmente se abrevia.

Definición. Para un ángulo $\theta$ definimos $\text{cis}(\theta) = \cos \theta + i \sin \theta$.

Problema. Determina la forma polar de los complejos $1$, $-1$, $i$ y $-i$.

Solución. Todos estos números tienen norma $1$. Además, hacen ángulos $0, \pi, \frac{\pi}{2}, \frac{3\pi}{2}$ con el eje real positivo, respectivamente. De esta forma, sus coordenadas polares son
\begin{align*}
(1,0)\quad (1,\pi)\quad\left(1,\frac{\pi}{2}\right)\quad \left(1,\frac{3\pi}{2}\right),
\end{align*}

respectivamente.

De esta forma, la forma polar de cada uno es:
\begin{align*}
1&=\cos 0+i \sin 0=\text{cis} (0)\\
-1&=\cos \pi + i \sin \pi = \text{cis} (\pi) \\
i&=\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = \text{cis} \left(\frac{\pi}{2}\right)\\
-i&= \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = \text{cis} \left( \frac{3\pi}{2}\right).
\end{align*}

$\triangle$

Una aclaración muy importante es que la forma polar de $z=x+yi$ no es $r+\theta i$. La forma polar es exactamente el mismo número complejo que el original, simplemente escrito de manera diferente.

Si la forma polar de un complejo es exactamente el mismo número que el original, ¿de qué nos sirve tenerlo en coordenadas polares? Resulta que la multiplicación compleja se entiende mucho mejor en términos de la forma polar. En la siguiente entrada veremos esto y cómo lo podemos usar para encontrar potencias de números complejos fácilmente.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina la forma polar de los siguientes complejos: $7-7i$ y $-2+2\sqrt{3}i$.
  2. Determina la forma rectangular de los complejos con coordenadas polares $\left(2,\frac{\pi}{3}\right)$ y $\left(1, \frac{11\pi}{6}\right)$.
  3. Si la forma polar del complejo $z$ es $r\text{cis} \theta$, ¿quién es la forma polar del conjugado?
  4. ¿Cuáles son aquellos números complejos que se obtienen al variar $\theta$ en la forma polar $3\text{cis}(\theta)$?
  5. ¿Qué figura en el plano definen aquellos números complejos que se obtienen al variar $r$ en la forma polar $r\text{cis}(\pi)$?

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»