Archivo del Autor: Omar González Franco

Ecuaciones Diferenciales l: Ecuación de Bernoulli y ecuación de Riccati

Introducción

Para concluir con el estudio de las ecuaciones diferenciales de primer orden no lineales, en esta entrada presentaremos dos tipos de ecuaciones más, conocidas como la ecuación diferencial de Bernoulli y la ecuación diferencial de Riccati.

Al tratarse de la última entrada sobre el desarrollo de métodos de resolución de ecuaciones diferenciales de primer orden, presentaremos un breve resumen sobre el tipo de ecuaciones que estudiamos y su respectivo método de resolución.

Ecuación diferencial de Bernoulli

La ecuación diferencial de Bernoulli es una ecuación diferencial ordinaria de primer orden, formulada por Jacob Bernoulli en el siglo XVll.

Definición: La ecuación diferencial

\begin{align}
a_{1}(x)\dfrac{dy}{dx} + a_{0}(x) y = g(x) y^{n} \label{1} \tag{1}
\end{align}

donde $n$ es cualquier número real, se llama ecuación de Bernoulli.

Si a la ecuación de Bernoulli la dividimos por la función $a_{1}(x) \neq 0$ obtenemos

$$\dfrac{dy}{dx} + \dfrac{a_{0}(x)}{a_{1}(x)} y = \dfrac{g(x)}{a_{1}(x)} y^{n}$$

Definimos las siguientes funciones

$$P(x)=\dfrac{a_{0}(x)}{a_{1}(x)} \hspace{1cm} y \hspace{1cm} Q(x)=\dfrac{g(x)}{a_{1}(x)}$$

Entonces una ecuación de Bernoulli se puede reescribir como

\begin{align}
\dfrac{dy}{dx} + P(x) y = Q(x) y^{n} \label{2} \tag{2}
\end{align}

La ecuación (\ref{2}) es también una definición común de ecuación de Bernoulli.

Puedes observar que si $n = 0$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal no homogénea:

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Y si $n = 1$, la ecuación de Bernoulli se reduce a una ecuación diferencial lineal homogénea:

\begin{align*}
\dfrac{dy}{dx} + P(x) y &= Q(x) y \\
\dfrac{dy}{dx} + [P(x) -Q(x)] y &= 0 \\
\dfrac{dy}{dx} + R(x) y &= 0
\end{align*}

Donde definimos $R(x) = P(x) -Q(x)$, ambas ecuaciones ya las sabemos resolver.

Nuestro objetivo será resolver la ecuación de Bernoulli para el caso en el que $n \neq 0$ y $n \neq 1$. Una propiedad de las ecuaciones de Bernoulli es que la sustitución $u(x) = y^{1 -n}$ la convierte en una ecuación lineal y de esta manera podremos resolverla usando el método de resolución de ecuaciones diferenciales de primer orden lineales. Para mostrar este hecho consideremos la ecuación de Bernoulli en la forma (\ref{2}).

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n}$$

Dividimos toda la ecuación por $y^{n}$.

\begin{align}
\dfrac{1}{y^{n}} \dfrac{dy}{dx} + P(x) y^{1-n} = Q(x) \label{3} \tag{3}
\end{align}

Si definimos $u = y^{1-n}$, al derivar esta función obtenemos

$$\dfrac{du}{dx} = (1 -n) y^{-n} \dfrac{dy}{dx} = (1 -n) \dfrac{1}{y^{n}} \dfrac{dy}{dx}$$

De donde

$$\dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n} \dfrac{du}{dx}$$

Sustituimos este resultado y $y^{1-n} = u$ en la ecuación (\ref{3}):

\begin{align}
\dfrac{1}{1-n} \dfrac{du}{dx} + P(x)u = Q(x) \label{4} \tag{4}
\end{align}

Multiplicamos por $1 -n$ en ambos lados de la ecuación

$$\dfrac{du}{dx} + (1 -n)P(x)u = (1 -n)Q(x)$$

Definimos $R(x) = (1 -n)P(x)$ y $S(x) = (1 -n)Q(x)$. En términos de estas funciones la ecuación (\ref{4}) se puede escribir de la siguiente forma:

\begin{align}
\dfrac{du}{dx} + R(x)u = S(x) \label{5} \tag{5}
\end{align}

Puedes notar que la ecuación (\ref{5}) corresponde a una ecuación diferencial lineal de primer orden no homogénea.

En conclusión, una ecuación de Bernoulli (\ref{2}) bajo la sustitución $u(x) = y^{1 -n}(x)$ se vuelve una ecuación diferencial lineal en la forma (\ref{5}) y por tanto podemos aplicar el método de resolución de ecuaciones diferenciales lineales.

Los pasos que se recomiendan seguir para resolver una ecuación diferencial de Bernoulli se presentan a continuación.

Método para resolver ecuaciones de Bernoulli

  1. El primer paso es escribir a la ecuación de Bernoulli en la forma (\ref{2}).
  1. Dividimos toda la ecuación por $y^{n}$ y consideramos el cambio de variable $u = y^{1 -n}$ y la respectiva derivada $\dfrac{du}{dx} = (1 -n)\dfrac{1}{y^{n}} \dfrac{dy}{dx}$.
  1. Sustituimos $y^{1 -n} = u$ y $\dfrac{1}{y^{n}} \dfrac{dy}{dx} = \dfrac{1}{1 -n}\dfrac{du}{dx}$ en la ecuación resultante del paso anterior y haciendo un poco de álgebra podremos reducir la ecuación de Bernoulli en una ecuación lineal de primer orden no homogénea.
  1. Resolvemos la ecuación resultante usando el método de resolución de ecuaciones diferenciales lineales lo que nos permitirá obtener la función $u(x)$.
  1. Regresamos a la variable original.

Realicemos un ejemplo en el que apliquemos estos pasos.

Ejemplo: Resolver la ecuación de Bernoulli $3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$

Solución: El primer paso es escribir la ecuación de Bernoulli en la forma (\ref{2}):

\begin{align*}
3(1 + x^{2}) \dfrac{dy}{dx} &= 2xy (y^{3} -1) \\
\dfrac{dy}{dx} & =\dfrac{2xy (y^{3} -1)}{3(1 + x^{2})} \\
\dfrac{dy}{dx} &= \dfrac{2xy^{4}}{3(1 + x^{2})} -\dfrac{2xy}{3(1 + x^{2})} \\
\dfrac{dy}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) y &= \left( \dfrac{2x}{3(1 + x^{2})} \right) y^{4}
\end{align*}

La última relación muestra a la ecuación en la forma (\ref{2}) con $n = 4$, ahora dividamos toda la ecuación por $y^{4}$.

\begin{align}
\dfrac{1}{y^{4}} \dfrac{dy}{dx} + \left( \dfrac{2x}{3(1+x^{2})} \right) y^{-3} = \dfrac{2x}{3(1 + x^{2})} \label{6} \tag{6}
\end{align}

Consideremos la sustitución $u=y^{1-n}=y^{1-4}=y^{-3}=\dfrac{1}{y^{3}}$ y $\dfrac{du}{dx} = -3 y^{-4} \dfrac{dy}{dx}$.

