Archivo de la etiqueta: evaluación

Álgebra Superior II: Algoritmo de la división, teorema del factor y teorema del residuo

Por Leonardo Ignacio Martínez Sandoval

Introducción

Tal vez te hayas dado cuenta de que ya hablamos de suma, producto y resta de polinomios, pero aún no hemos hablado de la división. Una razón es que no todos los polinomios tienen inverso multiplicativo. Sin embargo, los polinomios sí tienen un algoritmo de la división parecido al que estudiamos para el conjunto $\mathbb{Z}$ de enteros. A partir de él podemos extender varios de los conceptos aritméticos de $\mathbb{Z}$ a $\mathbb{R}[x]$: divisibilidad, máximo común divisor, factorización, etc. Luego, estos aspectos se pueden conectar a evaluación de polinomios mediante el un teorema clave: el teorema del factor.

Como recordatorio, hasta ahora, ya construimos el anillo $\mathbb{R}[x]$ de polinomios con coeficientes reales y vimos que era un dominio entero. También, vimos que una copia de $\mathbb{R}$ vive en $\mathbb{R}[x]$, con lo justificamos pasar de la notación de sucesiones, a la notación usual de polinomios usando el símbolo $x$ y sus potencias. En la entrada anterior también hablamos del grado de un polinomio (cuando no es el polinomio cero), de la evaluación de polinomios y de raíces.

Algoritmo de la división

Recordemos que en $\mathbb{Z}$ tenemos un algoritmo de la división que dice que para enteros $a$ y $b\neq 0$ existen únicos enteros $q$ y $r$ tales que $a=qb+r$ y $0\leq r < |b|$.

En $\mathbb{R}[x]$ hay un resultado similar. Pero hay que tener cuidado al generalizar. En $\mathbb{R}[x]$ no tenemos una función valor absoluto que nos permita decir que encontramos un «residuo más chiquito». Para la versión polinomial del algoritmo de la división tenemos que usar una función que diga «qué tan grande es un polinomio»: el grado.

Teorema (algoritmo de la división en $\mathbb{R}[x]$). Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$, donde $g(x)$ no es el polinomio cero. Entonces, existen únicos polinomios $q(x)$ y $r(x)$ en $\mathbb{R}[x]$ tales que $$f(x)=q(x)g(x)+r(x),$$ en donde $r(x)$ es el polinomio cero, o $\deg(r(x))<\deg(g(x))$.

Demostración. Probaremos la parte de existencia. La parte de unicidad queda como tarea moral. Para probar la existencia, haremos inducción fuerte sobre el grado de $f(x)$. Sin embargo, antes de poder hacer esto, necesitamos hacer el caso en el que $f(x)$ no tiene grado, es decir, cuando es el polinomio cero.

Si $f(x)$ es el polinomio cero, entonces $q(x)=0$ y $r(x)=0$ son polinomios que funcionan, pues $0=0\cdot g(x)+0$, para cualquier polinomio $g(x)$.

Asumamos entonces a partir de ahora que $f(x)$ no es el polinomio cero. Hagamos inducción sobre el grado de $f(x)$. Si $f(x)$ es de grado $0$, entonces es un polinomio de la forma $f(x)=a$ para $a$ en $\mathbb{R}$. Hay dos casos de acuerdo al grado de $g(x)$:

  • Si $g(x)$ es de grado $0$, es de la forma $g(x)=b$ para un real no cero y podemos tomar $q(x)=a/b$ y $r(x)=0$.
  • Si $g(x)$ es de grado mayor a $0$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$. Esta es una elección válida pues se cumple \begin{align*}\deg(r(x))&=\deg(f(x))\\& =0\\& <\deg(g(x)).\end{align*}

Esto termina la demostración de la base inductiva.

