Álgebra Superior II: Construcción de los enteros y su suma

Introducción

Ya que se construyeron los números naturales, podríamos intentar usarlos para plantear ecuaciones con ellos y ver si se pueden resolver. Un tipo de ecuaciones muy sencillas son las de la forma $a=b+x$, en donde $a$ y $b$ son valores dados y lo que se espera es encontrar el valor de $x$. En los números naturales no hemos definido la resta, así que no es tan sencillo resolver esta ecuación como simplemente decir que la solución es $a-b$.

Lo que sí hicimos en entradas anteriores es ver que la ecuación $a=b+x$ con $a$ y $b$ en $\mathbb{N}$ tiene una solución $x$ en $\mathbb{N}$ si y sólo si $a\geq b$. Cuando $a<b$, no existe solución. Por ejemplo, no existe ninguna $x \in \mathbb{N}$ tal que $3 = 7 + x$.

Pensando esto de manera más intuitiva, $\mathbb{N}$ está conformado por el cero y demás números estrictamente positivos, pero en ocasiones eso no basta para realizar algunas cuentas. Consideremos el siguiente problema:

Una rana está en una posición inicial $0$ y salta dos unidades hacia la derecha. A continuación salta $3$ unidades hacia la izquierda. Luego vuelve a saltar $2$ unidades hacia la derecha y seguido de esto vuelve a saltar $3$ unidades a la izquierda. Una última vez, la rana salta $2$ unidades a la derecha seguidas de $3$ unidades a la izquierda. ¿En qué posición se encuentra la rana ahora?

La cuenta intuitiva, usando los números que conocemos desde educación básica, nos dice que la rana queda en la posición $-3$. Sin embargo, este es un número negativo, y dentro de nuestra construcción de $\mathbb{N}$ nunca hemos hablado de estos números.

La necesidad de que existan soluciones para las ecuaciones sencillas que mencionamos arriba y de que existan números para hacer cuentas como las de la rana es motivación suficiente para querer construir el conjunto de números enteros, denotado $\mathbb{Z}$. Lo que buscamos es que toda ecuación de la forma $a=b+x$ tenga una solución. Es decir, querremos que el conjunto de entero satisfaga que «para cualesquiera $a,b\in \mathbb{Z}$ existe $x\in \mathbb{Z}$ tal que $a= b+x$».

En esta entrada y las siguientes, describiremos la construcción de $\mathbb{Z}$, de sus operaciones y de su orden. Para hacer esto de la manera más formal posible, aprovecharemos la construcción que ya hemos hecho de $\mathbb{N}$.

A grandes rasgos, debemos de pasar por los siguientes pasos.

  1. Definiremos una relación en $\mathbb{N}\times \mathbb{N}$, en donde dos parejas $(a,b)$ y $(c,d)$ de enteros estarán relacionadas si $a+d=b+c$.
  2. Veremos que esto es una relación de equivalencia. Un número entero será una clase de equivalencia de esta relación, es decir, en símbolos será un conjunto de la siguiente forma: \[ \overline{(a,b)}:= \left\{ (c,d) \in \mathbb{N}\times\mathbb{N} : \left(a + d = b +c \right) \right\}, \] en donde $a$ y $b$ son números naturales.
  3. El conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas, en símbolos: \[ \mathbb{Z} := \left\{ \overline{(a,b)} : (a,b) \in \mathbb{N}\times\mathbb{N} \right\}.\]
  4. A este conjunto le daremos operaciones de suma, producto y un orden. Enunciaremos y demostraremos varias de sus propiedades.

Ya que hagamos todo esto, podremos pasar a una siguiente etapa de esta unidad, en donde daremos una introducción a la teoría de números, que es un área de las matemáticas que se dedica a estudiar propiedades aritméticas de $\mathbb{Z}$.

¿Qué es un número entero?

Comencemos tomando una pareja ordenada $(a,b) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$. Para esta pareja, la ecuación

\begin{equation}
a = b + x
\end{equation}

tiene una solución en $\mathbb{N}$. Sin embargo, existen más parejas que tienen la misma solución, es decir, parejas $(c,d)$ tales que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x \in \mathbb{N}$. Por ejemplo, si tomamos $a = 7$, $b = 3$ la ecuación correspondiente es $$7=3+x,$$ cuya solución es $x=4$. Si tomamos $c = 15$ y $d = 11$, entonces la ecuación es $$15=11+x,$$ cuya solución también es $x=4$.