De donde

\begin{align*}
\dfrac{1}{y^{4}} \dfrac{dy}{dx} = -\dfrac{1}{3} \dfrac{du}{dx} \hspace{1.5cm} y \hspace{1.5cm} y^{-3} = u
\end{align*}

Sustituimos estos resultados en la ecuación (\ref{6})

\begin{align*}
-\dfrac{1}{3} \dfrac{du}{dx} + \left( \dfrac{2x}{3(1 + x^{2})} \right) u &= \dfrac{2x}{3(1 + x^{2})} \\
\dfrac{du}{dx} +\left( -\dfrac{2x}{1 + x^{2}} \right) u &= -\dfrac{2x}{1 + x^{2}} \label{7} \tag{7}
\end{align*}

La última ecuación es una expresión en la forma (\ref{5}), con esto hemos logrado reducir la ecuación de Bernoulli en una ecuación diferencial lineal de primer orden no homogénea. Establecemos las siguientes funciones

\begin{align*}
R(x) = -\dfrac{2x}{1 + x^{2}} \hspace{1cm} y \hspace{1cm} S(x) = -\dfrac{2x}{1 + x^{2}}
\end{align*}

A partir de aquí aplicamos el método de resolución de ecuaciones diferenciales lineales. Primero calculemos el factor integrante dado como $\mu (x) = e^{\int {R(x)dx}}$. Resolvamos la integral del exponente omitiendo la constante de integración

\begin{align*}
\int {R(x)dx} &= -\int \dfrac{2x}{1 + x^{2}} dx \\
&= -\ln|1 + x^{2}|
\end{align*}

Sustituyendo en el factor integrante

$$\mu (x) = e^{-\ln|1 + x^{2}|} = \dfrac{1}{1+x^{2}}$$

Por lo tanto el factor integrante es $\mu (x) = \dfrac{1}{1 + x^{2}}$. Multipliquemos a la ecuación (\ref{7}) por el factor integrante:

$$\dfrac{1}{1 + x^{2}} \dfrac{du}{dx} -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right) u = -\dfrac{1}{1 + x^{2}} \left( \dfrac{2x}{1 + x^{2}} \right)$$

Identificamos que el lado izquierdo de la ecuación es la derivada del producto del factor integrante por la función $u(x)$, de esta manera

$$\dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) = -\dfrac{2x}{(1 + x^{2})^{2}}$$

Integramos ambos lados de la ecuación con respecto a $x$. Por tratarse del último paso ahora sí consideramos a la constante de integración

$$\int \dfrac{d}{dx} \left( \dfrac{u}{1 + x^{2}} \right) dx = -\int \dfrac{2x}{(1 + x^{2})^{2}} dx$$

En el lado izquierdo aplicamos el teorema fundamental del cálculo y en el lado derecho consideramos la sustitución $a(x) = 1 + x^{2}$ para resolver la integral, el resultado obtenido es

\begin{align*}
\dfrac{u}{1 + x^{2}} &= \dfrac{1}{1 + x^{2}} + c \\
u &= 1 + (1 + x^{2}) c \\
u &= 1 + c + x^{2}c
\end{align*}

Regresamos a la variable original $u = \dfrac{1}{y^{3}}$

\begin{align*}
\dfrac{1}{y^{3}} &= 1 + c + x^{2}c \\
y^{3} &= \dfrac{1}{cx^{2} + c + 1}
\end{align*}

La ultima ecuación corresponde a la forma implícita de la solución, para obtener la solución explícita sacamos la raíz cúbica obteniendo finalmente

$$y=\sqrt[3]{cx^{2} + c + 1}$$

Por lo tanto, la solución general a la ecuación diferencial de Bernoulli

$$3(1 + x^{2}) \dfrac{dy}{dx} = 2xy (y^{3} -1)$$

es

$$y(x) = \sqrt[3]{cx^{2} + c + 1}$$

$\square$

Ahora revisemos la ecuación de Riccati.

Ecuación diferencial de Riccati

La ecuación de Riccati es una ecuación diferencial ordinara no lineal de primer orden, inventada y desarrollada en el siglo XVlll por el matemático italiano Jacopo Francesco Riccati.

Definición: La ecuación diferencial

\begin{align}
\dfrac{dy}{dx} = q_{1}(x) + q_{2}(x) y +q_{3}(x) y^{2} \label{8} \tag{8}
\end{align}

se llama ecuación de Riccati.

Resolver la ecuación de Ricatti requiere del conocimiento previo de una solución particular de la ecuación, llamemos a dicha solución $y_{1}(x)$. Si hacemos la sustitución

\begin{align}
y(x) = y_{1}(x) + u(x) \label{9} \tag{9}
\end{align}

La ecuación de Riccati adquiere la forma de una ecuación de Bernoulli, de tarea moral verifica este hecho. Ya vimos que para resolver una ecuación de Bernoulli debemos reducirla a una ecuación lineal no homogénea así que veamos directamente cómo reducir una ecuación de Riccati a una ecuación lineal no homogénea.

Sea $y_{1}(x)$ una solución particular de la ecuación de Riccati y consideremos la sustitución

\begin{align}
y(x) = y_{1}(x) + \dfrac{1}{u(x)} \label{10} \tag{10}
\end{align}

Derivando esta ecuación obtenemos

\begin{align}
\dfrac{dy}{dx} = \dfrac{dy_{1}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{11} \tag{11}
\end{align}

Como $y_{1}(x)$ es una solución a la ecuación de Riccati entonces se cumple que

\begin{align}
\dfrac{dy_{1}}{dx} = q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} \label{12} \tag{12}
\end{align}

Sustituyendo (\ref{12}) en (\ref{11}) obtenemos la siguiente ecuación:

\begin{align}
\dfrac{dy}{dx} = q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \label{13} \tag{13}
\end{align}

Ahora podemos igualar la ecuación (\ref{13}) con la ecuación de Riccati (\ref{8})

\begin{align*}
q_{1}(x) + q_{2}(x) y +q_{3}(x) y^{2} &= q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
q_{2}(x) y +q_{3}(x) y^{2} &= q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{2}(x) y_{1} -q_{2}(x) y + q_{3}(x)y^{2}_{1} -q_{3}(x) y^{2} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{2}(x)(y_{1} -y) + q_{3}(x)(y^{2}_{1} -y^{2})
\end{align*}

En la última ecuación sustituimos la función (\ref{10}):

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= q_{2}(x) \left[ y_{1} -\left( y_{1} + \dfrac{1}{u} \right) \right] + q_{3}(x) \left [ y^{2}_{1} -\left( y_{1} + \dfrac{1}{u} \right) ^{2} \right ] \\
&= q_{2}(x) \left( y_{1} -y_{1} -\dfrac{1}{u} \right) + q_{3}(x) \left( y^{2}_{1} -y^{2}_{1} -2 y_{1} \dfrac{1}{u} -\dfrac{1}{u^{2}} \right) \\
&= q_{2}(x) \left( -\dfrac{1}{u} \right ) + q_{3}(x) \left( -2\dfrac{y_{1}}{u} -\dfrac{1}{u^{2}} \right) \\
&= -\dfrac{q_{2}(x)}{u} -2 q_{3}(x) \dfrac{y_{1}}{u} -\dfrac{q_{3}(x)}{u^{2}}
\end{align*}

Esto es

$$\dfrac{1}{u^{2}} \dfrac{du}{dx} = -\dfrac{q_{2}(x)}{u} -2 q_{3}(x) \dfrac{y_{1}}{u} -\dfrac{q_{3}(x)}{u^{2}}$$

Multiplicamos ambos lados de la ecuación por $u^{2}$

\begin{align*}
\dfrac{du}{dx} &= -q_{2}(x)u -2q_{3}(x) y_{1}u -q_{3}(x) \\
\dfrac{du}{dx} &= -\left( q_{2}(x) + 2q_{3}(x) y_{1} \right) u -q_{3}(x) \\
\dfrac{du}{dx} + \left( q_{2}(x) + 2q_{3}(x) y_{1} \right) u &= -q_{3}(x)
\end{align*}

Definimos las funciones $R(x) = q_{2}(x) + 2q_{3}(x) y_{1}$ y $S(x) = -q_{3}(x)$ de manera que la última ecuación queda como

\begin{align}
\dfrac{du}{dx} + R(x) u = S(x) \label{14} \tag{14}
\end{align}

De esta manera queda demostrado que la sustitución

$$y(x) = y_{1}(x) + \dfrac{1}{u(x)}$$

Convierte a la ecuación de Riccati en una ecuación diferencial lineal y por tanto puede ser resuelta con el método de resolución de ecuaciones lineales.

Como es usual, desarrollemos una serie de pasos a seguir para resolver las ecuaciones de Riccati.

Método para resolver ecuaciones de Riccati

Con el fin de evitar memorizar los resultados anteriores se recomienda seguir la siguiente serie de pasos para resolver una ecuación diferencial de Riccati.