Supongamos que el resultado es cierto para cuando $f(x)$ tiene grado menor a $n$ y tomemos un caso en el que $f(x)$ tiene grado $n$. Hagamos de nuevo casos con respecto al grado de $g(x)$, al que llamaremos $m$. Si $m>n$, entonces tomamos $q(x)=0$ y $r(x)=f(x)$, que es una elección válida pues $$\deg(r(x))=n<m.$$

En el caso de que $m\leq n$, escribamos explícitamente a $f(x)$ y a $g(x)$ en términos de sus coeficientes como sigue: \begin{align*}f(x)&=a_0+\ldots+a_nx^n\\g(x)&=b_0+\ldots+b_mx^m.\end{align*}

Consideremos el polinomio $$h(x):=f(x)-\frac{a_n}{b_m}x^{n-m}g(x).$$ Notemos que en $h(x)$ el coeficiente que acompaña a $x^n$ es $a_n-\frac{a_nb_m}{b_m}=0$, así que el grado de $h(x)$ es menor al de $f(x)$ y por lo tanto podemos usar la hipótesis inductiva para escribir $$h(x)=t(x)g(x)+u(x)$$ con $u(x)$ el polinomio $0$ o $\deg(u(x))<\deg(g(x))$. De esta forma,
\begin{align*}
f(x)&=t(x)g(x)+u(x)+\frac{a_n}{b_m}x^{n-m}g(x)\\
&=\left(t(x)+\frac{a_n}{b_m}x^{n-m}\right)g(x)+u(x).
\end{align*}

Así, eligiendo $q(x)=t(x)+\frac{a_n}{b_m}x^{n-m}$ y $r(x)=u(x)$, terminamos la hipótesis inductiva.

$\square$

Aplicando el algoritmo de la división de forma práctica

Veamos ahora un ejemplo de cómo se puede aplicar este teorema anterior de forma práctica. A grandes rasgos, lo que podemos hacer es «ir acumulando» en $q(x)$ a los términos $\frac{a_n}{b_m}x^{n-m}$ que van apareciendo en la inducción, y cuando $h(x)$ se vuelve de grado menor a $q(x)$, lo usamos como residuo. Hagamos un ejemplo concreto.

Ejemplo. Tomemos $f(x)=x^5+x^4+x^3+x^2+2x+3$ y $g(x)=x^2+x+1$. Vamos a aplicar iteradamente las ideas de la demostración del teorema anterior para encontrar los polinomios $q(x)$ y $r(x)$ tales que $$f(x)=q(x)g(x)+r(x),$$ con $r(x)$ el polinomio $0$ o de grado menor a $g(x)$.

Como el grado de $f(x)$ es $5$, el de $g(x)$ es $2$ y $5>2$, lo primero que hacemos es restar $x^{5-2}g(x)=x^3g(x)$ a $f(x)$ y obtenemos:

$$h_1(x)=f(x)-x^3g(x)=x^2+2x+3.$$

Hasta ahora, sabemos que $q(x)=x^3+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_1(x)=x^2+2x+3$. Como el grado de $h_1(x)$ es $2$, el de $g(x)$ es $2$ y $2\geq 2$, restamos $x^{2-2}g(x)=1\cdot g(x)$ a $h_1(x)$ y obtenemos.

$$h_2(x)=h_1(x)-g(x)=x+2.$$

Hasta ahora, sabemos que $q(x)=x^3+1+\ldots$, donde en los puntos suspensivos va el cociente que le toca a $h_2(x)=x+2$. Como el grado de $h_2(x)$ es $1$, el de $g(x)$ es $2$ y $2>1$, entonces el cociente es $0$ y el residuo es $h_2(x)=x+2$.

De esta forma, concluimos que $$q(x)=x^3+1$$ y $$r(x)=x+2.$$

En conclusión,
\begin{align*}
x^5+ & x^4+x^3+x^2+2x+3\\
&= (x^3+1)(x^2+x+1) + x+2.
\end{align*}

Esto se puede verificar fácilmente haciendo la operación polinomial.

$\square$

Hay una forma más visual de hacer divisiones de polinomios «haciendo una casita». Puedes ver cómo se hace esto en el siguiente video en Khan Academy, y los videos que le siguen en la lista.

Divisibilidad en polinomios

Cuando trabajamos en $\mathbb{Z}$, estudiamos la noción de divisibilidad. Si en el algoritmo de la división obtenemos que $r(x)$ es el polinomio $0$, entonces obtenemos una noción similar para $\mathbb{R}[x]$.

Definición. Sean $f(x)$ y $g(x)$ polinomios en $\mathbb{R}[x]$. Decimos que $g(x)$ divide a $f(x)$ si existe un polinomio $q(x)$ tal que $f(x)=q(x)g(x)$.