En realidad, muchas más parejas de naturales pueden encontrarse tales que la solución $x$ sea la misma en las ecuaciones representadas por su pareja ordenada asociada. En el ejemplo anterior, otras parejas con la misma solución serían $(5, 1)$, $(31, 27)$, $(100, 96)$, etc. Lo que buscamos al construir a los números enteros es «agrupar» a las parejas con la misma solución $x$. Sin embargo, para que más adelante podamos también «considerar a los negativos», tendremos que cambiar un poco el enfoque.

La siguiente proposición nos permite describir quiénes son todas las parejas $(c,d) \in \mathbb{N} \times \mathbb{N}$ que tienen la misma solución.

Proposición. Sean $(a,b) \in \mathbb{N} \times \mathbb{N}$ y $(c,d) \in \mathbb{N} \times \mathbb{N}$ con $a\geq b$ y $c\geq d$. Se tiene que las ecuaciones $a=b+x$ y $c=d+x$ tienen la misma solución $x$ si y sólo si $a+d = b+c$.

Demostración. $\Longrightarrow )$ Comencemos suponiendo que las ecuaciones $a=b+x$ y $c=d+x$ tienen una misma solución $x$. Esto en símbolos quiere decir que

\begin{align*} a &= b+x \\ d + x &= c \end{align*}

Sumando ambas ecuaciones, obtenemos lo siguiente (aquí ya estamos usando las propiedades conmutativa y asociativa de la suma):

$$a + d + x = b + c + x.$$

En entradas anteriores ya demostramos que se cumple la ley de la cancelación en $\mathbb{N}$. Cancelando $x$ de ambos lados de la igualdad anterior, obtenemos $$a+d=b+c,$$ que era lo que queríamos.

$\Longleftarrow )$ Ahora comencemos con parejas $(a,b)$ y $(c,d)$ tales que $a+d=b+c$. Sea $k \in \mathbb{N}$ una solución de la ecuación $a = b + x$. Es decir, $a = b + k$. Sumando $d$ de ambos lados y usando la hipótesis, tenemos lo siguiente

\begin{align*} b + d + k &= a + d\\
&= b+c.
\end{align*}

Usando la ley de la cancelación en el término $b$, obtenemos que $d+k=c$, es decir, que $k$ también es solución de la ecuación $c=d+x$.

$\square$

La proposición anterior motiva entonces la siguiente definición para todas las parejas $(a,b)$, no sólo para aquellas con $a\geq b$.

Definición. Sean $(a,b)$ y $(c,d)$ parejas de números naturales. Diremos que $(a,b)\sim(c,d)$ si y sólo si $a + d = b + c$.

Probemos una propiedad fundamental de $\sim$.

Proposición. La relación $\sim$ en $\mathbb{N}\times \mathbb{N}$ es una relación de equivalencia.

Demostración. Debemos demostrar que $\sim$ es reflexiva, simétrica y transitiva.

  1. Reflexividad. Veamos que para toda $(a,b)\in \mathbb{N}\times \mathbb{N}$ se cumple que $(a,b)\sim (a,b)$. Por la conmutatividad de la suma en $\mathbb{N}$, $a + b = b + a$. Así, $(a,b) \sim (a,b)$.
  2. Simetría. Veamos que para cualesquiera $(a,b),(c,d) \in \mathbb{N}\times\mathbb{N}$, si $(a,b)\sim (c,d)$, entonces $(a,b) \sim (c,d)$. Sean $(a,b)$ y $(c,d)$. Si $(a,b)=(c,d)$, entonces $a+d = b+c$. Nuevamente por la conmutatividad de la suma en $\mathbb{N}$, se desprende que $c + b = d + a$. Esto es precisamente la definición de $(c,d)\sim(a,b)$.
  3. Transitividad. Veamos que para cualesquiera $(a,b), (c,d),(e,f) \in \mathbb{N}\times \mathbb{N}$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$, se obtiene que $(a,b)\sim (e,f)$. Sean $(a,b)$, $(c,d)$ y $(e,f)$ tales que $(a,b)\sim (c,d)$ y $(c,d)\sim (e,f)$. Esto quiere decir que $a+d=b+c$ y que $c+f=d+e$. Sumando ambas ecuaciones, se obtiene $$a+f+c+d=b+e+c+d.$$ Usando la ley de cancelación en $c+d$ obtenemos la ecuación $$a+f=b+e,$$ la cual precisamente corresponde a la relación $(a,b)\sim (e,f)$.