  1. El primer paso es escribir a la ecuación de Riccati en la forma (\ref{8}) y estar seguros de que conocemos previamente una solución particular $y_{1}(x)$ de la ecuación.
  1. Como queremos reducir la ecuación de Riccati en una ecuación lineal no homogénea consideramos la sustitución $y(x) = y_{1}(x) + \dfrac{1}{u(x)}$, con $y_{1}(x)$ la solución particular dada.
  1. Debido a que $y_{1}(x)$ es solución a la ecuación de Riccati, el siguiente paso es derivar la sustitución $y = y_{1} + \dfrac{1}{u}$ y en el resultado sustituir $\dfrac{dy_{1}}{dx}$ por la ecuación de Riccati para la solución particular, esto es

$$\dfrac{dy}{dx} = \dfrac{dy_{1}}{dx} -\dfrac{1}{u^{2}} \dfrac{du}{dx} = q_{1}(x) + q_{2}(x) y_{1} + q_{3}(x)y^{2}_{1} -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

  1. Igualamos la ecuación anterior con la ecuación de Riccati original en la forma (\ref{8}) y hacemos la sustitución $y(x) = y_{1}(x) + \dfrac{1}{u(x)}$.
  1. Hecho lo anterior y haciendo un poco de álgebra podremos reducir la ecuación de Riccati en una ecuación lineal de primer orden y así aplicar el método de resolución para este tipo de ecuaciones.
  1. Una vez obtenida la función $u(x)$ la sustituimos en $y(x) = y_{1}(x) + \dfrac{1}{u(x)}$ para así finalmente obtener la solución $y(x)$.

Realicemos un ejemplo para poner en practica este método.

Ejemplo: Resolver la ecuación de Riccati $\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$ considerando la solución particular $y_{1} = \dfrac{2}{x}$.

Solución: Vemos que la ecuación diferencial que queremos resolver ya prácticamente tiene la forma de la ecuación (\ref{8}), pero para que sea mas claro consideremos la siguiente forma:

$$\dfrac{dy}{dx} = \left( -\dfrac{4}{x^{2}} \right) + \left( -\dfrac{1}{x} \right) y + y^{2}$$

El problema ya nos da la solución particular $y_{1}(x) = \dfrac{2}{x}$ (verifica que, en efecto, es una solución a la ecuación de Riccati). El segundo paso es hacer la sustitución $y = \dfrac{2}{x} + \dfrac{1}{u}$. Por la ecuación (\ref{13}) tenemos

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{1}{x} \left( \dfrac{2}{x} \right) + \left( \dfrac{2}{x} \right)^{2} -\dfrac{1}{u^{2}} \dfrac{du}{dx}$$

Igualando el resultado anterior con la ecuación de Riccati tenemos

\begin{align*}
-\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2} &= -\dfrac{4}{x^{2}} -\dfrac{2}{x^{2}} + \dfrac{4}{x^{2}} -\dfrac{1}{y^{2}} \dfrac{du}{dx} \\
-\dfrac{y}{x} + y^{2} &= \dfrac{2}{x^{2}} -\dfrac{1}{u^{2}} \dfrac{du}{dx} \\
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{y}{x} -y^{2}
\end{align*}

En la última ecuación sustituimos $y = \dfrac{2}{x} + \dfrac{1}{u}$

\begin{align*}
\dfrac{1}{u^{2}} \dfrac{du}{dx} &= \dfrac{2}{x^{2}} + \dfrac{1}{x} \left( \dfrac{2}{x} + \dfrac{1}{u} \right) -\left( \dfrac{2}{x} + \dfrac{1}{u} \right)^{2} \\
&= \dfrac{2}{x^{2}} + \dfrac{2}{x^{2}} + \dfrac{1}{xu} -\left( \dfrac{4}{x^{2}} + \dfrac{4}{xu} + \dfrac{1}{u^{2}} \right) \\
&= \dfrac{4}{x^{2}} + \dfrac{1}{xu} -\dfrac{4}{x^{2}} -\dfrac{4}{xu} -\dfrac{1}{u^{2}} \\
&= -\dfrac{3}{xu} -\dfrac{1}{u^{2}} \\
\end{align*}

De donde

$$\dfrac{du}{dx} + \dfrac{3}{x}u = -1$$

Esta expresión tiene la forma de una ecuación diferencial lineal (\ref{14}), de donde podemos determinar que

$$R(x) = \dfrac{3}{x} \hspace{1cm} y \hspace{1cm} S(x) = -1$$

Ya que hemos reducido la ecuación de Riccati en una ecuación lineal no homogénea a partir de aquí usamos el método de resolución de ecuaciones lineales.

Calculemos el factor integrante $\mu(x) = e^{\int R(x)dx}$.

\begin{align*}
\int {R(x)dx} = \int {\dfrac{3}{x}dx} = 3\ln| x |
\end{align*}

Entonces, el factor integrante es

$\mu (x) = e^{3 \ln|x|} = x^{3}$

Multiplicamos la ecuación lineal por el factor integrante

\begin{align*}
x^{3} \dfrac{du}{dx} + x^{3} \left( \dfrac{3}{x} \right ) u &= -x^{3} \\
x^{3} \dfrac{du}{dx} + 3x^{2}u &= -x^{3}
\end{align*}

Identificamos el lado izquierdo de la ecuación como la derivada del producto del factor integrante $\mu (x)$ por la función $u(x)$, esto es

$$\dfrac{d}{dx} \left( x^{3}u \right) = -x^{3}$$

Integramos ambos lados de la ecuación con respecto a $x$

\begin{align*}
\int {\dfrac{d}{dx} \left( x^{3}u \right) dx} &= \int {-x^{3}dx} \\
x^{3}u &= -\dfrac{x^{4}}{4} + c \\
u &= -\dfrac{x}{4} + \dfrac{c}{x^{3}}
\end{align*}

Ya determinamos el valor de $u(x)$ ahora sólo lo sustituimos en la función $y = \dfrac{2}{x} + \dfrac{1}{u}$

Por lo tanto, la solución general a la ecuación de Bernoulli

$$\dfrac{dy}{dx} = -\dfrac{4}{x^{2}} -\dfrac{y}{x} + y^{2}$$

es

$$y(x) = \dfrac{2}{x} + \dfrac{1}{\dfrac{c}{x^{3}} -\dfrac{x}{4}}$$

$\square$

Hemos concluido con el estudio de las ecuaciones diferenciales de primer orden. Para concluir con esta entrada presentaremos un breve resumen sobre los diferentes tipos de ecuaciones diferenciales que estudiamos y su método de resolución correspondiente.

Resumen de métodos de resolución de ecuaciones diferenciales de primer orden

  1. Ecuaciones diferenciales de primer orden lineales

$$\dfrac{dy}{dx} + P(x)y = Q(x)$$

Condiciones de linealidad:

  • La variable dependiente $y$ y todas sus derivadas son de primer grado.
  • Cada coeficiente depende solamente de la variable independiente $x$ y/o de constantes.

Si $Q(x) = 0$ la ecuación es homogénea y su solución es

$$y(x) = ke^{-\int{P(x)}dx}$$

Si $Q(x) \neq 0$ la ecuación es no homogénea y su solución es

$$y(x) = e^{-\int P(x)dx} \left( \int{e^{\int P(x) dx} Q(x) dx} + k \right)$$

Método del factor integrante: Multiplicamos la ecuación diferencial por el factor integrante $\mu (x) = e^{\int{P(x) dx}}$

Método de variación de parámetros: La solución tiene la forma $y(x) = k(x) e^{-\int{P(x)} dx}$ con $k(x) = \int{e^{\int{P(x)} dx} Q(x)}$

Por lo tanto, una lineal puede resolverse: a) Aplicando directamente la formula general; b) por medio de un factor integrante, y c) usando variación de parámetros.

  1. Ecuaciones diferenciales de variables separables

$$\dfrac{dy}{dx} = \dfrac{g(x)}{f(x)}$$

Método de solución: integración directa.

  1. Ecuaciones diferenciales homogéneas

$$M(x, y) + N(x, y) \dfrac{dy}{dx} = 0$$

Es homogénea si

\begin{align*}
M(tx, ty) = t^{n}M(x, y) \hspace{1cm} y \hspace{1cm} N(tx, ty) = t^{n}N(x, y)
\end{align*}

Método de solución: Cambio de variable $y = ux$ y $\dfrac{dy}{dx} = u + x \dfrac{du}{dx}$ para reducirla a una ecuación de variables separables.

  1. Ecuaciones diferenciales exactas

$$M(x, y) dx + N(x, y) dy = 0$$

Se verifica que es exacta usando del criterio de diferencial exacta.

