Archivo del Autor: Omar González Franco

Ecuaciones Diferenciales I: Ecuaciones de Bessel, Chebyshev e Hipergeométrica

Introducción

En la entrada anterior resolvimos 3 de las ecuaciones diferenciales especiales que deseamos resolver, en esta entrada concluiremos con el resto de ecuaciones.

Recordemos que las ecuaciones diferenciales especiales que deseamos resolver son:

  • Ecuación de Hermite:

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Laguerre:

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Legendre:

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0$$

  • Ecuación de Bessel:

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0$$

  • Ecuación de Chebyshev:

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0$$

  • Ecuación Hipergeométrica de Gauss:

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0$$

  • Ecuación de Airy:

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Resolvamos ahora la ecuación de Bessel.

Ecuación de Bessel

La ecuación de Bessel es

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0 \label{1} \tag{1}$$

Con $\lambda \in \mathbb{R}$. La ecuación de Bessel es una ecuación diferencial de segundo orden pero suele denominarse de orden $\lambda$.

Friedrich Wilhelm Bessel (1784-1846) fue un matemático y astrónomo alemán conocido por generalizar las llamadas funciones de Bessel, éstas funciones son soluciones canónicas de la ecuación de Bessel. Las funciones de Bessel fueron definidas primero por el matemático Daniel Bernoulli. Como astrónomo Bessel fue el primero en determinar el paralaje de una estrella, publicando en 1838 los datos que había calculado de 61 Cygni.

Resolvamos la ecuación. Dividamos todo por $x^{2}$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1}{x} \dfrac{dy}{dx} + \dfrac{(x^{2} -\lambda^{2})}{x^{2}} y = 0$$

Identificamos que

$$P(x) = \dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{(x^{2} -\lambda^{2})}{x^{2}}$$

Es claro que ambas funciones no están definidas en $x = 0$, de manera que este punto es un punto singular. Definiendo las funcions $p(x)$ y $q(x)$ obtenemos que

$$p(x) = 1 \hspace{1cm} y \hspace{1cm} q(x) = x^{2} -\lambda^{2}$$

Si calculamos los límites se tiene lo siguiente

$$\lim_{x \to 0}p(x) = 1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = -\lambda^{2}$$

Los límites existen, esto nos indica que el punto $x_{0} = 0$ es un punto singular regular. La solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituimos en la ecuación de Bessel.

$$x^{2} \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + x \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + (x^{2} -\lambda^{2}) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r + 2} -\lambda^{2}\sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En la tercer serie hacemos la sustitución $n = k -2$ y en el resto hacemos $k = n$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}c_{k -2}x^{k + r} -\lambda^{2}\sum_{k = 0}^{\infty}c_{k}x^{k + r} = 0$$

Necesitamos extraer los términos para $k = 0$ y $k = 1$ para hacer que todas las series comiencen en $k = 2$.

Para $k = 0$ se obtiene la ecuación indicial.

\begin{align*}
r(r -1)c_{0}x^{r} + rc_{0}x^{r} -\lambda^{2}c_{0}x^{r} &= 0 \\
c_{0}x^{r}[r(r -1) + r -\lambda^{2}] &= 0 \\
r(r -1) + r -\lambda^{2} &= 0
\end{align*}

La ecuación indicial es $r^{2} -\lambda^{2} = 0$, de donde $r_{1} = \lambda$ y $r_{2} = -\lambda$.

Para $k = 1$ se obtiene

\begin{align*}
(r + 1)rc_{1}x^{r + 1} + (r + 1)c_{1}x^{r + 1} -\lambda^{2}c_{1}x^{r + 1} &= 0 \\
c_{1}x^{r + 1}[(r + 1)r + (r + 1) -\lambda^{2}] &= 0 \\
\end{align*}

Como lo que esta entre corchetes no se anula para las raíces de la ecuación indicial, entonces debe ser que $c_{1} = 0$.

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 2}^{\infty}c_{k -2}x^{k + r} -\lambda^{2}\sum_{k = 2}^{\infty}c_{k}x^{k + r} = 0$$

Reescribiendo todo en una serie se tiene

$$\sum_{k = 2}^{\infty} [(k + r)(k + r -1)c_{k} + (k + r)c_{k} + c_{k -2} -\lambda^{2}c_{k}] x^{k + r} = 0$$

De donde

$$c_{k}[(k + r)(k + r -1) + (k + r) -\lambda^{2}] + c_{k -2} = 0$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia

$$c_{k} = \dfrac{c_{k -2}}{\lambda^{2} -(r + k)^{2}}, \hspace{1cm} k = 2, 3, 4, \cdots$$

Para el caso en el que $r = \lambda$ la relación de recurrencia es

$$c_{k} = -\dfrac{c_{k -2}}{k(k + 2\lambda)}, \hspace{1cm} k = 2, 3, 4, \cdots$$

Determinemos los coeficientes para este caso.

$k = 2$:

$$c_{2} = -\dfrac{c_{0}}{2(2 + 2\lambda)} = -\dfrac{1}{4(1 + \lambda)}c_{0}$$

$k = 3$:

$$c_{3} = \dfrac{c_{1}}{3(3 + 2\lambda)}$$

Pero $c_{1} = 0$, entonces $c_{3} = 0$. En general $c_{1} = c_{3} = c_{5} = \cdots = 0$.

Para $k = 4$ se tiene

$$c_{4} = -\dfrac{c_{2}}{4(4 + 2\lambda)} = \dfrac{1}{(4)(8)(1 + \lambda)(2 + \lambda)}c_{0}$$

$k = 6$:

$$c_{6} = -\dfrac{c_{4}}{6(6 + 2\lambda)} = -\dfrac{1}{(4)(8)(12)(1 + \lambda)(2 + \lambda)(3 + \lambda)}c_{0}$$

En general

$$c_{2k} = \dfrac{(-1)^{k}}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)}c_{0}$$

Entonces la primer solución a la ecuación de Bessel es

$$\hat{y}(x) = c_{0}y_{1}(x)$$

Con

\begin{align*}
y_{1}(x) &= 1 -\dfrac{1}{4(1 + \lambda)}x^{2} + \dfrac{1}{(4)(8)(1 + \lambda)(2 + \lambda)}x^{4} -\dfrac{1}{(4)(8)(12)(1 + \lambda)(2 + \lambda)(3 + \lambda)}x^{6} + \cdots \\
&\cdots + (-1)^{k} \dfrac{1}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)}x^{2k + \lambda} + \cdots \label{2} \tag{2}
\end{align*}

No obtendremos la segunda solución para $r = -\lambda$, pero si que aún podemos decir más de la primer solución y con ello conocer la forma de la segunda solución.

La función Gamma nos será de bastante ayuda así que en caso de que no la conozcas basta saber que se define de la siguiente manera:

Definición: La función Gamma se define como

$$\Gamma(x) = \int_{0}^{\infty}t^{x -1}e^{-t} dt \label{3} \tag{3}$$

La convergencia de la integral requiere que $x -1 > -1$, o bien, $x > 0$.

La función Gamma posee la propiedad conveniente de que

$$\Gamma (1 + x) = x \Gamma(x) \label{4} \tag{4}$$

Debido a esta propiedad es que al valor arbitrario $c_{0}$ de la solución a la ecuación de Bessel se le suele atribuir el valor

$$c_{0} = \dfrac{1}{2^{\lambda} \Gamma(1 + \lambda)}$$

Como

\begin{align*}
\Gamma (1 + \lambda + 1) &= (1 + \lambda)\Gamma(1 + \lambda) \\
\Gamma (1 + \lambda + 2) &= (2 + \lambda)\Gamma(2 + \lambda) = (2 + \lambda)(1 + \lambda)\Gamma(1 + \lambda) \\
&\vdots \\
\Gamma(1 + \lambda + k) &= (1 + \lambda)(2 + \lambda) \cdots (k + \lambda)\Gamma (1 + \lambda)
\end{align*}

Entonces el coeficiente $c_{2k}$ se puede escribir como

\begin{align*}
c_{2k} &= \left( \dfrac{1}{2^{\lambda} \Gamma(1 + \lambda)} \right) \left( \dfrac{(-1)^{k}}{2^{2k}k!(1 + \lambda)(2 + \lambda)(3 + \lambda) \cdots (k + \lambda)} \right) \\
&= \dfrac{(-1)^{k}}{2^{2k + \lambda}k!(1 + \lambda)(2 + \lambda) \cdots (k + \lambda)\Gamma(1 + \lambda)} \\
&= \dfrac{(-1)^{k}}{2^{2k + \lambda}k!\Gamma(1 + \lambda + k)}
\end{align*}

Para $k = 0, 1, 2, 3, \cdots$. Usando esta forma de los coeficientes, la solución a la ecuación de Bessel para $r = \lambda$ se puede escribir de la siguiente manera, usualmente denotada por $J_{\lambda}(x)$:

$$J_{\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 + \lambda + n)} \left( \dfrac{x}{2} \right)^{2n + \lambda} \label{5} \tag{5}$$

Si $\lambda \geq 0$, la serie converge al menos en el intervalo $[0, \infty)$.

De tarea moral demuestra que para $r = -\lambda$ la segunda solución a la ecuación de Bessel es

$$J_{-\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 -\lambda + n)} \left( \dfrac{x}{2} \right)^{2n -\lambda} \label{6} \tag{6}$$

Por lo tanto, la solución general a la ecuación de Bessel es

$$y(x) = C_{1} J_{\lambda}(x) + C_{2} J_{-\lambda}(x) \label{7} \tag{7}$$

Las funciones $J_{\lambda}(x)$ y $J_{-\lambda}(x)$ se llaman funciones de Bessel de primera clase de orden $\lambda$ y $-\lambda$ respectivamente.

Dependiendo del valor de $\lambda$ la solución puede contener potencias negativas de $x$ y, por tanto, converger en $(0, \infty)$.

Debemos tener cuidado con la solución general (\ref{7}).

  • Si $\lambda = 0$ es claro que las soluciones (\ref{5}) y (\ref{6}) son las mismas.
  • Si $\lambda > 0$ y $r_{1} -r_{2} = \lambda -(-\lambda) = 2\lambda$ no es un entero positivo, entonces (\ref{5}) y (\ref{6}) son linealmente independientes y (\ref{7}) es la solución general, pero
  • Si $r_{1} -r_{2} = 2\lambda$ es un entero positivo podría existir una segunda solución en serie y entonces las soluciones (\ref{5}) y (\ref{6}) no son linealmente independientes lo que significa que (\ref{7}) no es la solución general.

Observa que $2\lambda$ es entero positivo si $\lambda$ es un entero positivo, pero también lo es si $\lambda$ es la mitad de un número impar positivo, sin embargo en este último caso se puede demostrar que (\ref{5}) y (\ref{6}) si son linealmente independientes. Por lo tanto, la solución general a la ecuación de Bessel es (\ref{7}) siempre que $\lambda \neq$ entero.

Ecuación de Chebyshev

La ecuación de Chebyshev es

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0 \label{8} \tag{8}$$

Con $\lambda$ una constante real (o compleja) y $|x| < 1$.

Esta ecuación lleva el nombre del matemático ruso Pafnuty Chebyshev (1821-1894) conocido por su trabajo en el área de la probabilidad y estadística.

La ecuación de Chebyshev en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{x}{1 -x^{2}} \dfrac{dy}{dx} + \dfrac{\lambda^{2}}{1 -x^{2}} y = 0$$

Identificamos que

$$P(x) = -\dfrac{x}{1 -x^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda^{2}}{1 -x^{2}}$$

Ambas funciones no están definidas en $x = 1$ ni $x = -1$, pero si en el punto $x_{0} = 0$, entonces dicho punto es un punto ordinario y por tanto la solución es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

La primera y segunda derivada son

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituimos en la ecuación de Chevyshev.

$$(1 -x^{2}) \left[ \sum_{n = 2}^{\infty}n(n-1)c_{n}x^{n-2} \right] -x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda^{2} \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n} -\sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda^{2} \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos $k = n -2$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty}k(k -1)c_{k}x^{k} -\sum_{k = 1}^{\infty}kc_{k}x^{k}+\lambda^{2} \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos los primeros dos términos, por un lado para $k = 0$ se tiene

$$2c_{2} + \lambda^{2}c_{0} = 0$$

de donde $c_{2} = -\dfrac{\lambda^{2}}{2}c_{0}$. Por otro lado, para $k = 1$ se tiene

\begin{align*}
6c_{3}x -c_{1}x + \lambda^{2}c_{1}x &= 0 \\
[6c_{3} -c_{1} + \lambda^{2}c_{1}]x &= 0 \\
6c_{3} -c_{1} + \lambda^{2}c_{1} &= 0
\end{align*}

De donde $c_{3} = \dfrac{1 -\lambda^{2}}{6}c_{1}$. Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty}k(k -1)c_{k}x^{k} -\sum_{k = 2}^{\infty}kc_{k}x^{k} + \lambda^{2} \sum_{k = 2}^{\infty}c_{k}x^{k} = 0$$

Si juntamos todo en una serie se obtiene

$$\sum_{k = 2}^{\infty} \left[ (k + 2)(k + 1)c_{k + 2} -k(k -1)c_{k} -kc_{k} + \lambda^{2}c_{k} \right]x^{k} = 0$$

De donde

$$(k + 2)(k + 1)c_{k + 2} -[k(k -1) + k -\lambda^{2}]c_{k} = 0$$

Si despejamos a $c_{k + 2}$ obtenemos la relación de recurrencia

$$c_{k + 2} = \dfrac{k^{2} -\lambda^{2}}{(k + 1)(k + 2)}c_{k}, \hspace{1cm} k = 0, 1, 2, 3, \cdots$$

Ya vimos que para $k = 0$ se tiene

$$c_{2} = -\dfrac{\lambda^{2}}{2!}c_{0}$$

Y para $k = 1$ se obtuvo

$$c_{3} = \dfrac{1 -\lambda^{2}}{3!}c_{1}$$

Para $k = 2$ se tiene

$$c_{4} = \dfrac{2^{2} -\lambda^{2}}{(4)(3)}c_{2} = \dfrac{2^{2} -\lambda^{2}}{(4)(3)} \left( -\dfrac{\lambda^{2}}{2}c_{0} \right) = \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}c_{0}$$

$k = 3$:

$$c_{5} = \dfrac{3^{2} -\lambda^{2}}{(5)(4)}c_{3} = \dfrac{3^{2} -\lambda^{2}}{(5)(4)} \left( \dfrac{1 -\lambda^{2}}{3!}c_{1} \right) = \dfrac{(3^{2} -\lambda^{2})(1 -\lambda^{2})}{5!}c_{1}$$

$k = 4$:

$$c_{6} = \dfrac{4^{2} -\lambda^{2}}{(6)(5)}c_{4} = \dfrac{4^{2} -\lambda^{2}}{(6)(5)} \left( \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}c_{0} \right) = \dfrac{(4^{2} -\lambda^{2})(2^{2} -\lambda^{2})(-\lambda^{2})}{6!}c_{0}$$

Etcétera, con estos resultado podemos observar el patrón

$$c_{2k} = \dfrac{[(2k -2)^{2} -\lambda^{2}][(2k -4)^{2} -\lambda^{2}] \cdots (2^{2} -\lambda^{2})(-\lambda^{2})}{(2k)!}c_{0}$$

y

$$c_{2k + 1} = \dfrac{[(2k -1)^{2} -\lambda^{2}][(2k -3)^{2}-\lambda^{2}] \cdots (3^{2} -\lambda^{2})(1 -\lambda^{2})}{(2k + 1)!}c_{1}$$

Si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces la solución general de la ecuación de Chebyshev es

$$y_{1} = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{9} \tag{9}$$

Con

\begin{align*}
y_{1}(x) &= 1 -\dfrac{\lambda^{2}}{2!}x^{2} + \dfrac{(2^{2} -\lambda^{2})(-\lambda^{2})}{4!}x^{4} + \dfrac{(4^{2} -\lambda^{2})(2^{2} -\lambda^{2})(-\lambda^{2})}{6!}x^{6} + \cdots\\
&\cdots + \dfrac{[(2k -2)^{2} -\lambda^{2}][(2k -4)^{2} -\lambda^{2}] \cdots (2^{2} -\lambda^{2})(-\lambda^{2})}{(2k)!} + \cdots \label{10} \tag{10}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x + \dfrac{1 -\lambda^{2}}{3!}x^{3} + \dfrac{(3^{2} -\lambda^{2})(1 -\lambda^{2})}{5!}x^{5} + \cdots \\
&\cdots + \dfrac{[(2k -1)^{2} -\lambda^{2}][(2k -3)^{2}-\lambda^{2}] \cdots (3^{2} -\lambda^{2})(1 -\lambda^{2})}{(2k + 1)!} + \cdots \label{11} \tag{11}
\end{align*}

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $C_{1}$ y de $C_{2}$ se obtienen los conocidos polinomios de Chebyshev:

\begin{align*}
T_{0}(x) &= 1 \\
T_{1}(x) &= x \\
T_{2}(x) &= 2x^{2} -1 \\
T_{3}(x) &= 4x^{3} -3x \\
T_{4}(x) &= 8x^{4} -8x^{2} + 1 \\
T_{5}(x) &= 16x^{5} -20x^{3} + 5x \\
\vdots
\end{align*}

En general el $n$-ésimo polinomio de Chebyshev será solución particular de la ecuación de Chebyshev cuando $\lambda = n$.

Ecuación Hipergeométrica de Gauss

La ecuación Hipergeométrica es

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0 \label{12} \tag{12}$$

Con $\alpha$, $\beta$ y $\gamma$ constantes.

La ecuación hipergeométrica en su forma estándar es

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{\gamma -(\alpha + \beta +1)x}{x(1 -x)} \dfrac{dy}{dx} -\dfrac{\alpha \beta}{x(1 -x)}y = 0$$

Identificamos que

$$P(x) = \dfrac{\gamma -(\alpha + \beta +1)x}{x(1 -x)} \hspace{1cm} y \hspace{1cm} Q(x) = -\dfrac{\alpha \beta}{x(1 -x)}$$

Ambas funciones no están definidas es $x = 1$ ni $x = 0$ eso significa que ambos puntos son singulares, sin embargo nosotros estamos interesados en resolver la ecuación con respecto al punto $x_{0} = 0$, definamos las funciones $p(x)$ y $q(x)$ con respecto a dicho punto.

$$p(x) = \dfrac{\gamma -(\alpha +\beta +1)x}{1 -x} \hspace{1cm} y \hspace{1cm} q(x) = -\dfrac{\alpha \beta x}{1 -x}$$

Ambas funciones son analíticas en $x = 0$ y los límites existen

$$\lim_{x \to 0}p(x) = \gamma \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = 0$$

Por lo tanto, $x_{0} = 0$ es un punto singular regular y la solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituimos en la ecuación hipergeométrica.

$$x(1 -x) \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + [\gamma -(\alpha + \beta + 1)x] \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] -\alpha \beta \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo la expresión se tiene

\begin{align*}
&x \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} -x^{2} \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} + \gamma \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \\
&-(\alpha + \beta + 1)x \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} -\alpha \beta \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

Simplificamos

\begin{align*}
&\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \gamma \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \\
&-(\alpha + \beta + 1) \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} -\alpha \beta \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

En la primera y tercera serie hacemos $k = n$ y en el resto hacemos $n = k -1$.

\begin{align*}
&\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k + r -1)(k + r -2)c_{k -1}x^{k + r -1} + \gamma \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} \\
&-(\alpha + \beta + 1) \sum_{k = 1}^{\infty}(k + r -1)c_{k -1}x^{k + r -1} -\alpha \beta \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0
\end{align*}

Para $k = 0$ obtenemos la ecuación indicial.

\begin{align*}
r(r -1)c_{0}x^{r -1} + \gamma r c_{0}x^{r-1} &= 0 \\
[r(r -1) + \gamma r]c_{0}x^{r -1} &= 0 \\
r(r -1) + \gamma r &= 0
\end{align*}

La ecuación indicial es $r(r + \gamma -1) = 0$, de donde $r_{1} = 0$ y $r_{2} = 1 -\gamma$. Ahora tenemos la ecuación

\begin{align*}
&\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k + r -1)(k + r -2)c_{k -1}x^{k + r -1} + \gamma \sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r -1} \\
&-(\alpha + \beta + 1) \sum_{k = 1}^{\infty}(k + r -1)c_{k -1}x^{k + r -1} -\alpha \beta \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0
\end{align*}

Juntemos todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + r)(k + r -1)c_{k} -(k + r -1)(k + r -2)c_{k -1} + \gamma (k + r)c_{k} -(\alpha + \beta + 1)(k + r -1)c_{k -1} -\alpha \beta c_{k -1}]x^{k + r -1} = 0$$

De donde

$$(k + r)(k + r -1)c_{k} -(k + r -1)(k + r -2)c_{k -1} + \gamma (k + r)c_{k} -(\alpha + \beta + 1)(k + r -1)c_{k -1} -\alpha \beta c_{k -1} = 0$$

Despejando a $c_{k}$ se obtiene la relación de recurrencia.

$$c_{k} = \dfrac{(k + r -1)(k + r -2) + (\alpha + \beta + 1)(k + r -1) + \alpha \beta}{(k + r)(k + r -1) + \gamma(k + r)}c_{k -1}$$

De tarea moral demuestra que la relación de recurrencia se puede reescribir como

$$c_{k} = \dfrac{(k + r + \alpha -1)(k + r -1 + \beta)}{(k + r)(k + r + \gamma -1)}c_{k -1}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Para $k = 1$ tenemos

$$c_{1} = \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0}$$

$k = 2$:

\begin{align*}
c_{2} &= \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma + 1)}c_{1} \\
&= \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma +1)} \left ( \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0} \right)
\end{align*}

$k = 3$:

\begin{align*}
c_{3} &= \dfrac{(r + \alpha + 2)(r + \beta + 2)}{(3 + r)(r + \gamma + 2)}c_{2} \\
&= \left( \dfrac{(r + \alpha + 2)(r + \beta + 2)}{(3 + r)(r + \gamma + 2)} \right) \dfrac{(r + \alpha + 1)(r + \beta + 1)}{(2 + r)(r + \gamma + 1)} \left( \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0} \right)
\end{align*}

Etcétera. Una forma de escribir las expresiones anteriores es usando el símbolo de Pochhammer que se define de la siguiente manera:

Definición: El símbolo de Pochhammer se define como

$$(\alpha)_{n} = \alpha(\alpha + 1)(\alpha + 2) \cdots (\alpha + n -1); \hspace{1cm} (\alpha)_{0} = 1 \label{13} \tag{13}$$

Con $n$ un entero positivo.

