Geometría Moderna I: Cuadrilátero cíclico

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada hablaremos sobre algunas propiedades importantes del cuadrilátero cíclico, mas allá de las primeras caracterizaciones como las vistas en el teorema de Ptolomeo.

Fórmula de Brahmagupta

Teorema 1, fórmula de Bretschneider. Sea $\square ABCD$ un cuadrilátero convexo, si $AB = a$, $BC = b$, $CD = c$, $AD = d$, $s = \dfrac{a + b + c + d}{2}$ y $\beta = \angle CBA$, $\delta = \angle ADC$, entonces el área de $\square ABCD$ se puede calcular mediante la siguiente formula:
$(\square ABCD) = \sqrt{(s – a)(s – b)(s – c)(s – d) – \dfrac{abcd}{2}(1 + \cos(\beta + \delta))}$

Demostración. Calculamos el área de los triángulos que se forman al considerar la diagonal AC,
$(\triangle ABC) = \dfrac{ab \sin \beta}{2}$,
$(\triangle ACD) = \dfrac{cd \sin \delta}{2}$.

Figura 1

Por otro lado, empleando la ley de los cosenos podemos calcular $AC$
$AC^2 = a^2 + b^2 – 2ab \cos \beta = c^2 + d^2 – 2cd \cos \delta$.

De la última igualdad obtenemos
$(a^2 + b^2 – (c^2 + d^2))^2 = (2ab \cos \beta – 2cd \cos \delta)^2$.

Entonces:
$(\square ABCD) = (\triangle ABC) + (\triangle ACD) = \dfrac{ab \sin \beta}{2} + \dfrac{cd \sin \delta}{2}$
$\Rightarrow (\square ABCD)^2 = \dfrac{a^2b^2 \sin^2 \beta}{4} + \dfrac{abcd \sin \beta \sin \delta }{2} + \dfrac{c^2d^2 \sin^2 \delta}{4}$.

Por lo tanto,
$16(\square ABCD)^2 = 4 a^2b^2 \sin^2 \beta + 8 abcd \sin \beta \sin \delta + 4 c^2d^2 \sin^2 \delta$
$= 4a^2b^2(1 – \cos^2 \beta) + 4c^2d^2(1 – \cos^2 \delta) + 8abcd \sin \beta \sin \delta$


$= 4a^2b^2 + 4c^2d^2 + 8abcd – 8abcd – 4a^2b^2 \cos^2 \beta – 4c^2d^2 \cos^2 \delta$
$+ 8abcd\cos \beta\cos \delta – 8abcd\cos \beta\cos \delta + 8abcd \sin \beta \sin \delta$
$= (2ab + 2cd)^2 – (2ab \cos \beta – 2cd \cos \delta)^2 – 8abcd(1 + \cos \beta\cos \delta – \sin \beta \sin \delta)$
$ = (2ab + 2cd)^2 – (a^2 + b^2 – (c^2 + d^2))^2 – 8abcd(1 + \cos(\beta + \delta))$


$= (2ab + 2cd + a^2 + b^2 – (c^2 + d^2))(2ab + 2cd – a^2 – b^2 + (c^2 + d^2)) – 8abcd(1 + \cos(\beta + \delta))$
$ = (a^2 + 2ab +b^2 – (c^2 – 2cd + d^2))(c^2 + 2cd + d^2 – (a^2 – 2ab + b^2)) – 8abcd(1 + \cos(\beta + \delta))$
$=((a + b)^2 – (c – d)^2)((c + d)^2 – (a – b)^2) – 8abcd(1 + \cos(\beta + \delta))$
$=(a + b + c – d)(a + b + d – c)(a + c + d – b)(b + c + d – a) – 8abcd(1 + \cos(\beta + \delta))$


$= (2s – 2d)(2s – 2c)(2s – 2b)(2s – 2a) – 8abcd(1 + \cos(\beta + \delta))$
$\Rightarrow (\square ABCD) = \sqrt{(s – a)(s – b)(s – c)(s – d) – \dfrac{1}{2}abcd(1 + \cos(\beta + \delta))}$.

$\blacksquare$

Corolario, fórmula de Brahmagupta. Si $\square ABCD$ es cíclico entonces
$(\square ABCD) = \sqrt{(s – a)(s – b)(s – c)(s – d)}$.

Demostración. Si $\square ABCD$ es cíclico entonces $\beta + \delta = \pi$
por lo que $1 + \cos(\beta + \delta) = 0$.

$\blacksquare$

Observación. La fórmula de Bretschneider nos muestra que de todos los cuadriláteros convexos que tienen lados $a$, $b$, $c$ y $d$, aquellos que son cíclicos tienen mayor área.

Una propiedad del cuadrado

Teorema 2. De entre los cuadriláteros con el mismo perímetro el cuadrado es el que tiene la mayor área.

Demostración. Notemos primero que a partir de un cuadrilátero cóncavo o un cuadrilátero cruzado con un perímetro dado es posible construir un cuadrilátero convexo que tenga los mismos lados, pero mayor área. 

Si en el cuadrilátero cóncavo $\square ABCD$, reflejamos $D$ respecto la diagonal $AC$ obtenemos $\square ABCD’$ el cual es convexo y $(\square ABCD’) = (\square ABCD) + (\square ADCD’)$.

Por lo tanto $(\square ABCD’) > (\square ABCD)$.

Figura 2

En el caso de un cuadrilátero cruzado reflejamos algún vértice respecto de la diagonal que no pasa por el vértice a reflejar, por ejemplo, en $\square EFGH$ reflejamos $G$ respecto de $\overline{FH}$ y obtenemos $\square EFG’H$.

Por lo tanto,
$(\square EFG’H) = (\triangle EFH) + (\triangle FG’H) = (\triangle EFH) + (\triangle FGH) > (\square EFGH)$.

De esta forma podemos fijarnos solo en el área de los cuadriláteros convexos, pero por la observación bastara con restringirnos a los cuadriláteros convexos y cíclicos.

Por la fórmula de Brahmagupta sabemos que el área depende de los lados del cuadrilátero cíclico.

En la entrada desigualdades geométricas vimos que para $w$, $x$, $y$, $z$ números reales positivos tesemos lo siguiente:
$wxyz \leq (\dfrac{w + x + y + z}{4})^4$, y la igualdad se da si y solo si $w = x = y = z$.

Aplicamos este resultado al área del cuadrilátero cíclico $\square ABCD$ de perímetro $P$ y lados $a$, $b$, $c$ y $d$.

$(\square ABCD)^2 = (s – a)(s – b)(s – c)(s – d) \leq (\dfrac{(s – a) + (s – b) + (s – c) + (s – d)}{4})^4$
$= (\dfrac{(4s – (a + b + c + d)}{4})^4 = (\dfrac{2P – P}{4})^4 = (\dfrac{P}{4})^4$

Por lo tanto,
$(\square ABCD) \leq (\dfrac{P}{4})^2$ y la igualdad se da
$\Leftrightarrow$ $(s – a) = (s – b) = (s – c) = (s – d)$
$ \Leftrightarrow$$ a = b = c = d$
$\Leftrightarrow \square ABCD$ es un cuadrado.

$\blacksquare$

Anticentro del cuadrilátero cíclico

Definición. Las rectas perpendiculares a los lados de un cuadrilátero que pasan por los puntos medios de los lados opuestos, se conocen como $m$-alturas.

Teorema 3. Las $m$-alturas de un cuadrilátero cíclico son concurrentes, al punto de concurrencia se le conoce como anticentro, además, el circuncentro, el centroide y el anticentro de un cuadrilátero cíclico son colineales.

Demostración. Sea $\square ABCD$ cíclico y sean $E$, $F$, $G$ y $H$ los puntos medios de $AB$, $BC$, $CD$ y $DA$ respectivamente consideremos $O$ y $J$, el circuncentro y el centroide respectivamente de $\square ABCD$.

Figura 3

La perpendicular a $BC$ desde $H$ interseca a $BC$ en $H’$, $HH’$ interseca a la recta determinada por $O$ y $J$ en $M$.

Como $O$ esta en la mediatriz de $BC$ entonces $OF \perp BC$, y asi, $OF \parallel HH’$, en consecuencia $\angle JFO = \angle JHM$, además $\angle OJF = \angle MJH$ por ser opuestos por el vértice.

Por lo tanto, $\triangle JFO$ y $\triangle JHM$ son semejantes y como $J$ es el punto medio de $HF$, entonces, $JO = JM$, en otras palabras, $HH’$ pasa por $M$, el punto simétrico de $O $ respecto a $J$.

De manera similar podemos ver que las demás $m$-alturas de $\square ABCD$ pasan por $M$.

$\blacksquare$

Proposición 1. Los ortocentros de los triángulos determinados por los cuatro vértices de un cuadrilátero cíclico forman un cuadrilátero simétrico al cuadrilátero original respecto del anticentro.

Demostración. Sean $\square ABCD$ cíclico y $H_{a}$, $H_{b}$, $H_{c}$ y $H_{d}$ los ortocentros de $\triangle BCD$, $\triangle ACD$, $\triangle ABD$ y $\triangle ABC$ respectivamente y $F$ el punto medio de $BC$.

Figura 4

Considerando los triángulos $\triangle ABC$ y $\triangle DBC$ y por la proposición 6 de la entrada triangulo órtico, tenemos que $AH_{d} = 2OF = DH_{a}$, además $AH_{d}$ y $DH_{a}$ son perpendiculares a $BC$ por lo tanto $AH_{d} \parallel DH_{a}$.

De esto se sigue que $\square AH_{d}H_{a}D$ es un paralelogramo, así que las diagonales $AH_{a}$ y $DH_{d}$ se intersecan en su punto medio.

De manera análoga vemos que $AH_{a}$ y los segmento $BH_{b}$, $CH_{c}$, se intersecan en su punto medio.

Por lo tanto, estos cuatro segmentos se bisecan mutuamente, es decir el punto de intersección $X$ es el centro de simetría de $\square ABCD$ y $\square H_{a}H_{b}H_{c}H_{d}$.

Ahora en $\triangle AH_{d}D$ consideremos la recta que pasa por $H$ el punto medio de $DA$ y el centro de simetría $X$, entonces $HX \parallel AH_d$, por lo tanto, $HX \perp $BC$ y así $HX$ es una $m$-altura.

De manera análoga vemos que las otras $m$-alturas pasan por $X$, por lo tanto, $X$ es el anticentro de $\square ABCD$.