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Si lo es, definimos

\begin{align*}
\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)
\end{align*}

Método de solución:

  • Tomar $\dfrac{\partial f}{\partial x} = M(x, y)$ o $\dfrac{\partial f}{\partial y} = N(x, y)$.
  • Integrar en $x$ o integrar en $y$.
  • Derivar con respecto a $y$ o con respecto a $x$.
  • Igualar el resultado a $N(x, y)$ o igualar a $M(x, y)$.
  • Integrar.
  1. Factores integrantes

$\mu (x, y)$ es factor integrante si $\mu (x, y) M(x, y) dx + \mu (x, y) N(x, y) dy = 0$ es exacta.

Si el factor integrante es función de $x$:

$$\mu (x) = exp \left[ \int{ \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right]$$

Si el factor integrante es función de $y$:

$$\mu (y) = exp \left[ \int{ \dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dx} \right]$$

Método de solución: Se multiplica la ecuación diferencial por el factor integrante y se resuelve por exactas o por variables separables según el caso.

  1. Ecuación diferencial de Bernoulli

$$\dfrac{dy}{dx} + P(x) y = Q(x) y^{n}$$

Método de solución: Para $n \neq 0$ y $n \neq 1$ hacemos el cambio de variable $u = y^{1 -n}$ y $\dfrac{du}{dx} = (1 -n)\dfrac{1}{y^{n}} \dfrac{dy}{dx}$ para reducirla a una ecuación lineal

  1. Ecuación diferencial de Riccati

$$\dfrac{dy}{dx} = q_{1}(x) + q_{2}(x) y +q_{3}(x) y^{2}$$

Método de solución: Conocida una solución particular $y_{1}$ se hace la sustitución $y = y_{1} + u$ para reducir la ecuación a una ecuación de Bernoulli o la sustitución $y = y_{1} + \dfrac{1}{u}$ para reducirla directamente a una ecuación lineal no homogénea.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resuelve las siguientes ecuaciones de Bernoulli.
  • $\dfrac{dy}{dx} + \dfrac{1}{x}y = \dfrac{2}{3}x^{4}y^{4}$
  • $3x \dfrac{dy}{dx} -2y = x^{3}y^{-2}$
  • $x^{2} \dfrac{dy}{dx} -2xy = 3y^{4} \hspace{0.8cm}$ con la condición inicial $\hspace{0.5cm} y(1) = \dfrac{1}{2}$
  1. Resuelve las siguientes ecuaciones de Riccati.
  • $x^{3} \dfrac{dy}{dx} = x^{4}y^{2} -2x^{2}y -1 \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} y_{1} = \dfrac{1}{x^{2}}$
  • $\dfrac{dy}{dx} = xy^{2} + y + \dfrac{1}{x^{2}} \hspace{0.8cm}$ con solución particular $\hspace{0.5cm} y_{1} = -\dfrac{1}{x}$
  1. Demuestra que la sustitución

$$y(x) = y_{1}(x) + u(x)$$

convierte a una ecuación de Riccati en una ecuación de Bernoulli.

Más adelante…

Con esta entrada concluimos el estudio de las ecuaciones diferenciales de primer orden, a lo largo de la unidad vimos una descripción cualitativa y posteriormente una descripción analítica en la que desarrollamos varios métodos para resolver ecuaciones diferenciales tanto lineales como no lineales. Lo natural es continuar con el estudio de las ecuaciones diferenciales de segundo orden pero antes es importante hacer un estudio con mayor detalle sobre el teorema de existencia y unicidad con el cual justificaremos toda la teoría desarrollada a lo largo de la unidad.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones diferenciales exactas

Introducción

Hemos comenzado con el estudio de las ecuaciones diferenciales no lineales de primer orden, en la entrada anterior presentamos las ecuaciones de variables separables y las ecuaciones homogéneas, en esta entrada presentaremos las ecuaciones diferenciales exactas.

Ecuaciones diferenciales exactas

Definición: Si $z = f(x, y)$ es una función de dos variables con primeras derivadas parciales continuas en una región $U$ del plano $XY$, entonces su diferencial es

\begin{align}
dz = \dfrac{\partial f}{\partial x}dx + \dfrac{\partial f}{\partial y}dy \tag{1} \label{1}
\end{align}

Existe un caso especial en el que $f(x, y) = c$, donde $c$ es una constante, en este caso la diferencial, de acuerdo a la ecuación (\ref{1}), es

\begin{align}
\dfrac{\partial f}{\partial x}dx + \dfrac{\partial f}{\partial y}dy = 0 \tag{2} \label{2}
\end{align}

Esto significa que dada una familia de curvas $f(x, y) = c$ es posible generar una ecuación diferencial de primer orden si se calcula la diferencial de ambos lados de la igualdad.

Ejemplo: Sea $f(x, y) = 8x^{2}y -x^{3} + y^{2} = c$ una familia de curvas, calcular su diferencial.

Solución: De acuerdo a la definición de la diferencial de una función de dos variables (\ref{1}), necesitamos calcular $\dfrac{\partial f}{\partial x}$ y $\dfrac{\partial f}{\partial y}$, por una lado

$$\dfrac{\partial f}{\partial x} = 16xy -3x^{2}$$

Y por otro lado

$$\dfrac{\partial f}{\partial y} = 8x^{2} + 2y$$

Por lo tanto, la diferencial de la función $f(x, y) = 8x^{2}y -x^{3} + y^{2} = c$ es

$$(16xy -3x^{2}) dx + (8x^{2} + 2y) dy = 0$$

$\square$

Definición: Una expresión diferencial $M(x, y) dx + N(x, y) dy$ es una diferencial exacta en una región $U$ del plano $XY$ si ésta corresponde a la diferencial de alguna función $f(x, y)$ definida en $U$.

En el ejemplo anterior vimos que $(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$ corresponde a la diferencial de la función $f(x, y) = 8x^{2}y -x^{3} + y^{2}$, por lo tanto $(16xy -3x^{2}) dx + (8x^{2} + 2y) dy$ es una diferencial exacta.

No todas las ecuaciones de primer orden escritas en la forma $M(x, y) dx + N(x, y) dy = 0$ corresponden a una diferencial de alguna función $f(x, y) = c$, pero en el caso de serlo entonces la función $f(x, y) = c$ sería una solución implícita de la ecuación $M(x, y) dx + N(x, y) dy = 0$. Este tipo de ecuaciones tienen un nombre especial.

Definición: Una ecuación diferencial de primer orden de la forma

\begin{align}
M(x, y) dx + N(x, y) dy = 0 \tag{3} \label{3}
\end{align}

se dice que es una ecuación exacta si la expresión del lado izquierdo es una diferencial exacta.

Ejemplo: Sea la función $f(x, y) = e^{x} + xy + e^{y} = c$ una familia de curvas. Mostrar que la ecuación diferencial $(e^{x} + y)dx + (e^{y} + x)dy = 0$ es una ecuación exacta con respecto a la función $f(x, y)$.

Solución: Para verificar que es una ecuación exacta debemos verificar que el término $(e^{x} + y)dx + (e^{y} + x)dy$ sea una diferencial exacta.

Consideremos a la función $f(x, y) = e^{x} + xy + e^{y} = c$, por un lado

$$\dfrac{\partial f}{\partial x} = e^{x} + y$$

Y por otro lado

$$\dfrac{\partial f}{\partial y} = e^{y} + x$$

Por lo tanto, la diferencial de la función $f(x, y) = e^{x} + xy + e^{y} = c$ es

$$(e^{x} + y)dx + (e^{y} + x)dy = 0$$

esto nos indica que el término $(e^{x} + y)dx + (e^{y} + x)dy$ es una diferencial exacta ya que corresponde a la diferencial de la función $f(x, y) = e^{x} + xy + e^{y} = c$. Por lo tanto, la ecuación $(e^{x} + y)dx + (e^{y} + x)dy = 0$ es una ecuación exacta. No sólo hemos mostrado que es una ecuación exacta sino que incluso ahora podemos decir que la ecuación $e^{x} + xy + e^{y} = c$ es una solución implícita de la ecuación diferencial.

$\square$

En este ejemplo hemos dado a la función $f(x, y) = c$ pero, como puedes notar, dada una ecuación diferencial exacta resolverla implica hallar dicha función $f$. Entonces, ¿cómo podemos saber si una ecuación diferencial es exacta si previamente no se conoce la función $f(x, y) = c$? y en caso de que de alguna manera seamos capaces de mostrar que la ecuación diferencial es exacta, ¿cómo podemos hallar a la función $f(x, y) = c$?.