Una relación interesante entre el símbolo de Pochhammer y la función Gamma es

$$(x)_n = \dfrac{\Gamma(x + n)}{\Gamma(x)} \label{14} \tag{14}$$

Siempre que $x$ y $x + n$ no son enteros positivos.

Usando el símbolo de Pochhammer podemos escribir a los coeficientes como

$$c_{1} = \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}c_{0}$$

$$c_{2} = \dfrac{(r + \alpha)_{2}(r + \beta )_{2}}{(1 + r)_{2}(r + \gamma)_{2}}c_{0}$$

$$c_{3} = \dfrac{(r + \alpha )_{3}(r + \beta)_{3}}{(1 + r)_{3}(r + \gamma)_{3}}c_{0}$$

Y en general

$$c_{k} = \dfrac{(r + \alpha)_{k}(r + \beta)_{k}}{(1 + r)_{k}(r + \gamma)_{k}}c_{0}$$

Por lo tanto, la solución a la ecuación hipergeométrica es

$$y(x) = c_{0}\hat{y}(x)$$

Donde

\begin{align*}
\hat{y}(x) &= 1 + \dfrac{(r + \alpha)(r + \beta)}{(1 + r)(r + \gamma)}x + \dfrac{(r + \alpha)_{2}(r + \beta )_{2}}{(1 + r)_{2}(r + \gamma)_{2}}x^{2} + \dfrac{(r + \alpha )_{3}(r + \beta)_{3}}{(1 + r)_{3}(r + \gamma)_{3}}x^{3} + \cdots \\
&\cdots + \dfrac{(r + \alpha)_{k}(r + \beta)_{k}}{(1 + r)_{k}(r + \gamma)_{k}}x^{k} + \cdots \label{15} \tag{15}
\end{align*}

Hemos resuelto la ecuación hipergeométrica de manera general, pero recuerda que las raíces indiciales son $r_{1} = 0$ y $r_{2} = 1 -\gamma$ lo que significa que existen dos soluciones linealmente independientes $y_{1}(x)$ y $y_{2}(x)$ tal que la solución general es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x)$$

Para el caso en el que $r = 0$ basta sustituir en (\ref{15}), a esta solución se le conoce como función hipergeométrica, se denota por $_{2}F_{1}(\alpha, \beta; \gamma; x)$ y está dada por

$$_{2}F_{1}(\alpha, \beta; \gamma; x) = \sum_{n = 0}^{\infty}\dfrac{(\alpha)_{n}(\beta)_{n}}{n!(\gamma)_{n}}x^{n} \label{16} \tag{16}$$

Donde se ha hecho uso del símbolo de Pochhammer y se requiere que $\gamma \neq 0, -1, -2, \cdots$. La serie (\ref{16}) converge en el intervalo $|x| < 1$.

De tarea moral demuestra que para en caso en el que $r = 1 -\gamma$, $\gamma \neq 2, 3, 4, \cdots$ y $|x| < 1$, la solución denotada por $_{2}F_{1}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x)$ es

$$_{2}F_{1}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) = \sum_{n = 0}^{\infty}\dfrac{(1 -\gamma + \alpha)_{n}(1 -\gamma + \beta)_{n}}{n!(2 -\gamma)_{n}}x^{n} \label{17} \tag{17}$$

Considerando estos resultados, la solución general a la ecuación hipergeométrica para $|x| < 1$ es

$$y(x) = C_{1} {_{2}F_{1}}(\alpha, \beta; \gamma; x) + C_{2} x^{1 -\gamma} {_{2}F_{1}}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) \label{18} \tag{18}$$

Ecuación de Airy

Como seguramente recordarás, cuando estudiamos el método de resolución con respecto a puntos ordinarios resolvimos como ejemplo la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + xy = 0 \label{19} \tag{19}$$

Y mencionamos que dicha ecuación era una forma de lo que se conoce como ecuación de Airy, por su puesto la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0 \label{20} \tag{20}$$

es otra forma de lo que se conoce como ecuación de Airy y dado que ya resolvimos la forma (\ref{19}) te será de tarea moral resolver la forma (\ref{20}). ¿Qué diferencias notas?.

Estas ecuaciones llevan el nombre de Airy en honor al astrónomo británico George Biddell Airy (1801 – 1892).

La solución general a la ecuación de Airy (\ref{20}) es

$$y(x) = C_{1} \sum_{n = 0}^{\infty}\dfrac{1 \cdot 4 \cdots (3n -2)}{(3n)!}x^{3n} + C_{2} \sum_{n = 0}^{\infty}\dfrac{2 \cdot 5 \cdots (3n -1)}{(3n + 1)!}x^{3n + 1} \label{21} \tag{21}$$

Hemos concluido, es importante recordar que cada una de estas ecuaciones y sus soluciones tienen propiedades matemáticas muy importantes que no se revisaron debido a que quedan fuera de lo que nos corresponde en este curso, sin embargo en semestres posteriores seguramente aparecerán de nuevo y lo visto en estas dos últimas entradas te será de valiosa utilidad.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Demostrar que la segunda solución a la ecuación de Bessel para $r = -\lambda$ es
    $$J_{-\lambda}(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{n!\Gamma(1 -\lambda + n)} \left( \dfrac{x}{2} \right)^{2n -\lambda}$$
    Es decir, encuentra la relación de recurrencia para $r = -\lambda$, determina la forma de los coeficientes de la solución y determina el valor correcto que debe tener $c_{0}$ usando la función Gamma para finalmente dar con la solución que se desea.
  1. Investigar qué son las funciones de Bessel de segunda clase y mencionar la relación que tienen con las funciones de Bessel de primera clase.
  1. Los primeros 6 polinomios de Chebyshev son solución a la ecuación de Chebyshev para $\lambda = 0, 1, 2, 3, 4, 5$ respectivamente. Determinar el valor correspondiente de $C_{1}$ y $C_{2}$ tal que se obtengan los primeros 6 polinomios de Chebyshev.
  1. Demostrar que si $|x| < 1$, $\lambda \neq 2, 3, 4, \cdots$ y $r = 1 -\lambda$ la segunda solución a la ecuación hipergeométrica es
    \begin{align*}
    y_{2}(x) &= x^{r}\sum_{n = 0}^{\infty}\hat{c}_{n}x^{n} \\
    &= x^{1 -\lambda}{_{2}F_{1}}(1 -\gamma + \alpha, 1 -\gamma + \beta; 2 -\gamma; x) \\
    &= x^{1 -\lambda} \sum_{n = 0}^{\infty}\dfrac{(1 -\gamma + \alpha)_{n}(1 -\gamma + \beta)_{n}}{n!(2 -\gamma)_{n}}x^{n}
    \end{align*}
    Puedes hacer uso del resultado general (\ref{15}).
  1. Demostrar que la ecuación de Legendre es un caso especial de la ecuación hipergeométrica.

    Al resolver la ecuación hipergeométrica se puede comparar directamente sus soluciones para obtener las soluciones de la ecuación de Legendre, después de realizar las sustituciones necesarias.
  1. Resolver la ecuación de Airy con respecto al punto ordinario $x_{0} = 0$.
    $$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Más adelante…

¡Hemos concluido con la unidad 2 del curso!.

A manera de resumen, en esta unidad estudiamos las ecuaciones diferenciales de orden superior con particular énfasis en las ecuaciones lineales de segundo orden tanto homogéneas como no homogéneas, vimos las propiedades de estas ecuaciones y sus soluciones. Estudiamos problemas con valores iniciales (PVI) y problemas con valores en la frontera (PVF), definimos algunos operadores diferenciales que nos ayudaron a demostrar el principio de superposición y definimos el conjunto fundamental de soluciones que está compuesto por las soluciones de una ecuación diferencial de orden superior tal que son linealmente independientes entre sí y vimos la relación que existe con el Wronskiano.

Una vez estudiadas las propiedades de este tipo de ecuaciones comenzamos a desarrollar distintos métodos de resolución, vimos el método de reducción de orden, resolvimos ecuaciones diferenciales homogéneas con coeficientes constantes y para el caso no homogéneo desarrollamos un método un poco limitante conocido como método de coeficientes indeterminados así mismo desarrollamos un método más general conocido como método de variación de parámetros. Estos resultados nos permitieron resolver la ecuación de Euler que corresponde a una ecuación diferencial de orden superior con coeficientes variables. Finalmente aplicamos estos conocimientos en el estudio de las oscilaciones mecánicas.

Finalizamos la unidad con el estudio de las ecuaciones diferenciales de segundo orden con coeficientes variables cuyas soluciones corresponden a series de potencias infinitas, desarrollamos métodos de resolución con respecto a puntos ordinarios y puntos singulares regulares. Aplicando estos resultados resolvimos algunas ecuaciones diferenciales especiales con particular uso en otras ramas del conocimiento, particularmente en la física e ingeniería.

En la siguiente unidad estudiaremos sistemas de ecuaciones diferenciales lineales de primer orden.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones del Hermite, Laguerre y Legendre

Introducción

En las dos últimas entradas hemos desarrollado métodos de resolución de ecuaciones diferenciales lineales de segundo orden con coeficientes variables, el primer caso fue cuando $x_{0} = 0$ es un punto ordinario y en el segundo caso cuando $x_{0} = 0$ es un punto singular regular. En esta y la siguiente entrada aplicaremos estos métodos para resolver algunas ecuaciones diferenciales especiales, tan especiales que cada una de ellas tiene su propio nombre y son de bastante utilidad en otras áreas del conocimiento como la física e ingeniería.

A continuación presentamos las ecuaciones diferenciales que resolveremos:

  • Ecuación de Hermite:

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Laguerre:

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0$$

  • Ecuación de Legendre:

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0$$

  • Ecuación de Bessel:

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + (x^{2} -\lambda^{2}) y = 0$$

  • Ecuación de Chebyshev:

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -x \dfrac{dy}{dx} + \lambda^{2} y = 0$$

  • Ecuación Hipergeométrica de Gauss:

$$x(1 -x) \dfrac{d^{2}y}{dx^{2}} + [\gamma -(\alpha + \beta + 1)x] \dfrac{dy}{dx} -\alpha \beta y = 0$$

  • Ecuación de Airy:

$$\dfrac{d^{2}y}{dx^{2}} -xy = 0$$

Algunos ejemplos en los que aparecen este tipo de ecuaciones son en el estudio de potenciales en campos conservativos y no conservativos, esfuerzos de torsión, distribución de temperaturas, propagación de calor, vibraciones de cuerdas y membranas, propagación de ondas sonoras, luminosas, de radio entre muchas otras aplicaciones.

Es importante aclarar que todas estas ecuaciones, y las soluciones de cada una, tienen importantes propiedades matemáticas que no serán expuestas en este curso, nuestro propósito es el de sólo dar con la solución aplicando los métodos ya mencionados, sin embargo estos resultados seguramente te serán de bastante utilidad mas adelante cuando en semestres posteriores las estudies con mayor detalle. Por supuesto, si en estos momentos deseas conocer más acerca de estas ecuaciones diferenciales puedes consultar bibliografía existente para cada una de ellas.

Comencemos con la ecuación de Hermite.

Ecuación de Hermite

La ecuación de Hermite es:

$$\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda y = 0 \label{1} \tag{1}$$

Con $x \in \mathbb{R}$ y $\lambda$ una constante.

Esta ecuación diferencial es llamada así en honor al matemático francés Charles Hermite (1822 – 1901), quien realizó investigaciones sobre teoría de números, formas cuadráticas, teoría de invariantes, polinomios ortogonales y funciones elípticas entre otros. Varias entidades matemáticas se llaman hermitianas en su honor.

La ecuación de Hermite se encuentra en forma estándar lo que nos permite notar que el punto $x_{0} = 0$ es un punto ordinario, esto nos indica que su solución es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

Cuyas derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituimos en la ecuación de Hermite.

$$\left[ \sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n -2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n}\right] = 0$$

Introducimos la $x$ a la serie

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -2 \sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos la sustitución $k = n -2$ y en las otras dos hacemos $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos el primer término de la primera y última serie para que todas comiencen en $k = 1$.

$$2c_{2} + \lambda c_{0} = 0$$

de donde $c_{2} = -\dfrac{\lambda }{2}c_{0}$. Ahora tenemos la ecuación

$$\sum_{k = 1}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -2 \sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda \sum_{k = 1}^{\infty}c_{k}x^{k} = 0$$

Ahora que todas las series comienzan con el mismo índice y tienen la misma potencia en la variable $x$, podemos juntar todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + 2)(k + 1)c_{k + 2} -2kc_{k} + \lambda c_{k}]x^{k} = 0$$

De donde necesariamente debe de ocurrir que

$$(k + 2)(k + 1)c_{k + 2} -(2k -\lambda)c_{k} = 0$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k + 2} = \dfrac{2k -\lambda}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, 3 \cdots$$

Determinemos los coeficientes. Ya vimos que para $k = 0$:

$c_{2} = -\dfrac{\lambda }{2!}c_{0}$

$k = 1$:

$$c_{3} = \dfrac{2(1) -\lambda}{(3)(2)}c_{1} = \dfrac{2 -\lambda}{3!}c_{1}$$

$k = 2$:

$$c_{4} = \dfrac{2(2) -\lambda}{(4)(3)}c_{2} = \dfrac{4-\lambda}{(4)(3)} \left( -\dfrac{\lambda}{2}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)}{4!}c_{0}$$

$k = 3$:

$$c_{5} = \dfrac{2(3) -\lambda}{(5)(4)}c_{3} = \dfrac{6 -\lambda}{(5)(4)} \left( \dfrac{2 -\lambda}{(3)(2)}c_{1} \right) = \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1}$$

$k = 4$:

$$c_{6} = \dfrac{2(4) -\lambda}{(6)(5)}c_{4} = \dfrac{8 -\lambda}{(6)(5)} \left( -\dfrac{\lambda(4 -\lambda)}{4!}c_{0} \right) = -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}c_{0}$$

$k = 5$:

$$c_{7} = \dfrac{2(5) -\lambda}{(7)(6)}c_{5} = \dfrac{10 -\lambda}{(7)(6)} \left( \dfrac{(6 -\lambda)(2 -\lambda)}{5!}c_{1} \right) = \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Hermite como

\begin{align*}
y(x) &= C_{1} \left[ 1 -\dfrac{\lambda}{2!}x^{2} -\dfrac{\lambda(4 -\lambda)}{4!}x^{4} -\dfrac{\lambda(4 -\lambda)(8 -\lambda)}{6!}x^{6} – \cdots \right] \\
&+ C_{2} \left[ x + \dfrac{(2 -\lambda)}{3!}x^{3} + \dfrac{(2 -\lambda)(6 -\lambda)}{5!}x^{5} + \dfrac{(2 -\lambda)(6 -\lambda)(10 -\lambda)}{7!} + \cdots \right] \label{2} \tag{2}
\end{align*}

Un caso interesante ocurre cuando el parámetro $\lambda$ es positivo y es par, es decir de la forma $\lambda = 2k$, en este caso la relación de recurrencia muestra que $c_{k + 2} = c_{k + 4} = \cdots = 0$. Observa que si $\lambda = 2k$ y además $k$ es par y se toma $C_{2} = 0$, entonces la solución se reduce a un polinomio de grado $k$, lo mismo ocurre si $k$ es impar y se toma $C_{1} = 0$, la solución se reduce a otro polinomio de grado $k$.

Con una adecuada elección de $C_{1}$ y $C_{2}$ de tal manera que el coeficiente de $x^{k}$ sea $2^{k}$ resultan los denominados polinomios de Hermite.

\begin{align*}
H_{0}(x) &= 1\\
H_{1}(x) &= 2x \\
H_{2}(x) &= 4x^{2} -2 \\
H_{3}(x) &= 8x^{3} -12x\\
H_{4}(x) &= 16x^{4} -48x^{2} + 12\\
H_{5}(x) &= 32x^{5} -160x^{3} + 120x \\
\vdots
\end{align*}

Cada polinomio de Hermite es solución particular de la ecuación de Hermite con $\lambda = 0, 2, 4, 6 \cdots$, respectivamente. En general el $n$-ésimo polinomio de Hermite es solución particular a la ecuación de Hermite con $\lambda = 2n$.

Los polinomios de Hermite aparecen en la resolución del problema del oscilador armónico unidimensional en Mecánica Cuántica.

Pasemos a resolver la ecuación de Laguerre.

Ecuación de Laguerre

La ecuación de Laguerre es

$$x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + \lambda y = 0 \label{3} \tag{3}$$

Con $\lambda$ una constante.

Los polinomios de Laguerre son una familia de polinomios ortogonales que surgen de examinar las soluciones de la ecuación diferencial (\ref{3}). Edmond Nicolás Laguerre (1834 – 1886) fue un matemático francés conocido principalmente por la introducción de los polinomios que llevan su nombre.

Resolvamos la ecuación, para ello dividimos todo por $x$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1 -x}{x} \dfrac{dy}{dx} + \dfrac{\lambda}{x} y = 0$$

Identificamos que

$$P(x) = \dfrac{1 -x}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda}{x}$$

Es claro que ambas funciones no están definidas en $x = 0$, de manera que este punto es un punto singular. Si definimos las funciones $p(x) = xP(x)$ y $q(x) = x^{2}Q(x)$ obtenemos que

$$p(x) = 1 -x \hspace{1cm} y \hspace{1cm} q(x) = \lambda x$$

Si calculamos los límites se tiene lo siguiente

$$\lim_{x \to 0}p(x) = 1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0}q(x) = 0$$

Los límites existen, esto nos indica que el punto $x_{0} = 0$ es un punto singular regular. La solución para este caso es de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

Las derivadas son

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituimos en la ecuación de Laguerre.

$$x \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + (1 -x) \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + \lambda \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

Expandiendo y simplificando se tiene

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \lambda \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En las dos primeras series hacemos $k = n$ y en las dos últimas series hacemos $n = k -1$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Extraemos los términos para $k = 0$ y así hacer que todas las series comiencen en $k = 1$.

\begin{align*}
r(r -1)c_{0}x^{r -1} + rc_{0}x^{r -1} &= 0 \\
c_{0}x^{r -1}[r(r -1) + r] &= 0 \\
r(r -1) + r &= 0
\end{align*}

Vemos que la ecuación indicial es $r^{2} = 0$, de donde $r_{1} = r_{2} = r = 0$. Como las raíces indiciales son iguales la forma de las soluciones es

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}$$

Continuemos con la ecuación que teníamos.

$$\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} + \sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r -1} -\sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r -1} + \lambda \sum_{k = 1}^{\infty}c_{k -1}x^{k + r -1} = 0$$

Ahora que todas inician en $k = 1$ y tienen la misma potencia podemos agruparlas en una sola serie.

$$\sum_{k = 1}^{\infty} [(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1}] x^{k + r -1} = 0$$

De donde es necesario que

\begin{align*}
(k + r)(k + r -1)c_{k} + (k + r)c_{k} -(k -1 + r)c_{k -1} + \lambda c_{k -1} &= 0 \\
c_{k}[(k + r)(k + r -1) + (k + r)] + c_{k -1}[\lambda -(k -1 + r)] &= 0 \\
\end{align*}

Despejando a $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{(k -1 + r) -\lambda}{(k + r)(k + r -1) + (k + r)}c_{k -1}$$

De tarea moral muestra que la relación de recurrencia se puede reescribir como

$$c_{k} = \dfrac{(k + r) -(\lambda + 1)}{(k + r)^{2}}c_{k -1}$$

Sabemos que la raíz indicial es $r = 0$, entonces la relación de recurrencia se reduce a

$$c_{k} = \dfrac{k -(\lambda + 1)}{k^{2}}c_{k -1}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Determinemos los coeficientes.

$k = 1$:

$$c_{1} = \dfrac{1 -(\lambda + 1)}{1^{2}}c_{0} = -\lambda c_{0}$$

$k = 2$:

$$c_{2} = \dfrac{2 -(\lambda + 1)}{2^{2}}c_{1} = \dfrac{1 -\lambda}{4}c_{1} = \dfrac{\lambda(\lambda -1)}{4}c_{0}$$

$k = 3$:

$$c_{3} = \dfrac{3 -(\lambda + 1)}{3^{2}}c_{2} = \dfrac{2 -\lambda}{9}c_{2} = -\dfrac{\lambda(\lambda -1)(\lambda -2)}{36}c_{0}$$

Continuando es posible encontrar el patrón y establecer que

$$c_{k} = (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}c_{0}$$

De tarea moral demuestra por inducción el resultado anterior.

Entonces la solución a la ecuación de Laguerre es

\begin{align*}
y(x) &= c_{0} \left( 1 -\dfrac{\lambda}{(1!)^{2}} x + \dfrac{\lambda(\lambda -1)}{(2!)^{2}}x^{2} -\dfrac{\lambda(\lambda -1)(\lambda -2)}{(3!)^{2}}x^{3} + \cdots + (-1)^{k} \dfrac{\lambda(\lambda -1)(\lambda -2) \cdots (\lambda -k + 1)}{(k!)^{2}}x^{k} + \cdots \right) \label{4} \tag{4}
\end{align*}

Recordemos que el método de Frobenius nos dice que existe una segunda solución de la forma

$$y_{2}(x) = y_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}$$

Obtener la segunda solución resulta ser una tarea muy complicada con respecto a la cantidad de cálculos que se deben realizar, en el video correspondiente se hace notar esta dificultad, sin embargo la solución obtenida suele ser suficiente para trabajar y es la que se utiliza en las aplicaciones que aparecen principalmente en Física.

Observemos que si $\lambda \in \mathbb{Z}^{+}$, entonces la serie solución se hace finita ya que cada coeficiente de la serie contiene un término $(\lambda -m)$ con $m \in \mathbb{Z}^{+}$ que se repite cada vez que aparece por primera vez, por ejemplo el término $(\lambda -2)$ aparece por primera vez en el coeficiente de $x^{3}$ y a partir de ahí aparece en el resto de coeficientes de la serie de manera que si $\lambda = 2$, entonces todos los coeficientes que contengan el término $(\lambda -2)$ se anularán y sólo nos quedará un polinomio de grado $n = 2$. Estos polinomios resultantes son los llamados polinomios de Laguerre.

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $c_{0}$ se obtienen los siguientes polinomios de Laguerre:

\begin{align*}
L_{0}(x) &= 1 \\
L_{1}(x) &= 1 -x \\
L_{2}(x) &= 1 -2x + \dfrac{1}{2}x^{2} \\
L_{3}(x) &= 1 -3x + \dfrac{3}{2}x^{2} -\dfrac{1}{6}x^{3} \\
\vdots
\end{align*}

En general el $n$-ésimo polinomio de Laguerre será solución particular de la ecuación de Laguerre cuando $\lambda = n$.