$\blacksquare$

Teorema Japonés

Proposición 2. Sea $\square ABCD$ cíclico, considera $E$, $F$, $G$, $H$, los puntos medios de los arcos, $BC$, $CD$, $DA$, $AB$, respectivamente del circuncírculo de $\square ABCD$, entonces $EG \perp FH$.

Demostración. Considera $O$ el circuncentro de $\square ABCD$ y $X = EG \cap FH$.

Como $\angle EXF$ es un ángulo interior, tenemos lo siguiente:
$\angle EXF = \dfrac{\angle EOF + \angle GOH}{2}$
$= \angle EAF + \angle GCH = \angle EAC + \angle CAF + \angle GCA + \angle ACH $
$= \dfrac{\angle BAC}{2} + \dfrac{\angle CAD}{2} + \dfrac{\angle DCA}{2} + \dfrac{\angle ACB}{2} $
$ = \dfrac{\angle BAD + \angle DCB}{2} = \dfrac{\pi}{2}$.

$\blacksquare$

Figura 5

Teorema 4, teorema japonés. Los incentros de los cuatro triángulos que se forman al considerar las diagonales de un cuadrilátero cíclico, son los vértices de un rectángulo.

Demostración. Sean $A’$, $B’$, $C’$, $D’$, los incentros de $\triangle BCD$, $\triangle ACD$, $\triangle ABD$, $\triangle ABC$, donde $\square ABCD$ es cíclico (figura 5).

En $\triangle ACD$, como $AB’$ es la bisectriz de $\triangle CAD$ entonces $AB’$ interseca al circuncírculo de $\square ABCD$ en $F$ el punto medio del arco $\overset{\LARGE{\frown}}{CD}$.

Por el teorema 1 de la entrada circunferencias tritangentes, $B’$ pertenece a la circunferencia $(F, FC)$, con centro en $F$ y radio $FC = FD$.

De manera análoga podemos ver que $A’ \in (F, FC)$, por lo tanto, $\triangle A’FB’$ es isósceles.

Sea $H$ el punto medio del arco $\overset{\LARGE{\frown}}{AB}$, entonces $FH$ es bisectriz de $\triangle AFB$, en consecuencia, $A’B’ \perp FH$.

De mamera análoga vemos que $C’D’ \perp FH$ y $B’C’ \perp EG \perp D’A’$, donde $E$ y $G$ son los puntos medios de los arcos $\overset{\LARGE{\frown}}{BC}$ y $\overset{\LARGE{\frown}}{DA}$ respectivamente.

Por la proposición anterior, $EG \perp FH$, por lo tanto, $\square A’B’C’D’$ es un rectángulo.

$\blacksquare$

Teorema 5. De los cuatro triángulos que se forman al trazar las diagonales de un cuadrilátero cíclico, si consideremos tres que comparten un mismo vértice, entonces los tres excentros opuestos al vértice que comparten, son los vértices de un rectángulo, y el cuarto vértice es el incentro del triángulo restante.

Demostración. Usaremos la misma notación del teorema anterior.

En $\square ABCD$, consideremos los tres triángulos que comparten el vértice $C$, $\triangle CDB$, $\triangle CDA$, $\triangle CAB$ y sus respectivos excentros opuestos a $C$, $C_a$, $C_b$, $C_d$.

Figura 6

Nos apoyaremos en el teorema 1 de la entrada circunferencias tritangentes para hacer las siguientes afirmaciones.

$D’C_d$ es diámetro de la circunferencia $(H, HA)$, con centro en $H$ el punto medio de $\overset{\LARGE{\frown}}{AB}$, y radio $HA = HB = HC’$.

Consideremos $D_c$ el excentro de $\triangle ABD$ opuesto a $D$, $C’D_c$ es diámetro de $(H, HA)$.

Como $D’C_d$ y $C’D_c$, se bisecan y tienen la misma longitud, entonces, $\square C_dD_CD’C’$ es un rectángulo.

En consecuencia, las dos tercias de puntos, $C_d$, $C’$, $B’$; $D_c$, $D’$, $A’$, son colineales.

Igualmente, si consideramos $B_c$ el excentro de $\triangle ABD$ opuesto a $B$, podemos ver $B’C_b$ y $C’B_c$ son diámetros de $(G, GA)$ con $G$ el punto medio de $\overset{\LARGE{\frown}}{DA}$ y que las dos tercias $C_b$, $C’$, $D’$; $B_C$, $B’$, $A’$, son colineales.

Por otra parte, como $B_c$, $D_c$ son excentros de $\triangle ABD$, entonces $B_cD_c$ es diámetro de $(K, KB)$, la circunferencia con centro en $K$, el punto medio de $\overset{\LARGE{\frown}}{DB}$, y radio $KB = KD$.

Similarmente, como $A’$ y $C_a$, son dos centros tritangentes de $\triangle CBD$ entonces $A’C_a$ es diámetro de $(K, KB)$.

Por lo tanto, $\square C_aD_cA’B_c$ es un rectángulo.

En consecuencia, $\square C_aC_dC’C_b$ es un rectángulo.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos propiedades de los cuadriláteros cuyas diagonales son perpendiculares y veremos que pasa cuando además son cíclicos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra la fórmula de Brahmagupta usando la fórmula de Herón.
  2. En la tarea moral de la entrada teorema de Ptolomeo se pide mostrar que es posible construir tres cuadriláteros cíclicos diferentes de lados $a$, $b$, $c$ y $d$ siempre que la suma de cualesquiera tres de ellos sea mayor que el restante, y que de estos se obtienen tres diagonales diferentes digamos $l$, $m$, y $n$ si $\square ABCD$ es construido de esa manera y $R$ es el circunradio muestra que:
    $i)$ $(\square ABCD) = \dfrac{lmn}{4R}$
    $ii)$ $(\square ABCD)^2 = \dfrac{(ab + cd)(ac + bd)(ad + bc)}{16R^2}$.
  3. Demuestra que los centroides de los cuatro triángulos determinados por los cuatro vértices de un cuadrilátero cíclico son los vértices de otro cuadrilátero cíclico.
  4. Muestra que la suma de los cuadrados de las distancias del anticentro de un cuadrilátero cíclico a los cuatro vértices es igual al cuadrado del diámetro de la circunferencia en la que esta inscrito dicho cuadrilátero.
  5. Muestra que el anticentro de un cuadrilátero cíclico es el ortocentro del triángulo formado por los puntos medios de las diagonales y el punto en que estas rectas coinciden.
  6. Prueba que las circunferencia de los nueve puntos de los cuatro triángulos que se forman al considerar las dos diagonales de un cuadrilátero cíclico, concurren en el anticentro del cuadrilátero.
  7. Demuestra que la suma de los inradios de los triángulos obtenidos al trazar una diagonal de un cuadrilátero cíclico es igual a la suma de los inradios de los otros dos triángulos que se obtienen al considerar la otra diagonal.

Entradas relacionadas

Fuentes

  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 143-146.
  • Altshiller, N., College Geometry. New York: Dover, 2007, pp 127-135.
  • Coxeter, H. y Greitzer, L., Geometry Revisited. Washington: The Mathematical Association of America, 1967, pp 57-60.
  • Wikipedia

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Ecuaciones diferenciales exactas

Por Omar González Franco

Los matemáticos han alcanzado lo más alto del pensamiento humano.
– Havelock Ellis

Introducción

Ahora sabemos que método aplicar si nos encontramos con ecuaciones diferenciales no lineales con variables separables u homogéneas.

Esta entrada la dedicaremos a un tipo de ecuaciones diferenciales no lineales conocidas como ecuaciones exactas. Estas ecuaciones suelen ser más complejas e interesantes que las anteriores y su método de resolución involucra un mayor número de pasos a seguir.

Ecuaciones diferenciales exactas

Existe un caso especial en el que $f(x, y) = c$, donde $c$ es una constante, en este caso la diferencial, de acuerdo a la ecuación (\ref{1}), es

$$\dfrac{\partial f}{\partial x}dx + \dfrac{\partial f}{\partial y}dy = 0 \label{2} \tag{2}$$

Esto significa que dada una familia de curvas $f(x, y) = c$ es posible generar una ecuación diferencial de primer orden si se calcula la diferencial de ambos lados de la igualdad.

Ejemplo: Sea

$$f(x, y) = 8x^{2}y -x^{3} + y^{2} = c$$

una familia de curvas, calcular su diferencial.

Solución: De acuerdo a la definición de diferencial de una función de dos variables (\ref{1}), necesitamos calcular $\dfrac{\partial f}{\partial x}$ y $\dfrac{\partial f}{\partial y}$. Por un lado,

$$\dfrac{\partial f}{\partial x} = 16xy -3x^{2}$$

Por otro lado,

$$\dfrac{\partial f}{\partial y} = 8x^{2} + 2y$$

Por lo tanto, la diferencial de la función dada es

$$(16xy -3x^{2}) dx + (8x^{2} + 2y) dy = 0$$

$\square$

En el ejemplo anterior vimos que

$$(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$$

corresponde a la diferencial de la función

$$f(x, y) = 8x^{2}y -x^{3} + y^{2}$$

Por lo tanto, $(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$ es una diferencial exacta.

No todas las ecuaciones de primer orden escritas en la forma

$$M(x, y) dx + N(x, y) dy = 0 \label{3} \tag{3}$$

corresponden a la diferencial de alguna función $f(x, y) = c$, pero en caso de serlo, entonces la función $f(x, y) = c$ sería una solución implícita de (\ref{3}). Este tipo de ecuaciones tienen un nombre particular.

Ejemplo: Sea la función

$$f(x, y) = e^{x} + xy + e^{y} = c$$

una familia de curvas. Mostrar que la ecuación diferencial

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

es una ecuación exacta con respecto a la función $f(x, y)$.

Solución: Para verificar que es una ecuación exacta debemos verificar que el término

$$(e^{x} + y)dx + (e^{y} + x)dy$$

sea una diferencial exacta.

Consideremos la función dada

$$f(x, y) = e^{x} + xy + e^{y} = c$$

Por un lado,

$$\dfrac{\partial f}{\partial x} = e^{x} + y$$

Por otro lado,

$$\dfrac{\partial f}{\partial y} = e^{y} + x$$

Por lo tanto, la diferencial de la función $f(x, y)$ es

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

esto nos indica que el término

$$(e^{x} + y)dx + (e^{y} + x)dy$$

es una diferencial exacta ya que corresponde a la diferencial de la función $f(x, y)$. Por lo tanto, la ecuación

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

es una ecuación exacta. No sólo hemos mostrado que es una ecuación exacta, sino que incluso ahora podemos decir que la ecuación

$$e^{x} + xy + e^{y} = c$$

es una solución implícita de la ecuación diferencial.