Antes de aprender a resolver las ecuaciones diferenciales exactas veamos un teorema que nos permite saber si la ecuación diferencial es exacta o no. Si la ecuación es exacta entonces tenemos garantizado la existencia de una función $f$ tal que $f(x, y) = c$, dicha función será la solución a la ecuación exacta.

Teorema (Criterio para una diferencial exacta): Sean $M(x, y)$ y $N(x, y)$ funciones continuas y con primeras derivadas parciales continuas en una región rectangular $U$ definida por $a < x <b$ y $c < y < d$. Entonces, una condición necesaria y suficiente para que $M(x, y) dx + N(x, y) dy$ sean una diferencial exacta es que

\begin{align}
\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x} \tag{4} \label{4}
\end{align}

Demostración: Supongamos que $M(x, y) dx + N(x, y) dy$ es exacta, entonces por definición existe alguna función $f$ tal que para toda $x$ en $U$ se satisface lo siguiente

$$M(x, y) dx + N(x, y) dy = \dfrac{\partial f}{\partial x} dx + \dfrac{\partial f}{\partial y} dy$$

para cumplir la igualdad se debe satisfacer que $M(x, y) = \dfrac{\partial f}{\partial x}$ y $N(x, y) = \dfrac{\partial f}{\partial y}$.

Si derivamos parcialmente la expresión $M(x, y) = \dfrac{\partial f}{\partial x}$ con respecto a $y$ en ambos lados obtenemos

\begin{align*}
\dfrac{\partial M}{\partial y} = \dfrac{\partial }{\partial y} \left( \dfrac{\partial f}{\partial x} \right)
= \dfrac{\partial^{2} f}{\partial y \partial x}
= \dfrac{\partial^{2} f}{\partial x \partial y}
= \dfrac{\partial }{\partial x} \left( \dfrac{\partial f}{\partial y} \right)
= \dfrac{\partial N}{\partial x}
\end{align*}

Donde $\dfrac{\partial^{2} f}{\partial y \partial x} = \dfrac{\partial^{2} f}{\partial x \partial y}$ se cumple debido a que las primeras derivadas parciales de $M(x, y)$ y $N(x, y)$ son continuas en $U$.

Si es posible encontrar una función $f$ para la que $M(x, y) = \dfrac{\partial f}{\partial x}$ y $N(x, y) = \dfrac{\partial f}{\partial y}$ entonces la condición $\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$ es necesaria y suficiente. Encontrar la función $f$ en realidad corresponde a un método de resolución de ecuaciones exactas y lo desarrollaremos a continuación.

$\square$

Solución a las ecuaciones exactas

La ecuación diferencial que queremos resolver es una ED de la forma

$$M(x, y) dx + N(x, y) dy = 0$$

Por el teorema anterior sabemos que siempre y cuando se cumpla que $\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$, entonces debe existir una función $f$ para la que

\begin{align*}
\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)
\end{align*}

Para obtener la función $f(x, y)$ debemos integrar la primer ecuación con respecto a $x$ manteniendo a $y$ constante o integrar la segunda ecuación con respecto a $y$ manteniendo a $x$ constante, vamos a hacer el primer caso y como tarea moral realiza el siguiente procedimiento tomando el segundo caso, notarás que el resultado es equivalente.

Tomando el primer caso, vamos a integrar la primer ecuación con respecto a $x$

\begin{align*}
\int{\dfrac{\partial f}{\partial x} dx} &= \int{M(x, y) dx} \\
f(x, y) &= \int{M(x, y) dx} + g(y) \tag{5} \label{5} \\
\end{align*}

Donde usamos el teorema fundamental del cálculo y la función $g(y)$ corresponde a la constante de integración, es constante en $x$ pero sí puede variar en $y$ ya que en este caso la estamos considerando como una constante para hacer la integral. Ahora vamos a derivar este último resultado con respecto a $y$ y utilizar el hecho de que $\dfrac{df}{dy} = N(x, y)$.

\begin{align*}
\dfrac{\partial f}{\partial y} &= \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx} + g(y) \right) \\
&= \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) + \dfrac{dg}{dy} \\
&= N(x, y)
\end{align*}

De la última igualdad despejamos $\dfrac{dg}{dy} = g^{\prime}(y)$

\begin{align}
g^{\prime}(y) = N(x, y) -\dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \tag{6} \label{6}
\end{align}

Lo que nos interesa en obtener la función $f(x, y)$, así que podemos integrar la ecuación (\ref{6}) con respecto a $y$ y sustituir $g(y)$ en la ecuación (\ref{5}). Como sabemos, la solución implícita es $f(x, y) = c$. Integremos la ecuación (\ref{6}).

\begin{align}
g(y) = \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} \tag{7} \label{7}
\end{align}

Sustituimos la ecuación (\ref{7}) en la ecuación (\ref{5}) e igualamos el resultado a la constante $c$.

\begin{align}
f(x, y) = \int{M(x, y) dx} + \int{N(x, y) dy} -\int{ \left[ \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) \right] dy} = c \tag{8} \label{8}
\end{align}

De esta manera habremos encontrado una solución implícita de la ecuación diferencial exacta. Como siempre, no se recomienda memorizar esta expresiones sino seguir una serie de pasos para resolver las ecuaciones. Más adelante desarrollaremos estos pasos a seguir.

Una observación interesante es que la función $g^{\prime}(y)$ es independiente de $x$, la manera de comprobarlo es con el siguiente resultado

\begin{align*}
\dfrac{\partial g}{\partial x} &= \dfrac{\partial}{\partial x} \left[ N(x, y) -\dfrac{\partial}{\partial y} \left( \int{M(x, y) dx}\right) \right] \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial x} \left(\dfrac{\partial}{\partial y}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial}{\partial y} \left(\dfrac{\partial}{\partial x}\int{M(x, y) dx}\right) \\
&= \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \\
&= 0
\end{align*}

Las ecuaciones (\ref{5}), (\ref{7}) y (\ref{8}) son el resultado de tomar el primer caso, si realizas el segundo caso en el que a la ecuación $\dfrac{\partial f}{\partial y} = N(x, y)$ la integras con respecto a $y$ y al resultado lo derivas con respecto a $x$ obtendrás las expresiones análogas a (\ref{5}), (\ref{7}) y (\ref{8}), dichas expresiones son:

\begin{align}
f(x, y) &= \int{N(x, y) dy} + h(x) \tag{9} \label{9}
\end{align}

\begin{align}
h(x) = \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left(\int{N(x, y) dy}\right) \right] dx} \tag{10} \label{10}
\end{align}

y

\begin{align}
f(x, y) = \int{N(x, y) dy} + \int{M(x, y) dx} -\int{ \left[ \dfrac{\partial}{\partial x} \left(\int{N(x, y) dy}\right) \right] dx} = c \tag{11} \label{11}
\end{align}

Método de solución de ecuaciones diferenciales exactas

No se recomienda memorizar las formulas, en su lugar se propone realizar una serie de pasos que nos permitan resolver las ecuaciones diferenciales. En este caso presentamos la siguiente serie de pasos que se recomiendan seguir para resolver una ecuación diferencial exacta.

  1. El primer paso es verificar que la ecuación diferencial $M(x, y) dx + N(x, y) dy = 0$ sea exacta para garantizar la existencia de la función $f$, tal que $f(x, y) = c$. Para verificar este hecho usamos el criterio para una diferencial exacta que consiste en verificar que se cumple la relación

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

  1. Una vez que verificamos que la ecuación es exacta, tenemos garantizado que existe una función $f$ tal que $f(x, y) = c$ es una solución implícita de la ecuación diferencial. Para determinar dicha función definimos

\begin{align*}
\dfrac{\partial f}{\partial x} = M(x, y) \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y)
\end{align*}

  1. El siguiente paso es integrar alguna de las ecuaciones anteriores en su respectiva variable, se recomienda integrar la que sea más sencilla de resolver, de esta manera tendremos

\begin{align*}
f(x, y) &= \int{M(x, y) dx} + g(y) \hspace{1cm} o \hspace{1cm} f(x, y) = \int{N(x, y) dy} + h(x)
\end{align*}

  1. Después derivamos parcialmente a la función $f(x, y)$ con respecto a la variable $y$ o $x$ según la elección hecha en el paso anterior de manera que obtengamos los siguientes resultados.

$$\dfrac{\partial f}{\partial y} = \dfrac{\partial}{\partial y} \left(\int{M(x, y) dx}\right) + \dfrac{dg}{dy} = N(x, y)$$

o bien

$$\dfrac{\partial f}{\partial x} = \dfrac{\partial}{\partial x} \left(\int{N(x, y) dy}\right) + \dfrac{dh}{dx} = M(x, y)$$

  1. De los resultados anteriores obtendremos una expresión para $\dfrac{dg}{dy}$ o para $\dfrac{dh}{dx}$, debemos integrar estas expresiones para obtener las funciones $g(y)$ o $h(x)$.
  1. El último paso es sustituir las funciones $g(y)$ o $h(x)$ en la ecuación $f(x, y) = c$ lo que nos devolverá en general una solución implícita de la ecuación diferencial exacta.