Ejemplo. El polinomio $x^3-1$ divide al polinomio $x^4+x^3-x-1$, pues $$x^4+x^3-x-1 = (x^3-1)(x+1).$$

$\square$

Ejemplo. Si $g(x)$ es un polinomio no cero y constante, es decir, de la forma $g(x)=a$ para $a\neq 0$ un real, entonces divide a cualquier otro polinomio en $\mathbb{R}[x]$. En efecto, si $$f(x)=a_0+a_1x+\ldots + a_nx^n$$ es cualquier polinomio y tomamos el polinomio $$q(x)=\frac{a_0}{a}+\frac{a_1}{a}x+\ldots + \frac{a_n}{a}x^n,$$ entonces $f(x)=g(x)q(x)$.

$\square$

El último ejemplo nos dice que los polinomios constantes y no cero se comportan «como el $1$ se comporta en los enteros». También nos dice que cualquier polinomio tiene una infinidad de divisores. Eso nos pone en aprietos para definir algo así como los «polinomios primos» en términos del número de divisores. En la siguiente sección hablaremos de cómo hacer esta definición de manera adecuada.

Polinomios irreducibles

Cuando trabajamos con enteros, vimos que es muy útil poder encontrar la factorización en términos de números primos. En polinomios no tenemos «polinomios primos», pero tenemos un concepto parecido.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es irreducible en $\mathbb{R}[x]$ si no es un polinomio constante, y no es posible escribirlo como producto de dos polinomios no constantes en $\mathbb{R}[x]$.

Ejemplo. El polinomio $$x^4+x^2+1$$ no es irreducible en $\mathbb{R}[x]$ pues $$x^4+x^2+1=(x^2+x+1)(x^2-x+1).$$

Los polinomios $x^2+x+1$ y $x^2-x+1$ sí son irreducibles en $\mathbb{R}[x]$. Más adelante veremos por qué.

$\square$

La razón por la cual quitamos a los polinomios constantes es parecida a la cual en $\mathbb{Z}$ no consideramos que $1$ sea primo: ayuda a enunciar algunos teoremas más cómodamente.

Hay unos polinomios que fácilmente se puede ver que son irreducibles: los de grado $1$.

Proposición. Los polinomios de grado $1$ en $\mathbb{R}[x]$ son irreducibles.

Demostración. Si $f(x)$ es un polinomio de grado $1$, entonces no es constante. Además, no se puede escribir a $f(x)$ como el producto de dos polinomios no constantes pues dicho producto tiene grado al menos $2$.

$\square$

Hay otros polinomios en $\mathbb{R}[x]$ que no son de grado $1$ y que son irreducibles. Por ejemplo, con la teoría que tenemos ahora te debe ser fácil mostrar de tarea moral que $x^2+1$ es irreducible en $\mathbb{R}[x]$.

La razón por la que siempre insistimos en que la irreducibilidad sea en $\mathbb{R}[x]$ es por que a veces un polinomio no se puede factorizar en polinomios con coeficientes reales, pero sí con coeficientes complejos. Aunque $x^2+1$ sea irreducible en $\mathbb{R}[x]$, si permitimos coeficientes complejos se puede factorizar como $$x^2+1=(x+i)(x-i).$$

Más adelante seguiremos hablando de irreducibilidad. Por ahora, nos enfocaremos en los polinomios de grado $1$.

Teorema del factor

Una propiedad clave de los polinomios de grado $1$ es que, es lo mismo que $x-a$ divida a un polinomio $p(x)$, a que $a$ sea una raíz de $p(x)$.

Teorema (del factor). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El polinomio $x-a$ divide a $p(x)$ si y sólo si $p(a)=0$.

Demostración. De acuerdo al algoritmo de la división, podemos escribir $$p(x)=(x-a)q(x)+r(x),$$ en donde $r(x)$ es $0$ o un polinomio de grado menor estricto al de $x-a$. Como el grado de $x-a$ es $1$, la única posibilidad es que $r(x)$ sea un polinomio constante $r(x)=r$. Así, $p(x)=(x-a)q(x)+r$, con $r$ un real.