$\square$

En este ejemplo nos han dado la función $f(x, y) = c$, pero es claro que dada una ecuación diferencial exacta resolverla implica hallar dicha función $f$. Entonces, ¿cómo podemos saber si una ecuación diferencial es exacta si previamente no conocemos la función $f$? y en caso de que de alguna manera seamos capaces de mostrar que la ecuación diferencial es exacta, ¿cómo podemos hallar a la función $f$?.

Antes de aprender a resolver las ecuaciones diferenciales exactas veamos un teorema que nos permite saber si la ecuación diferencial es exacta o no. Si la ecuación es exacta, entonces tenemos garantizado la existencia de una función $f$ tal que $f(x, y) = c$, dicha función será la solución de la ecuación exacta.

Demostración: Supongamos que $M(x, y) dx + N(x, y) dy$ es exacta, entonces por definición existe alguna función $f$ tal que para toda $x$ en $U$ se satisface lo siguiente.

$$M(x, y) dx + N(x, y) dy = \dfrac{\partial f}{\partial x} dx + \dfrac{\partial f}{\partial y} dy$$

Esta relación sólo se cumple si

$$M(x, y) = \dfrac{\partial f}{\partial x} \hspace{1cm} y \hspace{1cm} N(x, y) = \dfrac{\partial f}{\partial y} \label{5} \tag{5}$$

Si derivamos parcialmente la expresión

$$M(x, y) = \dfrac{\partial f}{\partial x}$$

con respecto a $y$ en ambos lados, obtenemos

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x} \right)
= \dfrac{\partial^{2} f}{\partial y \partial x}
= \dfrac{\partial^{2} f}{\partial x \partial y}
= \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y} \right)
= \dfrac{\partial N}{\partial x}$$

Donde

$$\dfrac{\partial^{2} f}{\partial y \partial x} = \dfrac{\partial^{2} f}{\partial x \partial y}$$

se cumple debido a que las primeras derivadas parciales de $M(x, y)$ y $N(x, y)$ son continuas en $U$.

Si es posible encontrar una función $f$ tal que se cumple (\ref{5}), entonces la condición

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

es necesaria y suficiente. Encontrar la función $f$ en realidad corresponde a un método de resolución de ecuaciones exactas y lo desarrollaremos a continuación.

$\square$

Solución a las ecuaciones exactas

La ecuación diferencial que queremos resolver es de la forma

$$M(x, y) dx + N(x, y) dy = 0$$

Por el teorema anterior sabemos que siempre y cuando se cumpla que

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

entonces debe existir una función $f$ para la que

$$\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)$$

Para obtener la función $f(x, y)$ debemos integrar la primer ecuación con respecto a $x$ manteniendo a $y$ constante o integrar la segunda ecuación con respecto a $y$ manteniendo a $x$ constante, vamos a hacer el primer caso y como tarea moral realiza el siguiente procedimiento tomando el segundo caso, notarás que el resultado es equivalente.

Tomando el primer caso, integremos la primer ecuación con respecto a $x$.

\begin{align*}
\int{\dfrac{\partial f}{\partial x} dx} &= \int{M(x, y) dx} \\
f(x, y) &= \int{M(x, y) dx} + g(y) \label{6} \tag{6} \\
\end{align*}

Hemos hecho uso del teorema fundamental del cálculo y la función $g(y)$ corresponde a la constante de integración, es constante en $x$, pero sí puede variar en $y$ ya que en este caso la estamos considerando como una constante al hacer la integral.

Ahora derivemos a (\ref{6}) con respecto a $y$.

\begin{align*}
\dfrac{\partial f}{\partial y} &= \dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} + g(y) \right) \\
&= \dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} \right) + \dfrac{dg}{dy}
\end{align*}

Pero,

$$\dfrac{\partial f}{\partial y} = N(x, y)$$

Entonces,

$$\dfrac{\partial}{\partial y} \left( \int{M(x, y) dx} \right) + \dfrac{dg}{dy} = N(x, y)$$

Despejemos a

$$\dfrac{dg}{dy} = g^{\prime}(y)$$

Se tiene,

$$g^{\prime}(y) = N(x, y) -\dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \label{7} \tag{7}$$

Lo que nos interesa en obtener la función $f(x, y)$, así que podemos integrar la ecuación (\ref{7}) con respecto a $y$ y sustituir $g(y)$ en la ecuación (\ref{6}). Como sabemos, la solución implícita es $f(x, y) = c$. Integremos la ecuación (\ref{7}).

$$g(y) = \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} \label{8} \tag{8}$$

Sustituimos el resultado (\ref{8}) en la ecuación (\ref{6}) e igualamos el resultado a la constante $c$.

$$f(x, y) = \int{M(x, y) dx} + \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} = c \label{9} \tag{9}$$

De esta manera habremos encontrado una solución implícita de la ecuación diferencial exacta.

Una observación interesante es que la función $g^{\prime}(y)$ es independiente de $x$, la manera de comprobarlo es con el siguiente resultado.

\begin{align*}
\dfrac{\partial g}{\partial x} &= \dfrac{\partial}{\partial x} \left[ N(x, y) -\dfrac{\partial}{\partial y} \left( \int{M(x, y) dx}\right) \right] \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial x} \left(\dfrac{\partial}{\partial y}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial y} \left(\dfrac{\partial}{\partial x}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \\
&= 0
\end{align*}

Ya que

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Las ecuaciones (\ref{6}), (\ref{8}) y (\ref{9}) son el resultado de tomar el primer caso. Si realizas el segundo caso en el que a la ecuación

$$\dfrac{\partial f}{\partial y} = N(x, y)$$

se integra con respecto a $y$ y al resultado se deriva con respecto a $x$ obtendremos las expresiones análogas, dichas expresiones son, respectivamente

$$f(x, y) = \int{N(x, y) dy} + h(x) \label{10} \tag{10}$$

$$h(x) = \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left( \int{N(x, y) dy} \right) \right] dx} \label{11} \tag{11}$$

y

$$f(x, y) = \int{N(x, y) dy} + \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left( \int{N(x, y) dy} \right) \right] dx} = c \label{12} \tag{12}$$

Método de solución de ecuaciones diferenciales exactas

Hemos desarrollado la teoría sobre cómo obtener la solución $f(x, y)$ de las ecuaciones diferenciales exactas. Debido a que no se recomienda memorizar los resultados, presentamos a continuación la siguiente serie de pasos o algoritmo que se recomiendan seguir para resolver una ecuación diferencial exacta.

  1. El primer paso es verificar que la ecuación diferencial
    $$M(x, y) dx + N(x, y) dy = 0$$ sea exacta para garantizar la existencia de la función $f$ tal que $f(x, y) = c$. Para verificar este hecho usamos el criterio para una diferencial exacta que consiste en verificar que se cumple la relación $$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$
  1. Una vez que verificamos que la ecuación es exacta tenemos garantizado que existe una función $f$ tal que $f(x, y) = c$ es una solución implícita de la ecuación diferencial. Para determinar dicha función definimos $$\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)$$
  1. El siguiente paso es integrar alguna de las ecuaciones anteriores en su respectiva variable, se recomienda integrar la que sea más sencilla de resolver, de esta manera obtendremos $$f(x, y) = \int{M(x, y) dx} + g(y) \hspace{1cm} o \hspace{1cm} f(x, y) = \int{N(x, y) dy} + h(x)$$
  1. Después derivamos parcialmente a la función $f(x, y)$ con respecto a la variable $y$ o $x$ según la elección hecha en el paso anterior, de manera que obtendremos el resultado $$\dfrac{\partial f}{\partial y} = \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) + \dfrac{dg}{dy} = N(x, y)$$ o bien, $$\dfrac{\partial f}{\partial x} = \dfrac{\partial}{\partial x} \left(\int{N(x, y) dy}\right) + \dfrac{dh}{dx} = M(x, y)$$
  1. De los resultados anteriores obtendremos una expresión para $\dfrac{dg}{dy}$, o para $\dfrac{dh}{dx}$, debemos integrar estas expresiones para obtener las funciones $g(y)$ o $h(x)$.
  1. El último paso es sustituir las funciones $g(y)$ o $h(x)$ en la ecuación $f(x, y) = c$ lo que nos devolverá, en general, una solución implícita de la ecuación diferencial exacta.

Realicemos un ejemplo en el que apliquemos este método para que todo quede más claro.

Ejemplo: Resolver la ecuación diferencial

$$(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$$

Solución: La ecuación diferencial es de la forma (\ref{3}), de manera que podemos definir

$$M(x, y) = 4 x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} N(x, y) = 4y^{3} -4x^{2}y + x$$

Ambas funciones son continuas y tienen derivadas parciales continuas en cualquier región $U \in \mathbb{R}^{2}$, entonces podemos aplicar el criterio para una diferencial exacta. Verifiquemos que se satisface la relación (\ref{4}).

$$\dfrac{\partial M}{\partial y} = -8xy + 1 \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x}= -8xy +1$$

En efecto,

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Por lo tanto, la ecuación diferencial sí es exacta, esto nos garantiza la existencia de una función $f$ tal que $f(x, y) = c$ es solución, entonces podemos definir

$$\dfrac{\partial f}{\partial x} = M(x, y) = 4x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y) = 4y^{3} -4x^{2}y + x$$

El tercer paso nos indica que debemos integrar una de las ecuaciones anteriores, en este caso elegiremos integrar la ecuación

$$\dfrac{\partial f}{\partial x} = 4x^{3} -4xy^{2} + y$$

con respecto a la variable $x$.

$$\int{ \dfrac{\partial f}{\partial x} dx} = \int{ ( 4x^{3} -4xy^{2} + y) dx}$$

Del lado izquierdo aplicamos el teorema fundamental del cálculo y del lado derecho resolvemos la integrar, el resultado es

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + g(y)$$

La función $g(y)$ es la constante que considera a todas las constantes que aparecen al integrar y decimos que es constante porque no depende de la variable $x$, pero es posible que pueda depender de la variable $y$.