Veamos un ejemplo en el que apliquemos este método para que todo quede más claro.

Ejemplo: Resolver la ecuación diferencial $(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$

Solución: La ecuación que queremos resolver es de la forma $M(x, y) dx + N(x, y) dy = 0$, comparando ambas ecuaciones podemos establecer que

\begin{align*}
M(x, y) = 4 x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} N(x, y) = 4y^{3} -4x^{2}y + x
\end{align*}

De acuerdo al método de resolución de ecuaciones diferenciales exactas, el primer paso es verificar que la ecuación es exacta, para ello veamos que se satisface la ecuación (\ref{4}).

\begin{align*}
\dfrac{\partial M}{\partial y} = -8xy + 1 \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x}= -8xy +1
\end{align*}

De ambos resultados verificamos que

$$\dfrac{\partial M}{\partial y} = \dfrac{\partial N}{\partial x}$$

Por lo tanto, la ecuación diferencial sí es exacta, esto nos garantiza la existencia de una función $f$ tal que $f(x, y) = c$ es solución, entonces podemos definir

\begin{align*}
\dfrac{\partial f}{\partial x} = M(x, y) = 4x^{3} -4xy^{2} + y \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N(x, y) = 4y^{3} -4x^{2}y + x
\end{align*}

El tercer paso nos indica que debemos integrar una de las ecuaciones anteriores, en este caso elegiremos integrar la ecuación $\dfrac{\partial f}{\partial x} = 4x^{3} -4xy^{2} + y$ con respecto a la variable $x$.

\begin{align*}
\int{ \dfrac{\partial f}{\partial x} dx} &= \int{ ( 4x^{3} -4xy^{2} + y) dx}
\end{align*}

Del lado izquierdo aplicamos el teorema fundamental del cálculo y del lado derecho resolvemos la integrar, el resultado es

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + g(y)$$

Recuerda que la función $g(y)$ es la constante que engloba a todas las constantes que aparecen al integrar y decimos que es constante porque no depende de la variable $x$ pero es posible que pueda depender de la variable $y$.

El cuarto paso es derivar la última ecuación con respecto a la variable $y$ ya que deseamos conocer a $\dfrac{dg}{dy} = g^{\prime}(y)$.

$$\dfrac{\partial f}{\partial y} = -4x^{2}y + x + \frac{dg}{dy}$$

Y sabíamos que

$$\dfrac{\partial f}{\partial y} = 4y^{3} -4x^{2}y + x$$

Igualando ambas ecuaciones obtenemos lo siguiente

$$-4x^{2}y + x + \dfrac{dg}{dy} = 4y^{3} -4x^{2}y + x$$

Para que esta igualdad se cumpla es necesario que

$$\dfrac{dg}{dy} = 4y^{3}$$

Ahora que ya conocemos a $\dfrac{dg}{dy} = g^{\prime}(y)$, la integramos con respecto a $y$. Esto corresponde al penúltimo paso.

\begin{align*}
\int {\dfrac{dg}{dy} dy} &= {\int 4y^{3} dy} \\
g(y) &= y^{4}
\end{align*}

El último paso es sustituir el resultado $g(y)$ en la función $f(x, y) = c$. En la integración anterior omitimos a las constantes porque podemos englobarlas en la constante $c$.

$$f(x,y) = x^{4} -2x^{2}y^{2} + xy + y^{4} = c$$

de donde

$$(x^{2} -y^{2})^{2} + xy= c$$

Por lo tanto, la solución (implícita) de la ecuación diferencial exacta

$$(4 x^{3} -4xy^{2} + y) dx + (4y^{3} -4x^{2}y + x) dy = 0$$

es

$$(x^{2} -y^{2})^{2} + xy= c$$.

$\square$

¿Y que ocurre si la ecuación diferencial no cumple con el criterio de diferencial exacta?. Cundo una ecuación no es exacta es posible hallar una función, que al multiplicarla por la ecuación, ésta se vuelva exacta, si esto ocurre a dicha función la llamamos factor integrante. ¿Te resulta familiar este nombre?.

Factores integrantes

En entradas anteriores vimos que multiplicar la ecuación diferencial lineal

$$\dfrac{dy}{dx} + P(x)y = Q(x)$$

por un factor integrante $\mu(x)$ hace que el lado izquierdo de la ecuación sea igual a la derivada del producto de $\mu(x)$ con $y(x)$ permitiendo resolver la ecuación con sólo integrar, esta idea de multiplicar por un factor integrante también nos será de ayuda al trabajar con ecuaciones diferenciales de la forma $M(x, y) dx + N(x, y) dy = 0$ que no son exactas. Lo que se espera es que multiplicando por un factor integrante $\mu (x, y)$ a la ecuación no exacta ésta se vuelva una ecuación exacta.

Consideremos la ecuación

$$M(x, y) dx + N(x, y) dy = 0$$

pero que no es exacta, esto significa que el lado izquierdo de la ecuación no corresponde a la diferencial de alguna función $f(x, y)$. Supongamos que existe una función $\mu (x, y)$ tal que al multiplicar la ecuación diferencial por esta función se convierta en una ecuación diferencial exacta. Es decir, la ecuación

$$\mu (x, y) M(x, y) dx + \mu (x, y) N(x, y) dy = 0$$

ahora es exacta y puede ser resuelta con el método anteriormente descrito. Lo que veremos ahora es un método para encontrar este factor integrante $\mu (x, y)$.

Supongamos que la ecuación diferencial exacta que queremos resolver es

\begin{align}
\mu (x, y) M(x, y) dx + \mu (x, y) N(x, y) dy = 0 \tag{12} \label{12}
\end{align}

Por el criterio de diferencial exacta, la ecuación (\ref{12}) es una ecuación exacta si

$$\dfrac{\partial (\mu M)}{\partial y} = \dfrac{\partial (\mu N)}{\partial x}$$

Usando la regla del producto, la ecuación anterior se puede escribir como

$$\mu \dfrac{\partial M}{\partial y} + \dfrac{\partial \mu}{\partial y} M = \mu \dfrac{\partial N}{\partial x} + \dfrac{\partial \mu}{\partial x} N$$

Reordenando los términos obtenemos la siguiente expresión

\begin{align}
\dfrac{\partial \mu}{\partial x} N -\dfrac{\partial \mu}{\partial y} M = \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{13} \tag{13}
\end{align}

La dificultad al intentar determinar la incógnita $\mu (x, y)$ de la ecuación anterior es que debemos resolver una ecuación diferencial parcial lo cual en este momento no sabemos hacer, para simplificar el problema vamos a considerar la hipótesis de que la función $\mu$ es dependiente de sólo una variable, consideremos por ejemplo que $\mu$ depende sólo de $x$, así se cumple que $\dfrac{\partial \mu}{\partial x} = \dfrac{d \mu}{dx}$ y $\dfrac{\partial \mu}{\partial y} = 0$, con esto la ecuación (\ref{13}) se puede escribir como

\begin{align}
\dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) \mu \label{14} \tag{14}
\end{align}

Seguimos en problemas si el cociente $\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$ depende tanto de $x$ como de $y$. En el caso en el que dicho cociente sólo es dependiente de $x$, entonces la ecuación es separable así como lineal.