Si $p(a)=0$, tenemos que $$0=p(a)=(a-a)q(a)+r=r,$$ de donde $r=0$ y entonces $p(x)=(x-a)q(x)$, lo que muestra que $x-a$ divide a $p(x)$.

Si $x-a$ divide a $p(x)$, entonces $p(x)=(x-a)q(x)$, de donde $p(a)=(a-a)q(a)=0$, por lo que $a$ es raíz de $p(x)$.

$\square$

Ejemplo. Consideremos el polinomio $p(x)=x^3-6x^2+11x-6$. ¿Podremos encontrar algunos polinomios lineales que lo dividan? A simple vista, notamos que la suma de sus coeficientes es $1-6+11-6=0$. Esto nos dice que $p(1)=0$. Por el teorema del factor, tenemos que $x-1$ divide a $p(x)$. Tras hacer la división, notamos que $$p(x)=(x-1)(x^2-5x+6).$$

Veamos si podemos seguir factorizando polinomios lineales que no sean $x-1$. Si un polinomio $x-a$ divide a $p(x)$, por el teorema del factor debemos tener $$0=p(a)=(a-1)(a^2-5a+6).$$ Como $a\neq 1$, entonces $a-1\neq 0$, de modo que tiene que pasar $$a^2-5a+6=0,$$ en otras palabras, hay que encontrar las raíces de $x^2-5x+6$.

Usando la fórmula general cuadrática, tenemos que las raíces de $x^2-5x+6$ son
\begin{align*}
x_1&=\frac{5+\sqrt{25-24}}{2}=3\\
x_2&=\frac{5-\sqrt{25-24}}{2}=2.
\end{align*}

Usando el teorema del factor, concluimos que tanto $x-2$ como $x-3$ dividen a $p(x)$. Hasta ahora, sabemos entonces que $$p(x)=(x-1)(x-2)(x-3)h(x),$$ donde $h(x)$ es otro polinomio. Pero $(x-1)(x-2)(x-3)$ ya es un polinomio de grado $3$, como $p(x)$ y su coeficiente de $x^3$ es $1$, como el de $p(x)$. Concluimos que $h(x)=1$ y entonces $$p(x)=(x-1)(x-2)(x-3).$$

$\square$

Teorema del residuo

En realidad, la técnica que usamos para el teorema del factor nos dice algo un poco más general. Cuando escribimos $$p(x)=(x-a)q(x)+r$$ y evaluamos en $a$, obtenemos que $p(a)=r$. Reescribimos esta observación como un teorema.

Teorema (del residuo). Sea $a$ un real y $p(x)$ un polinomio en $\mathbb{R}[x]$. El residuo de dividir $p(x)$ entre $x-a$ es $p(a)$.

Problema. Encuentra el residuo de dividir el polinomio $p(x)=x^8-x^5+2x^3+2x$ entre el polinomio $x+1$.

Solución. Se podría hacer la división polinomial, pero esto es largo y no nos piden el polinomio cociente, sólo el residuo. Así, podemos resolver este problema más fácilmente usando el teorema del residuo.

Como $x+1=x-(-1)$, el residuo de la división de $p(x)$ entre $x+1$ es $p(-1)$. Este número es
\begin{align*}
p(-1)&=(-1)^8-(-1)^5+2(-1)^3+2(-1)\\
&=1+1-2-2\\
&=-2.
\end{align*}

$\square$

Más adelante…

Los teoremas que hemos visto en esta entrada serán las principales herramientas algebraicas que tendremos en el estudio de los polinomios así como en la búsqueda de las raíces de los polinomios y en resolver la pregunta sobre su irreductibilidad.

El algoritmo de la división nos servirá (como nos sirvió en $\mathbb{Z}$ para poder precisar el algoritmo de Euclides y definir el máximo común divisor de dos polinomios.