El cuarto paso es derivar la última ecuación con respecto a la variable $y$ ya que deseamos conocer a $\dfrac{dg}{dy} = g^{\prime}(y)$.

$$\dfrac{\partial f}{\partial y} = -4x^{2}y + x + \frac{dg}{dy}$$

Y sabíamos que

$$\dfrac{\partial f}{\partial y} = 4y^{3} -4x^{2}y + x$$

Igualando ambas ecuaciones, obtenemos

$$-4x^{2}y + x + \dfrac{dg}{dy} = 4y^{3} -4x^{2}y + x$$

Para que esta igualdad se cumpla es necesario que

$$\dfrac{dg}{dy} = 4y^{3}$$

Ahora que ya conocemos a $\dfrac{dg}{dy} = g^{\prime}(y)$, la integramos con respecto a $y$. Esto corresponde al penúltimo paso.

\begin{align*}
\int {\dfrac{dg}{dy} dy} &= {\int 4y^{3} dy} \\
g(y) &= y^{4}
\end{align*}

El último paso es sustituir el resultado $g(y)$ en la función $f(x, y) = c$. En la integración anterior omitimos a las constantes porque podemos englobarlas en la constante $c$.

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + y^{4} = c$$

de donde

$$(x^{2} -y^{2})^{2} + xy= c$$

Por lo tanto, la solución (implícita) de la ecuación diferencial exacta

$$(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$$

es

$$(x^{2} -y^{2})^{2} + xy= c$$

$\square$

Por su puesto que hay ecuaciones diferenciales de la forma (\ref{3}) que no cumplen con la condición (\ref{4}), es decir, que no son exactas, en estos casos es posible apoyarnos de una función auxiliar tal que si multiplicamos a la ecuación diferencial por esta función se volverá exacta, si esto ocurre a dicha función la llamamos factor integrante. Así es, usaremos un método similar al método por factor integrante de las ecuaciones lineales, pero esta vez es para convertir a una ecuación diferencial no exacta en exacta.

Factores integrantes

En entradas anteriores vimos que multiplicar la ecuación diferencial lineal

$$\dfrac{dy}{dx} + P(x)y = Q(x) \label{13} \tag{13}$$

por un factor integrante $\mu(x)$ hace que el lado izquierdo de la ecuación sea igual a la derivada del producto de $\mu(x)$ con $y(x)$ permitiendo resolver la ecuación con sólo integrar, esta idea de multiplicar por un factor integrante también nos será de ayuda al trabajar con ecuaciones diferenciales de la forma

$$M(x, y) dx + N(x, y) dy = 0$$

que no son exactas. Lo que se espera es que multiplicando por un factor integrante $\mu (x, y)$ a la ecuación no exacta ésta se vuelva una ecuación exacta.

Consideremos la ecuación

$$M(x, y) dx + N(x, y) dy = 0$$

pero que no es exacta, esto significa que el lado izquierdo de la ecuación no corresponde a la diferencial de alguna función $f(x, y)$. Supongamos que existe una función $\mu (x, y)$ tal que al multiplicar la ecuación diferencial por esta función se vuelve una ecuación diferencial exacta. Es decir, la ecuación

$$\mu (x, y) M(x, y) dx + \mu (x, y) N(x, y) dy = 0 \label{14} \tag{14}$$

ahora es exacta y se puede resolver con el método que ya conocemos. Lo que veremos ahora es un método para determinar el factor integrante $\mu (x, y)$.

Por el criterio de diferencial exacta, la ecuación diferencial (\ref{14}) es exacta si

$$\dfrac{\partial (\mu M)}{\partial y} = \dfrac{\partial (\mu N)}{\partial x} \label{15} \tag{15}$$

Usando la regla del producto, la ecuación anterior se puede escribir como

$$\mu \dfrac{\partial M}{\partial y} + \dfrac{\partial \mu}{\partial y} M = \mu \dfrac{\partial N}{\partial x} + \dfrac{\partial \mu}{\partial x} N$$

Reordenando los términos obtenemos la siguiente expresión.

$$\dfrac{\partial \mu}{\partial x} N -\dfrac{\partial \mu}{\partial y} M = \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{16} \tag{16}$$

Para determinar la función $\mu(x, y)$ debemos resolver esta ecuación diferencial parcial, sin embargo no estamos en condiciones de hacerlo, pues no sabemos resolver ecuaciones diferenciales parciales. Para simplificar el problema vamos a considerar la hipótesis de que la función $\mu$ depende sólo de una variable, consideremos por ejemplo que $\mu$ depende sólo de $x$, así se cumple que

$$\dfrac{\partial \mu}{\partial x} = \dfrac{d \mu}{dx} \hspace{1cm} y \hspace{1cm} \dfrac{\partial \mu}{\partial y} = 0$$

Con estas hipótesis la ecuación (\ref{16}) se puede escribir de la siguiente forma.

$$\dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{17} \tag{17}$$

Seguimos en problemas si el cociente de la derecha depende tanto de $x$ como de $y$. En el caso en el que dicho cociente sólo depende de $x$, entonces la ecuación será separable así como lineal.

Supongamos que la ecuación (\ref{17}) sólo depende de la variable $x$, entonces dividimos toda la ecuación por $\mu$ para separar las variables.

$$\dfrac{1}{\mu} \dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$

Integremos ambos lados de la ecuación con respecto a la variable $x$.

\begin{align*}
\int{ \dfrac{1}{\mu}\dfrac{d \mu}{dx} dx} &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \\
\ln|\mu (x)| &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx
\end{align*}

Finalmente apliquemos la exponencial en ambos lados de la ecuación.

$$\mu (x) = \exp \left[ \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \right] \label{18} \tag{18}$$

Es totalmente análogo el caso en el que el factor integrante es sólo función de la variable $y$, en este caso se cumple

$$\dfrac{\partial \mu}{\partial x} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{\partial \mu}{\partial y} = \dfrac{d \mu}{dy}$$

Es así que la ecuación (\ref{16}) queda de la siguiente forma.

$$\dfrac{d \mu}{dy} = \dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) \mu \label{19} \tag{19}$$

Si el cociente de la derecha sólo depende de la variable $y$, entonces se puede resolver la ecuación (\ref{19}), obteniendo

$$\mu (y) = \exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right] \label{20} \tag{20}$$

Las funciones (\ref{18}) y (\ref{20}) corresponden a la forma del factor integrante que vuelven a la ecuación no exacta en exacta, según las condiciones que se presenten.

A manera de resumen, para el caso en el que la ecuación diferencial

$$M(x, y) dx + N(x, y) dy = 0$$

no es exacta probamos los siguientes dos casos:

  • Si $$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$ es una función sólo de $x$, entonces un factor integrante para la ecuación (\ref{14}) es: $$\mu (x) = \exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right]$$
  • Si $$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$$ es una función sólo de $y$, entonces un factor integrante para la ecuación (\ref{14}) es: $$\mu (y) = \exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right]$$

Realicemos un ejemplo para aclarar dudas.

Ejemplo: Resolver la siguiente ecuación diferencial no exacta.

$$\left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + e^{y/x} dy = 0$$

Solución: Verifiquemos que no es una ecuación exacta, definamos

$$M(x, y) = 1 -\dfrac{y}{x} e^{y/x} \hspace{1cm} y \hspace{1cm} N(x, y) = e^{y/x}$$

Calculemos las derivadas parciales correspondientes.

$$\dfrac{\partial M}{\partial y} = -\dfrac{1}{x} e^{y/x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x} = -\dfrac{y}{x^{2}} e^{y/x}$$

Como

$$\dfrac{\partial M}{\partial y} \neq \dfrac{\partial N}{\partial x}$$

entonces la ecuación diferencial no es exacta. Para hacerla exacta debemos encontrar un factor integrante que dependa de $x$ o de $y$, para ello primero debemos ver si el cociente

$$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$$

es una función sólo de $x$ o si el cociente

$$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$$

es una función sólo de $y$. Calculemos ambos cocientes usando los resultados anteriores.

$$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) = \left( 1 -\dfrac{y}{x} e^{y/x} \right)^{-1} \left( -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{1}{x} e^{y/x} + \dfrac{y}{x^{2}} e^{y/x} \right) = \dfrac{\dfrac{1}{x} e^{y/x}}{1 -\dfrac{y}{x} e^{y/x}}$$

y

$$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) = e^{-y/x} \left( -\dfrac{1}{x} e^{y/x} -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{y}{x^{2}} e^{y/x} \right) = -\dfrac{1}{x}$$

Este último cociente es el que nos sirve ya que sólo depende de la variable $x$. Calculemos el factor integrante, en este caso corresponde a la expresión (\ref{18}).

\begin{align*}
\mu (x) &= \exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right] \\
&= \exp \left[\int{-\dfrac{1}{x}} dx \right] \\
&= -e^{\ln |x|} \\
&= x^{-1}
\end{align*}

Por lo tanto, el factor integrante es

$$\mu (x)= \dfrac{1}{x}$$

Multipliquemos ambos lados de la ecuación original por el factor integrante.

\begin{align*}
\dfrac{1}{x} \left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + \dfrac{1}{x} e^{y/x} dy &= 0 \\
\left( \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \right) dx +\dfrac{1}{x} e^{y/x} dy &= 0
\end{align*}

Verifiquemos que la última expresión corresponde a una ecuación diferencial exacta. Definamos

$$\hat{M}(x, y) = \mu(x) M(x, y) \hspace{1cm} y \hspace{1cm} \hat{N}(x, y) = \mu(x) N(x, y)$$

Entonces,

$$\hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \hat{N}(x, y) = \dfrac{1}{x} e^{y/x}$$

Calculemos las derivadas parciales correspondientes.

\begin{align*}
\dfrac{\partial \hat{M}}{\partial y} = -\dfrac{1}{x^{2}} e^{y/x} -\dfrac{y}{x^{3}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial \hat{N}}{\partial x} = -\dfrac{1}{x^{2}} e^{y/x} -\dfrac{y}{x^{3}} e^{y/x}
\end{align*}

En efecto,

$$\dfrac{\partial \hat{M}}{\partial y} = \dfrac{\partial \hat{N}}{\partial x}$$

La nueva ecuación sí es exacta, esto nos garantiza que existe una función $f$ tal que $f(x, y) = c$ es solución de la ecuación exacta, dicha función debe satisfacer que

$$\dfrac{\partial f}{\partial x} = \hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = \hat{N}(x, y) = \dfrac{1}{x} e^{y/x}$$

Es nuestra elección que ecuación integrar, sin embargo notamos que la función $\hat{N}(x, y)$ es la más sencilla de integrar, así que integremos esta ecuación con respecto a $y$.