Continuemos con la ecuación de Legendre.

Ecuación de Legendre

La ecuación de Legendre es

$$(1 -x^{2}) \dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + \lambda(\lambda + 1) y = 0 \label{5} \tag{5}$$

Con $\lambda$ una constante.

El nombre de esta ecuación es en honor al matemático francés Adrien-Marie Legendre (1752 – 1833). Legendre hizo importantes contribuciones a la estadística, la teoría de números, el álgebra abstracta y el análisis matemático.

Resolvamos la ecuación, dividimos todo por el coeficiente de la segunda derivada de $y$.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{2x}{1 -x^{2}} \dfrac{dy}{dx} + \dfrac{\lambda(\lambda + 1)}{1 -x^{2}} y = 0$$

Identificamos que

$$P(x) = -\dfrac{2x}{1 -x^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{\lambda(\lambda + 1)}{1 -x^{2}}$$

Vemos que ambas funciones no están definidas en $x = 1$ ni $x = -1$, pero si en en el punto $x_{0} = 0$ de manera que dicho punto es un punto ordinario, entonces la forma de la solución a la ecuación de Legendre es

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n}$$

Con primera y segunda derivada dadas como

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$$

Sustituimos en la ecuación de Legendre.

$$(1 -x^{2}) \left[ \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n-2} \right] -2x \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + \lambda(\lambda + 1) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

Expandiendo y simplificando tenemos

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} -\sum_{n = 2}^{\infty }n(n -1)c_{n}x^{n} -2\sum_{n = 1}^{\infty}nc_{n}x^{n} + \lambda(\lambda + 1) \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En la primer serie hacemos $k = n -2$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 1}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Extraemos los términos para $k = 0$ y $k = 1$ y con ello lograr que todas las series comiencen en $k = 2$.

Por un lado, para $k = 0$:

$$2c_{2} + \lambda(\lambda + 1) c_{0} = 0$$

De donde

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2}c_{0}$$

Por otro lado, para $k = 1$:

\begin{align*}
3(2)c_{3}x -2c_{1}x + \lambda(\lambda + 1) c_{1}x &= 0 \\
\left[6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} \right]x &= 0 \\
6c_{3} -2c_{1} + \lambda(\lambda + 1) c_{1} &= 0
\end{align*}

De donde

$$c_{3} = \dfrac{2 -\lambda(\lambda + 1)}{6}c_{1}$$

Veremos más adelante que es conveniente escribir este resultado como

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{6}c_{1}$$

Ahora tenemos la ecuación

$$\sum_{k = 2}^{\infty}(k + 2)(k + 1)c_{k + 2}x^{k} -\sum_{k = 2}^{\infty }k(k -1)c_{k}x^{k} -2\sum_{k = 2}^{\infty}kc_{k}x^{k} + \lambda(\lambda + 1) \sum_{k = 2}^{\infty}c_{k}x^{k} = 0$$

Juntemos todo en una sola serie.

$$\sum_{k = 2}^{\infty} \left[ (k + 2)(k + 1)c_{k + 2} -k(k -1)c_{k} -2kc_{k} + \lambda(\lambda + 1)c_{k} \right] x^{k} = 0$$

De donde es necesario que

$$(k + 2)(k + 1)c_{k + 2} -\left[ k(k -1) + 2k -\lambda(\lambda + 1)\right]c_{k} = 0$$

Despejando a $c_{k + 2}$ obtenemos la relación de recurrencia

$$c_{k + 2} = \dfrac{k(k -1) + 2k -\lambda(\lambda + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots$$

Es conveniente reescribir a la ecuación de recurrencia de la siguiente manera:

$$c_{k + 2} = -\dfrac{(\lambda -k)(\lambda + k + 1)}{(k + 2)(k + 1)}c_{k}, \hspace{1cm} k = 0, 1, 2, \cdots$$

Determinemos los coeficientes. Ya vimos que para $k = 0$

$$c_{2} = -\dfrac{\lambda(\lambda + 1)}{2!}c_{0}$$

y para $k = 1$:

$$c_{3} = -\dfrac{(\lambda -1)(\lambda + 2)}{3!}c_{1}$$

$k = 2$:

$$c_{4} = -\dfrac{(\lambda -2)(\lambda + 3)}{(4)(3)}c_{2} = \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}c_{0}$$

$k = 3$:

$$c_{5} = -\dfrac{(\lambda -3)(\lambda + 4)}{(5)(4)}c_{3} = \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}c_{1}$$

$k = 4$:

$$c_{6} = -\dfrac{(\lambda -4)(\lambda + 5)}{(6)(5)}c_{4} = -\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}c_{0}$$

$k = 5$:

$$c_{7} = -\dfrac{(\lambda -5)(\lambda + 6)}{(7)(6)}c_{5} = -\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}c_{1}$$

Etcétera, si tomamos como factores comunes a $C_{1} = c_{0}$ y $C_{2} = c_{1}$, entonces podemos escribir a la solución general de la ecuación de Legendre como

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x)$$

Donde

\begin{align*}
y_{1}(x) &= 1 -\dfrac{\lambda(\lambda + 1)}{2!}x^{2} + \dfrac{(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)}{4!}x^{4} \\
&-\dfrac{(\lambda -4)(\lambda -2)\lambda(\lambda + 1)(\lambda + 3)(\lambda + 5)}{6!}x^{6} + \cdots \label{6} \tag{6}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x -\dfrac{(\lambda -1)(\lambda + 2)}{3!}x^{3} + \dfrac{(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)}{5!}x^{5} \\
&-\dfrac{(\lambda -5)(\lambda -3)(\lambda -1)(\lambda + 2)(\lambda + 4)(\lambda + 6)}{7!}x^{7} + \cdots \label{7} \tag{7}
\end{align*}

Para $\lambda = 0, 1, 2, 3, \cdots$ y con el valor adecuado de $C_{1}$ y de $C_{2}$ se obtienen los conocidos polinomios de Legendre:

\begin{align*}
P_{0}(x) &= 1 \\
P_{1}(x) &= x \\
P_{2}(x) &= \dfrac{1}{2}(3x^{2} -1) \\
P_{3}(x) &= \dfrac{1}{2}(5x^{3} -3x) \\
P_{4}(x) &= \dfrac{1}{8}(35x^{4} -30x^{2} + 3) \\
P_{5}(x) &= \dfrac{1}{8}(63x^{5} -70x^{3} + 15x) \\
\vdots
\end{align*}

En general el $n$-ésimo polinomio de Legendre será solución particular de la ecuación de Legendre cuando $\lambda = n$.

La ecuación de Legendre aparece con mucha frecuencia en problemas de Física, en particular en electromagnetismo en problemas de valor límite en esferas.

Los polinomios de Legendre aparecen cuando se resuelve la ecuación de Helmholtz (un tipo de ecuación en derivadas parciales) en coordenadas esféricas mediante el método de separación de variables.

Hasta aquí concluimos esta primer entrada sobre la resolución de algunas ecuaciones diferenciales especiales de segundo orden, en la siguiente entrada continuaremos resolviendo el resto de ecuaciones.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Los primeros 6 polinomios de Hermite son solución a la ecuación de Hermite para $\lambda = 0, 2, 4, 6, 8, 10$ respectivamente. Determinar el valor de las constantes $C_{1}$ y $C_{2}$ tal que se obtengan los primeros 6 polinomios de Hermite.
  1. Resolver la siguiente ecuación de Hermite realizando todo el procedimiento del método.
  • $\dfrac{d^{2}y}{dx^{2}} -2x \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 4 polinomios de Laguerre son solución a la ecuación de Laguerre para $\lambda = 0, 1, 2, 3$ respectivamente. Determinar el valor del coeficiente $c_{0}$ tal que se obtengan los primeros 4 polinomios de Laguerre.
  1. Resolver la siguiente ecuación de Laguerre realizando todo el procedimiento del método.
  • $x \dfrac{d^{2}y}{dx^{2}} + (1 -x) \dfrac{dy}{dx} + 4y = 0$
  1. Los primeros 6 polinomios de Legendre son solución a la ecuación de Legendre para $\lambda = 0, 1, 2, 3, 4, 5$ respectivamente. Determinar el valor correspondiente de $C_{1}$ y $C_{2}$ tal que se obtengan los primeros seis polinomios de Legendre.
  1. Los puntos $x_{0} = 1$ y $x_{0} =- 1$ son puntos singulares de la ecuación de Legendre. Usando el método de Frobenius determinar la solución a la ecuación de Legendre con respecto al punto singular $x_{0} = 1$.
    Hint: Usa el cambio de variable $t = x -x_{0}$ y la regla de la cadena.

Más adelante…

Hemos resuelto 3 de las 7 ecuaciones diferenciales especiales que deseamos resolver, en la siguiente entrada concluiremos con el resto de ecuaciones y así mismo estaremos concluyendo con la unidad 2 del curso.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos singulares

Introducción

Hemos comenzado con el estudio de ecuaciones diferenciales lineales de segundo orden con coeficientes variables. Ya hemos aprendido cómo obtener soluciones con respecto a puntos ordinarios, ahora aprenderemos a obtener soluciones con respecto a puntos singulares.

En la entrada anterior vimos que para resolver ecuaciones es su forma estándar

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{1} \tag{1}$$

se proponía una solución de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{2} \tag{2}$$

donde $x_{0}$ es un punto ordinario de la ecuación diferencial (\ref{1}).

En ocasiones no se pueden encontrar soluciones como (\ref{2}), así que se propone una solución de la forma

$$y(x) = (x -x_{0})^{r} \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{3} \tag{3}$$

Donde $r$ es una constante. En realidad, la solución (\ref{3}) es una generalización ya que si $r = 0$ regresamos a la forma (\ref{2}).

En esta entrada aprenderemos a resolver ecuaciones diferenciales en las que su solución es de la forma (\ref{3}).

Puntos singulares

El que la solución de una ecuación diferencial sea de la forma (\ref{3}) esta directamente relacionado con que el punto $x_{0}$ sea un punto singular y no un punto ordinario. En la entrada anterior definimos estos conceptos, sin embargo en esta entrada es necesario profundizar más acerca de los puntos singulares. Recordemos la definición de punto singular.

Nota: Las siguientes definiciones se basan en la forma estándar (\ref{1}) de una ecuación diferencial lineal de segundo orden.

Definición: Un punto $x_{0}$ en el que al menos una de las funciones $P(x)$ y $Q(x)$ no tiene representación en serie de potencias de $(x -x_{0})$ se dice que es un punto singular de (\ref{1}).

Lo nuevo ahora es que un punto singular puede ser clasificado como regular o irregular.

Definición: Un punto $x_{0}$ es singular regular si las funciones

$$p(x) = (x -x_{0})P(x) \hspace{1cm} y \hspace{1cm} q(x) = (x -x_{0})^{2}Q(x) \label{4} \tag{4}$$

son analíticas en $x_{0}$.

Definición: Si una o ambas de las funciones $p(x)$ y $q(x)$ de (\ref{4}) no son analíticas en un punto $x_{0}$, entonces $x_{0}$ es un punto singular irregular.

Para fines prácticos en conveniente definir los puntos singulares regulares e irregulares a través de un límite.

Definición: Un punto $x_{0}$ es singular regular de la ecuación (\ref{1}) si los siguientes límites existen:

$$\lim_{x \to x_{0}} p(x) = \lim_{x \to x_{0}} (x -x_{0})P(x) \hspace{1cm} y \hspace{1cm} \lim_{x \to x_{0}} q(x) = \lim_{x \to x_{0}} (x -x_{0})^{2}Q(x) \label{5} \tag{5}$$

En caso contrario decimos que $x_{0}$ es un punto singular irregular.

Realicemos algunos ejemplos.

Ejemplo: Clasificar los puntos singulares de la ecuación diferencial $x^{3}(x^{2} -9) \dfrac{d^{2}y}{dx^{2}} + (x+3) \dfrac{dy}{dx} + (x -3)^{3}y = 0$.

Solución: El primer paso es escribir a la ecuación diferencial en la forma estándar (\ref{1}), así que dividimos toda la ecuación por el coeficiente de la segunda derivada de $y$.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{1}{x^{3}(x -3)} \dfrac{dy}{dx} + \dfrac{(x -3)^{2}}{x^{3}(x + 3)} y = 0$$

Identificamos que

$P(x) = \dfrac{1}{x^{3}(x -3)} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{(x -3)^{2}}{x^{3}(x + 3)}$

Notamos que la función $P(x)$ no está definida en los puntos $x = 3$ y $x = 0$, mientras que la función $Q(x)$ no está definida en $x = -3$ y $x = 0$, de manera que los puntos singulares son $x_{0} = 3$, $x_{0} = 0$ y $x_{0} = -3$. El resto de puntos en $\mathbb{R}$ son puntos ordinarios de la ecuación diferencial.

Para determinar si son regulares o irregulares vamos a definir las nuevas funciones de acuerdo a (\ref{4}) y observar si dichas funciones son analíticas o no en el correspondiente punto singular.

Caso 1: $x_{0} = 3$

Definimos las nuevas funciones

$$p(x) = (x -3)P(x) = \dfrac{1}{x^{3}} \hspace{1cm} y \hspace{1cm} q(x) = (x-3)^{2}Q(x) = \dfrac{(x -3)^{4}}{x^{3}(x + 3)}$$

Es claro que las nuevas funciones $p(x)$ y $q(x)$ sí son analíticas en $x_{0} = 3$ por lo que dicho punto es un punto singular regular. Usando la definición de límite tenemos que

$$\lim_{x \to 3} p(x) = \lim_{x \to 3}\dfrac{1}{x^{3}} = \dfrac{1}{9} \hspace{1cm} y \hspace{1cm} \lim_{x \to 3} q(x) = \lim_{x \to 3} \dfrac{(x -3)^{4}}{x^{3}(x + 3)} = 0$$

Los límites existen, así que llegamos a la misma conclusión.

Caso 2: $x_{0} = 0$

Definimos las nuevas funciones

$$p(x) = x P(x) = \dfrac{1}{x^{2}(x -3)} \hspace{1cm} y \hspace{1cm} q(x) = x^{2} Q(x) = \dfrac{(x -3)^{2}}{x(x + 3)}$$

En este caso las funciones $p(x)$ y $q(x)$ siguen sin estar definidas para $x = 0$ lo que significa que no se pueden representar mediante una serie de potencias, es decir, no son analíticas en dicho punto. Veamos que ocurre con los limites. Por un lado,

$$\lim_{x \to 0}p(x) = \lim_{x \to 0}\dfrac{1}{x^{2}(x -3)} = -\infty$$

Por otro lado

$$\lim_{x \to 0^{+}} q(x) = \lim_{x \to 0^{+}} \dfrac{(x -3)^{2}}{x(x + 3)} = \infty \hspace{1cm} y \hspace{1cm} \lim_{x \to 0^{-}} q(x) = \lim_{x \to 0^{-}} \dfrac{(x -3)^{2}}{x(x + 3)} = -\infty $$

Vemos que el limite de $p(x)$ es divergente, mientras que el límite de $q(x)$ no existe en $x = 0$. En conclusión, $x_{0} = 0$ es un punto singular irregular.

Caso 3: $x_{0} = -3$

Definimos las nuevas funciones

$$p(x) = (x+3) P(x) = \dfrac{x + 3}{x^{3}(x -3)} \hspace{1cm} y \hspace{1cm} q(x) = (x + 3)^{2} Q(x) = \dfrac{(x -3)^{2}(x + 3)}{x^{3}}$$

Las nuevas funciones son analíticas en $x_{0} = -3$, confirmemos que los límites existen

$$\lim_{x \to -3} p(x) = \lim_{x \to -3} \dfrac{x + 3}{x^{3}(x -3)} = 0 \hspace{1cm} y \hspace{1cm} \lim_{x \to -3} q(x) = \lim_{x \to -3} \dfrac{(x -3)^{2}(x + 3)}{x^{3}} = 0$$

En efecto, los limites existen así que $x_{0} = -3$ es un punto singular regular.

$\square$

Realicemos un ejemplo más.

Ejemplo: Determinar el punto singular de la ecuación diferencial $(x + 1)^{2} \dfrac{d^{2}y}{dx^{2}} + x \dfrac{dy}{dx} + x^{2} y = 0$.

Solución: Escribimos a la ecuación diferencial en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{x}{(x + 1)^{2}} \dfrac{dy}{dx} + \dfrac{x^{2}}{(x + 1)^{2}} y = 0$$

Identificamos que

$$P(x) = \dfrac{x}{(x + 1)^{2}} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{x^{2}}{(x + 1)^{2}}$$

Notamos que el único punto singular es $x_{0} = -1$. Definamos las funciones $p(x)$ y $q(x)$.

$$p(x) = (x + 1)P(x) = \dfrac{x}{x+1} \hspace{1cm} y \hspace{1cm} q(x) = (x + 1)^{2}Q(x) = x^{2}$$

Aunque la función $q(x)$ si es analítica en $x_{0} = -1$, como $p(x)$ no lo es, entonces la ecuación diferencial no es desarrollable en potencias de $x + 1$ y por definición $x_{0} = -1$ es un punto singular irregular.

$\square$

Solución a ecuaciones diferenciales

Ahora que sabemos identificar puntos singulares de una ecuación diferencial podemos resolverlas con respecto a dichos puntos proponiendo una solución de la forma (\ref{3}). Ahora bien, debido a la complejidad de los cálculos, sólo estudiaremos el caso en el que el punto $x_{0} = 0$ es un punto singular regular. Igual que en el caso anterior, si $x_{0} \neq 0$ podemos utilizar el cambio de variable $t = x -x_{0}$.

A continuación enunciamos el teorema que establece que (\ref{3}) es una solución a la ecuación diferencial (\ref{1}) con respecto al punto singular $x_{0}$.

Teorema: Sea (\ref{1}) una ecuación diferencial con un punto singular regular en $x_{0}$, entonces siempre existe al menos una solución de la forma:

$$y(x) = (x -x_{0})^{r} \sum_{n = 0}^{\infty } c_{n}(x -x_{0})^{n} = \sum_{n = 0}^{\infty } c_{n}(x -x_{0})^{n + r} \label{6} \tag{6}$$

que converge en $0 < |x -x_{0}| < R$. Esta serie recibe el nombre de serie de Frobenius.

Con este teorema podemos establecer que:

  • Si $x_{0}$ es un punto ordinario, entonces $r = 0$ y (\ref{2}) es la solución general.
  • Si $x_{0}$ es un punto singular regular, entonces (\ref{6}) dará una solución o la solución general.
  • Si $x_{0}$ es un punto singular irregular, entonces pueden o no existir soluciones de la forma (\ref{6}).

No demostraremos este teorema pero será la base para resolver ecuaciones diferenciales.

La manera de resolver ecuaciones diferenciales con respecto a puntos singulares es bastante similar al caso de soluciones con respecto a puntos ordinarios, sin embargo en este caso, además de obtener una relación de recurrencia, obtendremos una ecuación cuadrática para $r$ que deberemos de resolver, a dicha ecuación se le conoce como ecuación indicial.

A continuación desarrollaremos el método de resolución que nos permitirá obtener la expresión general de la ecuación indicial, dicho método se conoce como método de Frobenius.

Método de Frobenius

Queremos resolver una ecuación diferencial en su forma estándar con respecto al punto singular regular $x_{0} = 0$.

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0$$

Multipliquemos esta ecuación por $x^{2}$:

$$x^{2} \dfrac{d^{2}y}{dx^{2}} + x [xP(x)] \dfrac{dy}{dx} + [x^{2}Q(x)] y = 0$$

Si usamos las definiciones (\ref{4}) para $x_{0} = 0$, entonces podemos escribir la ecuación anterior de la siguiente manera:

$$x^{2}\dfrac{d^{2}y}{dx^{2}} + xp(x) \dfrac{dy}{dx} + q(x)y = 0 \label{7} \tag{7}$$

Con $p(x)$ y $q(x)$ funciones analíticas en $x = 0$, esto significa que se pueden representar mediante una serie de potencias con respecto a dicho punto, sean

$$p(x) = p_{0} + p_{1}x + p_{2}x^{2} + \cdots = \sum_{n = 0}^{\infty} p_{n}x^{n} \label{8} \tag{8}$$

y

$$q(x) = q_{0} + q_{1}x + q_{2}x^{2} + \cdots = \sum_{n = 0}^{\infty} q_{n}x^{n} \label{9} \tag{9}$$

dichas series. Una observación interesante es que si todos los coeficientes son cero excepto $p_{0}$ y $q_{0}$, entonces recuperamos la ecuación de Cauchy-Euler.

$$x^{2}\dfrac{d^{2}y}{dx^{2}} + p_{0}x \dfrac{dy}{dx} + q_{0}y = 0 \label{10} \tag{10}$$

El teorema anterior nos indica que la forma de la solución es

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}$$

La primera y segunda derivada son:

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2}$$

Sustituyamos todos estos resultados en la ecuación diferencial (\ref{7}):

\begin{align*}
x^{2} \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} &+ x \left[ \sum_{n = 0}^{\infty} p_{n}x^{n} \right] \sum_{n = 0}(n + r)c_{n}x^{n + r -1} \\
&+ \left[ \sum_{n = 0}^{\infty} q_{n}x^{n} \right] \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

Introducimos los términos $x^{2}$ y $x$ a las series de las derivadas de $y$:

\begin{align*}
\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} &+ \left[ \sum_{n = 0}^{\infty} p_{n}x^{n} \right] \sum_{n = 0}(n + r)c_{n}x^{n + r} \\
&+ \left[ \sum_{n = 0}^{\infty} q_{n}x^{n} \right] \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0
\end{align*}

Tomemos los términos para $n = 0$

\begin{align*}
r(r -1)c_{0}x^{r} + p_{0}rc_{0}x^{r} + q_{0}c_{0}x^{r} &= 0 \\
c_{0}x^{r} [r(r -1) + p_{0}r + q_{0}] &= 0
\end{align*}

Sabemos que $x^{r} \neq 0$ y el método nos obliga a considerar que siempre $c_{0} \neq 0$, entonces

$$r(r -1) + p_{0}r + q_{0} = 0$$

o bien,

$$r^{2} + (p_{0} -1)r + q_{0} = 0 \label{11} \tag{11}$$

Esta relación corresponde a la ecuación indicial con raíces $r_{1}$ y $r_{2}$ reales. En todos los casos se le asigna a $r_{1}$ la raíz mayor, es decir, debe ocurrir que $r_{1} > r_{2}$ siempre y cuando no sean raíces repetidas. A las raíces $r_{1}$ y $r_{2}$ se les denomina raíces indiciales.