$\square$

Con sólo estas dos proposiciones ya debería quedar más claro de dónde sale la noción formal de número entero, que es la siguiente.

Definición. Un número entero es una clase de equivalencia de $\sim$, es decir, es un conjunto de la siguiente forma:

\begin{equation}
\overline{(a,b)} := \left\{(c,d)\in \mathbb{N}\times \mathbb{N} : a+d = b+c \right\}.
\end{equation}

Ejemplo. ¿Quién es el número entero $\overline{(0,0)}$? Es el conjunto de parejas $(c,d)$ para las cuales $0+d=c+0$, es decir, aquellas en donde $c=d$. De esta forma, $$\overline{(a,b)}=\{(0,0),(1,1),(2,2),(3,3),\ldots\}.$$

¿Cuándo dos números enteros son iguales? Para esto, debe suceder como conjuntos que $\overline{(a,b)}=\overline{(c,d)}$. Como $\sim$ es reflexiva, se tiene que $(a,b)\in \overline{(a,b)}$. Así, $(a,b)$ debe estar en $\overline{(c,d)}$ para que pueda darse la igualdad de conjuntos. Es decir, se necesita que $(a,b)\sim (c,d)$. Es fácil convencerse de que esto es una condición necesaria y suficiente.

El conjunto de los números enteros

En la definición de número entero podemos ir cambiando la pareja $(a,b)$ para ir obteniendo distintos conjuntos. Como $\sim$ es una relación de equivalencia en $\mathbb{N}\times \mathbb{N}$, al variar sobre todas las posibles parejas, estos conjuntos del estilo $\overline{(a,b)}$ forman una partición de $\mathbb{N}\times \mathbb{N}$. Si quieres recordar por qué, puedes ver las entradas correspondientes en el curso de Álgebra Superior I. El conjunto de todas las clases de equivalencia será nuestro conjunto de números naturales.

Definición. Para $(a,b) \in \mathbb{N}\times \mathbb{N}$, el conjunto de los números enteros será la colección de todas las clases de equivalencia arriba mencionadas. En símbolos, definimos lo siguiente:

\begin{equation}
\mathbb{Z} := \left\{ \overline{(a,b)} : (a,b)\in \mathbb{N}\times \mathbb{N} \right\}.
\end{equation}

De ahora en adelante, abreviaremos la notación de clase de equivalencia por $\overline{(a,b)}$ (sin la tilde), para facilitar escribir las demostraciones. Otra notación usada comúnmente en la literatura es $[(a,b)]$, sin la tilde.

La suma de los números enteros

Hasta ahora los elementos del conjunto $\mathbb{Z}$ son clases de equivalencia y esto está algo alejado de nuestra noción de números. Definamos operaciones en $\mathbb{Z}$ para que de nuevo los pensemos como un sistema numérico. Comenzamos definiendo la suma de enteros como sigue.

Definición. La suma en los enteros es la función $ \widehat+ : \mathbb{Z} \times \mathbb{Z} \longrightarrow \mathbb{Z} $ tal que $$\overline{(a,b)} \enspace \widehat+ \overline{(c,d)} = \overline{(a+c,b+d)}.$$

De manera intuitiva, lo que esta suma refleja es que si tenemos dos ecuaciones $a = b + x$ y $c = d + y$, y las sumamos, entonces se obtiene la ecuación:

$$ a + c = (b + d) + (x + y),$$ la cual correspondería a la clase de equivalencia $\overline{(a+c,b+d)}$.