Por ahora, en la siguiente entrada, nos encargaremos de practicar lo aprendido y resolver ejercicios sobre raíces y residuos de polinomios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que el polinomio $x$ no tiene inverso multiplicativo.
  2. Demuestra la parte de unicidad del algoritmo de la división.
  3. Muestra que el polinomio $x^2+1$ es irreducible en $\mathbb{R}[x]$. Sugerencia. Procede por contradicción. Una factorización tiene que ser de la forma $x^2+1=p(x)q(x)$ con $p$ y $q$ de grado $1$.
  4. Factoriza en términos lineales al polinomio $p(x)=x^3-12x^2+44x-48$. Sugerencia. Intenta enteros pequeños (digamos de $-3$ a $3$) para ver si son raíces. Uno de ellos funciona. Luego, usa el teorema del factor para expresar a $p(x)$ como un polinomio lineal por uno cuadrático. Para encontrar el resto de factores lineales, encuentra las raíces del cuadrático.
  5. Encuentra el residuo de dividir el polinomio $x^5-x^4+x^3-x^2+x-1$ entre el polinomio $x-2$.

Entradas relacionadas

Álgebra Superior II: Inmersión de R en R[x], grado y evaluación de polinomios

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada comenzaremos mostrando que podemos usar «la notación de siempre» para los polinomios, usando un símbolo $x$ y potencias. Después de eso, hablaremos del grado de un polinomio y de cómo se comporta con las operaciones que hemos definido. Finalmente, haremos una distinción importante entre los polinomios, y las funciones que inducen.

Como recordatorio, en la entrada anterior definimos a los polinomios y sus operaciones de suma y multiplicación. Para ello, construimos a los polinomios como sucesiones en las que casi todos los términos son $0$. Vimos que bajo estas operaciones se obtiene un dominio entero, es decir, un anillo conmutativo con unidad multiplicativa en donde se vale la regla de cancelación.

Regresando a la notación con $x$ y potencias

Ya dimos cimientos sólidos para construir al anillo de polinomios con coeficientes reales y sus operaciones. Es momento de regresar a la «notación usual» usando $x$ y sus potencias, pues será más práctica en lo que viene.

Para empezar, notemos que a cada real $r$ podemos asociarle el polinomio $(r,\overline{0})$. Esta es una asociación en la que las operaciones de suma y producto de $\mathbb{R}$ se corresponden con las de $\mathbb{R}[x]$.

Observa además que tras esta asociación, el real $0$ es el polinomio $(\overline{0})$ y el real $1$ es el polinomio $(1,\overline{0})$, así que la asociación respeta los neutros de las operaciones. De manera similar se puede mostrar que la asociación respeta inversos aditivos y multiplicativos.

Por esta razón, para un real $r$ podemos simplemente usar el símbolo $r$ para el polinomio $(r,\overline{0})$, y todas las operaciones siguen siendo válidas. Para expresar a cualquier otro polinomio, nos bastará con introducir un símbolo más, y potencias.

Definición. Definimos $x$ como el polinomio $\{0,1,\overline{0}\}$. Para cada natural $n$ definimos $x^n$ como el polinomio $\{a_n\}$ tal que $a_j=1$ si $j=n$ y $a_j=0$ para $j\neq n$.

Ejemplo. La definición de arriba implica $x^0=1$ y $x^1=x$. El polinomio $x^3$ es el polinomio $$(0,0,0,1,\overline{0}).$$

$\square$

Ejemplo. Hagamos la multiplicación de los polinomios $x^2$ y $x^3$. Estos son, por definición, $(0,0,1,\overline{0})$ y $(0,0,0,1,\overline{0})$. Hagamos esta multiplicación con el método de la tabla:

$0$$0$$1$
$0$$0$$0$$0$
$0$$0$$0$$0$
$0$$0$$0$$0$
$1$$0$$0$$1$
Multiplicación de $x^2$ y $x^3$.

El producto es el polinomio $(0,0,0,0,0,1,\overline{0})$, que por definición es el polinomio $x^5$.

$\square$

En general, para $m$ y $n$ enteros no negativos se tiene que $x^mx^n = x^{m+n}$, como puedes verificar de tarea moral.

Ya que tenemos al símbolo $x$ y sus potencias, necesitaremos también agregar coeficientes para poder construir cualquier polinomio.

Definición. Dados un polinomio $a:=\{a_n\}$ y un real $r$, definimos al polinomio $ra$ como la sucesión $$ra:=\{ra_n\},$$ es decir, aquella obtenida de multiplicar cada elemento de $a$ por $r$.