El siguiente paso en el método es continuar igualando cada término a cero a través de una relación de recurrencia y con ello determinar los coeficientes de la solución propuesta $y(x)$, todo de manera similar que en el método de la entrada anterior.

En el enunciado del teorema enfatizamos que hay al menos una solución, esto significa que no siempre puede obtenerse una segunda serie solución que junto con la primera serie forme la solución general de la ecuación diferencial. No lo demostraremos, pero a continuación se muestra la forma de ambas soluciones linealmente independientes de acuerdo a los casos que pueden ocurrir con las raíces indiciales.

De acuerdo a la ecuación indicial (\ref{11}) se distinguen tres casos:

  • Caso 1: $r_{1} -r_{2} \neq$ número entero.

En este caso las soluciones a la ecuación diferencial (\ref{1}) son:

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r_{1}}, \hspace{1cm} c_{0} \neq 0 \label{12} \tag{12}$$

$$y_{2}(x) = \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r_{2}}, \hspace{1cm} \hat{c}_{0} \neq 0 \label{13} \tag{13}$$

  • Caso 2: $r_{1} = r_{2} = r$.

En el caso en el que ambas raíces indiciales son iguales las soluciones a la ecuación diferencial (\ref{1}) son:

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r}, \hspace{1cm} c_{0} \neq 0 \label{14} \tag{14}$$

$$y_{2}(x) = y_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r} \label{15} \tag{15}$$

  • Caso 3: $r_{1} -r_{2} =$ entero positivo.

En este caso las soluciones a la ecuación diferencial (\ref{1}) son:

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + r_{1}}, \hspace{1cm} c_{0} \neq 0 \label{16} \tag{16}$$

$$y_{2}(x) = Cy_{1}(x) \ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + r_{2}}, \hspace{1cm} \hat{c}_{0} \neq 0 \label{17} \tag{17}$$

Donde $C$ es una constante que podría ser cero.

En todos los casos $y_{1}(x)$ y $y_{2}(x)$ son linealmente independientes y la solución general es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{18} \tag{18}$$

En los casos en los que el método de Frobenius no nos de una segunda solución es posible obtenerla con métodos que ya hemos estudiado antes. El primero de ellos es usar variación de parámetros, en este caso se propone la solución $y_{2}(x) = u(x)y_{1}(x)$ y se sustituye, junto con las derivadas correspondientes, en la ecuación diferencial, esto nos permitirá obtener una ecuación diferencial para $u(x)$ que debemos resolver.

Otro método es usar directamente la forma de las soluciones $y_{2}(x)$ propuestas anteriormente para cada caso, calcular las derivadas correspondientes y sustituir en la ecuación diferencial.

Un tercer método se puede aplicar una vez que ya hemos determinado la primer solución $y_{1}(x)$ y es usando la expresión que deducimos en entradas anteriores.

$$y_{2}(x) = y_{1}(x) \int{\dfrac{e^{-\int{P(x) dx}}}{y_{1}^{2}(x)} dx} \label{19} \tag{19}$$

La mejor manera de comprender algo es a través de ejemplos y práctica así que hemos decidido resolver tres ejemplos, uno para cada caso y así poder comprender del todo en qué consiste el método de Frobenius.

Cabe mencionar que a lo largo de esta entrada te hemos dado las herramientas para trabajar, pero no se ha dado un fundamento formal de los resultados, si lo deseas conocer te invitamos a que estudies el tema correspondiente en la sección de videos de este curso, en él encontrarás los fundamentos de cómo es que se obtienen las soluciones linealmente independientes dadas para cada condición de las raíces indiciales.

Para concluir esta entrada te presentamos los 3 ejemplos antes mencionados.

Solución cuando la diferencia de las raíces indiciales difiere de un número entero

Ejemplo: Resolver la ecuación diferencial $3x^{2} \dfrac{d^{2}y}{dx^{2}} -x\dfrac{dy}{dx} + (1 -x) y = 0$, con respecto al punto singular $x_{0} = 0$.

Solución: Dividimos la ecuación diferencial por el coeficiente de la segunda derivada de $y$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{3x} \dfrac{dy}{dx} + \dfrac{1 -x}{3x^{2}}y = 0$$

Identificamos que

$$P(x) = -\dfrac{1}{3x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1-x}{3x^{2}}$$

Nota que ninguna función está definida en $x = 0$. Definimos las funciones $p(x)$ y $q(x)$ de acuerdo a (\ref{4}).

$$p(x) = -\dfrac{1}{3} \hspace{1cm} y \hspace{1cm} q(x) = \dfrac{1-x}{3}$$

Vemos que

$$\lim_{x \to 0} p(x) = -\dfrac{1}{3} \hspace{1cm} y \hspace{1cm} \lim_{x \to 0} q(x) = \dfrac{1}{3}$$

Esto nos muestra que $p(x)$ y $q(x)$ son analíticas en $x = 0$ y que dicho punto es un punto singular regular.

Vamos a obtener la ecuación indicial directamente de la expresión (\ref{11}).

Vemos que

$$p(x) = \sum_{n = 0}^{\infty}p_{n}x^{n} = p_{0} + p_{1}x + p_{2}x^{2} + \cdots = -\dfrac{1}{3}$$

de donde, $p_{0} = -\dfrac{1}{3}$ y $p_{k} = 0$ $\forall$ $k \geqslant 1$ con $k \in \mathbb{N}$. Por otro lado

$$q(x) = \sum_{n = 0}^{\infty}q_{n}x^{n} = q_{0} + q_{1}x + q_{2}x^{2} + \cdots = \dfrac{1}{3} -\dfrac{1}{3}x$$

de donde, $q_{0} = \dfrac{1}{3}$, $q_{1} = -\dfrac{1}{3}$ y $q_{k} = 0$ $\forall$ $k \geqslant 2$ con $k \in \mathbb{N}$.

Sustituyendo $p_{0}$ y $q_{0}$ en la ecuación indicial (\ref{11}) se tiene

$$r^{2} + \left( -\dfrac{1}{3} -1 \right)r + \dfrac{1}{3} = r^{2} -\dfrac{4}{3}r + \dfrac{1}{3} = 0$$

Resolviendo para $r$ se obtiene que $r_{1} = 1$ y $r_{2}= \dfrac{1}{3}$. Notamos que $r_{1} -r_{2} = \dfrac{2}{3} \neq$ entero, es decir, la diferencia de las raíces indiciales difiere de un número entero, esto nos indica que estamos en condiciones del caso 1 en donde las soluciones están dadas por las funciones (\ref{12}) y (\ref{13}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 1}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1/3}, \hspace{1cm} \hat{c}_{0} \neq 0$$

Para continuar con el método de Frobenius consideramos la solución general $\sum_{n = 0}^{\infty}c_{n}x^{n + r}$ y sus derivadas. Una vez obtenida la relación de recurrencia ya se podrá sustituir los valores correspondientes de $r$. Sustituimos en la ecuación diferencial.

$$3x^{2} \left[ \sum_{n = 0}^{\infty} (n + r)(n + r -1)c_{n}x^{n + r -2} \right] -x \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + (1 -x) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$3 \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r} -\sum_{n = 0}^{\infty}c_{n}x^{n + r + 1} = 0$$

En la última serie hacemos $k = n + 1$ y en el resto $k = n$.

$$3 \sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}c_{k}x^{k + r} -\sum_{k = 1}^{\infty}c_{k -1}x^{k + r} = 0$$

Para que todas las series comiencen en $k = 1$ sacamos el primer término de las tres primeras series.

\begin{align*}
3r(r -1)c_{0}x^{r} -rc_{0}x^{r} + c_{0}x^{r} &= 0 \\
c_{0}x^{r} \left[ 3r(r -1) -r + 1 \right] &= 0
\end{align*}

Como $x^{r} \neq 0$ y $c_{0} \neq 0$, entonces

\begin{align*}
3r(r -1) -r + 1 &= 0 \\
3r^{2} -4r + 1 &= 0
\end{align*}

Puedes observar que hemos obtenido nuevamente la ecuación indicial. Ahora nos queda la ecuación

$$3 \sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} -\sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}c_{k}x^{k + r} -\sum_{k = 1}^{\infty}c_{k -1}x^{k + r} = 0$$

Podemos juntar todas las series en una sola.

$$\sum_{k = 1}^{\infty} [3(k + r)(k + r -1)c_{k} -(k + r)c_{k} + c_{k} -c_{k -1}]x^{k + r} = 0$$

Para satisfacer la igualdad es necesario que

$$c_{k} [3(k + r)(k + r -1) -(k + r) + 1] -c_{k -1} = 0$$

Despejando a $c_{k}$ obtenemos la relación de recurrencia

$$c_{k} = \dfrac{c_{k -1}}{3(k + r)(k + r -1) -(k + r) +1}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Hay que determinar los coeficientes para cada valor de las raíces indiciales. Para el valor de la primer raíz indicial $r = 1$, la relación de recurrencia es

$$c_{k} = \dfrac{c_{k -1}}{k(3k + 2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Determinemos los coeficientes para este caso.

$k = 1$:

$$c_{1} = \dfrac{c_{0}}{1(3(1) + 2)} = \dfrac{c_{0}}{5}$$

$k = 2$:

$$c_{2} = \dfrac{c_{1}}{2(3(2) + 2)} = \dfrac{c_{1}}{16} = \dfrac{c_{0}}{80}$$

$k = 3$:

$$c_{3} = \dfrac{c_{2}}{3(3(3) + 2)} = \dfrac{c_{2}}{33} = \dfrac{c_{0}}{2640}$$

$k = 4$:

$$c_{4} = \dfrac{c_{3}}{4(3(4) + 2)} = \dfrac{c_{3}}{56} = \dfrac{c_{0}}{147840}$$

Etcétera, entonces la primer solución es de la forma

\begin{align*}
y_{1}(x) &= x^{1} ( c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} \cdots) \\
&= x \left( c_{0} + \dfrac{c_{0}}{5}x + \dfrac{c_{0}}{80}x^{2} + \dfrac{c_{0}}{2640}x^{3} + \dfrac{c_{0}}{147840}x^{4} \cdots \right) \\
&= c_{0}x \left( 1 + \dfrac{x}{5} + \dfrac{x^{2}}{80} + \dfrac{x^{3}}{2640} + \dfrac{x^{4}}{147840} \cdots \right)
\end{align*}

Por otro lado, para $r = \dfrac{1}{3}$ la relación de recurrencia es

$$\hat{c}_{k} = \dfrac{\hat{c}_{k -1}}{k(3k -2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Usamos la notación $\hat{c}_{k}$ sólo para hacer referencia de que son los coeficientes de la segunda solución, pero se obtiene de la misma relación de recurrencia obtenida por el método sólo que usando $r = \dfrac{1}{3}$.

Determinemos los coeficientes para este caso.

$k = 1$:

$$\hat{c}_{1} = \dfrac{\hat{c}_{0}}{1(3(1) -2)} = \hat{c}_{0}$$

$k = 2$:

$$\hat{c}_{2} = \dfrac{\hat{c}_{1}}{2(3(2) -2)} = \dfrac{\hat{c}_{0}}{8}$$

$k = 3$:

$$\hat{c}_{3} = \dfrac{\hat{c}_{2}}{3(3(3) -2)} = \dfrac{\hat{c}_{2}}{21} = \dfrac{\hat{c}_{0}}{168}$$

$k = 4$:

$$\hat{c}_{4} = \dfrac{\hat{c}_{3}}{4(3(4) -2)} = \dfrac{\hat{c}_{3}}{40} = \dfrac{\hat{c}_{0}}{6720}$$

Etcétera, entonces la segunda solución es de la forma

\begin{align*}
y_{2}(x) &= x^{1/3} (\hat{c}_{0} + \hat{c}_{1}x + \hat{c}_{2}x^{2} + \hat{c}_{3}x^{3} + \hat{c}_{4}x^{4} \cdots) \\
&= x^{1/3} \left( \hat{c}_{0} + \hat{c}_{0}x + \dfrac{\hat{c}_{0}}{8}x^{2} + \dfrac{\hat{c}_{0}}{168}x^{3} + \dfrac{\hat{c}_{0}}{6720}x^{4} + \cdots \right) \\
&= \hat{c}_{0}x^{1/3} \left( 1 + x + \dfrac{x^{2}}{8} + \dfrac{x^{3}}{168} + \dfrac{x^{4}}{6720} + \cdots \right)
\end{align*}

Si definimos $C_{1} = c_{0}$ y $C_{2} = \hat{c}_{0}$, entonces la solución general a la ecuación diferencial es

\begin{align*}
y(x) &= C_{1}x \left( 1 + \dfrac{x}{5} + \dfrac{x^{2}}{80} + \dfrac{x^{3}}{2640} + \dfrac{x^{4}}{147840} + \cdots \right) \\
&+ C_{2} x^{1/3} \left( 1 + x + \dfrac{x^{2}}{8} + \dfrac{x^{3}}{168} + \dfrac{x^{4}}{6720} + \cdots \right)
\end{align*}

$\square$

Con este ejemplo podemos aclarar algunas cosas. La primera de ellas es que desarrollando el método mismo obtendremos la ecuación indicial, así que no necesariamente debemos sustituir en la ecuación (\ref{11}), por otro lado, sustituir en la ecuación (\ref{11}) nos permitirá desde un inicio conocer las raíces indiciales y con ello podremos determinar la forma de la segunda solución según sea el caso.

Otra cosa importante a notar es que podemos calcular los coeficientes que deseemos, en el ejemplo sólo calculamos los primeros $5$ coeficientes, es decir hasta $k = 4$, pero puedes continuar, lo interesante de continuar es que en algunas ocasiones es posible determinar una relación que generaliza la forma de los coeficientes y con ello formar una serie que puede converger o no. Los siguientes ejercicios son un ejemplo de esto.

También hay que mencionar que en este ejemplo el método de Frobenius sí nos proporcionó la segunda solución usando la relación de recurrencia, esto no ocurrirá en algunos otros casos como el que sigue a continuación, en estos casos será necesario aplicar algunos de los métodos que ya mencionamos antes.

Solución cuando las raíces indiciales son repetidas

Ejemplo: Resolver la ecuación diferencial $x^{2} \dfrac{d^{2}y}{dx^{2}} + (x^{2} -x) \dfrac{dy}{dx} + y = 0$, con respecto al punto singular $x_{0} = 0$.

Solución: Escribimos la ecuación en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{x -1}{x} \dfrac{dy}{dx} + \dfrac{1}{x^{2}} y = 0$$

Identificamos que

$$P(x) = \dfrac{x -1}{x} \hspace{1cm} y \hspace{1cm} Q(x) = \dfrac{1}{x^{2}}$$

Mientras que las funciones $p(x)$ y $q(x)$ están dadas por

$$p(x) = x -1 \hspace{1cm} y \hspace{1cm} q(x) = 1$$

Como los límites existen

$$\lim_{x \to 0}p(x) = -1 \hspace{1cm} y \hspace{1cm} \lim_{x \to 0} q(x) = 1$$

entonces $x = 0$ es un punto singular regular. En esta ocasión vamos a obtener las raíces indiciales directamente de la expresión resultante para $k = 0$. Sustituyamos las funciones correspondientes en la ecuación diferencial.

$$x^{2} \left[ \sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -2} \right] + (x^{2} -x) \left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r + 1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r} + \sum_{n = 0}^{\infty}c_{n}x^{n + r} = 0$$

En la segunda serie hacemos $k = n + 1$ y en el resto $k = n$.

$$ \sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}(k -1 + r)c_{k-1}x^{k + r} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 0}^{\infty}c_{k}x^{k + r} = 0$$

Extraemos el primer término de las series que comienzan con $k = 0$ para que todas comiencen con $k = 1$.

\begin{align*}
r(r -1)c_{0}x^{r} -rc_{0}x^{r} + c_{0}x^{r} &= 0 \\
c_{0}x^{r}[r(r -1) -r + 1] &= 0
\end{align*}

como $x^{r} \neq 0$ y $c_{0} \neq 0$, entonces

\begin{align*}
r(r -1) -r + 1 &= 0 \\
r^{2} -2r + 1 &= 0
\end{align*}

Hemos obtenido la ecuación indicial. Resolviendo para $r$ se obtiene que $r_{1} = r_{2} = 1$. Las raíces indiciales son iguales, de manera que estamos en condiciones del caso 2 en el que las soluciones son de la forma (\ref{14}) y (\ref{15}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 1}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = \ln (x) \sum_{n = 0}^{\infty}c_{n}x^{n + 1} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1}$$

Ahora tenemos la ecuación en la que todas las series tienen la misma potencia y comienzan con el mismo índice.

$$\sum_{k = 1}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}(k -1 + r)c_{k -1}x^{k + r} -\sum_{k = 1}^{\infty}(k + r)c_{k}x^{k + r} + \sum_{k = 1}^{\infty}c_{k}x^{k + r} = 0$$

Juntamos todo en una sola serie.

$$\sum_{k = 1}^{\infty}[(k + r)(k + r -1)c_{k} + (k -1 + r)c_{k -1} -(k + r)c_{k} + c_{k}]x^{k + r} = 0$$

de donde

$$c_{k}[(k + r)(k + r -1) -(k + r) + 1] + c_{k -1}(k -1 + r) = 0$$

despejando a $c_{k}$ se obtiene la relación de recurrencia

$$c_{k} = \dfrac{c_{k -1}(k -1 + r)}{(k + r) -1 -(k + r)(k + r -1)} = \dfrac{c_{k -1}}{1 -k -r}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Cómo $r = 1$, entonces la relación de recurrencia es

$$c_{k} = -\dfrac{c_{k -1}}{k}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Determinemos los coeficientes.

$k = 1$:

$$c_{1} = -\dfrac{c_{0}}{1} = -c_{0}$$

$k = 2$:

$$c_{2} = -\dfrac{c_{1}}{2} = \dfrac{c_{0}}{2}$$

$k = 3$:

$$c_{3} = -\dfrac{c_{2}}{3} = -\dfrac{c_{0}}{6}$$

$k = 4$:

$$c_{4} = -\dfrac{c_{3}}{4} = \dfrac{c_{0}}{24}$$

$k = 5$:

$$c_{5} = -\dfrac{c_{4}}{5} = -\dfrac{c_{0}}{120}$$

Etcétera, la primera solución es

\begin{align*}
y_{1}(x) &= x(c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + c_{5}x^{5} \cdots) \\
&= x \left( c_{0} -c_{0}x + \dfrac{c_{0}}{2}x^{2} -\dfrac{c_{0}}{6}x^{3} + \dfrac{c_{0}}{24}x^{4} -\dfrac{c_{0}}{120}x^{5} + \cdots \right) \\
&= c_{0}x \left( 1 -x + \dfrac{x^{2}}{2} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\dfrac{x^{5}}{5!} + \cdots \right)
\end{align*}

Lo que mencionamos antes, la solución va teniendo forma de una serie que conocemos y que converge, pues sabemos que

$$e^{-x} = \sum_{n = 0}^{\infty} \dfrac{(-x)^{n}}{n!} = 1 -x + \dfrac{x^{2}}{2} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\dfrac{x^{5}}{5!} + \cdots$$

entonces $y_{1}(x) = c_{0}xe^{-x}$. Consideremos que $c_{0} = 1 \neq 0$, así la primer solución a la ecuación diferencial es

$$y_{1}(x) = xe^{-x}$$

Observa que el método ya no nos ofrece una segunda solución. Para obtener la segunda solución se pueden usar tres métodos, uno de ellos es usando variación de parámetros. Un segundo método puede ser por derivación de la solución propuesta

$$y_{2}(x) = y_{1}\ln(x) + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n + 1}$$

las derivadas son

$$\dfrac{dy_{2}}{dx} = \dfrac{y_{1}}{x} + \ln (x)\dfrac{dy_{1}}{dx} + \sum_{n = 0}^{\infty}(n + 1)\hat{c}_{n}x^{n}$$

y

$$\dfrac{d^{2}y_{2}}{dx^{2}} = -\dfrac{y_{1}}{x^{2}} + \dfrac{2}{x} \dfrac{dy_{1}}{dx} + \ln(x) \dfrac{d^{2}y_{1}}{dx^{2}} + \sum_{n = 0}^{\infty}(n + 1)n \hat{c}_{n}x^{n -1}$$

Se sustituyen estos resultados en la ecuación diferencial y se procede igual que antes con la diferencia de que ahora no obtendremos una ecuación indicial pero sí una relación de recurrencia para obtener los coeficientes $\hat{c}_{k}$. ¡Seguro este método es un camino largo!.

Un tercer método es aplicar directamente la formula (\ref{19}). Por simplicidad obtendremos la segunda solución por este método.

Recordamos que $P(x) = \dfrac{x -1}{x}$ y $y_{1} = x e^{-x}$, vemos que

$$-\int{P(x)dx} = -\int{\dfrac{x -1}{x}dx} = \int{ \left( \dfrac{1}{x} -1 \right) dx} = \ln(x) -x$$

entonces

\begin{align*}
y_{2}(x) &= y_{1} \int{\dfrac{e^{\ln(x) -x}}{(xe^{-x})^{2}}dx} \\
&= y_{1} \int{\dfrac{xe^{-x}}{x^{2}e^{-2x}}dx} \\
&= y_{1} \int{\dfrac{e^{x}}{x}dx} \\
&= y_{1} \int{\dfrac{1}{x} \left( 1 + x + \dfrac{x^{2}}{2} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots \right)dx} \\
&= y_{1} \int{ \left( \dfrac{1}{x} + 1 + \dfrac{x}{2} + \dfrac{x^{2}}{3!} + \dfrac{x^{3}}{4!} + \cdots \right) dx} \\
&= y_{1} \left[ \ln(x) + x + \dfrac{x^{2}}{2(2!)} + \dfrac{x^{3}}{3(3!)} + \dfrac{x^{4}}{4(4!)} + \cdots \right] \\
&= y_{1} \ln(x) + y_{1} \sum_{n = 1}^{\infty}\dfrac{x^{n}}{n(n!)}
\end{align*}

Vemos que

\begin{align*}
xe^{-x} \sum_{n = 1}^{\infty}\dfrac{x^{n}}{n(n!)} &= x \left( 1 -x + \dfrac{x^{2}}{2!} -\dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} -\cdots \right) \left( x + \dfrac{x^{2}}{2(2!)} + \dfrac{x^{3}}{3(3!)} + \dfrac{x^{4}}{4(4!)} + \cdots \right) \\
&= \left( x -x^{2} + \dfrac{x^{3}}{2} -\dfrac{x^{4}}{6} + \dfrac{x^{5}}{24} -\cdots \right) \left( x + \dfrac{x^{2}}{4} + \dfrac{x^{3}}{18} + \dfrac{x^{4}}{96} + \cdots \right) \\
&= x^{2} + \left( \dfrac{x^{3}}{4} -x^{3} \right) + \left( \dfrac{x^{4}}{18} -\dfrac{x^{4}}{4} + \dfrac{x^{4}}{2} \right) + \left( \dfrac{x^{5}}{96} -\dfrac{x^{5}}{18} + \dfrac{x^{5}}{8} -\dfrac{x^{5}}{6} \right) + \cdots \\
&= x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots
\end{align*}

Entonces la segunda solución es

$$y_{2}(x) = xe^{-x} \ln(x) + x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots$$

Por lo tanto, la solución general a la ecuación diferencial es:

$$y(x) = C_{1}xe^{-x} + C_{2} \left( xe^{-x} \ln(x) + x^{2} -\dfrac{3}{4}x^{3} + \dfrac{11}{36}x^{4} -25x^{5} + \cdots \right)$$

$\square$

Solución cuando la diferencia de las raíces indiciales es un número entero positivo

Ejemplo: Resolver la ecuación diferencial $x\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} + 4x^{3} y = 0$, con respecto al punto singular $x_{0} = 0$.