\begin{align*}
\int{ \dfrac{\partial f}{\partial y} dy} &= \int{ \dfrac{1}{x} e^{y/x} dy} \\
f(x, y) &= e^{y/x} + h(x)
\end{align*}

Derivemos parcialmente este resultado con respecto a la variable $x$.

$$\dfrac{\partial f}{\partial x} = -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{dh}{dx}$$

Pero sabemos que

$$\dfrac{\partial f}{\partial x} = \hat{M}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x}$$

Igualemos ambas ecuaciones.

$$\dfrac{1}{x} -\dfrac{y}{x^{2}} e^{y/x} = -\dfrac{y}{x^{2}} e^{y/x} + \dfrac{dh}{dx}$$

Para que se cumpla esta igualdad es necesario que

$$\dfrac{dh}{dx} = \dfrac{1}{x}$$

Integremos esta ecuación con respecto a $x$ omitiendo las constantes.

\begin{align*}
\int{ \dfrac{dh}{dx} dx} &= \int {\dfrac{1}{x} dx} \\
h(x) &= \ln |x|
\end{align*}

Sustituimos la función $h(x)$ en la función $f(x, y)$ e igualamos a una constante $c$.

$$f(x, y) = e^{y/x} + \ln |x|= c$$

Apliquemos la función exponencial

\begin{align*}
e^{\left( e^{y/x} + \ln (x) \right)} &= e^{c} \\
e^{e^{y/x}} e^{\ln (x)} &= k \\
e^{e^{y/x}} x &= k
\end{align*}

Donde $k = e^{c}$. Por lo tanto, la solución a la ecuación diferencial

$$\left( 1 -\dfrac{y}{x} e^{y/x} \right) dx + e^{y/x} dy = 0$$

es

$$x e^{e^{y/x}} = k$$

$\square$

Aquí concluimos nuestro estudio sobre las ecuaciones diferenciales exactas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resolver las siguientes ecuaciones diferenciales exactas (verificar que son exactas).
  • $(2x -5y + 2)dx + (1- 6y -5x)dy = 0$
  • $\left( y -\dfrac{y}{x^{2}}e^{y/x} \right) dx + \left( x + \dfrac{1}{x}e^{y/x} \right) dy = 0$
  • $\left[ \sin(y) + \dfrac{y}{x^{2}} \sin \left( \dfrac{y}{x} \right) \right] dx + \left[ x \cos(y) -\dfrac{1}{x} \sin \left( \dfrac{y}{x} \right) \right] dy = 0$
  1. Resolver las siguientes ecuaciones diferenciales no exactas.
  • $[e^{x} \cos(y)] dx + [-xe^{x} \sin(y)] dy = 0$
  • $[2x \sin(y) + ye^{xy}] dx + [x \cos(y) + e^{xy}] dy = 0$
  1. En el procedimiento realizado para resolver ecuaciones diferenciales exactas vimos que hay dos posibilidades para llegar a resultados equivalentes. Desarrolla el otro camino y deduce las expresiones (\ref{10}), (\ref{11}) y (\ref{12}).

Más adelante…

Para concluir con nuestro estudio sobre ecuaciones diferenciales no lineales de primer orden, en la siguiente entrada presentaremos la ecuación de Bernoulli y la ecuación de Riccati, así como sus respectivos métodos de resolución.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Introducción a estructuras algebraicas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Finalmente terminamos de construir a los números naturales, sus operaciones y su orden. El siguiente conjunto que nos interesa construir es $\mathbb{Z}$, el conjunto de los números enteros. Haremos esto en breve. Sin embargo, primero haremos un paréntesis para hablar de estructuras algebraicas.

Quizás hayas escuchado hablar de varias de ellas. En cálculo y geometría analítica se habla de los números reales y se comenta que es muy importante que sea un campo. En geometría moderna se habla de transformaciones geométricas y cómo algunas de ellas forman un grupo. También es común escuchar de los anillos de enteros o de polinomios (que estudiaremos más adelante). Y por supuesto, también están los espacios vectoriales, que están fuertemente conectados con resolver sistemas de ecuaciones lineales y hacer cálculo y geometría en altas dimensiones.

Todos estos conceptos (campos, grupos, anillos, espacios vectoriales, etc.) son ejemplos de estructuras algebraicas. Cada tipo de estructura algebraica es muy especial por sí misma y sus propiedades se estudian por separado en distintas materias, notablemente aquellas relacionadas con el álgebra moderna. La idea de esta entrada es dar una muy breve introducción al tema, para que te vayas acostumbrando al uso del lenguaje. Esto te servirá más adelante en tu formación matemática.

Intuición de estructuras algebraicas

De manera intuitiva, una estructura algebraica consiste de tomar un conjunto, algunas operaciones en ese conjunto, y ciertas propiedades que tienen que cumplir las operaciones. Eso suena mucho a lo que hemos trabajado con $\mathbb{N}$: es un conjunto, con las operaciones de suma y producto. Y ya demostramos que estas operaciones tienen propiedades especiales como la conmutatividad, la distributividad y la existencia de neutros.

En realidad podríamos tomar cualquier conjunto y cualquier operación y eso nos daría una cierta estructura.

Ejemplo. Consideremos el conjunto $\mathbb{N}$ con la operación binaria $\star$ tal que $$a\star b=ab+a+b.$$ Tendríamos entonces que $$3\star 1=3\cdot 1+3+1= 7,$$ y que $$10\star 10=10\cdot 10 + 10 + 10 = 120.$$

Es posible que la operación $\star$ tenga ciertas propiedades especiales, y entonces algunas proposiciones matemáticas interesantes consistirían en enunciar las propiedades de $\star$.

$\triangle$

Aunque tenemos mucha libertad en decidir cuál es el conjunto, cuáles son las operaciones que le ponemos y qué propiedades vamos a pedir, hay algunos ejemplos que se aparecen muy frecuentemente en las matemáticas. Aparecen de manera tan frecuente, que ameritan nombres especiales. Comencemos a formalizar esto.

Operaciones binarias y magmas

Dado un conjunto $S$, una operación binaria toma parejas de elementos de $S$ y los lleva a otro elemento de $S$. En símbolos, es una función $\star: S\times S\to S$. Cuando usamos la notación de función, tendríamos que escribir todo el tiempo $\times(a,b)$ para referirnos a lo que esta operación le hace a cada pareja de elementos $a$ y $b$ en $S$. Sin embargo, esto resulta poco práctico, y es por esta razón que se usa mucho más la notación $a\times b:=\times (a,b)$.

Ejemplo. En $\mathbb{N}$ ya definimos la operación binaria $+$, que toma dos enteros $a$ y $b$ y los manda a $s_a(b)$, donde $s_a:\mathbb{N}\to \mathbb{N}$ es la función que construimos usando el teorema de recursión estableciendo que $s_a(0)=a$ y $s_a(\sigma(n))=\sigma(s_a(n))$.

$\triangle$

Aquí lo único que nos importa es establecer una operación binaria. No nos importa si tiene otras propiedades adicionales.

Definición. Un magma consiste de un conjunto $S$ con una operación binaria $\ast$.

Otros ejemplos de magma son $\mathbb{N}$ con la operación que dimos en la parte de intuición, o bien $\mathbb{N}$ con el producto que ya definimos. También podemos tener magmas en conjuntos que no sea el de los enteros. Por ejemplo, si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$, y le damos la operación que manda $A$ y $B$ a $A\cup B\cup \{0\}$, entonces también obtenemos un magma.

Conmutatividad

Cuando tenemos un conjunto $S$ y una operación binaria $\star$ en $S$, puede suceder que de lo mismo hacer $a\star b$ que $b\star a$. Esto ya es una propiedad especial que pueden cumplir las operaciones binarias, y tiene un nombre.

Definición. Decimos que una operación binaria $\star$ en un conjunto $S$ es conmutativa si para cualesquiera dos elementos $a$ y $b$ de $S$ se cumple que $a\star b=b\star a$.

Observa que la igualdad debe suceder para cualesquiera dos elementos. Basta con que falle para una pareja para que la operación ya no sea conmutativa.

Ejemplo. Una de las propiedades que demostramos de la operación de suma en $\mathbb{N}$ es que $s_a(b)=s_b(a)$, es decir, que $a+b=b+a$. En otras palabras, la operación binaria $+$ en $\mathbb{N}$ es conmutativa. Así mismo, vimos que el producto era conmutativo, es decir, que $p_a(b)=p_b(a)$, que en términos de la operación binaria $\cdot$ quiere decir que $a\cdot b=b\cdot a$.

$\triangle$

Más adelante veremos que otras funciones de suma y producto también son conmutativas, por ejemplo, las de los enteros, racionales, reales y complejos. Sin embargo, hay algunas operaciones binarias muy importantes en matemáticas que no son conmutativas. Un ejemplo de ello es el producto de matrices. Otro ejemplo es la diferencia de conjuntos.

Ejemplo. Si $P$ es el conjunto de subconjuntos de $\{0,1,2,3,4\}$ y le damos la operación binaria $\setminus$ tal que dados $A$ y $B$ en $P$ los manda a $A\setminus B$, entonces obtenemos un magma. Sin embargo, la operación $\setminus$ no es conmutativa pues, por ejemplo, $$\{1,2,3\}\setminus\{2,3,4\}=\{1\},$$ pero $$\{2,3,4\}\setminus\{1,2,3\}=\{4\}.$$

$\triangle$

En $\mathbb{N}$ no tenemos una operación de resta, como discutiremos en breve. Pero en el conjunto de los enteros sí, y ese sería otro ejemplo de una operación que no es conmutativa.

Asociatividad y semigrupos

Otra de las propiedades importantes que demostramos de la suma y producto de naturales es que son operaciones asociativas. En general, podemos definir la asociatividad para una operación binaria como sigue.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Decimos que $\star$ es asociativa si $a\star (b\star c)=(a\star b)\star c$ para cualesquiera tres elementos $a,b,c$ de $S$.

Tanto la suma como el producto de naturales dan una operación asociativa pues ya demostramos que si $a,b,c$ son naturales, entonces $a+(b+c)=(a+b)+c$ y $a(bc)=(ab)c$. Esta propiedad también la tendremos para la suma y producto de enteros, racionales, reales, complejos, polinomios, etc.

A partir de la asociatividad podemos definir la primer estructura algebraica que requiere un poco más de propiedades.

Definición. Un semigrupo es un conjunto $S$ con una operación asociativa $\star$.

Si además $\star$ es una operación conmutativa, entonces decimos que es un semigrupo conmutativo. En realidad, en cualquiera de las definiciones que daremos a continuación podemos agregar el adjetivo «conmutativo» y esto querrá decir que además de las propiedades requeridas, también se cumple que la operación es conmutativa.