Supongamos que la ecuación (\ref{14}) sólo depende de la variable $x$, entonces dividimos toda la ecuación por $\mu$ para separar las variables

\begin{align*}
\dfrac{1}{\mu} \dfrac{d \mu}{dx} = \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)
\end{align*}

Ahora integremos ambos lados de la ecuación con respecto a la variable $x$

\begin{align*}
\int{ \dfrac{1}{\mu}\dfrac{d \mu}{dx} dx} &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \\
\ln|\mu (x)| &= \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx
\end{align*}

Apliquemos la exponencial en ambos lados de la ecuación

\begin{align}
\mu (x) &= exp \left[ \int \dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx \right] \label{15} \tag{15}
\end{align}

Por su puesto, es totalmente análogo el caso en el que el factor integrante es sólo función de la variable $y$, en este caso se cumple que $\dfrac{\partial \mu}{\partial x} = 0$ y $\dfrac{\partial \mu}{\partial y} = \dfrac{d \mu}{dy}$, de manera que la ecuación (\ref{13}) queda de la siguiente manera

\begin{align}
\dfrac{d \mu}{dy} = \dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) \mu \label{16} \tag{16}
\end{align}

En el caso en el que el coeficiente $\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$ sólo dependa de la variable $y$ entonces se puede resolver la ecuación (\ref{16}) obteniendo

\begin{align}
\mu (y) = exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right] \label{17} \tag{17}
\end{align}

Resumiendo, para el caso en el que la ecuación diferencial $M(x, y) dx + N(x, y) dy = 0$ no es exacta probamos los siguientes dos casos:

  • Si $\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$ es una función sólo de $x$, entonces un factor integrante para la ecuación (\ref{12}) es:

$$\mu (x) = exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right]$$

  • Si $\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$ es una función sólo de $y$, entonces un factor integrante para la ecuación (\ref{12}) es:

$$\mu (y) = exp \left[ \int{\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) dy} \right]$$

Realicemos un ejemplo para aclarar dudas.

Ejemplo: Resolver la siguiente ecuación diferencial no exacta.

$$\left( 1 -\dfrac{y}{x} e^{\frac{y}{x}} \right) dx + e^{\frac{y}{x}} dy = 0$$

Solución: Primero vamos a verificar que no es una ecuación exacta, definamos

\begin{align*}
M(x, y) = 1 -\dfrac{y}{x} e^{\frac{y}{x}} \hspace{1cm} y \hspace{1cm} N(x, y) = e^{\frac{y}{x}}
\end{align*}

Calculando las derivadas parciales correspondientes tenemos

\begin{align*}
\dfrac{\partial M}{\partial y} = -\dfrac{1}{x} e^{\frac{y}{x}} -\dfrac{y}{x^{2}} e^{\frac{y}{x}} \hspace{1cm} y \hspace{1cm} \dfrac{\partial N}{\partial x} = -\dfrac{y}{x^{2}} e^{\frac{y}{x}}
\end{align*}

Vemos que no son iguales, por lo tanto la ecuación diferencial no es exacta. Para hacerla exacta debemos encontrar un factor integrante que dependa de $x$ o de $y$, para ello primero debemos ver si el cociente $\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$ es una función sólo de $x$ o si el cociente $\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right)$ es una función sólo de $y$. Calculemos ambos cocientes usando los resultados anteriores.

$$\dfrac{1}{M} \left( \dfrac{\partial N}{\partial x} -\dfrac{\partial M}{\partial y} \right) = \left( 1 -\dfrac{y}{x} e^{\frac{y}{x}} \right)^{-1} \left( -\dfrac{y}{x^{2}} e^{\frac{y}{x}} + \dfrac{1}{x} e^{\frac{y}{x}} + \dfrac{y}{x^{2}} e^{\frac{y}{x}} \right) = \dfrac{\dfrac{1}{x} e^{\frac{y}{x}}}{1 -\dfrac{y}{x} e^{\frac{y}{x}}}$$

y

$$\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) = e^{-\frac{y}{x}} \left( -\dfrac{1}{x} e^{\frac{y}{x}} -\dfrac{y}{x^{2}} e^{\frac{y}{x}} + \dfrac{y}{x^{2}} e^{\frac{y}{x}} \right) = -\dfrac{1}{x}$$

Es claro que el cociente que nos sirve es $\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right)$ ya que éste es el cociente que sólo depende de la variable $x$. Ahora calculemos el factor integrante

\begin{align*}
\mu (x) &= exp \left[ \int{\dfrac{1}{N} \left( \dfrac{\partial M}{\partial y} -\dfrac{\partial N}{\partial x} \right) dx} \right] \\
&= exp \left[\int{-\dfrac{1}{x}} dx \right] \\
&= -e^{\ln |x|} \\
&= x^{-1}
\end{align*}

Por lo tanto, el factor integrante es $\mu (x)= \dfrac{1}{x}$. Multipliquemos ambos lados de la ecuación original por el factor integrante

\begin{align*}
\dfrac{1}{x} \left( 1 -\dfrac{y}{x} e^{\frac{y}{x}} \right) dx + \dfrac{1}{x} e^{\frac{y}{x}} dy &= 0 \\
\left( \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{\frac{y}{x}} \right) dx +\dfrac{1}{x} e^{\frac{y}{x}} dy &= 0
\end{align*}

Veamos que en efecto la última expresión corresponde a una ecuación diferencial exacta, para ello establecemos

\begin{align*}
M_{1}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{\frac{y}{x}} \hspace{1cm} y \hspace{1cm} N_{1}(x, y) = \dfrac{1}{x} e^{\frac{y}{x}}
\end{align*}

Calculando las derivadas parciales correspondientes tenemos

\begin{align*}
\dfrac{\partial M_{1}}{\partial y} = -\dfrac{1}{x^{2}} e^{\frac{y}{x}} -\dfrac{y}{x^{3}} e^{\frac{y}{x}} \hspace{1cm} y \hspace{1cm} \dfrac{\partial N_{1}}{\partial x} = -\dfrac{1}{x^{2}} e^{\frac{y}{x}} -\dfrac{y}{x^{3}} e^{\frac{y}{x}}
\end{align*}

En efecto

$$\dfrac{\partial M_{1}}{\partial y} = \dfrac{\partial N_{1}}{\partial x}$$

Entonces ahora la ecuación sí es exacta, esto nos garantiza que existe una función $f$ tal que $f(x, y) = c$ es solución a la ecuación, dicha función debe satisfacer que

\begin{align*}
\dfrac{\partial f}{\partial x} = M_{1}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{\frac{y}{x}} \hspace{1cm} y \hspace{1cm} \dfrac{\partial f}{\partial y} = N_{1}(x,y) = \dfrac{1}{x} e^{\frac{y}{x}}
\end{align*}

Es nuestra elección que ecuación integrar pero es claro que la función $N_{1} = \dfrac{1}{x} e^{\frac{y}{x}}$ es la más sencilla de integrar, así que integremos esta ecuación con respecto a $y$

\begin{align*}
\int{ \dfrac{\partial f}{\partial y} dy} &= \int{ \dfrac{1}{x} e^{\frac{y}{x}} dy} \\
f(x, y) &= e^{\frac{y}{x}} + h(x)
\end{align*}

Derivemos parcialmente este resultado con respecto a la variable $x$

$$\dfrac{\partial f}{\partial x} = -\dfrac{y}{x^{2}} e^{\frac{y}{x}} + \dfrac{dh}{dx}$$

Sabemos que $\dfrac{\partial f}{\partial x} = M_{1}(x, y) = \dfrac{1}{x} -\dfrac{y}{x^{2}} e^{\frac{y}{x}}$, igualemos ambas ecuaciones

$$\dfrac{1}{x} -\dfrac{y}{x^{2}} e^{\frac{y}{x}} = -\dfrac{y}{x^{2}} e^{\frac{y}{x}} + \dfrac{dh}{dx}$$

Para que se cumpla la igualdad es necesario que

$$\dfrac{dh}{dx} = \dfrac{1}{x}$$

Integremos esta ecuación con respecto a $x$ omitiendo las constantes

\begin{align*}
\int{ \dfrac{dh}{dx} dx} &= \int {\dfrac{1}{x} dx} \\
h(x) &= \ln |x|
\end{align*}

Sustituimos la función $h(x)$ en la función $f(x, y)$ e igualamos a una constante $c$

$$f(x, y) = e^{\frac{y}{x}} + \ln |x|= c$$

Apliquemos la función exponencial

\begin{align*}
e^{\left( e^{\frac{y}{x}} + \ln (x) \right)} &= e^{c} \\
e^{e^{\frac{y}{x}}} e^{\ln (x)} &= k \\
e^{e^{\frac{y}{x}}} x &= k
\end{align*}