Solución: Dividimos toda la ecuación por $x$ para obtener la forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{x} \dfrac{dy}{dx} + 4x^{2}y = 0$$

Identificamos que

$$P(x) = -\dfrac{1}{x} \hspace{1cm} y \hspace{1cm} Q(x)= 4x^{2}$$

Es claro que $x = 0$ es un punto ordinario de $Q(x)$, sin embargo es un punto singular regular de $P(x)$ pues

$$\lim_{x \to 0}xP(x) = \lim_{x \to 0}-1 = -1$$

Consideramos la solución $y = \sum_{n = 0}^{\infty }c_{n}x^{n + r}$ y sus derivadas y sustituimos en la ecuación diferencial.

$$x \left[ \sum_{n = 0}^{\infty }(n + r)(n + r -1)c_{n}x^{n + r -2} \right] -\left[ \sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} \right] + 4x^{3} \left[ \sum_{n = 0}^{\infty}c_{n}x^{n + r} \right] = 0$$

$$\sum_{n = 0}^{\infty}(n + r)(n + r -1)c_{n}x^{n + r -1} -\sum_{n = 0}^{\infty}(n + r)c_{n}x^{n + r -1} + 4 \sum_{n = 0}^{\infty}c_{n}x^{n + r + 3} = 0$$

En la tercer serie hacemos $k = n + 4$ y en el resto $k = n$.

$$\sum_{k = 0}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 0}^{\infty}(k + r)c_{k}x^{k + r -1} + 4 \sum_{k = 4}^{\infty}c_{k -4}x^{k + r -1} = 0$$

Para $k = 0$ obtenemos que

\begin{align*}
r(r -1)c_{0}x^{r -1} -rc_{0}x^{r -1} &= 0 \\
c_{0}x^{r -1} [r(r -1) -r] &= 0
\end{align*}

de donde se obtiene la ecuación indicial

$$r^{2} -2r = 0$$

cuyas raíces son $r_{1} = 2$ y $r_{2} = 0$. Como $r_{1} -r_{2} = 2 =$ entero, entonces estamos en condiciones del caso 3 y por tanto las soluciones son de la forma (\ref{16}) y (\ref{17}).

$$y_{1}(x) = \sum_{n = 0}^{\infty}c_{n}x^{n + 2}, \hspace{1cm} c_{0} \neq 0$$

y

$$y_{2}(x) = C \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n + 2} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}, \hspace{1cm} \hat{c}_{0}\neq 0$$

Recuerda que $C$ puede ser cero.

Necesitamos que todas las series comiencen en $k = 4$ para poder obtener la relación de recurrencia. Extraemos los valores para $k = 1$, $k = 2$ y $k = 3$.

$k = 1$:

\begin{align*}
(1 + r)(r)c_{1}x^{r} -(1 + r)c_{1}x^{r} &= 0 \\
x^{r}[(1 + r)(r) -(1 + r)]c_{1} &= 0
\end{align*}

de donde necesariamente $c_{1} = 0$.

$k = 2$:

\begin{align*}
(2 + r)(1 + r)c_{2}x^{r + 1} -(2 + r)c_{2}x^{r + 1} &= 0 \\
x^{r + 1}[(2 + r)(1 + r) -(2 + r)] c_{2} &= 0
\end{align*}

de donde necesariamente $c_{2} = 0$.

$k = 3$:

\begin{align*}
(3 + r)(2 + r)c_{3}x^{r + 2} -(3 + r)c_{3}x^{r + 2} &= 0 \\
x^{r + 2}[(3 + r)(2 + r) -(3 + r)] c_{3} &= 0
\end{align*}

Igualmente obtenemos que $c_{3} = 0$.

Ahora tenemos la ecuación

$$\sum_{k = 4}^{\infty}(k + r)(k + r -1)c_{k}x^{k + r -1} -\sum_{k = 4}^{\infty}(k + r)c_{k}x^{k + r -1} + 4 \sum_{k = 4}^{\infty}c_{k -4}x^{k + r -1} = 0$$

La reescribimos en una sola serie.

$$\sum_{k = 4}^{\infty}[(k + r)(k + r -1)c_{k} -(k + r)c_{k} + 4c_{k -4}]x^{k + r -1} = 0$$

De donde

$$c_{k}[(k + r)(k + r -1) -(k + r)] + 4c_{k -4} = 0$$

Despejando $c_{k}$ obtenemos la relación de recurrencia.

$$c_{k} = \dfrac{4c_{k -4}}{(k + r) -(k + r)(k + r -1)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Para el caso en el que $r = 2$ la relación de recurrencia es

$$c_{k} = -\dfrac{4c_{k -4}}{k(k + 2)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Determinemos los coeficientes.

$k = 4$:

$$c_{4} = -\dfrac{4c_{0}}{4(4 + 2)} = -\dfrac{4c_{0}}{24} = -\dfrac{c_{0}}{6}$$

Para $k = 5$, $k = 6$ y $k = 7$ obtendremos que $c_{5} = 0$, $c_{6} = 0$ y $c_{7} = 0$ respectivamente.

$k = 8$:

$$c_{8} = -\dfrac{4c_{4}}{8(8 + 2)} = -\dfrac{4c_{4}}{80} = -\dfrac{c_{4}}{20} = \dfrac{c_{0}}{120}$$

De la misma manera $c_{9} = c_{10} = c_{11} = 0$.

$k = 12$:

$$c_{12} = -\dfrac{4c_{8}}{12(12 + 2)} = -\dfrac{4c_{8}}{168} = -\dfrac{c_{8}}{42} = -\dfrac{c_{0}}{5040}$$

Etcétera, entonces

\begin{align*}
y_{1}(x) &= x^{2} \left( c_{0} -\dfrac{c_{0}}{6}x^{4} + \dfrac{c_{0}}{120}x^{8} -\dfrac{c_{0}}{5040}x^{12} + \cdots \right) \\
&= c_{0} \left( x^{2} -\dfrac{x^{6}}{3!} + \dfrac{x^{10}}{5!} -\dfrac{x^{14}}{7!} + \cdots \right)
\end{align*}

Sabemos que

$$\sin(x) = x -\dfrac{x^{3}}{3!} + \dfrac{x^{5}}{5!} -\dfrac{x^{7}}{7!} + \cdots = \sum_{n = 0}^{\infty} \dfrac{(-1)^{n} x^{2n + 1}}{(2n + 1)!}$$

Entonces la primer solución es

$$y_{1}(x) = c_{0} \sin(x^{2})$$

Para obtener la segunda solución $y_{2}$ podemos probar con la relación de recurrencia que obtuvimos o por alguno de los métodos que ya conocemos.

Consideremos la relación de recurrencia obtenida

$$c_{k} = \dfrac{4c_{k -4}}{(k + r) -(k + r)(k + r -1)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Usemos la notación $\hat{c}_{k}$ y el valor de la segunda raíz indicial $r = 0$, en este caso la relación de recurrencia es

$$\hat{c}_{k} = -\dfrac{4c_{k -4}}{k(k -2)}, \hspace{1cm} k = 4, 5, 6, \cdots$$

Los mismos coeficientes que fueron cero en el caso anterior serán cero en este caso así que sólo consideraremos que $k = 4, 8, 12, \cdots$. Determinemos los coeficientes.

$k = 4$:

$$\hat{c}_{4} = -\dfrac{4 \hat{c}_{0}}{4(4 -2)} = -\dfrac{4 \hat{c}_{0}}{8} = -\dfrac{\hat{c}_{0}}{2}$$

$k = 8$:

$$\hat{c}_{8} = -\dfrac{4 \hat{c}_{4}}{8(8 -2)} = -\dfrac{4 \hat{c}_{4}}{48} = -\dfrac{\hat{c}_{4}}{12} = \dfrac{c_{0}}{24}$$

$k = 12$:

$$\hat{c}_{12} = -\dfrac{4 \hat{c}_{8}}{12(12 -2)} = -\dfrac{4 \hat{c}_{8}}{120} = -\dfrac{c_{8}}{30} = -\dfrac{\hat{c}_{0}}{720}$$

Etcétera, entonces

\begin{align*}
y &= \hat{c}_{0} -\dfrac{\hat{c}_{0}}{2}x^{4} + \dfrac{\hat{c}_{0}}{24}x^{8} -\dfrac{\hat{c}_{0}}{720}x^{12} + \cdots \\
&= \hat{c}_{0} \left( 1 -\dfrac{x^{4}}{2!} + \dfrac{x^{8}}{4!} -\dfrac{x^{12}}{6!} + \cdots \right)
\end{align*}

Sabemos que

$$\cos(x) = 1 -\dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} -\dfrac{x^{6}}{6!} + \cdots = \sum_{n = 0}^{\infty} \dfrac{(-1)^{n} x^{2n}}{(2n)!}$$

Entonces la segunda solución es

$$y = \hat{c}_{0} \cos(x^{2})$$

Vemos que el método no nos indica la existencia de la función $\ln(x)$ y nosotros esperamos una solución de la forma

$$y_{2}(x) = C \ln(x) \sum_{n = 0}^{\infty}c_{n}x^{n + 2} + \sum_{n = 0}^{\infty}\hat{c}_{n}x^{n}, \hspace{1cm} \hat{c}_{0}\neq 0$$

Entonces podemos concluir que $C = 0$, así

$y_{2}(x) = \hat{c}_{0} \cos(x^{2})$

Veamos que se obtiene usando la fórmula (\ref{19}). Recordemos que $P(x) = -\dfrac{1}{x}$ y consideremos que $c_{0} = 1$ tal que $y_{1} = \sin(x^{2})$. Vemos que

$$-\int{P(x) dx} = \int{\dfrac{dx}{x}} = \ln(x)$$

Sustituimos en (\ref{19}):

$$y_{2} = \sin(x^{2}) \int{\dfrac{e^{\ln(x)}}{(\sin(x^{2}))^{2}} dx} = \sin(x^{2}) \int{\dfrac{x}{(\sin(x^{2}))^{2}}dx}$$

Si resuelves la integral obtendrás que

$$\int{\dfrac{x}{(\sin(x^{2}))^{2}}dx} = -\dfrac{1}{2} \cot(x^{2})$$

Entonces

$$y_{2}(x) = -\dfrac{1}{2} \sin(x^{2}) \left( \dfrac{\cos(x^{2})}{\sin(x^{2})} \right) = -\dfrac{1}{2} \cos(x^{2}) = \hat{c}_{0} \cos(x^{2})$$

Este método nos indica que efectivamente $C = 0$. Si $C_{1} = c_{0}$ y $C_{2} = \hat{c}_{0}$, entonces la solución general a la ecuación diferencial es

$$y(x) = C_{1} \sin(x^{2}) + C_{2} \cos(x^{2})$$

$\square$

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Usar el método de Frobenius para obtener la solución general de las siguientes ecuaciones diferenciales en el punto singular $x_{0}= 0$. Verifica que dicho punto es singular.
  • $2x \dfrac{d^{2}y}{dx^{2}} + (x + 1) \dfrac{dy}{dx} + 3y = 0$.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} -\dfrac{1}{6}x \dfrac{dy}{dx} + \dfrac{1}{3}y = 0$.
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} + 6x \dfrac{dy}{dx} + (6 -x^{2})y = 0$.
  • $2x^{2} \dfrac{d^{2}y}{dx^{2}} -x^{2} \dfrac{dy}{dx} -(x + 4)y = 0$.
  • $x \dfrac{d^{2}y}{dx^{2}} + (x -1) \dfrac{dy}{dx} + \left( \dfrac{1}{x} -1 \right) y = 0$.
  • $(x^{2} -x) \dfrac{d^{2}y}{dx^{2}} + (3x -1) \dfrac{dy}{dx} + y = 0$.

Más adelante…

Ahora que sabemos resolver ecuaciones diferenciales lineales de segundo orden con coeficientes variables con respecto a puntos ordinarios y puntos singulares en la siguientes entradas resolveremos algunas ecuaciones diferenciales especiales cuya utilidad es de suma importancia en otras áreas del conocimiento como la física, biología e ingeniería entre otras.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones lineales de segundo orden con coeficientes variables – Soluciones en series de potencias respecto a puntos ordinarios

Introducción

Hasta este punto de la unidad dos hemos desarrollado distintos métodos para resolver ecuaciones diferenciales lineales de orden superior, en particular de segundo orden con coeficientes constantes a excepción de la ecuación de Cauchy-Euler.

Para finalizar con la segunda unidad toca el turno de estudiar las ecuaciones diferenciales lineales de segundo orden con coeficientes variables. Estas ecuaciones suelen ser mucho más complicadas de resolver ya que no se resuelven en términos de funciones elementales sino que tienen forma de serie de potencias infinitas.

Nos parece adecuado comenzar esta entrada con un estudio sobre series de potencias y su utilidad en los métodos de resolución de las ecuaciones diferenciales antes mencionadas. Debido a que las series de potencias es un tema que se estudia en la materia de Calculo II, en esta entrada daremos un enfoque de repaso y lo que será nuevo para nosotros será la aplicación que tienen estos conceptos en el estudio de las ecuaciones diferenciales, así mismo, introduciremos algunos conceptos nuevos relacionados con el tipo de solución que tienen estas ecuaciones diferenciales.

Series de potencias

Definición: A la serie

$$\sum_{n = 0}^{\infty} c_{n} (x -a)^{n} \label{1} \tag{1}$$

se le denomina serie de potencias centrada en $a$ o serie de Taylor.

Definición: A la serie centrada en $a = 0$

$$\sum_{n = 0}^{\infty} c_{n} x^{n} \label{2} \tag{2}$$

se le denomina serie de Maclaurin.

Algunas propiedades y conceptos importantes que debemos recordar son los siguientes:

Definición: Se dice que una serie de potencias (\ref{1}) es convergente en un valor especificado de $x$ si su sucesión de sumas parciales $\{S_{N}(x)\}$ converge, es decir, si el siguiente límite existe

$$\lim_{N \to \infty} S_{N}(x) = \lim_{N \to \infty} \sum_{n = 0}^{N}c_{n}(x -a)^{n} \label{3} \tag{3}$$

Si el límite no existe en $x$, entonces se dice que la serie es divergente.

Definición: El intervalo de convergencia es el conjunto de todos los números reales $x$ para los que converge la serie. Toda serie de potencias tiene un intervalo de convergencia.

Definición: El radio de convergencia $R$ es la mitad de la longitud del intervalo de convergencia. Si $R> 0$, entonces la serie de potencias (\ref{1}) converge para $|x -a| < R$ y diverge para $|x -a| > R$. Si la serie converge sólo en su centro $a$, entonces $R = 0$. Si la serie converge para toda $x$, entonces se escribe $R = \infty$. Una serie de potencias podría converger o no en los puntos extremos $a -R$ y $a + R$ de este intervalo.

El radio de convergencia también se puede determinar con las siguientes expresiones:

$$R = \left( \lim_{n \to \infty} \sqrt[n]{|c_{n}|} \right)^{-1} \hspace{1cm} o \hspace{1cm} R = \lim_{n \to \infty} \left| \dfrac{c_{n}}{c_{n + 1}} \right| \label{4} \tag{4}$$

Definición: Dentro de su intervalo de convergencia, una serie de potencias converge absolutamente. En otras palabras, si $x$ es un número en el intervalo de convergencia y no es un extremo del intervalo, entonces la serie de valores absolutos $\sum_{n = 0}^{\infty}|c_{n}(x -a)^{n} |$ converge.

Teorema: Dada la serie de potencias (\ref{1}), suponiendo que $c_{n} \neq 0$ para toda $n$ y que

$$\lim_{n \to \infty} \left| \dfrac{c_{n + 1}(x -a)^{n + 1}}{c_{n}(x -a)^{n}} \right| = |x -a| \lim_{n \to \infty} \left| \dfrac{c_{n + 1}}{c_{n}} \right| = L \label{5} \tag{5}$$

  • Si $L < 1$, la serie converge absolutamente,
  • Si $L > 1$, la serie diverge,
  • Si $L = 1$, no se concluye nada.

Teorema: Si $\sum_{n = 0}^{\infty}c_{n}(x -a)^{n} = 0$, con $R > 0$, para los números $x$ en el intervalo de convergencia, entonces $c_{n} = 0$ para toda $n$.

Realicemos un ejemplo.

Ejemplo: Hallar el radio de convergencia y el intervalo de convergencia de la serie de potencias: $\sum_{n = 1}^{\infty} \dfrac{n^{2}}{2^{n}} \left( x -1 \right)^{n}$

Solución: Para determinar el radio de convergencia vamos a utilizar la segunda expresión de (\ref{4}). De la serie de potencias identificamos que $c_{n} = \dfrac{n^{2}}{2^{n}}$ y $c_{n + 1} = \dfrac{(n + 1)^{2}}{2^{n + 1}}$, calculemos el límite.

\begin{align*}
R &= \lim_{n \to \infty} \left| \dfrac{c_{n}}{c_{n + 1}} \right| \\
&= \lim_{n \to \infty} \left| \dfrac{\dfrac{n^{2}}{2^{n}}}{\dfrac{(n + 1)^{2}}{2^{n + 1}}} \right| \\
&= 2 \lim_{n \to \infty} \left| \dfrac{n^{2}}{(n + 1)^{2}} \right|
\end{align*}

Sabemos que

$$\lim_{n \to \infty} \left| \dfrac{n^{2}}{(n + 1)^{2}} \right| = 1$$

Por lo tanto, el radio de convergencia es $R = 2$.

Para determinara el intervalo de convergencia vamos a utilizar la expresión (\ref{5})

\begin{align*}
\lim_{n \to \infty} \left| \dfrac{c_{n + 1}(x -a)^{n + 1}}{c_{n}(x -a)^{n}} \right| &= \lim_{n \to \infty} \left| \dfrac{\dfrac{(n + 1)^{2}}{2^{n + 1}}(x -1)^{n + 1}}{\dfrac{n^{2}}{2^{n}}(x -1)^{n}} \right| \\
&= |x -1| \lim_{n \to \infty} \dfrac{2^{n}(n + 1)^{2}}{2^{n + 1}n^{2}} \\
&= \dfrac{1}{2} |x -1| \lim_{n \to \infty} \dfrac{n^{2} + 2n + 1}{n^{2}} \\
&= L
\end{align*}

Es claro que

$$\lim_{n \to \infty} \dfrac{n^{2} + 2n + 1}{n^{2}} = 1$$

Entonces $\dfrac{1}{2} |x -1| = L$. La condición de convergencia nos indica que $L < 1$, considerando esto tenemos que

\begin{align*}
\dfrac{1}{2} |x -1| &< 1 \\
|x -1| &< 2 \\
-2 < x -1 &< 2 \\
-1 < x &< 3
\end{align*}

Por lo tanto, el intervalo de convergencia es $(-1, 3)$.

Puedes notar que la mitad de la longitud del intervalo de convergencia efectivamente corresponde al valor del radio de convergencia obtenido, $R = \dfrac{3 -(-1)}{2} = \dfrac{4}{2} = 2$.

$\square$

Series de potencias como funciones

Definición: Una serie de potencias define una función

$$f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n} \label{6} \tag{6}$$

cuyo dominio es el intervalo de convergencia de la serie.

Teorema: Si el radio de convergencia es $R > 0$, entonces la función (\ref{6}) es continua, derivable e integrable en el intervalo $(a -R, a + R)$. Además, $\dfrac{df(x)}{dx}$ y $\int{f(x)dx}$ se deducen derivando e integrando término a término.

Nota: La convergencia en un extremo se podría perder por derivación o ganar por integración. Algo similar ocurre con los índices de una serie, supongamos que $y = \sum_{n = 0}^{\infty}c_{n}x^{n}$ es una serie de potencias en $x$, las primeras dos derivadas están dadas como

$$\dfrac{dy}{dx} = \sum_{n = 0}^{\infty} n x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 0}^{\infty}n(n -1)x^{n -2}$$

Observa que el primer término en la primera derivada y los dos primeros términos de la segunda derivada son cero, entonces los podemos omitir y correr el índice para escribir

$$\dfrac{dy}{dx} = \sum_{n = 1}^{\infty} n x^{n -1} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)x^{n -2}\label{7} \tag{7}$$

Definición: La serie de Taylor de una función real o compleja $f(x)$ infinitamente diferenciable en el entorno de un número real o complejo $a$ está dada como

$$\sum_{n = 0}^{\infty} \dfrac{f^{(n)}(a) (x -a)^{n}}{n!}$$

Un concepto de bastante importancia e utilidad en las próximas entradas es el siguiente.

Definición: Una función $f$ es analítica en un punto $a$ si se puede representar mediante una serie de potencias en $x -a$ con un radio positivo o infinito de convergencia.

$$f(x) = \sum_{n = 0}^{\infty} \dfrac{f^{(n)}(a) (x -a)^{n}}{n!} \label{8} \tag{8}$$

Teorema: Analiticidad.

  • Si $f(x)$ y $g(x)$ son analíticas en $a$ entonces

$$f(x) + g(x), \hspace{1cm} f(x)g(x) \hspace{1cm} y \hspace{1cm} \dfrac{f(x)}{g(x)}, \hspace{0.5cm} g(x) \neq 0$$

Son analíticas en $a$.