En los semigrupos (y demás estructuras con asociatividad) tenemos la ventaja de que podemos «olvidarnos de los paréntesis» sin la preocupación de que haya ambigüedad. Por ejemplo, en los naturales la expresión $3+((2+4)+8)$ se puede escribir simplemente como $3+2+4+8$, pues cualquier otra forma de poner paréntesis, como $(3+2)+(4+8)$, debe dar exactamente el mismo resultado por asociatividad.

Ejemplo. Una operación que no es asociativa es la resta en los enteros. Aunque no hemos definido formalmente esta operación, es intuitivamente claro que $3-(2-1)$ no es lo mismo que $(3-2)-1$.

$\triangle$

Unidades y magmas unitales

A veces sucede que algunos elementos de un conjunto «no afectan a nadie» bajo una cierta operación binaria dada. Por ejemplo, en los naturales «sumar cero» no cambia a ningún entero.

Definición. Sea $\star$ una operación binaria en un conjunto $S$. Una unidad o neutro para $\star$ es un elemento $e$ en $S$ para el cual se cumple que para cualquier elemento $a$ de $S$ se tenga $a\star e = a$ y $e\star a = a$.

Observa que es muy importante pedir las dos igualdades de la definición. Si una se cumple, no necesariamente tiene que pasar la otra, pues no necesariamente la operación es conmutativa. Por supuesto, si ya se sabe que la operación es conmutativa, entonces basta con ver una de ellas.

En $\mathbb{Z}$ tenemos las operaciones de suma y producto. Para no confundir a sus neutros, a $0$ le llamamos el neutro aditivo para hacer énfasis que es el neutro de la suma. Y a $1$ le llamamos el neutro multiplicativo para hacer énfasis que es el neutro del producto. Entre las propiedades que probamos, en efecto vimos que $a+0=a=0+a$ y que $a\cdot 1 = a = 1\cdot a$ para cualquier entero $a$.

Definición. Un magma unital es un conjunto $S$ con una operación $\star$ que tiene un neutro.

El conjunto de naturales con la operación $\star$ que dimos en la sección de intuición también es un magma unital. ¿Puedes decir quién es su neutro?

Monoides

Se puede pedir más de una propiedad a una operación binaria y entonces obtenemos estructuras algebraicas más especiales.

Definición. Un monoide es un conjunto $S$ con una operación $\star$ que es asociativa y que tiene un neutro.

En otras palabras, un monoide es un magma unital con operación asociativa. O bien, un semigrupo cuya operación tiene unidad. Por supuesto, si la operación además es conmutativa entonces decimos que es un monoide conmutativo.

Ejemplo. Por todo lo que hemos visto en esta entrada, tenemos que $\mathbb{N}$ con la suma es un monoide conmutativo. Así mismo, $\mathbb{N}$ con el producto es un monoide conmutativo.

$\triangle$

Semianillos

La última idea importante para discutir en esta entrada es que una estructura algebraica puede tener más de una operación binaria, y además de pedir propiedades para cada operación, también se pueden pedir propiedades que satisfagan ambas operaciones en igualdades que las involucran a las dos.

Definición. Un seminanillo es un conjunto $S$ con dos operaciones binarias $\square$ y $\star$ que satisfacen las siguientes propiedades:

  • $\square$ es un monoide conmutativo
  • $\star$ es un monoide
  • Se cumple distributividad, es decir, que para cualesquiera tres elementos $a,b,c$ de $S$ se tiene $a\star(b\square c) = (a\star b)\square(a\star c)$ y $(a\square b)\star c = (a\star c)\square(b\star c)$.
  • El neutro $e$ de $\square$ aniquila a los elementos bajo $\star$, es decir, para cualquier elemento $a$ de $S$ se tiene que $a\star 0=0$ y $0\star a = 0$.

Un semianillo conmutativo es un semianillo en donde la operación $\star$ también es conmutativa. Las propiedades que hemos de los números naturales nos permiten enunciar el siguiente resultado.

Teorema. El conjunto $\mathbb{N}$ con las operaciones binarias de suma y producto es un semianillo conmutativo.

Más adelante…

Este sólo fue un pequeño paréntesis para comenzar a hablar de operaciones binarias y de estructuras algebraicas. Ahora regresaremos a seguir construyendo de manera formal los sistemas numéricos con los que se trabaja usualmente: los enteros, los racionales, los reales y los complejos.

Un poco más adelante haremos otro paréntesis de estructuras algebraicas, en el que hablaremos de otras propiedades más que puede tener una operación binaria. Una muy importante es la existencia de inversos para la operación binaria. Esto llevará a las definiciones de otras estructuras algebraicas como los grupos, los anillos, los semigrupos con inversos, los quasigrupos y los campos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra el neutro de la operación $\star$ dada en la sección de intuición. Verifica que en efecto es un neutro.
  2. Demuestra que el conjunto de los naturales pares $\{0,2,4,6,\ldots\}$ sí tiene un neutro para la operación de suma, pero no para la operación de producto.
  3. Considera el conjunto $P(S)$ de subconjuntos de un conjunto $S$. Considera las operaciones binarias de unión e intersección de elementos de $P(S)$. Muestra que $P(S)$ con estas operaciones es un semianillo conmutativo.
  4. Da un ejemplo de un magma que no sea un magma unital. Da un ejemplo de un magma unital que no sea un monoide.
  5. Da o busca un ejemplo de un semianillo que no sea un semianillo conmutativo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Algoritmo de la división en los enteros

Por Ana Ofelia Negrete Fernández

Introducción

Gracias a todo lo trabajado con anterioridad y en particular a la entrada anterior de inmersión de los naturales en los enteros, ya podemos pensar al conjunto de enteros como el conjunto $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}$. Además, dentro de esta estructura tenemos operaciones de suma, resta y producto. Sin embargo, aún no tenemos una operación de «división». Hay dos caminos que podemos seguir. Uno es algo parecido a lo que hicimos para tener una operación de resta: podemos construir ciertas clases de equivalencia sobre parejas de enteros, definir operaciones, orden, etcétera. Esto es lo que se hace para construir el conjunto $\mathbb{Q}$ de números racionales, del cual hablaremos más adelante. Otro camino es quedarnos en $\mathbb{Z}$ e intentar decir todo lo que podamos, aunque no tengamos una operación de división. Eso es lo que haremos ahora mediante lo que se conoce como el algoritmo de la división.

Por ejemplo, si tenemos los números $-20$ y $5$, entonces sí «podemos hacer la división» de manera exacta. Dicho de otra forma, sí existe un entero $k$ tal que $-20=5k$. Ese entero es $k=-4$. Sin embargo, si tenemos los números $20$ y $3$ no podemos hacer la división, en el sentido de que no existe un entero $k$ tal que $20=3k$. Sin embargo, sí podemos lograr que $3k$ quede muy cerca de $20$. Por ejemplo, podemos escribir $20=3\cdot 6 + 2$, es decir, el $20$ se queda únicamente a dos unidades de tres veces un entero.

Lo que nos dice el algoritmo de la división es que dados dos enteros $a$ y $b$, siempre sucederá que $a$ puede ser escrito como $b$ veces un entero, más un residuo «pequeño» en términos de $b$. También nos dice que esta forma de escribir a $a$ será única.

La intuición del algoritmo de la división

Lo que nos permite hacer el algoritmo de la división es saber «cuántas veces cabe un entero en otro». En general, vamos a poder escribir $a=qb+r$ y esto querrá decir que «$b$ cabe $q$ veces en $a$ y sobran $r$». Lo que nos gustaría es hacer esto de manera que sobre lo menos posible.

Un ejemplo sencillo sería el siguiente. Tomemos $a=7$ y $b=2$. Si nos preguntáramos: ¿cuántos equipos de $2$ personas se necesitan para repartir a $7$ personas?, una posible respuesta sería: podemos formar $2$ equipos de dos personas cada uno y dejar fuera a $3$ personas. Esto se escribiría como $7=2\cdot 2 + 3$. Sin embargo, una mejor respuesta (y la que deja a menos personas fuera) es la siguiente: podemos formar $3$ equipos de dos personas cada uno, y dejar a alguien fuera. Esto corresponde algebraicamente a la igualdad $7=3\cdot 2 + 1$. Esta forma de escribir al $7$ es mejor pues el residuo es más pequeño.

Hay algunos casos que suenan un poco raros. Por ejemplo, tomemos $a = 2$, $b = 3$. Podría parecer que la división de $2$ entre $3$ da cero pues «el $3$ el mayor que el $2$ y no hay modo de que $3$ quepa en $2$». Esto es cierto: $3$ cabe cero veces en $2$. Pero hay un residuo que no se ha mencionado, que en este caso es $2$. La forma de escribir esto algebraicamente será $2=3\cdot 0 + 2$. Aquí el $0$ quiere decir que «el $3$ cabe cero veces en el $2$» y el $2$ de la derecha quiere decir que «sobran $2$». Si lo pensamos como equipos, no nos alcanzaría para crear ni un sólo equipo de $3$ personas teniendo sólo $2$.

Otro caso extraño es cuando tenemos números negativos. Por ejemplo, si $a=-7$ y $b=3$ entonces la forma en la que queremos expresar a $a$ es como sigue: $-7=(-3)\cdot 3 + 2$. Lo hacemos de esta manera pues siempre querremos que el residuo que queda sea positivo. Y de entre los residuos que se pueden obtener, lo mejor es que sobren únicamente $2$.

Resulta que la cantidad que sobra siempre se puede garantizar que sea «chica». Si estamos repartiendo $a$ en cachos de tamaño $b$, siempre podremos garantizar que lo que sobra esté entre $0$ y $|b|-1$. En símbolos, el algoritmo de la división dice que dados $a, b \in \mathbb{Z}$, con $b\neq 0$, es posible encontrar $q$ y $r$ únicos, tales que $a = bq + r,$ con $0 \leq r < |b|$. A $q$ se le llama el cociente y a $r$ le llamamos el residuo.

Que no espante el valor absoluto que se le añade a la $b$. Aún no hemos definido qué es, pero lo explicaremos un poco más abajo. Sin embargo, antes de enunciar y demostrar el teorema daremos un ejemplo con números un poco más grandes y su intuición numérica.