Ejemplo. Si tomamos al polinomio $$a=\left(0,\frac{1}{2},0,\frac{1}{3},\overline{0}\right)$$ y al real $r=6$, tenemos que $$6a=\left(0,3,0,2,\overline{0}\right).$$

Observa que $3x$ es el polinomio $(0,3,\overline{0})$, que $2x^3$ es el polinomio $(0,0,0,2,\overline{0})$ y que la suma de los dos es precisamente el polinomio $6a$, de modo que podemos escribir $$6a=3x+2x^3.$$

Si tomamos cualquier polinomio $a$ y al real $ 0$, tenemos que $$0a=\{0,0,0,0,\ldots\}=(\overline{0}),$$ es decir, $0a$ es el polinomio cero.

$\square$

La siguiente proposición es sencilla y su demostración queda como tarea moral.

Proposición. Para cualquier polinomio $a=\{a_n\}$ en $\mathbb{R}[x]$, los reales $a_0,a_1,\ldots$ son los únicos reales tales que $$a=a_0+a_1x+a_2x^2+a_3x^3+\ldots.$$

Todo lo que hemos discutido en esta sección permite que ahora sí identifiquemos formalmente al polinomio $$(a_0, a_1, a_2, a_3, a_4, a_5, \ldots),$$ con la expresión $$a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+\ldots$$

y que realicemos las operaciones en $\mathbb{R}[x]$ «como siempre», es decir, sumando coeficientes de términos iguales y multiplicando mediante la distribución y reagrupamiento. Así, a partir de ahora ya no usaremos la notación de sucesiones y simplemente escribiremos a los polinomios con la notación de $x$ y sus potencias. También, favoreceremos llamarles a los polinomios $p(x),q(x),r(x),\ldots$ en vez de $a,b,c,\ldots$.

Ejercicio. Realiza la operación $6(\frac{1}{2}+x)(1+3x^2)$.

Solución. Por asociatividad, podemos hacer primero la primer multiplicación, que da $3+6x$. Luego, multiplicamos este polinomio por el tercer término. Podemos usar las propiedades de anillo para distribuir y agrupar, o bien, podemos seguir usando el método de la tabla.

Cuando hacemos lo primero, queda
\begin{align*}
(3+6x)(1+3x^2)&=3+9x^2+6x+18x^3\\
&=3+6x+9x^2+18x^3.
\end{align*}

Si hacemos lo segundo, tendríamos que hacer la siguiente tabla (¡cuidado con dejar el cero correspondiente al término $x$ del segundo factor!)

$3$$6$
$1$$3$$6$
$0$$0$$0$
$3$$9$$18$
Multiplicación de dos polinomios

Leyendo por diagonales, el resultado es $$3+6x+9x^2+18x^3,$$ tal y como calculamos con el primer método.

$\square$

Grado de polinomios

Vamos a definir «grado» para todo polinomio que no sea el polinomio $0$. Es muy importante recordar que el polinomio $0$ no tiene grado.

Definición. Un polinomio $p(x)$ en $\mathbb{R}[x]$ es de grado $n$ si es de la forma $$p(x)=a_0+a_1x+\ldots+a_nx^n,$$ para reales $a_0,\ldots,a_n$ y $a_n\neq 0$. Al grado de $p(x)$ lo denotamos por $\deg(p(x))$.

Por la discusión de la sección anterior, el grado está bien definido. En términos de la sucesión correspondiente al polinomio, su grado es el mayor entero que sea subíndice de una entrada no cero.

Ejemplo. El grado del polinomio $p(x)=3$ es $0$. De hecho, todo polinomio que viene de un real tiene grado $0$. Excepto el polinomio $0$.

El grado del polinomio $q(x)=1+2x^3+3x^7$ es $7$.

Sin embargo, el polinomio $r(x)=0$ no tiene grado, pues es el polinomio $0$.

Notemos que el polinomio $s(x)=2+4x$ se escribe como $(2,4,\overline{0})$ en notación de sucesión. La entrada $0 $ es $2$, la entrada $1$ es $4$ y el resto de las entradas son $0$. El grado de $s(x)$ es $1$, que es precisamente la posición de la última entrada distinta de $0$ en su notación de sucesión.

$\square$

El siguiente resultado habla de cómo interactúa el grado con operaciones de polinomios.