  • Si $f(x)$ es analítica en $a$ y $f^{-1}(x)$ es la función inversa, continua, con $f^{\prime}(a) \neq 0$, entonces $f^{-1}(x)$ es analítica en $a$.
  • Si $g(x)$ es analítica en $a$ y $f(x)$ es analítica en $g(a)$ entonces $f(g(x))$ es analítica en $a$.

Podemos hacer operaciones con series de potencias, a continuación se muestran algunas de ellas.

  • Suma: Dos series de potencias pueden sumarse término a término.

Sean $f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$ y $g(x) = \sum_{n = 0}^{\infty}b_{n}(x -a)^{n}$ dos series de potencias con radio de convergencia $R> 0$, entonces

$$f(x) + g(x) = \sum_{n = 0}^{\infty}(c_{n} + b_{n})(x -a)^{n} \label{9} \tag{9}$$

Para toda $|x -a| < R$.

  • Producto: Dos series de potencias pueden multiplicarse término a término (cada término de la primera por cada término de la segunda).

Sean $f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$ y $g(x) = \sum_{n = 0}^{\infty}b_{n}(x -a)^{n}$ dos series de potencias con radio de convergencia $R> 0$, entonces

$$f(x)g(x) = \sum_{n = 0}^{\infty}(c_{0}b_{n} + c_{1}b_{n -1} + \cdots + c_{n}b_{0})(x -a)^{n} \label{10} \tag{10}$$

Para toda $|x -a| < R$.

  • Derivación: Una serie de potencias puede derivarse término a término.

Sea $f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$ una serie de potencias convergente para $|x -a| < R$ con $R> 0$. La derivada de la serie $f$ es

$$F(x) = \dfrac{df}{dx} = \sum_{n = 1}^{\infty}nc_{n}(x -a)^{n -1} \label{11} \tag{11}$$

y también es convergente y tiene el mismo radio de convergencia que $f(x)$.

  • Integración: Una serie de potencias puede integrarse término a término.

Sea $f(x) = \sum_{n = 0}^{\infty}c_{n}(x -a)^{n}$ una serie de potencias convergente para $|x -a| < R$ con $R> 0$. La integral de la serie $f$ es

$$F(x) = \int_{0}^{x}f(t)dt = \sum_{n = 0}^{\infty}\dfrac{c_{n}}{n + 1}(x -a)^{n + 1} \label{12} \tag{12}$$

y tiene a $R$ como radio de convergencia.

A lo largo de ésta y las siguientes entradas será de suma importancia y utilidad simplificar la suma de dos o más series de potencias, cada una expresada en notación de suma, en una sola expresión de suma, muchas veces esto implica que se deba hacer un cambio en el índice de la suma.

Para poder sumar dos series en necesario que ambos índices de las sumas comiencen con el mismo número y las potencias de $x$ sean las mismas y estén en fase. Por ejemplo, consideremos las siguientes dos series

$$f(x) = \sum_{n = 1}^{\infty} = \dfrac{n}{n+2}x^{n + 1} \hspace{1cm} y \hspace{1cm} g(x) = \sum_{n = 1}^{\infty} = \dfrac{1}{n^{2} + 1}x^{n + 1}$$

Como ambas series comienzan con el mismo número y en ambas la potencia de $x$ es la misma, entonces podemos combinar ambas series en una sola de acuerdo a la expresión (\ref{9})

\begin{align*}
f(x) + g(x) &= \sum_{n = 1}^{\infty} \left[ \dfrac{n}{n+2} + \dfrac{1}{n^{2} + 1} \right]x^{n + 1} \\
&= \sum_{n = 1}^{\infty} \dfrac{n^{3} + 2n + 2}{n^{3} + 2n^{2} + n + 2}x^{n + 1}
\end{align*}

¿Pero que ocurre si no comienzan con el mismo número y/o las potencias de $x$ no coinciden?. En estos casos será necesario hacer un cambio en el índice de la suma y por tanto en la potencia de $x$. A continuación se muestra un ejemplo en el que describimos la forma de hacerlo.

Ejemplo: Reescribir la expresión

$$f(x) = \sum_{n = 1}^{\infty}2nc_{n}x^{n -1} + \sum_{n = 0}^{\infty}6c_{n}x^{n + 1}$$

como una sola serie de potencias cuyo término general tenga $x^{k}$.

Solución: Notemos que en la primer serie para $n = 1$ obtenemos $x^{0}$, mientras que en la segunda serie para $n = 0$ se obtiene $x^{1}$, vemos que no están en fase, así que es conveniente que extraigamos el primer término de la primer serie.

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} = 2c_{1} + \sum_{n = 2}^{\infty}2nc_{n}x^{n -1}$$

Con esto hemos logrado que ambas series estén en fase a pesar de que tengan distintas potencias en $x$ y comiencen con distintos números. Procedemos a hacer el cambio de índice, para ello se toman como guía los exponentes de $x$. Para la primer serie tomamos $k = n -1$ de donde $n = k + 1$, vemos que si $n = 2$, entonces $k = 1$ con esto podemos escribir a la primer serie de la siguiente manera:

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} = 2c_{1} + \sum_{k = 1}^{\infty}2(k + 1)c_{k + 1}x^{k}$$

Para la segunda serie tomamos $k = n + 1$, de donde $n = k -1$, si $n = 0$, entonces $k = 1$, así la segunda serie se puede escribir de la siguiente manera:

$$\sum_{n = 0}^{\infty}6c_{n}x^{n + 1} = \sum_{k = 1}^{\infty}6c_{k -1}x^{k}$$

Entonces podemos escribir

$$\sum_{n = 1}^{\infty}2nc_{n}x^{n -1} + \sum_{n = 0}^{\infty}6c_{n}x^{n + 1} = 2c_{1} + \sum_{k = 1}^{\infty}2(k + 1)c_{k + 1}x^{k} + \sum_{k = 1}^{\infty}6c_{k -1}x^{k}$$

Ahora que ambas series comienzan con el mismo número y la potencia de $x$ es la misma, ya podemos combinar las series en una sola de tal manera que

$$f(x) = 2c_{1} + \sum_{k = 1}^{\infty} \left[ 2(k + 1)c_{k + 1} + 6c_{k -1} \right] x^{k}$$

$\square$

En el caso de una sola serie es mucho mas sencillo pues basta tomar a $k$ como la potencia de $x$ y evaluar el valor del primer número en la serie, por ejemplo para la serie

$$\sum_{n = 1}^{\infty}nc_{n}x^{n + 2}$$

Si queremos que el termino $x$ tenga potencia $k$ hacemos $k = n + 2$, de donde $n = k -2$, la serie comienza en $n = 1$, sustituyendo en $k$ obtenemos que $k = 3$, por lo tanto la serie en términos del índice $k$ se puede escribir de la siguiente manera:

$$\sum_{n = 1}^{\infty}nc_{n}x^{n + 1} = \sum_{k = 3}^{\infty}(k -2)c_{k -2}x^{k}$$

Puedes desglosar ambas sumas para convencerte de la igualdad.

Hasta aquí concluimos nuestro repaso de series de potencias, es momento de aplicarlo en la resolución de ecuaciones diferenciales.

Soluciones en series de potencias de ecuaciones diferenciales

Las ecuaciones diferenciales lineales de segundo orden con coeficientes variables tienen la forma

$$a_{2}(x)\dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{13} \tag{13}$$

Comenzaremos por considerar que $g(x) = 0$.

$$a_{2}(x)\dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{14} \tag{14}$$

Si dividimos la ecuación por $a_{2}(x) \neq 0$ y definimos $P(x) = \dfrac{a_{1}(x)}{a_{2}(x)}$ y $Q(x) = \dfrac{a_{0}(x)}{a_{2}(x)}$ podemos escribir la ecuación (\ref{14}) en su forma estándar.

$$\dfrac{d^{2}y}{dx^{2}} + P(x) \dfrac{dy}{dx} + Q(x)y = 0 \label{15} \tag{15}$$

En base a la ecuación estándar (\ref{15}) establecemos las siguientes definiciones:

Definición: Un punto $x_{0}$ es un punto ordinario de la ecuación (\ref{15}) si las funciones $P(x)$ y $Q(x)$ son analíticas en $x_{0}$, es decir, pueden representarse en series de potencias de $(x -x_{0})$ con radio de convergencia $R > 0$.

Definición: Un punto $x_{0}$ en el que al menos una de las funciones $P(x)$ y $Q(x)$ no tiene representación en serie de potencias de $(x -x_{0})$ se dice que es un punto singular de (\ref{15}).

De acuerdo a estas definiciones notamos que un punto singular $x_{0}$ es un punto no ordinario.

Ejemplo: Hallar los puntos ordinarios y singulares de la ecuación diferencial $x^{2}(x -1)\dfrac{d^{2}y}{dx^{2}} + x^{3}(x^{2} -1)\dfrac{dy}{dx} + xy = 0$.

Solución: El primer paso es escribir a la ecuación diferencial en su forma estándar, para ello dividimos toda la ecuación por el coeficiente de la segunda derivada.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + \dfrac{x^{3}(x^{2} -1)}{x^{2}(x -1)} \dfrac{dy}{dx} + \dfrac{x}{x^{2}(x -1)}y &= 0 \\
\dfrac{d^{2}y}{dx^{2}} + x(x + 1) \dfrac{dy}{dx} + \dfrac{1}{x(x -1)}y &= 0
\end{align*}

Identificamos que $P(x) = x(x + 1)$ y $Q(x) = \dfrac{1}{x(x -1)}$. Para el caso de la función $P(x)$ notamos que es analítica para toda $x \in \mathbb{R}$, mientras que la función $Q(x)$ no está definida en $x = 0$ ni $x = 1$, es decir, no es analítica en dichos puntos.

Por lo tanto, los puntos ordinarios de la ecuación diferencial son todas las $x \in \mathbb{R}$ excepto $x = 0$ y $x = 1$, éstos puntos corresponde a los puntos singulares de la ecuación.

$\square$

Una observación interesante es que la ecuación de Cauchy-Euler

$$ax^{2} \dfrac{d^{2}y}{dx^{2}} + bx \dfrac{dy}{dx} + cy = 0$$

en su forma estándar

$$\dfrac{d^{2}y}{dx^{2}} + \dfrac{b}{ax} \dfrac{dy}{dx} + \dfrac{c}{ax^{2}}y = 0$$

nos muestra que las funciones $P(x) = \dfrac{b}{ax}$ y $Q(x) = \dfrac{c}{ax^{2}}$ no están definidas en $x = 0$, por tanto $x = 0$ es un punto singular y todos los demás puntos (reales o complejos) son puntos ordinarios, es por ello que toda la teoría realizada en la entrada correspondiente fue para $x > 0$.

Como puedes darte cuenta en el título de esta entrada, nos enfocaremos en soluciones respecto a puntos ordinarios, sin embargo cabe mencionar que en la siguiente entrada estudiaremos soluciones respecto a puntos singulares y será necesario hacer una distinción entre dos tipos de puntos singulares que definiremos como punto singular regular y punto singular irregular. Estos conceptos los revisaremos en la siguiente entrada.

Como hemos venido mencionando, las soluciones a la ecuación (\ref{15}) son soluciones en forma de series de potencias. Si una ecuación diferencial es analítica en un punto $x_{0}$, entonces su solución también lo es en $x_{0}$, y como dicha solución será una función desarrollable en series de potencias, podemos suponer que, en forma general, tendrá la siguiente forma:

$$y(x) = \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n} \label{16} \tag{16}$$

donde $c_{n}$ cambia para cada función específica.

Definición: Se dice que una solución de la forma (\ref{16}) es una solución respecto a un punto ordinario $x_{0}$.

A continuación se presenta el teorema que establece la existencia y forma de las soluciones de (\ref{15}).

Teorema: Sea $x = x_{0}$ un punto ordinario de la ecuación diferencial (\ref{15}), entonces existen dos soluciones linealmente independientes en la forma de una serie de potencias centradas en $x_{0}$, es decir, de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}(x -x_{0})^{n}$$

en donde $c_{0}$ y $c_{1}$ son constantes arbitrarias.

Una solución en serie converge por lo menos en un intervalo definido por $|x -x_{0}| < R$, donde $R$ es la distancia desde $x_{0}$ al punto singular más cercano, es decir, es el valor mínimo o límite inferior del radio de convergencia de las soluciones en serie de la ecuación diferencial respecto a $x_{0}$.

La demostración a este teorema suele ser bastante larga pero intuitiva. En esta ocasión no lo demostraremos y en su lugar desarrollaremos varios ejemplos que ilustran el resultado. Sin embargo, en la sección de videos de este mismo curso encontrarás con todo detalle la demostración de este teorema, además del método para hallar el radio de convergencia de la solución en serie de potencias cerca de un punto ordinario.

Método de resolución

Si bien, en la demostración del teorema de existencia y forma de la solución en series de potencias se describe el método de resolución, nosotros vamos a describirlo de manera breve y realizaremos algunos ejemplos para que quede bastante claro.

Si recuerdas, el método de coeficientes indeterminados desarrollado para ecuaciones diferenciales lineales no homogéneas de segundo orden con coeficientes constantes ya involucraba soluciones en forma de series de potencias y lo que hacíamos al final del método era igualar los coeficientes de ambos lados de la ecuación para satisfacer la igualdad, la diferencia ahora es que el lado izquierdo de la ecuación es cero y no una función $g(x)$, sin embargo el procedimiento es bastante similar.

Debido a que se trata de un método bastante laborioso, por simplicidad encontraremos soluciones en series de potencias sólo respecto al punto ordinario $x_{0} = 0$. Así, las soluciones serán de la forma

$$y(x) = \sum_{n = 0}^{\infty}c_{n}x^{n} \label{17} \tag{17}$$

En el caso en el que $x_{0} \neq 0$ se puede hacer el cambio de variable $t = x -x_{0}$ (si $t = 0 \rightarrow x = x_{0}$) para encontrar las soluciones de la forma $y(t) = \sum_{n = 0}^{\infty}c_{n}x^{t}$ de la nueva ecuación diferencial y después volver a sustituir $t = x -x_{0}$.

La descripción del método se muestra a continuación:

  • El método de resolución implica considerar la solución (\ref{17}) y su primera y segunda derivada (\ref{7}) para sustituirlas en la ecuación diferencial (\ref{14}).

$$a_{2}(x) \left[ \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} \right] + a_{1}(x) \left[ \sum_{n = 1}^{\infty}nc_{n}x^{n -1} \right] + a_{0}(x) \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] = 0$$

  • El siguiente paso es reescribir toda la ecuación en una sola serie lo que, en la mayoría de los casos, requerirá de hacer cambios de índices para que se tenga la misma potencia de $x$.
  • Como el resultado será idénticamente cero será necesario que el coeficiente de cada potencia de $x$ se iguale a cero, como veremos más adelante, esto nos generará una ecuación general para los coeficientes de $y(x)$, dicha expresión se conoce como relación de recurrencia.
  • La tarea final será usar la relación de recurrencia para obtener el valor de los coeficientes $c_{n}$ de (\ref{17}) y con ello la forma de la solución a la ecuación diferencial en cuestión.

Es importante aclarar que la sola suposición de la solución (\ref{17}) conduce a dos conjuntos de coeficientes de manera que se tendrán dos series de potencias distintas $y_{1}$ y $y_{2}$, ambas desarrolladas respecto al punto ordinario $x_{0}$. Se puede demostrar que la solución general de la ecuación diferencial (\ref{14}) es

$$y(x) = C_{1}y_{1}(x) + C_{2}y_{2}(x) \label{18} \tag{18}$$

en donde $C_{1} = c_{0}$ y $C_{2} = c_{1}$, es decir, los primeros coeficientes de la serie (\ref{17}).

Este método no solo es aplicable a ecuaciones de la forma (\ref{14}) sino que se puede aplicar a distintas ecuaciones que satisfagan las propiedades necesarias descritas a lo largo de la entrada.

Para comprender el método vamos a resolver una ecuación bastante sencilla de primer orden y vemos que resultado obtenemos.

Ejemplo: Determinar la solución de la ecuación diferencial $\dfrac{dy}{dx} -y= 0$, usando series de potencias respecto al punto ordinario $x_{0} = 0$.

Solución: La forma de la solución es $y = \sum_{n = 0}^{\infty}c_{n}x^{n}$, su derivada es $\dfrac{dy}{dx} = \sum_{n = 1}^{\infty}nc_{n}x^{n -1}$. Sustituimos en la ecuación diferencial.

$$\sum_{n = 1}^{\infty}nc_{n}x^{n -1} -\sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

Hay que reescribir esta ecuación en una sola serie en la que la potencia de $x$ sea $k$.

Guiándonos en los exponentes de $x$, en la primer serie tomamos $k = n -1$, de donde $n = k + 1$, si la serie comienza en $n = 1$, entonces $k = 1 -1 = 0$. En el caso de la segunda serie basta hacer $k = n$, entonces tenemos que

$$\sum_{k = 0}^{\infty}(k + 1)c_{k + 1}x^{k} -\sum_{k = 0}^{\infty}c_{k}x^{k} = 0$$

Ahora si podemos unir las series en una sola de acuerdo a (\ref{9})

$$\sum_{k = 0}^{\infty} \left[(k + 1)c_{k + 1} -c_{k} \right] x^{k} = 0$$

Como $x^{k}\neq 0$ por ser la solución propuesta, entonces necesariamente

$$(k + 1)c_{k + 1} -c_{k} = 0$$

Debido a que $k \geq 0$, no hay valor de $k$ tal que $k + 1 = 0$, entonces podemos establecer que

$$c_{k + 1} = \dfrac{c_{k}}{k + 1}, \hspace{1cm} k = 0, 1, 2, 3, \cdots$$

Ésta última expresión corresponde a la relación de recurrencia, de la que se obtiene cada una de las constantes para cada uno de los términos de la serie solución.

Comencemos con $k = 0$:

$$c_{1} = \dfrac{c_{0}}{0 + 1} =c_{0}$$

Para $k = 1$, tenemos

$$c_{2} = \dfrac{c_{1}}{1 + 1} = \dfrac{c_{0}}{2}$$

$k = 2$:

$$c_{3} = \dfrac{c_{2}}{2 + 1} = \dfrac{c_{0}}{6}$$

$k = 3$:

$$c_{4} = \dfrac{c_{3}}{3 + 1} = \dfrac{c_{0}}{24}$$

Etcétera, entonces la solución va teniendo la siguiente forma:

\begin{align*}
y(x) &= c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + c_{4}x^{4} + \cdots \\
&= c_{0} + c_{0}x + \dfrac{c_{0}}{2}x^{2} + \dfrac{c_{0}}{6}x^{3} + \dfrac{c_{0}}{24}x^{4} + \cdots \\
&= c_{0} \left[1 + x + \dfrac{x^{2}}{2} + \dfrac{x^{3}}{6} + \dfrac{x^{4}}{24} + \cdots \right] \\
&= c_{0} \left[ 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots \right]
\end{align*}

En muchas ocasiones las series de potencias resultan ser series conocidas, como lo es en este caso, pues sabemos que

$$e^{x} = \sum_{n = 0}^{\infty}\dfrac{x^{n}}{n!} = 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \dfrac{x^{4}}{4!} + \cdots$$

Por lo tanto, si definimos $c = c_{0}$, la solución a la ecuación diferencial es

$$y(x) = ce^{x}$$

Para asegurarnos del resultado puedes sustituir en la ecuación diferencial y ver que la satisface, o bien, podemos usar separación de variables para observar que se obtiene el mismo resultado.

\begin{align*}
\dfrac{dy}{dx} -y &= 0 \\
\dfrac{dy}{dx} &= y \\
\dfrac{1}{y} \dfrac{dy}{dx} &= 1 \\
\int{\dfrac{dy}{y}} &= \int{dx} \\
\ln(y) &= x + k \\
y &= e^{x + k} \\
y &= e^{k}e^{x} \\
y(x) &= ce^{x}
\end{align*}

Verificado.

$\square$

Con este ejemplo se espera que se comprenda la noción del método, pudiste notar que es un proceso largo a pesar de ser una ecuación muy simple. Concluiremos esta entrada resolviendo dos ecuaciones diferenciales de las que si estamos interesados en resolver, es decir, de la forma (\ref{14}).

Ejemplo: Resolver la ecuación diferencial $\dfrac{d^{2}y}{dx^{2}} + xy = 0$, respecto al punto ordinario $x_{0} = 0$.

Solución: Debido a que no hay puntos singulares, el teorema garantiza dos soluciones en serie de potencias centradas en $x_{0} = 0$, convergentes para $|x|< \infty$.

Consideramos la solución $y = \sum_{n = 0}^{\infty}c_{n}x^{n}$ y su segunda derivada $\dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$. Sustituyendo en la ecuación diferencial tenemos:

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + xy &= \left[ \sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} \right] + x \left[ \sum_{n = 0}^{\infty}c_{n}x^{n} \right] \\
&= \sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} + \sum_{n = 0}^{\infty}c_{n}x^{n + 1}
\end{align*}

Para que practiques muestra que

$$\sum_{n = 2}^{\infty}c_{n}n(n -1)x^{n -2} + \sum_{n = 0}^{\infty}c_{n}x^{n + 1} = 2c_{2} + \sum_{k = 1}^{\infty} \left[ (k + 1)(k + 2)c_{k + 2} + c_{k -1} \right] x^{k}$$

Por tanto,

$$2c_{2}x^{0} + \sum_{k = 1}^{\infty} \left[ (k + 1)(k + 2)c_{k + 2} + c_{k -1} \right] x^{k} = 0$$

Para que esta igualdad se cumpla es necesario que el coeficiente de cada potencia de $x$ se iguale a cero. Para el caso de la potencia $k = 0$ tenemos que $2c_{2} = 0$, de donde $c_{2} = 0$, para el resto de potencias formamos la relación de recurrencia.

$$(k + 1)(k + 2)c_{k + 2} + c_{k -1} = 0, \hspace{1cm} k = 1, 2, 3, \cdots$$

Esta expresión determina los coeficientes $c_{k}$ que buscamos. Como $(k + 1)(k + 2) \neq 0$ para los valores de $k$, podemos escribir $c_{k + 2}$ en términos de $c_{k -1}$.

$$c_{k + 2} = -\dfrac{c_{k -1}}{(k + 1)(k + 2)}, \hspace{1cm} k = 1, 2, 3, \cdots$$

Esta relación genera coeficientes consecutivos de la solución supuesta una vez que $k$ toma los valores enteros sucesivos indicados.