Otro ejemplo para entender el algoritmo de la división en $\mathbb{Z}$

Comencemos planteando el problema para $a=3531$ y $b=8$. Es decir, queremos encontrar $q$ y $r$ enteros tales que $3531 = 8q + r$, donde además $0 \leq r < 8$. Ya que $r$ debe ser un número muy pequeño entre $0$ y $8$, podemos ir dando valores a $r$ hasta que $3531-r$ se pueda escribir como $8$ veces un entero.

Si $r = 0$, habríamos de verificar si $3531$ se puede escribir como $8$ veces un entero. Nuestra intuición nos dice que esto no debería poderse, pues $3531$ es un número impar, pero $8$ veces un entero siempre será un número par.

Si $r = 1$, entonces querríamos ver si $8q = 3530$. Pero esto tampoco se puede pues con $q=441$ tenemos $8q=3528<3530$ y con $q=442$ tenemos $8q=3536>3530$ y entonces ya se pasa. Si $r = 2$, buscaríamos si $8q = 3529$, pero de nuevo este es un número impar.

Finalmente, si $r = 3$, entonces queremos ver si se puede lograr $3528= 8q$. Esto sí se puede: se toma $q=441$. Así, hemos logrado determinar que con $q = 441$, $r = 3$ se cumple que $3531 = 8q + r$, con lo que terminamos el problema.

Geométricamente, esto significa que $3531$, en la recta de los números enteros, estará situado entre números que sean $8$ veces un entero, a saber, $8\cdot 441$ y $8\cdot 442$:

$$ \ldots < 8\cdot 441 < 3531 < 8\cdot 442 < \ldots \text{.}$$

Más precisamente, como $3531$ es un entero positivo, el problema consistió en encontrar el entero que sea $8$ veces un entero más cercano por la izquierda y añadir $3$ unidades. Esto también lo podemos enunciar como que «$3531$ está a $3$ unidades a la derecha de un número que es $8$ veces un entero»:

$$ 8\cdot 441 < 8\cdot 441 + 1 < 8\cdot 441 +2 < 3531 < 8\cdot 441 +4 < 8\cdot 441 +5 < 8\cdot 441 +6 < 8\cdot 441 +7 < 8\cdot 442 \text{.}$$

En realidad esto funciona sin importar los valores de $a$ y $b$. Dado un entero $b$, podemos poner los enteros de la forma $mb$ en la recta numérica y siempre podremos situar al entero $a$ entre dos de ellos:

$$qb \leq a < (q+1)b, \qquad q\in \mathbb{Z}.$$

Si $b>0$, los múltiplos de $b$ en la recta numérica se verían así:

$$\ldots -4b, -3b, -2b, -b, 0, b, 2b, 3b, 4b, \ldots $$

De este modo, $q$ sería el mayor múltiplo de $b$ más cercano a $a$, sin excederse de $a$.

Enunciado y demostración del algoritmo de la división en $\mathbb{Z}$

Para poder enunciar el algoritmo de la división sin importar el signo de $a$ y $b$, debemos introducir un símbolo adicional.

Definición. Si $b \in \mathbb{Z}$, definimos el valor absoluto de $b$, denotado por $|b|$, como sigue: $$|b| = \left\lbrace \begin{matrix} b & \text{si $b\geq 0$}\\ -b & \text{si $ b < 0$} \end{matrix}\right.$$

En el algoritmo de la división nos darán dos números enteros $a$ y $b$. Para la restricción $0 \leq r \leq |b|$, sucederá que, no importa si $b$ sea un número positivo o negativo, nosotros nos fijaremos en el número siempre positivo que resulta de aplicarle valor absoluto a $b$. El resultado dice lo siguiente.

Teorema. Sean $a$ y $b$ en $\mathbb{Z}$ con $b\neq 0$. Entonces existen únicos enteros $q$ y $r$ enteros únicos tales que $$ a = qb + r$$ y $0 \leq r < |b|$.

Para la demostración del algoritmo de la división, necesitaremos el principio del buen orden. Como recordatorio, dice que todo subconjunto no vacío de $\mathbb{N}$ tiene un elemento mínimo.

Demostración. Primero hay que demostrar que siempre existen $q$ y $r$ enteros que satisfacen las condiciones que queremos. Vamos a suponer que $b>0$. El caso $b<0$ es muy parecido y quedará como tarea moral.

Lo que haremos es considerar al conjunto $S$ de todos los elementos de la forma $a-tb$ en donde $t$ es un entero, y tales que sean mayores o iguales a cero. Primero veremos que $S$ en efecto es un conjunto no vacío.

  • Si $a\geq 0$, tomamos $t=0$ y obtenemos la expresión $a-tb=a\geq 0$.
  • Si $a<0$, tomamos $t=a$ y obtenemos $a-tb=a-ab=a(1-b)$. Como $b>0$, entonces $b\geq 1$ y por lo tanto $(1-b)\leq 0$. Como $a<0$, obtenemos $a(1-b)\geq 0$, como queríamos.

Como $S$ es un conjunto no vacío de naturales, debe tener un elemento mínimo, al que le llamaremos $r$. Como $r$ está en $S$, obtenemos que $r=a-qb$ para algún entero $q$. Esto es un buen primer paso, pues nos muestra que $a=qb+r$. Sin embargo, todavía nos falta demostrar la importante desigualdad $0\leq r < |b|$. Como $b>0$, debemos mostrar $0\leq r < b$. Como $r$ está en $S$, obtenemos de manera inmediata que $r\geq 0$.

Sólo nos falta mostrar que $r<b$. Supongamos, con el fin de encontrar una contradicción, que $r\geq b$. Si este fuera el caso, sucedería que $r-b\geq 0$ además tendríamos la siguiente cadena de igualdades: $$r-b=a-tb-b=a-(t+1)b.$$

Esto lo que nos diría es que $r-b$ también está en $S$. ¡Pero eso es una contradicción!. Por construcción, $r$ era el menor elemento de $S$ y $r-b$ es un número menor que $r$ y que también está en $S$. Esta contradicción salió de suponer que $r\geq b$, así que en realidad debe pasar $r<b$, como queríamos.

Con esto queda demostrada la existencia de los enteros $q$ y $r$, tales que $a = bq + r$, con $0 \leq r < b$. Falta ver la unicidad. Supongamos que existen $q’$ y $r’$ enteros que también cumplen $$a = bq’ + r’$$ con $0\leq r’ < b$.

Demostramos primero que $r = r’$. Al hacer la resta $r-r’$ por un lado notamos que como mucho, puede valer $(b-1)-0=b-1$, lo cual pasa cuando $r=b-1$ y $r’=0$. Así mismo, por lo menos debe valer $0-(b-1)=-b+1$, lo cual sucede cuando $r=0$ y $r’=b-1$. Pero esta resta también se puede escribir de la siguiente manera: $$r-r’=(a-qb)-(a-q’b)=(q’-q)b.$

El único número de la forma $bk$ en $\{-b+1,-b+2,\ldots,0,\ldots,b-2,b-2\}$ es el entero $0$, pues justo no alcanza para llegar a $b$ ni a $-b$. De esta forma, $r-r’=0$, es decir $r=r’$. Y de aquí, obtenemos que $(q’-q)b=r-r’=0$. Como $b\neq 0$, obtenemos $q’-q=0$ y por lo tanto $q’=q$. Esto termina la demostración de la unicidad.

$\square$

Quizás el uso del principio del buen orden de la impresión de que la demostración anterior es «muy sofisticada». En realidad, esto no es así. Simplemente es la forma en la que se formaliza una idea muy intuitiva: si el residuo queda mayor a $b$, entonces todavía le podemos «transferir» un sumando $b$ de $r$ a $qb$. El principio del buen orden simplemente nos garantiza que en algún momento este proceso de «transferir» sumandos $b$ debe de concluir.

Más adelante…

Cuando aplicamos el algoritmo de la división nos puede pasar un caso muy especial: que $r$ sea igual a cero. En otras palabras, en este caso podemos escribir $a=qb$ y por lo tanto $b$ cabe en $a$ «de manera exacta». Este caso es muy interesante y amerita un profundo estudio. Cuando esto sucede, decimos que $a$ es múltiplo de $b$, o bien que $b$ divide a $a$. En la siguiente entrada estudiaremos con más detalle la relación de divisibilidad en $\mathbb{Z}$. Un poco más adelante hablaremos de los ideales de $\mathbb{Z}$, que son un tipo de subconjuntos fuertemente relacionados con la noción de divisibilidad.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra $q$ y $r$ enteros tales que $-1873 = 31q + r$ y $0\leq r < 31$.
  2. Demuestra las siguientes propiedades de la función valor absoluto de $\mathbb{Z}$:
    • $|a|\geq 0$ para cualquier entero $a$.
    • $|ab|=|a||b|$ para cualesquiera enteros $a$ y $b$.
    • $|a+b|\leq |a|+|b|$ para cualesquiera enteros $a$ y $b$.
  3. En general, ¿cómo se calcula $q$, para $a<0$? ¿y para $b<0$? Completa los detalles de la demostración del algoritmo de la división para cuando $b<0$.
  4. Encuentra un número que al dividirse entre $2$ deje residuo $1$, que al dividirse entre $3$ deje residuo $2$ y que al dividirse entre $4$ deje residuo $3$.
  5. Demuestra que cualquier entero se puede escribir de la forma $3q+r$ en donde $r$ es $-1$, $0$ ó $1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Inmersión de $\mathbb{N}$ en $\mathbb{Z}$

Por Ana Ofelia Negrete Fernández

Introducción

Desde la educación básica pensamos al conjunto de los números enteros como aquél que está conformado por los naturales, sus negativos y el cero: $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \} .$$ Sin embargo, para poder fundamentar nuestra construcción, hasta ahora tenemos que el conjunto $\mathbb{Z}$ consiste por definición de ciertas clases de equivalencia de una relación en $\mathbb{N}\times \mathbb{N}$. ¡Observa que ni siquiera $\mathbb{N}$ es un subconjunto de $\mathbb{Z}$ a partir de esta definición! ¿Cómo le hacemos para que estos dos puntos de vista coincidan?

En esta entrada veremos dos cosas muy importantes que nos permitirán unificar ambas ideas. Lo primero que haremos es ver que, en efecto, podemos pensar que $\mathbb{N}$ «es un subconjunto» de $\mathbb{Z}$. Esto lo ponemos entre comillas pues en realidad lo que demostraremos es que hay una copia de $\mathbb{N}$ dentro de $\mathbb{Z}$, con toda la estructura que tenía $\mathbb{N}$ originalmente: sus operaciones, sus identidades, su orden.