Proposición. Si $p(x)$ y $q(x)$ son polinomios en $\mathbb{R}[x]$ distintos de cero, entonces:

  • El grado del producto cumple $$\deg(p(x)q(x)) = \deg(p(x))+\deg(q(x)).$$
  • El grado de la suma cumple $$\deg(p(x)+q(x))\leq \max(\deg(p(x)),\deg(q(x))).$$
  • Si $\deg(p(x))>\deg(q(x))$, entonces $$\deg(p(x)+q(x))=\deg(p(x)).$$

Demostración. Supongamos que los grados de $p(x)$ y $q(x)$ son, respectivamente, $m$ y $n$, y que $p(x)$ y $q(x)$ son
\begin{align*}
p(x)&=a_0+a_1x+\ldots+a_mx^m\\
q(x)&=b_1+b_1x+\ldots+b_nx^n.
\end{align*}
La demostración de la primera parte ya la hicimos en la entrada anterior. En la notación que estamos usando ahora, vimos que el coeficiente de $x^{m+n}$ en $p(x)q(x)$ es justo $a_mb_n\neq 0$, y que este es el término de mayor exponente.

Para la segunda y tercera partes, podemos asumir que $m\geq n$. Tenemos que $p(x)+q(x)$ es $$\left(\sum_{i=0}^n (a_i+b_i)x^i\right) + a_{n+1}x^{n+1}+\ldots+a_mx^m.$$ De aquí, se ve que el máximo exponente que podría aparecer es $m$, lo cual prueba la segunda parte.

Para la tercer parte, cuando $m>n$ tenemos que el coeficiente de $x^m$ es $a_m\neq 0$, y que es el término con mayor exponente. Así, el grado de la suma es $m$.

$\square$

La hipótesis adicional del tercer punto es necesaria, pues en la suma de dos polinomios del mismo grado, es posible que «se cancele» el término de mayor grado.

Ejemplo. El producto de los polinomios $1+x+x^2+x^3$ y $1-x$ es $1-x^4$. Esto concuerda con lo que esperábamos de sus grados. El primero tiene grado $3$, el segundo grado $1$ y su producto grado $4=3+1$.

La suma de los polinomios $1+\pi x^3 + \pi^2 x^5$ y $1-\pi x^3$ es $2+\pi^2x^5$, que es un polinomio de grado $5$, como esperaríamos por la tercer parte de la proposición.

La suma de los polinomios $4x^5+6x^7$ y $6x^5+4x^7$ es $10x^5+10x^7$. Es de grado $7$, como esperaríamos por la segunda parte de la proposición.

Sin embargo, en la suma de polinomios el grado puede disminuir. Por ejemplo, los polinomios $1+x^3-x^7$ y $1+x^2+x^7$ tienen grado $7$, pero su suma es el polinomio $2+x^2+x^3$, que tiene grado $3$.

$\square$

Evaluación de polinomios e introducción a raíces

Es importante entender que hay una diferencia entre un polinomio, y la función que induce. Por la manera en que definimos a los polinomios, «en el fondo» son sucesiones, incluso con la nueva notación de $x$ y potencias. Sin embargo, cualquier polinomio define una función.

Definición. Si tenemos un polinomio $$p(x)=a_0+a_1x+\ldots+a_nx^n$$ en $\mathbb{R}$, éste define una función aplicar $p$ que es una función $f_p:\mathbb{R}\to \mathbb{R}$ dada por $$f_p(r)=a_0+a_1r+a_2r^2+\ldots+a_nr^n$$ para todo $r\in \mathbb{R}$.

Ejemplo. El polinomio $p(x)=3x^2+4x^3$ induce a la función $f_p:\mathbb{R}\to \mathbb{R}$ tal que $f_p(r)=3r^2+4r^3$. Tenemos, por ejemplo, que $$f_p(1)=3\cdot 1^2 + 4\cdot 1^3 = 7$$ y que $$f_p(2)=3\cdot 2^2 + 4\cdot 2^3=44.$$

$\square$

Como las reglas de los exponentes y la multiplicación por reales funciona igual en $\mathbb{R}$ que en $\mathbb{R}[x]$, la evaluación en un real $r$ obtiene exactamente lo mismo a que si simplemente reemplazamos $x$ por $r$ y hacemos las operaciones. Por ello, usualmente no distinguimos entre $p(x)$ y $f_p$, su función evaluación, y para un real $r$ usamos simplemente $p(r)$ para referirnos a $f_p(r)$.