Comencemos con $k = 1$:

$$c_{3} = -\dfrac{c_{0}}{2\cdot 3}$$

Para $k = 2$, se tiene:

$$c_{4} = -\dfrac{c_{1}}{3 \cdot 4}$$

Para $k = 3$ hacemos uso de que $c_{2} = 0$:

$$c_{5} = -\dfrac{c_{2}}{4 \cdot 5} = 0$$

A partir de $k = 4$ hacemos uso de los valores previos.

$$c_{6} = -\dfrac{c_{3}}{5 \cdot 6} = -\left( -\dfrac{c_{0}}{2\cdot 3} \right) \dfrac{1}{5 \cdot 6} = \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6} c_{0}$$

$k = 5$:

$$c_{7} = -\dfrac{c_{4}}{6 \cdot 7}=-\left( -\dfrac{c_{1}}{3 \cdot 4} \right) \dfrac{1}{6 \cdot 7} = \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}c_{1}$$

Para $k = 6$ recordamos que $c_{5} = 0$:

$$c_{8} = -\dfrac{c_{5}}{7 \cdot 8} = 0$$

$k = 7$:

$$c_{9} = -\dfrac{c_{6}}{8 \cdot 9} = \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}c_{0}$$

$k = 8$:

$$c_{10} = -\dfrac{c_{7}}{9 \cdot 10} = \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}c_{1}$$

$k = 9$:

$$c_{11} = -\dfrac{c_{8}}{10 \cdot 11} = 0$$

Podemos hacer estos cálculos para la $k$ que deseemos, el objetivo es intentar determinar que tipo de serie numérica es la que se logra formar. En este caso nos detendremos hasta $k = 9$, con ello hemos logrado obtener los primeros $11$ coeficientes de la solución que buscamos (recuerda que $c_{0}$ y $c_{1}$ tienen valores arbitrarios).

\begin{align*}
y &= c_{0} + c_{1} x + c_{2}x^{2} + c_{3}x^{3} +c_{4}x^{4} + c_{5}x^{5} + c_{6}x^{6} \\
&+ c_{7}x^{7} + c_{8}x^{8} + c_{9}x^{9} + c_{10}x^{10} + c_{11}x^{11} + \cdots
\end{align*}

Vamos a sustituir los coeficientes obtenidos

\begin{align*}
y &= c_{0} + c_{1}x + 0 -\dfrac{c_{0}}{2 \cdot 3}x^{3} -\dfrac{c_{1}}{3 \cdot 4}x^{4} + 0 + \dfrac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} + \dfrac{c_{1}}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} + 0 \\
&-\dfrac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} -\dfrac{c_{1}}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + 0 + \cdots
\end{align*}

Vamos a agrupar los términos que contienen $c_{0}$ y por otro lado los que tienen $c_{1}$, con esto estaremos formando la solución general $y(x) = c_{0}y_{1}(x) + c_{1}y_{2}(x)$.

\begin{align*}
y(x) &= c_{0} \left[ 1 -\dfrac{1}{2 \cdot 3}x^{3} + \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} -\dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} + \cdots \right] \\
&+ c_{1} \left[ x -\dfrac{1}{3 \cdot 4}x^{4} + \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} -\dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + \cdots \right]
\end{align*}

Por lo tanto:

\begin{align*}
y_{1}(x) &= 1 -\dfrac{1}{2 \cdot 3}x^{3} + \dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6}x^{6} -\dfrac{1}{2 \cdot 3 \cdot 5 \cdot 6 \cdot 8 \cdot 9}x^{9} + \cdots \\
&= 1 + \sum_{k = 1}^{\infty}\dfrac{(-1)^{k}}{2 \cdot 3 \cdots (3k -1)(3k)}
\end{align*}

y

\begin{align*}
y_{2}(x) &= x -\dfrac{1}{3 \cdot 4}x^{4} + \dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7}x^{7} -\dfrac{1}{3 \cdot 4 \cdot 6 \cdot 7 \cdot 9 \cdot 10}x^{10} + \cdots \\
&= x + \sum_{k = 1}^{\infty}\dfrac{(-1)^{k}}{3 \cdot 4 \cdots (3k)(3k + 1)}x^{3k + 1}
\end{align*}

Con esto hemos concluido el ejercicio. Los coeficientes $c_{0}$ y $c_{1}$ quedan completamente indeterminados de manera que se pueden elegir de forma arbitraria.

Por el teorema de existencia y forma de la solución también se puede deducir que las series que forman a $y_{1}$ y $y_{2}$ convergen para $|x|< \infty$.

$\square$

Como dato importante, la ecuación diferencial que hemos resuelto en el ejemplo anterior es una forma de lo que se conoce como ecuación de Airy y se encuentra en el estudio de la difracción de la luz, la difracción de ondas de radio alrededor de la superficie de la tierra, la aerodinámica y la deflexión de una columna vertical delgada uniforme que se curva bajo su propio peso.

Realicemos un ejemplo más en el que los coeficientes de la ecuación no sean polinomios, esto nos permitirá poner en práctica la multiplicación de dos series de potencias.

Ejemplo: Resolver la ecuación diferencial $\dfrac{d^{2}y}{dx^{2}} + \cos (x) y = 0$, respecto al punto ordinario $x_{0} = 0$.

Solución: Puedes comprobar que la función coseno es analítica en $x = 0$, esto verifica que efectivamente $x_{0} = 0$ es un punto ordinario. De hecho, al ser analítica en $x = 0$ su serie de Maclaurin es

\begin{align*}
\cos (x) &= 1 -\dfrac{x^2}{2!} + \dfrac{x^4}{4!} -\cdots + \dfrac{(-1)^kx^{2k}}{(2k)!} + \cdots \\
&= \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!}
\end{align*}

Por otro lado, consideramos nuestra suposición $y = \sum_{n = 0}^{\infty}c_{n}x^{n}$ y su segunda derivada $\dfrac{d^{2}y}{dx^{2}} = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2}$. Sustituimos en la ecuación diferencial:

$$\dfrac{d^{2}y}{dx^{2}} + \cos (x) y = \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} + \left[ \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!} \right] \sum_{n = 0}^{\infty}c_{n}x^{n} = 0$$

En este caso no intentaremos reescribir la ecuación en una sola serie ya que puede ser más complicado al tratarse de un producto de series, en su lugar vamos a determinar el valor de cada coeficiente de cada $x^{k}$, $k = 0, 1, 2, 3, \cdots$ realizando las operaciones correspondientes, para ello desglosemos las sumas para los primeros términos. Por un lado

$$\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} = 2c_{2} + 6c_{3}x + 12c_{4}x^{2} + 20c_{5}x^{3} + \cdots$$

Por otro lado,

$$\left[ \sum_{n = 0}^{\infty} \dfrac{(-1)^nx^{2n}}{(2n)!} \right] \sum_{n = 0}^{\infty}c_{n}x^{n} = \left( 1 -\dfrac{x^{2}}{2!} + \dfrac{x^{4}}{4!} + \cdots \right) \left( c_{0} + c_{1}x + c_{2}x^{2} + c_{3}x^{3} + \cdots \right)$$

Si se hacen las cuentas correspondientes podremos obtener los coeficientes de cada $x^{k}$, $k = 0, 1, 2, 3, \cdots$. Hasta $k = 3$ se obtiene lo siguiente:

$$(2c_{2} + c_{0}) + (6c_{3} + c_{1})x +\left( 12c_{4} + c_{2} -\dfrac{1}{2}c_{0} \right) x^{2} + \left( 20c_{5} + c_{3} -\dfrac{1}{2}c_{1} \right)x^{3} + \cdots = 0$$

Igualamos cada coeficiente a cero:

\begin{align*}
2c_{2} + c_{0} &= 0 \\
6c_{3} + c_{1} &= 0 \\
12c_{4} + c_{2} -\dfrac{1}{2}c_{0} &= 0 \\
20c_{5} + c_{3} -\dfrac{1}{2}c_{1} &= 0 \\
&\vdots
\end{align*}

etcétera. Esto nos da como resultados

\begin{align*}
c_{2} &= -\dfrac{1}{2}c_{0} \\
c_{3} &= -\dfrac{1}{6}c_{1} \\
c_{4} &= \dfrac{1}{12}c_{0} \\
c_{5} &= \dfrac{1}{30}c_{1} \\
&\vdots
\end{align*}

Observa que no se obtuvo una relación de recurrencia, pero $c_{0}$ y $c_{1}$ siguen siendo coeficientes indeterminados que pueden tomar valores arbitrarios. Sustituyendo los valores determinados en la solución supuesta se obtiene

\begin{align*}
y(x) &= c_{0} + c_{1}x -\dfrac{c_{0}}{2}x^{2} -\dfrac{c_{1}}{6}x^{3} + \dfrac{c_{0}}{12}x^{4} + \dfrac{c_{1}}{30}x^{5} + \cdots \\
&= c_{0} \left[ 1 -\dfrac{1}{2}x^{2} + \dfrac{1}{12}x^{4} + \cdots \right] + c_{1}\left[ x -\dfrac{1}{6}x^{3} + \dfrac{1}{30}x^{5} + \cdots \right]
\end{align*}

Recordando que la solución general es $y(x) = c_{0}y_{1}(x) + c_{1}y_{2}(x)$, entonces

$$y_{1}(x) = 1 -\dfrac{1}{2}x^{2} + \dfrac{1}{12}x^{4} + \cdots$$

y

$$y_{2}(x) = x -\dfrac{1}{6}x^{3} + \dfrac{1}{30}x^{5} + \cdots$$

Donde ambas series de potencias convergen para $|x| < \infty$.

$\square$

Con esto concluimos, ahora veamos como obtener soluciones en series de potencias respecto a puntos singulares.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Determinar el radio de convergencia y el intervalo de convergencia de las siguientes series de potencias:
  • $\sum_{n = 1}^{\infty}\dfrac{2^{n}}{n}x^{n}$
  • $\sum_{n = 1}^{\infty}\dfrac{n}{n + 2}x^{n}$
  • $\sum_{n = 1}^{\infty}\dfrac{(x -1)^{n}}{n!}$
  1. Reescribir la siguiente expresión como una sola serie de potencias en cuyo término general tenga $x^{k}$.
  • $\sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n} + 2 \sum_{n = 2}^{\infty}n(n -1)c_{n}x^{n -2} + 3 \sum_{n = 1}^{\infty}nc_{n}x^{n}$
  1. Comprobar por sustitución directa que la siguiente serie de potencias es una solución particular de la ecuación diferencial dada.
  • $y(x) = \sum_{n = 0}^{\infty}\dfrac{(-1)^{n}}{2^{2n}(n!)^{2}}x^{2n}, \hspace{1cm} x\dfrac{d^{2}y}{dx^{2}} + \dfrac{dy}{dx} + xy = 0$
  1. Encontrar la solución general en series de potencias de las siguientes ecuaciones diferenciales respecto al punto ordinario $x_{0} = 0$.
  • $\dfrac{d^{2}y}{dx^{2}} + x^{2} \dfrac{dy}{dx} + xy = 0$
  • $\dfrac{d^{2}y}{dx^{2}} + \sin (x) y = 0$
  1. Usar el método de series de potencias para resolver el siguiente problema con valores iniciales.
  • $(x + 1) \dfrac{d^{2}y}{dx^{2}} -(2 -x) \dfrac{dy}{dx} + y = 0, \hspace{1cm} y(0) = 2, \hspace{0.5cm} y^{\prime}(0) = -1$

Más adelante…

En esta entrada vimos como resolver ecuaciones diferenciales de segundo orden con coeficientes variables respecto al punto ordinario $x_{0} = 0$. En la siguiente entrada resolveremos ecuaciones del mismo tipo pero ahora con respecto a puntos singulares, el método de resolución es conocido como Método de Frobenius.

Entradas relacionadas

Ecuaciones Diferenciales I: Oscilaciones mecánicas

Introducción

En esta entrada estudiaremos algunos tipos de oscilaciones mecánicas que nos permitirán poner en práctica los métodos desarrollados hasta este momento en la segunda unidad.

Consideraremos varios sistemas dinámicos lineales en los que cada modelo matemático será una ecuación diferencial de segundo orden con coeficientes constantes acompañada de condiciones iniciales especificadas en un tiempo que tomaremos como $t = 0$.

$$a \dfrac{d^{2}x}{dt^{2}} + b \dfrac{dx}{dt} + cx = g(t); \hspace{1cm} x(0) = x_{0}, \hspace{0.5cm} x^{\prime}(0) = x_{1} \label{1} \tag{1}$$

Con respecto a la notación, denotaremos con $x$ a la variable dependiente que físicamente representará la posición de un objeto, mientras que $t$ será la variable independiente y representara al tiempo, pues nuestro propósito es describir el movimiento oscilatorio de un objeto a través del tiempo.

A la función $g(x)$ de (\ref{1}) la llamaremos entrada o función forzada del sistema. Una solución $x(t)$ de (\ref{1}) en un intervalo $\delta$ que contiene a $t = 0$ y satisface las condiciones iniciales se le llama salida o respuesta del sistema.

El sistema dinámico que estudiaremos será el de resorte-objeto y los tipos de movimiento que describiremos será el movimiento libre no amortiguado, el movimiento libre amortiguado y el movimiento forzado.

Movimiento libre no amortiguado

Consideremos un resorte de longitud $l$ suspendido verticalmente de un soporte rígido y en la parte inferior del resorte se encuentra un objeto de masa $m$, el peso del objeto hace que el resorte se elongue una distancia $s$. En la posición de equilibrio establecemos que $x = 0$, tal como se muestra en la siguiente figura.

Figura 1: Resorte sin objeto y resorte con el objeto de masa $m$ en la posición de equilibrio.

Es claro que la cantidad de alargamiento o elongación del resorte depende de la masa, además el resorte mismo ejerce una fuerza restauradora $F$ opuesta a la dirección de elongación y proporcional a la cantidad de elongación $s$, esta característica corresponde a la ley de Hooke y matemáticamente se expresa como $F = ks$, donde $k$ es una constante de proporcionalidad llamada constante de resorte.

Una vez colocado el objeto de masa $m$, el resorte se alarga una distancia $s$ y mantiene una posición de equilibrio en el que el peso $W$ del objeto se equilibra con la fuerza restauradora $F$ del resorte. Recordando que el peso de un objeto es $W = mg$ con $m$ la masa del objeto y $g$ la aceleración de la gravedad, podemos establecer que en el equilibrio ocurre que $W = F$, o bien

$$mg -ks = 0 \label{2} \tag{2}$$

Si el objeto se desplaza una cantidad $x$ de su posición de equilibrio, la fuerza restauradora del resorte será $F_{x} = k(s + x)$.

Figura 2: Objeto en reposo y objeto en movimiento desplazado una distancia $x$.

Como estamos analizando un movimiento no amortiguado, vamos a suponer que no hay fuerzas restauradoras que actúen sobre el sistema y que el objeto oscila libre de otras fuerzas externas. Entonces podemos igualar la segunda ley de Newton con la fuerza resultante de la fuerza restauradora y el peso.

$$m \dfrac{d^{2}x}{dt^{2}} = -k(s + x)+ mg = -kx + mg -ks$$

Considerando (\ref{2}) obtenemos que

$$m \dfrac{d^{2}x}{dt^{2}} = -kx \label{3} \tag{3}$$

El signo negativo indica que la fuerza restauradora del resorte actúa en dirección opuesta a la dirección del movimiento, además se toma la convención de que la dirección hacia abajo de la posición de equilibrio es positiva.

Si dividimos entre $m$ la ecuación (\ref{3}) y reordenamos obtenemos la ecuación diferencial

$$\dfrac{d^{2}x}{dt^{2}} + \dfrac{k}{m}x = 0$$

Veremos más adelante que es de bastante ayuda definir la constante $\omega^{2} = \dfrac{k}{m}$. Usando esta definición podemos escribir la ecuación anterior como

$$\dfrac{d^{2}x}{dt^{2}} + \omega^{2}x = 0 \label{4} \tag{4}$$

La ecuación diferencial (\ref{4}) se dice que describe el movimiento armónico simple o movimiento libre no amortiguado. Dos condiciones iniciales claras son el desplazamiento inicial $x(0) = x_{0}$ y la velocidad inicial $x^{\prime}(0) = x_{1}$ del objeto. Si por ejemplo $x_{0} > 0$ indica que el objeto parte de un punto por debajo de la posición de equilibrio lo que provocará una velocidad impartida hacia arriba, es decir, $x_{1} < 0$. Cuando $x^{\prime}(0) = 0$ el objeto se libera a partir del reposo. Por ejemplo, si $x_{0} < 0$ y $x_{1} = 0$ indica que la masa se libera desde el reposo pero desde una posición arriba de la posición de equilibrio.

La ecuación (\ref{4}) representa el modelo matemático que describe nuestro fenómeno, pero ahora estamos interesados en conocer la ecuación de movimiento, así que es momento de aplicar lo aprendido y resolver la ecuación.

Se trata de una ecuación diferencial de segundo orden con coeficientes constantes por lo que se propone una solución de la forma $x = e^{rt}$ (utilizamos la letra $r$ y no $k$ para no confundirnos con la constante de resorte). Al sustituir esta solución y su segunda derivada en (\ref{4}) se obtiene la ecuación auxiliar $r^{2} + \omega^{2} = 0$, de donde $r_{1} = i \omega$ y $r_{2} = -i \omega$, identificamos que $\alpha = 0$ y $\beta = \omega$, entonces la solución general es

$$x(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t) \label{5} \tag{5}$$

Esta solución corresponde a la ecuación general de movimiento del objeto sujeto al resorte considerando que no hay amortiguación. Si se aplican las condiciones iniciales y se determinan las constantes $c_{1}$ y $c_{2}$, entonces habremos encontrado la ecuación de movimiento del sistema en particular. Observa que la solución efectivamente describe un movimiento oscilatorio ya que se encuentran presentes las funciones seno y coseno.

La constante $\omega = \sqrt{\dfrac{k}{m}}$ se llama frecuencia circular del sistema y nos permite definir algunas cantidades. $\omega$ se mide en radianes por segundo.

La cantidad $T = \dfrac{2 \pi}{\omega}$ determina el periodo del movimiento descrito por (\ref{5}), es decir, representa el tiempo que tarda el objeto en hacer un ciclo de movimiento, un ciclo es una oscilación completa del objeto. Podemos decir que el periodo $T$ es el tamaño del intervalo de tiempo entre dos máximos sucesivos (o mínimos sucesivos) de $x(t)$. De acuerdo a nuestra convención, un máximo es el desplazamiento positivo del objeto en el que alcanza su distancia máxima debajo de la posición de equilibrio, mientras que un mínimo es el desplazamiento negativo en el que alcanza su altura máxima arriba de la posición de equilibrio. En cualquier caso decimos que hay un desplazamiento extremo del objeto.

La cantidad $f = \dfrac{1}{T} = \dfrac{\omega}{2 \pi}$ es la frecuencia de movimiento y representa el número de ciclos completados cada segundo.

Existe una forma alterna de la solución (\ref{5}) en la que se hace explícita la amplitud $A$ de las oscilaciones. Si de la solución (\ref{5}) $c_{1} \neq 0$ y $c_{2} \neq 0$, se define la amplitud como $A = \sqrt{c^{2}_{1} + c^{2}_{2}}$ y se define el ángulo de fase $\phi$ tal que

$$\sin(\phi) = \dfrac{c_{1}}{A}, \hspace{1cm} \cos(\phi) = \dfrac{c_{2}}{A} \hspace{1cm} \Rightarrow \hspace{1cm} \tan(\phi) = \dfrac{c_{1}}{c_{2}}$$

Notemos lo siguiente

\begin{align*}
x(t) &= c_{1} \cos(\omega t) + c_{2} \sin(\omega t) \\
&= A \dfrac{c_{1}}{A} \cos(\omega t) + A \dfrac{c_{2}}{A} \sin(\omega t) \\
&= [A \sin(\phi)] \cos(\omega t) + [A \cos(\phi)] \sin(\omega t) \\
&= A \sin(\omega t) \cos(\phi) + A \cos(\omega t) \sin(\phi)
\end{align*}

Si en la última relación aplicamos la identidad trigonométrica

$$\sin(a + b) = \sin(a) \cos(b) + \cos(a) \sin(b)$$

obtenemos la solución (\ref{5}) en una forma alternativa más simple

$$x(t) = A \sin(\omega t + \phi) \label{6} \tag{6}$$

Movimiento libre amortiguado

Es claro que el movimiento libre no amortiguado es un movimiento ideal, pues el movimiento descrito por (\ref{5}) o (\ref{6}) supone que no hay fuerzas retardadoras actuando sobre el objeto y sabemos que, a menos que el objeto este suspendido en un vacío perfecto, siempre habrá por lo menos una fuerza de resistencia debido al medio circundante, por ejemplo la resistencia del aire.

El propósito en este apartado, al igual que en el apartado anterior, es determinar la ecuación diferencial o modelo matemático que describe al sistema cuando existen fuerzas de amortiguamiento para posteriormente determinar la ecuación general de movimiento.

Al igual que antes, consideremos un objeto de masa $m$ suspendido sobre un resorte con constante $k$, pero en esta ocasión consideremos que existe una fuerza externa de amortiguamiento actuando sobre el objeto. En el estudio de la mecánica, las fuerzas de amortiguamiento que actúan sobre un cuerpo se consideran proporcionales a una potencia de la velocidad instantánea $\dfrac{dx}{dt}$. En nuestro caso supondremos que la fuerza de amortiguamiento esta dada por un múltiplo constante de la velocidad, esto es $F_{am} = \eta \dfrac{dx}{dt}$, donde $\eta$ es una constante de amortiguamiento positiva. De esta manera, cuando ninguna otra fuerza actúa sobre el sistema, de la segunda ley de Newton se tiene que

$$m \dfrac{d^{2}x}{dt^{2}} = -kx -\eta \dfrac{dx}{dt} \label{7} \tag{7}$$

El signo negativo en la fuerza de amortiguamiento indica que dicha fuerza actúa en dirección opuesta al movimiento.