En la definición utilizamos símbolos distintos para la suma. El símbolo $+$ se refiere al símbolo de suma en $\mathbb{N}$ al cual estamos muy bien acostumbrados. El símbolo $\widehat +$ se refiere al símbolo en $\mathbb{Z}$ que estamos definiendo y que será la suma en $\mathbb{Z}$, para la cual aún tenemos que probar que se cumplan las propiedades que queremos. De ahora en adelante simplemente estaremos usando el símbolo $+$ para ambas, así que es muy importante que en cada momento te preguntes si se refiere al símbolo en $\mathbb{N}$ o en $\mathbb{Z}$, lo cual será claro por el contexto.

Un problema que podríamos tener con la definición de suma es que no estuviera bien definida. Es decir, que si tomamos diferentes representantes de la clase de equivalencia, al hacer la suma obtengamos un resultado diferente. A continuación mostramos que esto en realidad no es un problema.

Proposición. La suma en los enteros está bien definida. Es decir, si $(a,b)\sim (a’,b’)$ y $(c,d)\sim (c’,d’)$, entonces $(a+d,b+c)\sim(a’+d’,b’+c’)$.

Demostración. Las hipótesis corresponden a que $a+b’=b+a’$ y a que $c+d’=d+c’$, que escribiremos como $d+c’=c+d’$. Sumando la primera igualdad con la tercera, reordenando y agrupando términos, obtenemos que $$(a+d)+(b’+c’)=(b+c)+(a’+d’),$$

lo que significa que, como se quería, $(a+d , b+c) \sim (a’+d’, b’+c’).$ Es decir, $\overline{(a+d , b+c)} = \overline{(a’+d’ , b’+c’)}$, de modo que el resultado final de la suma no depende de los representantes que elegimos para hacerla.

$\square$

Propiedades de la suma en $\mathbb{Z}$

Como estamos definiendo una nueva operación de suma, hay que revisar de nuevo que tenga las propiedades que se necesitan para poder trabajar con ella de la manera usual. En esta sección hacemos esto.

Proposición. Se satisfacen las siguientes propiedades para la operación de suma en $\mathbb{Z}$.

  • Asociatividad. Para enteros $\overline{(a,b)}$, $\overline{(c,d)}$ y $\overline{(e,f)}$ se satisface que $$(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).$$
  • Conmutatividad. Para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se satisface que $$\overline{(a,b)}+\overline{(c,d)}=\overline{(c,d)}+\overline{(a,b)}.$$
  • Neutro. Existe un elemento neutro, es decir, existe un entero $\overline{(m,n)}$ tal que para cualquier entero $\overline{(a,b)}$ se cumple que $$\overline{(a,b)}+\overline{(m,n)}=\overline{(a,b)}.$$
  • Inversos. Para cualquier entero $\overline{(a,b)}$ existe un entero $\overline{(c,d)}$ tal que la suma $\overline{(a,b)}+\overline{(c,d)}$ es el neutro de la propiedad anterior.

Demostración. La asociatividad se sigue de la siguiente cadena de igualdades.

\begin{align*}
(\overline{(a,b)}+\overline{(c,d)})+\overline{(e,f)}&=\overline{(a+c,b+d)}+\overline{(e,f)}\\
&=\overline{((a+c)+e,(b+d)+f)}\\
&=\overline{(a+(c+e),b+(d+f))}\\
&=\overline{(a,b)}+\overline{(c+d,d+f)}\\
&=\overline{(a,b)}+(\overline{(c,d)}+\overline{(e,f)}).
\end{align*}

En la primera, segunda, penúltima y última igualdades estamos usando la definición de suma en $\mathbb{Z}$. En la tercer igualdad estamos usando la asociatividad de la suma en $\mathbb{N}$.