De manera totalmente análoga, podemos pensar a $p(x)$ como una función $p:\mathbb{C}\to \mathbb{C}$. También, como comentamos al inicio, podemos definir a los polinomios con coeficientes complejos, es decir a $\mathbb{C}[x]$, y pensarlos como funciones.

Es momento de introducir una definición clave para lo que resta del curso.

Definición. Sea $p(x)$ un polinomio en $\mathbb{R}[x]$ o $\mathbb{C}[x]$ y sea $r$ un real o complejo. Decimos que $r$ es una raíz de $p(x)$ si $p(r)=0$.

Ejemplo. El polinomio $p(x)=3$ no tiene raíces, pues para cualquier real o complejo $r$ se tiene $p(r)=3\neq 0$. Por otro lado, cualquier real o complejo es raíz del polinomio $z(x)=0$.

El polinomio $q(x)=x^2+1$ no tiene raíces en $\mathbb{R}$ pues $q(r)\geq 1$ para cualquier real $r$. Pero sí tiene raíces en $\mathbb{C}$, pues $$q(i)=i^2+1=-1+1=0.$$

El polinomio $s(x)=x(x-1)(x-1)=x^3-2x^2+x$ tiene como únicas raíces a $ 0$ y $1$, lo cual se puede verificar fácilmente antes de hacer la multiplicación. Esto debería darnos la intuición de que conocer a las raíces de un polinomio nos permite factorizarlo y viceversa. Esta intuición es correcta y la formalizaremos más adelante.

$\square$

Cuando hablamos de los números complejos, vimos cómo obtener las raíces de los polinomios de grado $2$, y de los polinomios de la forma $x^n-a$ en $\mathbb{C}$. La mayor parte de lo que haremos de aquí en adelante en el curso será entender a las raíces reales y complejas de más tipos de polinomios.

Más adelante…

Ya que hemos formalizado la notación estándar que conocemos de los polinomios, su estudio podrá ser más cómodo, hacemos énfasis en que casi todas las definiciones que dimos en esta sección se apoyaros simplemente en un uso adecuado de la notación; por lo que no hay que perder de vista que en el fondo, los polinomios siguen siendo sucesiones de números, y que el símbolo $x$ solo es una forma de representar la sucesión $(0,1,\overline{0})$.

Aun así, hemos justificado que este cambio de notación no tiene nada que envidiar a la notación original, por lo que en las siguientes entradas, ocuparemos la notación más familiar, lo cual será una pieza clave, para hacer más legibles las demostraciones en las siguientes entradas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Pasa el polinomio $(0,0,0,0,4,0,3,\overline{0})$ a notación con $x$ y potencias. Luego, pasa el polinomio $1-x^3+x^6-x^9$ a notación de sucesión. Suma ambos polinomios y exprésalos en notación con $x$. Multiplícalos usando distribución y agrupamiento. Multiplícalos usando una tabla.
  2. Prueba usando la definición de multiplicación y de $x^n$ que para $m$ y $n$ enteros no negativos se tiene que $x^{m+n}= x^m x^n$.
  3. Toma $P_1(x),\ldots,P_m(x)$ polinomios en $\mathbb{R}[x]$ de grado $n_1,\ldots,n_m$ respectivamente. ¿Cuál es el grado de $P_1(x)+\ldots+P_m(x)$? ¿Y el grado de $P_1(x)\cdot \ldots \cdot P_m(x)$?
  4. Usando distribución y agrupamiento, muestra que para cada entero positivo $n$ se cumple que $$(1-x)(1+x+x^2+\ldots+x^{n-1})=1-x^n.$$
  5. Justifica que si $r(x)$ es un polinomio y $f_r$ es la función aplicar $r$, entonces para cualesquiera polinomios $p(x)$ y $q(x)$, se tiene que $f_p+f_q=f_{p+q}$ y que $f_pf_q=f_{pq}$.

Para practicar la aritmética de polinomios, puedes ir a la sección correspondiente de Khan Academy.

Entradas relacionadas