Después de esto, nos enfocaremos en ver que $\mathbb{Z}$ consiste exactamente de esta copia y de sus inversos aditivos. Así, habremos formalizado que $\mathbb{Z}$ consiste exactamente de los naturales, sus inversos aditivos y ningún otro elemento.

Inmersión de los naturales en los enteros

En la entrada anterior hablamos acerca del orden en $\mathbb{Z}$. Para ello hablamos del conjunto de enteros positivos $P$. También definimos las relaciones $<$ y $\leq$. En un sentido bastante formal, los enteros mayores o iguales a cero son exactamente los números naturales. La manera en la que enunciamos este resultado es la siguiente.

Teorema. Existe una función biyectiva $\gamma:\mathbb{N}\to P\cup \{\overline{(0,0)}\}$ que preserva las operaciones de suma, producto, el inverso aditivo, el inverso multiplicativo y el orden. Esta función está dada por $\gamma(n)=\overline{(n,0)}$.

Una vez que demostremos esto, la imagen $\gamma(\mathbb{N})$ será exactamente la «copia» de los naturales que vive en los enteros y que precisamente tiene todas las propiedades algebraicas de los naturales que nos interesaban.

Para hacer la demostración de este teorema, probaremos el resultado poco a poco, a través de varios lemas.

Lema 1. La función $\gamma$ está bien definida y es biyectiva.

Demostración. La función $\gamma$ está bien definida pues las clases del estilo $\overline{(n,0)}$ siempre están en $P\cup \{\overline{(0,0)}\}$: si $n=0$, entonces obtenemos la clase $\overline{(0,0)}$ y si $n\neq 0$, entonces $n>0$, lo cual justifica que $\overline{(n,0)}$ es un entero positivo, es decir, en $P$.

Veamos que la función $\gamma$ es biyectiva. Para ver que es inyectiva tomamos dos naturales $m$ y $n$ tales que $\gamma(m)=\gamma(n)$, es decir, tales que $\overline{(m,0)}=\overline{(n,0)}$. Esto quiere decir que $m+0=n+0$, pero entonces $m=n$. Para ver que es suprayectiva, ya sabemos que tomemos una clase $\overline{(a,b)}$ en $P\cup \{\overline{(0,0)}\}$. Por lo visto en la entrada anterior, esto nos dice que $a\geq b$, pero entonces existe un natural $k$ tal que $a=b+k$, de modo que $a+0=b+k$ y por lo tanto $\overline{(a,b)}=\overline{(k,0)}$. Con esto concluimos que $$\gamma(k)=\overline{(k,0)}=\overline{(a,b)}.$$

$\square$

Observa que, sin embargo, no sucede que $\gamma(\mathbb{N})$ sea todo $\mathbb{Z}$. Es decir, hay enteros diferentes de las clases $\overline{(n,0)}$, por ejemplo, el $\overline{(0,1)}$. Se puede verificar que la imagen de $\gamma$ cubre a los enteros no negativos y sólo a esos.

Regresando al enunciado del teorema, lo que veremos ahora es que $\gamma$ respeta las operaciones de suma y producto, así como sus respectivas identidades.

Lema 2. Para cualesquiera naturales $m$ y $n$ se cumple que $$\gamma(m)+\gamma(n)=\gamma(m+n)$$ y que $$\gamma(m)\gamma(n)=\gamma(mn).$$ Además, $\gamma(0)$ es la identidad aditiva en $\mathbb{Z}$ y $\gamma(1)$ es la identidad multiplicativa en $\mathbb{Z}$.

Demostración. Basta usar la definición de $\gamma$ y de la suma en $\mathbb{Z}$:
\begin{align*}
\gamma (m)+\gamma(n)&=\overline{(m,0)}+\overline{(n,0)}\\
&= \overline{(m+n,0)}\\
&=\gamma{m+n}.
\end{align*}

De modo similar, para el producto usamos la definición de $\gamma$ y la del producto en $\mathbb{Z}$:

\begin{align*}
\gamma (m)\gamma(n)&=\overline{(m,0)}\overline{(n,0)}\\
&= \overline{(mn+0\cdot 0,m\cdot 0 + 0 \cdot n)}\\
&= \overline{(mn,0)}\\
&=\gamma{mn}.
\end{align*}

La parte de las identidades es sencilla de hacer y queda como tarea moral.

$\square$

Ya vimos que $\gamma$ respeta las operaciones. Ahora veamos que también respeta el orden.

Lema 3. Para cualesquiera naturales $m$ y $n$, sucede que $m < n$ si y sólo si $\gamma(m) < \gamma(n)$.

Demostración. Por definición de $\gamma$, tenemos que $\gamma(m)<\gamma(n)$ si y sólo si $\overline{(m,0)}<\overline{(n,0)}$. En la entrada anterior vimos que esto sucede si y sólo si en $\mathbb{N}$ tenemos que $m+0<n+0$. Pero esto es justo $m<n$.

$\square $

Los lemas 1, 2 y 3 conforman la demostración del teorema de esta sección.

Caracterización de los enteros

En vista del teorema de la sección anterior, dentro de $\mathbb{Z}$ hay metida una copia de $\mathbb{N}$. ¿Cuáles son los otros elementos de $\mathbb{Z}$? ¿Hay muchos más enteros que eso? La respuesta es que no. Para acabar de tener a todos los elementos de $\mathbb{Z}$ basta con tomar esta copia de los enteros y considerar a sus inversos aditivos.

Proposición. Para cualquier entero $\overline{(a,b)}$, tenemos que sucede una y exactamente una de las afirmaciones siguientes:

  • $\overline{(a,b)}=\overline{(0,0)}$.
  • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
  • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.

Demostración. Por el principio de tricotomía en $\mathbb{N}$, sabemos que se cumple una y exactamente una de las afirmaciones siguientes:

  • $a=b$
  • $a>b$
  • $a<b$

Si pasa la primera, entonces $\overline{(a,b)}=\overline{(0,0)}$. Si pasa la segunda, es porque existe un natural $n\neq 0$ tal que $a=b+n$, pero entonces $a+0=b+n$ y así $\overline{(a,b)}=\overline{(n,0)}$. Si pasa la tercera, es porque existe un natural $n,0$ tal que $a+n=b=b+0$, y entonces $\overline{(a,b)}=\overline{(0,n)}$.

De esta manera, se ve que siempre se cumple al menos una de las afirmaciones del enunciado. Ver que se cumple a lo más una es sencillo y queda como tarea moral.

$\square$

Siguiendo la demostración anterior con cuidado, nos damos cuenta que los casos corresponden precisamente al entero cero, a los positivos y a los negativos. La proposición anterior es una manera de ilustrar, en particular, que hay que hay el mismo número de números naturales positivos como números enteros negativos: a cada uno de ellos le podemos asociar (de manera biyectiva), un natural. Otra forma de dar esta biyección es mandar el entero positivo $\overline{(n,0)}$ al entero negativo $\overline{(0,n)}$, que es precisamente su inverso aditivo.

Re-etiquetando a los enteros

Estamos listos para abandonar la notación de parejas y clases de equivalencia. En vista de los resultados anteriores, cualquier entero positivo $\overline{(a,b)}$ es el mismo que un entero de la forma $\overline{(n,0)}$. Y los enteros de esta forma justo conforman una copia de $\mathbb{N}$ con toda la estructura algebraica que nos interesa. Así, ya nunca más tenemos que llamar a $\overline{(a,b)}$ con este nombre: basta simplemente llamarlo $n$.

Si tenemos un entero de la forma $\overline{(a,b)}$ con $a=b$, entonces simplemente lo llamaremos $0$. Y finalmente, si el entero $\overline{(a,b)}$ es negativo, podemos escribirlo de la forma $\overline{(0,n)}$ y en vista de lo anterior simplemente lo llamaremos $-n$. Todo esto funciona bien, porque también sabemos que justo $\overline{(n,0)}$ y $\overline{(0,n)}$ son inversos aditivos entre sí.

Pero, ¿cómo sabremos si al usar el símbolo $1$ nos estamos refiriendo al natural $\{\emptyset\}$ o al entero $\overline{(\{\emptyset\},\emptyset)}$? En realidad ya no es relevante, pues tenemos la total garantía de que los enteros no negativos se comportan exactamente como $\mathbb{N}$.

De esta manera, $$\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3, \ldots \}$$ y además tenemos la total garantía de que los enteros no negativos se comportan exactamente como los naturales.

Más adelante…

Después de liberar la gran carga que teníamos de usar la notación de parejas y de relaciones de equivalencia, ahora ya podemos usar a los enteros tal y como los conocíamos desde educación básica: como el cero, los enteros que no son cero, y sus negativos. Además, gracias a todo lo que demostramos, ya podemos utilizar las propiedades de la suma, el producto y el orden con la confianza de que están bien fundamentadas.

Lo que sigue es estudiar con más profundidad al conjunto $\mathbb{Z}$. Aunque no haya propiamente «divisiones exactas» en este conjunto, sí podemos preguntarnos qué sucede cuando dividimos un entero por otro, y cuánto queda. Esto lleva a las nociones de divisibilidad y residuos, que a su vez llevan a áreas muy interesantes de las matemáticas como el álgebra moderna y la teoría de números.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra que en efecto no existe ningún natural $m$ tal que $\gamma(m)=\overline{(0,1)}$.
  2. Verifica que $\gamma(0)$ es la identidad aditiva de $\mathbb{Z}$ y $\gamma(1)$ es su identidad multiplicativa.
  3. Explica por qué para un entero $\overline{(a,b)}$ no puede suceder más de una de las siguientes afirmaciones:
    • $\overline{(a,b)}=\overline{(0,0)}$.
    • $\overline{(a,b)}=\overline{(n,0)}$ para algún natural $n\neq 0$.
    • $\overline{(a,b)}=\overline{(0,n)}$ para algún natural $n\neq 0$.
  4. La función $\gamma$ no es una biyección entre $\mathbb{N}$ y $\mathbb{Z}$. Pero sí existen biyecciones entre estos dos conjuntos. Construye una y demuestra que en efecto es una biyección.
  5. Da una biyección que muestre que el conjunto de los enteros no negativos pares, $\{0, 2, 4, 6, \ldots\}$ y el conjunto de los enteros no negativos positivos, $\{ 0, 1, 2, 3, \ldots \}$ tienen la misma cardinalidad. ¿Será posible construir la biyección de modo que se preserve la operación de suma? ¿Será posible construirla de modo que se preserve la operación de producto?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»