Para demostrar la conmutatividad de la suma en $\mathbb{Z}$ usamos la conmutatividad de la suma en $\mathbb{N}$ en la segunda igualdad de la siguiente cadena:

\begin{align*}
\overline{(a,b)}+\overline{(c,d)}&=\overline{(a+c,b+d)}\\
&=\overline{(c+a,d+b)}\\
&=\overline{(c,d)}+\overline{(a,b)}.
\end{align*}

El elemento neutro de la suma en $\mathbb{Z}$ es el entero $\overline{(0,0)}$ pues, en efecto, si tomamos cualquier entero $\overline{(a,b)}$, tenemos que $$\overline{(a,b)}+\overline{(0,0)}=\overline{(a+0,b+0)}=\overline{(a,b)}.$$

Aquí estamos usando que en los naturales el $0$ es neutro para la suma.

Finalmente, dado cualquier entero $\overline{(a,b)}$, notamos que su inverso aditivo sería el entero $\overline{(b,a)}$. En efecto, su suma sería $$\overline{(a,b)}+\overline{(b,a)}=\overline{(a+b,a+b)}=\overline{(0,0)}.$$

La primer igualdad está usando la conmutatividad de la suma en $\mathbb{N}$ y la última el hecho de que $(a+b,a+b)\sim (0,0)$.

$\square$

Como los inversos aditivos se usan frecuentemente, usamos un símbolo especial para ellos: el símbolo de menos. Usamos también este símbolo en la definición de la función resta.

Definición. Para un entero $\overline{(a,b)}$ definimos $-\overline{(a,b)}:=\overline{(b,a)}$.

Para restar enteros, simplemente a un entero le sumamos el inverso del otro.

Definición. La resta de dos enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ es el entero

\begin{align*}
\overline{(a,b)}-\overline{(c,d)}:&=\overline{(a,b)}+(-\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(d,c)}\\
&=\overline{(a+d,b+c)}.
\end{align*}

Cerrando el círculo

Finalizamos esta entrada observando que en $\mathbb{Z}$ ahora sí cualquier ecuación de la forma $r = w + s$ tiene una solución $w$ sin importar los valores de $r$ y $s$.

Proposición. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que existe un entero $\overline{(x,y)}$ tal que $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}.$$

Demostración. La solución es el entero $\overline{(x,y)}=\overline{(a,b)}-\overline{(c,d)}$. En efecto, usando las propiedades de la suma en $\mathbb{Z}$ y la definición de resta, tenemos que:

\begin{align*}
\overline{(x,y)}+\overline{(c,d)}&=(\overline{(a,b)}-\overline{(c,d)})+\overline{(c,d)}\\
&=\overline{(a,b)}+(-\overline{(c,d)}+\overline{(c,d)})\\
&=\overline{(a,b)}+\overline{(0,0)}\\
&=\overline{(a,b)}.
\end{align*}

Tarea moral

  1. Repasa por qué las clases de equivalencia inducidas por una relación de equivalencia sobre un conjunto $X$ forman una partición del conjunto $X$.
  2. Encuentra la solución a la siguiente ecuación en los enteros $$\overline{(5,3)}=\overline{(x,y)}+\overline{(1,8)}.$$ Tu respuesta debe ser un número entero, es decir, un conjunto de parejas de naturales. ¿Cuáles son esas parejas?
  3. Para cualesquiera enteros $\overline{(a,b)}$ y $\overline{(c,d)}$, muestra que la solución $\overline{(x,y)}$ a la ecuación $$\overline{(a,b)}=\overline{(x,y)}+\overline{(c,d)}$$ es única. Concluye que tanto el neutro aditivo de $\mathbb{Z}$, como los inversos aditivos en $\mathbb{Z}$ son únicos.
  4. Demuestra que para cualquier entero $\overline{(a,b)}$ se tiene que $-(-\overline{(a,b)})=\overline{(a,b)}$.
  5. Demuestra que para enteros $\overline{(a,b)}$ y $\overline{(c,d)}$ se tiene que $$-(\overline{(a,b)}+\overline{(c,d)})=(-\overline{(a,b)})+(-\overline{(c,d)}).$$

Más adelante

En esta entrada definimos a los enteros, al conjunto de números enteros y a la operación de suma. Vimos también que la suma tiene buenas propiedades. La estructura algebraica de $\mathbb{Z}$ es todavía más rica. Dentro de $\mathbb{Z}$ también se puede definir un producto y una relación de orden. Haremos esto en las siguientes entradas, enunciaremos las propiedades que tienen y las demostraremos.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.