Si dividimos la ecuación diferencial (\ref{7}) por $m$ y reordenamos, obtenemos

$$\dfrac{d^{2}x}{dt^{2}} + \dfrac{\eta}{m} \dfrac{dx}{dt} + \dfrac{k}{m}x = 0$$

Recordamos que $\omega^{2} = \dfrac{k}{m}$ y por convención definimos $2\rho = \dfrac{\eta}{m}$, así podemos reescribir la ecuación anterior como

$$\dfrac{d^{2}x}{dt^{2}} + 2 \rho \dfrac{dx}{dt} + \omega^{2} x = 0 \label{8} \tag{8}$$

La ecuación (\ref{8}) corresponde a nuestro modelo matemático que describe al fenómeno. La utilidad de $2\rho$ se hace evidente al momento de intentar resolver la ecuación, pues si se considera la solución $x = e^{rt}$ y se sustituye en la ecuación (\ref{8}) junto con las derivadas correspondientes se obtiene la ecuación auxiliar

$$r^{2} + 2\rho r + \omega^{2} = 0 \label{9} \tag{9}$$

De donde se obtienen las siguientes dos raíces:

$$r_{1} = -\rho + \sqrt{\rho^{2} -\omega^{2}} \hspace{1cm} y \hspace{1cm} r_{2} = -\rho -\sqrt{\rho^{2} -\omega^{2}} \label{10} \tag{10}$$

Hay tres casos posibles dependiendo del valor del discriminante $\Delta = \rho^{2} -\omega^{2}$ , veamos que se obtiene en cada caso.

Caso 1: $\rho^{2} -\omega^{2} > 0$

En este caso decimos que el sistema se encuentra sobreamortiguado porque el coeficiente de amortiguamiento $\rho$ es más grande que la constante del resorte $k$. Como las raíces son reales y distintas, la solución a la ecuación (\ref{8}), en este caso, es

$$x(t) = c_{1} e^{r_{1}t} + c_{2} e^{r_{2}t}$$

Si sustituimos los valores de (\ref{10}) podemos reescribir la solución como

$$x(t) = e^{-\rho t} \left( c_{1} e^{\sqrt{\rho^{2} -\omega^{2}}t} + c_{2} e^{ -\sqrt{\rho^{2} -\omega^{2}}t} \right) \label{11} \tag{11}$$

Esta ecuación representa un movimiento uniforme y no oscilatorio.

Caso 2: $\rho^{2} -\omega^{2} = 0$

En este caso cualquier ligera disminución en la fuerza de amortiguamiento daría como resultado un movimiento oscilatorio, decimos que el sistema está críticamente amortiguado. Como las raíces son reales e iguales, la solución de la ecuación (\ref{8}) es

$$x(t) = c_{1} e^{r_{1}t} + c_{2}t e^{r_{1}t}$$

Si sustituimos $r_{1} = -\rho$, la solución se puede reescribir como

$$x(t) = e^{-\rho t} \left( c_{1} + c_{2}t \right) \label{12} \tag{12}$$

Caso 3: $\rho^{2} -\omega^{2} < 0$

En este caso se dice que el sistema esta subamortiguado ya que el coeficiente de amortiguamiento es más pequeño que la constante del resorte. Las raíces son complejas y están dadas de la siguiente manera:

$$r_{1} = -\rho + i\sqrt{\omega^{2} -\rho^{2}} \hspace{1cm} y \hspace{1cm} r_{2} = -\rho -i\sqrt{\omega^{2} -\rho^{2}} \label{13} \tag{13}$$

Identificamos que $\alpha = -\rho$ y $\beta = \sqrt{\omega^{2} -\rho^{2}}$, entonces la solución está dada por

$$x(t) = e^{-\rho t} \left[ c_{1} \cos \left( \sqrt{\omega^{2} -\rho^{2}}t \right) + c_{2} \sin \left( \sqrt{\omega^{2} -\rho^{2}}t \right) \right] \label{14} \tag{14}$$

El movimiento descrito por (\ref{14}) es oscilatorio, pero debido al coeficiente $e^{-\rho t}$ las amplitudes de oscilación tienden a cero cuando $t \rightarrow \infty$.

En todos los casos la solución contiene el factor de amortiguamiento $e^{-\rho t}$, $\rho > 0$, lo que indica que los desplazamientos del objeto se vuelven despreciables conforme el tiempo $t$ aumenta.

De manera totalmente análoga que en el caso sin amortiguamiento, cualquier solución de la forma (\ref{14}) se puede escribir de forma alterna como

$$x(t) = Ae^{-\rho t} \sin \left( \sqrt{\omega^{2} -\rho^{2}} t + \phi \right) \label{15} \tag{15}$$

donde $A = \sqrt{c^{2}_{1} + c^{2}_{2}}$ es la amplitud de las oscilaciones y el ángulo de fase $\phi$ se determina de las ecuaciones

$$\sin(\phi) = \dfrac{c_{1}}{A}, \hspace{1cm} \cos(\phi) = \dfrac{c_{2}}{A}, \hspace{1cm} \tan(\phi) = \dfrac{c_{1}}{c_{2}}$$

El coeficiente $Ae^{-\rho t}$ de (\ref{15}) se llama amplitud amortiguada de oscilaciones y debido a que (\ref{15}) no es una función periódica, el número $T_{c} = \dfrac{2 \pi}{\sqrt{\omega^{2} -\rho^{2}}}$ se llama cuasi periodo y es el intervalo de tiempo entre dos máximos sucesivos de $x(t)$, así mismo, el número $f_{c} = \dfrac{\sqrt{\omega^{2} -\rho^{2}}}{2 \pi}$ se llama cuasi frecuencia.

Movimiento forzado

Imaginemos que ahora, adicional a las situaciones anteriores, se ejerce una fuerza externa sobre el soporte del resorte. En los dos casos anteriores considerábamos al soporte fijo pero en esta ocasión pensamos en una fuerza motriz que causa un movimiento vertical oscilatorio del soporte del resorte. Sea $F_{ext}(t)$ dicha fuerza externa, usando la segunda ley de Newton la ecuación diferencial queda de la siguiente forma

$$m \dfrac{d^{2}x}{dt^{2}} = -kx -\eta \dfrac{dx}{dt} + F_{ext}(t)$$

Si dividimos la ecuación por $m$ y definimos $g(t) = \dfrac{F_{ext}(t)}{m}$, además de considerar nuestras definiciones anteriores $\omega^{2} = \dfrac{k}{m}$ y $2\rho = \dfrac{\eta}{m}$, podemos escribir la ecuación diferencial como

$$\dfrac{d^{2}x}{dt^{2}} + 2\rho \dfrac{dx}{dt} + \omega^{2}x = g(t) \label{16} \tag{16}$$

La ecuación (\ref{16}) representa nuestro modelo matemático que describe al sistema con movimiento forzado. Esta ecuación es no homogénea, de manera que puede resolverse usando el método de coeficientes indeterminados o el de variación de parámetros.

Cuando $g$ es una función periódica, como $g(t) = g_{0} \sin(\lambda t)$ o $g(t) = g_{0} \cos(\lambda t)$, con $\lambda$ una constante, la solución general de (\ref{16}) para $\rho > 0$ es la suma de una función no periódica $x_{np}(t)$ (solución complementaria o solución a la ecuación homogénea asociada) y una función periódica $x_{p}(t)$ (solución particular de la ecuación no homogénea), en la que $x_{np}(t)$ se desvanece a medida que el tiempo incrementa, es decir,

$$\lim_{t \to \infty} x_{np}(t) = 0$$

Esta propiedad nos indica que para valores grandes de tiempo, los desplazamientos del objeto se aproximan mediante la solución particular $x_{p}(t)$.

La función complementaria $x_{np}(t)$ se denomina término transitorio o solución transitoria, mientras que la solución $x_{p}(t)$ se denomina término de estado estable o solución de estado estable.

Realicemos un ejemplo en el que apliquemos cada caso

Ejemplo: Considerar un resorte sujeto de manera vertical a un soporte. El resorte se estira $50 cm$ al aplicarle una fuerza de $4N$. En la parte inferior del resorte se coloca un objeto con peso de $19.6 N$. Al objeto se le aleja de su posición de equilibrio jalándolo $1 m$ hacia abajo, si se suelta sin aplicarle una velocidad inicial, estudiar el movimiento del objeto en los siguientes casos:

  • No hay resistencia del aire (movimiento libre no amortiguado).
  • Hay resistencia del aire y es de $F_{am} = 8\dfrac{dx}{dt}$ (movimiento libre amortiguado).
  • Además de la resistencia del aire, hay una fuerza aplicada al soporte de $F_{ext}(t) = 80\sin(2t)$ (movimiento forzado).

Solución: El peso del objeto es de $W = 19.6 N$, entonces la masa es de $m = \dfrac{W}{g} = \dfrac{19.6}{9.8}$, $m = 2 kg$, por otro lado, si el resorte se estira $s = 0.5 m$ aplicando una fuerza de $F = 4N$, por la ley de Hooke tenemos que la constante del resorte es $k = \dfrac{F}{s} = \dfrac{4}{0.5}$, $k= 8 N/m$. Las condiciones iniciales son $x(0) = 1$ (posición fuera de la posición de equilibrio) y $x^{\prime}(0) = 0$ (sin velocidad inicial).

Para la primera situación sabemos que $F_{am} = 0$ y $F_{ext} = 0$, de manera que la ecuación que describe al sistema es (\ref{4}) con $\omega^{2} = \dfrac{k}{m} = \dfrac{8}{2} = 4$, así la ecuación a resolver es

$$\dfrac{d^{2}x}{dt^{2}} + 4x = 0$$

La ecuación auxiliar es $r^{2} + 4 = 0$, de donde $r_{1} = i2$ y $r_{2} = -i2$, identificamos que $\alpha = 0$ y $\beta = 2$, así la solución general es

$$x(t) = c_{1} \cos(2t) + c_{2} \sin(2t)$$

Para aplicar las condiciones iniciales debemos conocer la expresión de la primer derivada de la solución, dicha expresión es

$$\dfrac{dx}{dt} = -2c_{1} \sin(2t) + 2c_{2} \cos(2t)$$

Aplicando las condiciones iniciales tenemos

$$x(0) = c_{1} = 1 \hspace{1cm} y \hspace{1cm} x^{\prime}(0) = 2c_{2} = 0$$

de donde $c_{1} = 1$ y $c_{2} = 0$, entonces la ecuación de movimiento es

$$x(t) = \cos(2t)$$

y representa un movimiento armónico de amplitud $A = 1 m$, periodo $T = \dfrac{2 \pi}{2} = \pi seg$ y frecuencia $f = \dfrac{1}{\pi } = 0.318 \dfrac{ciclos}{segundo}$.

A continuación se muestra una gráfica con el movimiento descrito por el objeto.

Figura 3: Función de movimiento del objeto.

De la gráfica observamos que el objeto siempre se mantendrá oscilando de la misma manera para $t \to \infty$ y tiene sentido ya que no existe ninguna fuerza exterior que lo amortigüe.

Consideremos ahora la resistencia del aire $F_{am} = 8 \dfrac{dx}{dt}$, en este caso la ecuación a resolver es de la forma (\ref{7}) y es

$$m \dfrac{d^{2}x}{dt^{2}} + kx + 8\dfrac{dx}{dt} = 0$$

que adaptando a nuestro caso se tiene

$$\dfrac{d^{2}x}{dt^{2}} + 4 \dfrac{dx}{dt} + 4x = 0$$

La ecuación auxiliar es $r^{2} + 4r + 4 = 0$, de donde $r_{1} = r_{2}= -2$, como las raíces son iguales, entonces la solución es de la forma

$$x(t) = e^{-2t}(c_{1} + c_{2}t)$$

la derivada es

$$\dfrac{dx}{dt} = -2e^{-2t}(c_{1} + c_{2}t) + c_{2}e^{-2t}$$

Apliquemos las condiciones iniciales:

$$x(0) = c_{1} = 1 \hspace{1cm} y \hspace{1cm} x^{\prime}(0) = -2c_{1} + c_{2} = 0$$

de donde obtenemos que $c_{1} = 1$ y $c_{2} = 2$, entonces la ecuación de movimiento es

$$x(t) = e^{-2t}(1 + 2t)$$

El factor de amortiguamiento es $e^{-2t}$.

A continuación se muestra una gráfica con el movimiento descrito por el objeto.

Figura 4: Función de movimiento del objeto.

De la gráfica observamos que no hay movimiento oscilatorio sino que el objeto llega a la posición de equilibrio y se mantiene, esto se debe al factor de amortiguamiento.

Para la situación final tenemos un movimiento forzado con una fuerza externa de $F_{ext}(t) = 80 \sin(2t)$. La ecuación diferencial que tenemos en este caso es

$$m \dfrac{d^{2}x}{dt^{2}} = -kx -8 \dfrac{dx}{dt} + 80 \sin(2t)$$

o bien

$$\dfrac{d^{2}x}{dt^{2}} + 4 \dfrac{dx}{dt} + 4x = 40 \sin(2t)$$

La solución a la ecuación homogénea ya la conocemos y es la solución transitoria $x_{np}(t) = e^{-2t}(c_{1} + c_{2}t)$. Para el caso no homogéneo se puede aplicar variación de parámetros o coeficientes indeterminados, vamos a aplicar éste segundo método.

Estamos en condiciones del punto 3 de la entrada correspondiente, de manera que proponemos una solución de la forma

$$x(t) = A \cos(2t) + B \sin(2t)$$

La primera y segunda derivada están dadas de la siguiente forma:

$$\dfrac{dx}{dt} = -2A \sin(2t) + 2B \cos(2t) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x}{dt^{2}} = -4A \cos(2t) -4B \sin(2t)$$

Sustituimos en la ecuación diferencial

\begin{align*}
\left[ -4A \cos(2t) -4B \sin(2B) \right] &+ 4 \left[ -2A \sin(2t) + 2B \cos(2t) \right] + 4 \left[ A \cos(2t) + B \sin(2t) \right] \\
&= 40 \sin(2t)
\end{align*}

\begin{align*}
-8A \sin(2t) + 8B \cos(2t) &= 40 \sin(2t) \\
-A \sin(2t) + B \cos(2t) &= 5 \sin(2t)
\end{align*}

Para que se cumpla la igualdad debe de ocurrir que $A = -5$ y $B = 0$, entonces la solución de estado estable es

$$x_{p}(t) = -5 \cos(2t)$$

y, por tanto, la solución general es

$$x(t) = x_{np}(t) + x_{p}(t) = e^{-2t}(c_{1} + c_{2}t) -5 \cos(2t)$$

Vemos que

$$\dfrac{dx}{dt} = -2e^{-2t}(c_{1} + c_{2}t) + c_{2}e^{-2t} + 10 \sin(2t)$$

Apliquemos las condiciones iniciales:

$$x(0) = c_{1} -5 = 1 \hspace{1cm} y \hspace{1cm} x^{\prime}(0) = -2c_{1} + c_{2} = 0$$

de donde $c_{1} = 6$ y $c_{2} = 12$. Entonces la ecuación de movimiento es

$$x(t) = e^{-2t}(6 + 12t) -5 \cos(2t)$$

A continuación se muestra una gráfica con el movimiento descrito por el objeto.

Figura 5: Función de movimiento del objeto.

Vemos que inicialmente el resorte sufre un estiramiento muy grande generando un movimiento transitorio y procede a amortiguarse hasta llegar al equilibrio entre la fuerza externa y la fuerza amortiguadora describiendo un movimiento estable.

La parte $e^{-2t}(6 + 12t)$ representa el movimiento transitorio, mientras que $-5 \cos(2t)$ representa el movimiento estable.

También se puede observar que las amplitudes (el estiramiento del resorte) son bastante grandes comparado con las dos situaciones anteriores.

$\square$

Resonancia

Resolvamos un problema de valores iniciales que nos permitirá definir el concepto de resonancia.

Resolver la ecuación $\dfrac{d^{2}x}{dt^{2}} + \omega^{2}x = g_{0} \sin(\lambda t)$, donde $g_{0}$ y $\lambda \neq \omega$ son constantes. Los valores iniciales son $x(0) = 0$ y $x^{\prime}(0) = 0$.

Solución: Resolviendo la ecuación homogénea puedes verificar que la solución complementaria es

$$x_{c}(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t) \label{17} \tag{17}$$

Para obtener una solución particular suponemos una solución de la forma

$$x_{p}(t) = A \cos(\lambda t) + B \sin(\lambda t)$$

y aplicamos el método de coeficientes indeterminados. Vemos que

$$\dfrac{dx_{p}}{dt} = -A \lambda \sin(\lambda t) + B \lambda \cos(\lambda t) \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}x_{p}}{dt^{2}} = -A \lambda^{2} \cos(\lambda t) -B \lambda^{2} \sin(\lambda t)$$

Sustituyendo en la ecuación diferencial tenemos

\begin{align*}
\left[ -A \lambda^{2} \cos(\lambda t) -B \lambda^{2} \sin(\lambda t) \right] &+ \omega^{2} \left[A \cos(\lambda t) + B \sin(\lambda t) \right] \\
&= A (\omega^{2} -\lambda^{2}) \cos(\lambda t) + B (\omega^{2} -\lambda^{2}) \sin(\lambda t) \\
&= g_{0} \sin(\lambda t)
\end{align*}

Es claro que para que se cumpla la igualdad se debe satisfacer que $A = 0$ y $B = \dfrac{g_{0}}{\omega^{2} -\lambda^{2}}$. Por tanto,

$$x_{p}(t) = \dfrac{g_{0}}{\omega^{2} -\lambda^{2}} \sin(\lambda t) \label{18} \tag{18}$$

La solución general es

$$x(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t) + \dfrac{g_{0}}{\omega^{2} -\lambda^{2}} \sin(\lambda t) \label{19} \tag{19}$$

Verifica que aplicando las condiciones iniciales se obtiene que $c_{1} =0$ y $c_{2} = -\dfrac{\lambda g_{0}}{\omega (\omega^{2} -\lambda^{2})}$. Por lo tanto, para $\lambda \neq \omega$, la solución es

$$x(t) = \dfrac{g_{0}}{\omega (\omega^{2} -\lambda^{2})} \left[-\lambda \sin(\omega t) + \omega \sin(\lambda t) \right] \label{20} \tag{20}$$

El resultado anterior no se define para $\lambda = \omega$, sin embargo podemos obtener su valor límite conforme $\lambda \rightarrow \omega$, esto produciría en (\ref{20}) un incremento de forma sustancial de las amplitudes de oscilación.

Para $\lambda = \omega$ se define la solución como el límite $\lambda \to \omega$ de la ecuación (\ref{20}).

$$x(t) = \lim_{\lambda \to \omega} g_{0} \dfrac{-\lambda \sin(\omega t) + \omega \sin(\lambda t)}{\omega (\omega^{2} -\lambda^{2})} \label{21} \tag{21}$$

Para resolver el límite vamos a aplicar la regla de L´Hôpital.

La derivada del numerador con respecto a $\lambda$ es

$$\dfrac{d}{d \lambda} \left[ -\lambda \sin(\omega t) + \omega \sin(\lambda t) \right] = -\sin(\omega t) + t \omega \cos(\lambda t)$$

Y la derivada del denominador con respecto a $\lambda$ es

$$\dfrac{d}{d \lambda} \left[ \omega^{3} -\omega \lambda^{2} \right] = -2 \omega \lambda$$

Sustituyendo en el límite (\ref{21}) obtenemos

\begin{align*}
x(t) &= g_{0} \lim_{\lambda \to \omega} \dfrac{-\sin(\omega t) + t \omega \cos(\lambda t)}{-2 \omega \lambda} \\
&= g_{0} \dfrac{-\sin(\omega t) + t \omega \cos(\omega t)}{-2 \omega^{2}} \\
&= \dfrac{g_{0}}{2 \omega^{2}} \sin(\omega t) -\dfrac{g_{0}}{2 \omega}t \cos(\omega t)
\end{align*}

Por tanto, para $\lambda = \omega$ la solución es

$$x(t) = \dfrac{g_{0}}{2 \omega^{2}} \left[ \sin(\omega t) -t \omega \cos(\omega t) \right] \label{22} \tag{22}$$


Conforme $t \to \infty$ los desplazamientos del objeto se vuelven más largos, de hecho, $|x(t_{n})| \to \infty$ cuando $t_{n} = \dfrac{n \pi}{\omega}$ para $n = 1, 2, 3, \cdots$.

Este fenómeno se conoce como resonancia pura.

Una gráfica que muestra el comportamiento de (\ref{22}) es la siguiente.

Figura 6: Resonancia pura

No profundizaremos más en el concepto de resonancia, pero cabe mencionar que la resonancia pura es una situación ideal, pues físicamente las oscilaciones grandes del objeto forzarían en algún momento al resorte más allá de su límite elástico, además en el desarrollo realizado no se han toman en cuenta efectos retardadores de las fuerzas de amortiguamiento que siempre están presentes.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

Resolver los siguientes problemas:

  1. Un resorte cuelga verticalmente; su extremo superior está fijo y del inferior pende una caja que pesa $196 N$. Una vez en equilibrio se tira de la caja hacia abajo haciéndola desplazar $0.25 m$ y se suelta. Sabiendo que $k = 80 N/m$ y que la resistencia del aire es despreciable, hallar: a) La ley de movimiento de la caja. b) El tiempo necesario para que la caja se mueva desde la posición inicial hasta $0.0625 m$ por debajo de la posición de equilibrio.
  1. Una masa de $98 N$ de peso se cuelga de un resorte con lo que éste interrumpe su estado de reposo. Sabiendo que $k = 4.9 N/m$, hallar el movimiento de la masa si al soporte del resorte se le imprime una fuerza de $F_{ext}(t) = \sin(\sqrt{2g}t)$ metros.
  1. Se suspende una masa de $10 kg$ de un resorte, el cual se alarga $0.6533 m$. La masa se pone en movimiento desde la posición de equilibrio con una velocidad inicial $1 m/s$, dirigida hacia arriba. Hallar el movimiento resultante si la fuerza debida al aire es de $F_{am} = 80 \dfrac{dx}{dt}$ newtons.
  1. De un resorte que tiene una constante $k = 50$ se suspende un peso de $49 N$. El peso se pone en movimiento desde el reposo estirándolo $0.98 m$ hacia abajo de la posición de equilibrio y aplicando una fuerza externa $F_{ext}(t) = 10\sin(2t)$. Si no hay resistencia del aire, hallar el movimiento del peso.
  1. Se cuelga de un resorte una masa de $2 kg$, de tal manera que el resorte se alarga $0.6125 m$. A esta masa se le aleja de su posición de equilibrio jalándola $1 m$ hacia arriba y se suelta. hallar el movimiento resultante de la masa, sabiendo que hay una resistencia del aire de $F_{am} = 16 \dfrac{dx}{dt}$.

Más adelante…

Ha llegado el momento de olvidarnos de los coeficientes constantes y considerar ahora coeficientes variables.

En las siguientes entradas estudiaremos ecuaciones diferenciales de la forma

$$a(x) \dfrac{d^{2}y}{dx^{2}} + b(x) \dfrac{dy}{dx} + c(x) = g(x)$$

Entradas relacionadas