Donde $k = e^{c}$. Por lo tanto, la solución a la ecuación diferencial

$$\left( 1 -\dfrac{y}{x} e^{\frac{y}{x}} \right) dx + e^{\frac{y}{x}} dy = 0$$

es

$$x e^{e^{\frac{y}{x}}} = k$$

$\square$

Hasta aquí concluimos nuestro estudio sobre las ecuaciones diferenciales exactas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resuelve las siguientes ecuaciones diferenciales exactas (verifica que son exactas).
  • $(2x -5y + 2)dx + (1- 6y -5x)dy = 0$
  • $\left( y -\dfrac{y}{x^{2}}e^{\frac{y}{x}} \right) dx + \left( x + \dfrac{1}{x}e^{\frac{y}{x}} \right) dy = 0$
  • $\left( \sin{y} + \dfrac{y}{x^{2}} \sin{\dfrac{y}{x}} \right) dx + \left( x \cos{y} -\dfrac{1}{x} \sin{\dfrac{y}{x}} \right) dy = 0$
  1. Resuelve las siguientes ecuaciones diferenciales no exactas.
  • $(e^{x} \cos{y}) dx + (-xe^{x} \sin{y}) dy = 0$
  • $(2x \sin{y} + ye^{xy}) dx + (x \cos{y} + e^{xy}) dy = 0$
  1. En el procedimiento realizado para resolver ecuaciones diferenciales exactas vimos que hay dos posibilidades para llegar a resultados equivalentes. Desarrolla el otro camino y deduce las expresiones (\ref{9}), (\ref{10}) y (\ref{11}).

Más adelante…

En nuestro estudio sobre la ecuaciones diferenciales no lineales de primer orden hemos estudiado las ecuaciones separables, las ecuaciones homogéneas y las ecuaciones exactas, para finalizar este tema en la siguiente entrada presentaremos la ecuación de Bernoulli, la ecuación de Riccati y finalmente haremos un breve resumen sobre las ecuaciones que hemos estudiado y su correspondiente método de resolución.

Entradas relacionadas

Ecuaciones Diferenciales l: Ecuaciones diferenciales NO lineales de primer orden, métodos de resolución

Introducción

Continuando con la teoría analítica sobre la resolución de ecuaciones diferenciales de primer orden, es momento de estudiar las ecuaciones diferenciales NO lineales de primer orden.

En entradas anteriores estudiamos las ecuaciones diferenciales lineales de primer orden, recordando la definición de ecuación diferencial lineal podemos decir que una ED que no satisface las propiedades de linealidad es entonces una ecuación diferencial NO lineal.

En esta entrada vamos a estudiar dos tipos de ED no lineales de primer orden conocidas como ecuaciones diferenciales separables y ecuaciones diferenciales homogéneas. Cabe mencionar que las ED no lineales homogéneas que estudiaremos en esta entrada no tienen que ver con las ED homogéneas que estudiamos con anterioridad así que será importante reconocer el tipo de ecuaciones con las que estemos trabajando.

Ecuaciones separables

Definición: Una ecuación diferencial de primer orden de la forma:

$$\dfrac{dy}{dx} = H(x, y)$$

se dice que es separable o que tiene variables separables siempre que $H(x, y)$ puede escribirse como el producto de una función de $x$ y una función de $y$:

\begin{align}
\dfrac{dy}{dx} = H(x, y) = g(x)h(y) \label{1} \tag{1}
\end{align}

Inmediatamente podemos darnos cuenta que no es una ecuación diferencial lineal debido a que en esta ocasión aparece una función dependiente de la variable dependiente $y$.

Veamos cómo encontrar la solución general a este tipo de ecuaciones.

Solución a ecuaciones separables

Por conveniencia vamos a definir la función $h(y) = \dfrac{1}{f(y)}$ de manera que la ecuación (\ref{1}) se puede reescribir como:

\begin{align}
\dfrac{dy}{dx} = \dfrac{g(x)}{f(y)} \label{2} \tag{2}
\end{align}

Esta ecuación la podemos reescribir como

\begin{align}
f(y) \dfrac{dy}{dx} = g(x) \label{3} \tag{3}
\end{align}

Puedes observar que en el lado derecho de la igualdad tenemos la función que depende de la variable dependiente $y$ mientras que en el lado izquierdo tenemos la función que depende de la variable independiente $x$, en esta situación decimos que hemos separado a la ecuación diferencial.

Es bastante común encontrar en la literatura que la ecuación (\ref{3}) se escribe como

\begin{align}
g(x) dx = f(y) dy \label{4} \tag{4}
\end{align}

Esta es la forma diferencial de la ecuación (\ref{2}), es una notación informal pero nos permite visualizar que hemos sido capaz de separar a las variables, el lado izquierdo sólo depende de $x$ mientras que el lado derecho sólo depende de $y$

Ahora se puede integrar ambos lados de la ecuación. Si consideramos la ecuación en la forma (\ref{3}) entonces integramos ambos lados con respecto a la variable $x$ (y si consideramos la ecuación en la forma (\ref{4}) integramos con respecto a la variable correspondiente).

\begin{align*}
\int f(y) \dfrac{dy}{dx} dx &= \int g(x) dx \\
\int f(y) dy &= \int g(x) dx
\end{align*}

Sólo es necesario que las antiderivadas

\begin{align}
F(y) = \int f(y) dy \label{5} \tag{5}
\end{align}

y

\begin{align}
G(x) = \int g(x) dx \label{6} \tag{6}
\end{align}

existan y puedan resolverse. Una vez resolvamos las integrales obtendremos una familia uniparamétrica de soluciones, que usualmente se expresa de manera implícita.

Método de separación de variables

De acuerdo a lo anterior, los siguiente pasos nos permiten resolver una ecuación diferencial separable:

  1. Dada una ecuación diferencial no lineal de primer orden, el primer paso es identificar si es posible modificar la ecuación de manera que podamos determinar una función $g = g(x)$ que sólo depende de la variable independiente y una función $f = f(y)$ que sólo depende de la variable dependiente y si esto es posible escribimos a la ecuación diferencial en la siguiente forma:

$$f(y) \dfrac{dy}{dx} = g(x)$$

  1. El segundo paso es integrar ambos lados de la ecuación con respecto a la variable $x$. Considera en todo momento las constantes de integración.

Nota: La ecuación $f(y) \dfrac{dy}{dx} = g(x)$ se puede escribir de manera informal como $g(x) dx = f(y) dy$, la ventaja de esta notación es que ya podemos integrar directamente sobre la variable correspondiente, es decir, $\int f(y) dy = \int g(x) dx$.

  1. Resolver la integral $\int f(y) dy$ nos dará a la función $y(x)$ que estamos buscando, ya sea de manera implícita o de manera explicita, si es de manera implícita en muchas ocasiones sí será posible despejar a la función $y$ para obtener la solución explícita, sin embargo recuerda que es totalmente válida una función implícita.

Para aplicar este método vamos a realizar un ejemplo en el que resolvamos una ecuación diferencial separable.

Ejemplo: Resolver la ecuación diferencial $\dfrac{dy}{dx} e^{y -x} = x$ con la condición inicial $y(0) = \ln(2)$.

Solución: El primer paso es determinar si la ecuación es separable, es decir, si podemos hallar las funciones $g(x)$ y $f(y)$. Vemos que

\begin{align*}
\dfrac{dy}{dx} e^{y -x} &= x \\
\dfrac{dy}{dx} e^{y} e^{-x} &= x \\
e^{y} \dfrac{dy}{dx} &= x e^{x}
\end{align*}

Ya logramos escribir a la ecuación en la forma (\ref{3}) donde podemos establecer que $g(x) = x e^{x}$ y $f(y) = e^{y}$. Usando la notación diferencial podemos escribir a la ecuación como

$$e^{y} dy = x e^{x} dx$$

Ahora podemos integrar ambos lados de la ecuación ante la respectiva variable.

\begin{align*}
\int {e^{y} dy} = \int {x e^{x} dx}
\end{align*}

Por un lado

\begin{align*}
\int {e^{y} dy} = e^{y} + k_{1}
\end{align*}

y por otro lado, para la integral $\int {x e^{x} dx}$ consideramos que $u(x) = x$ y $dv(x) = e^{x}$ e integramos por partes:

\begin{align*}
\int {x e^{x} dx} &= x e^{x} -\int{e^{x} dx} \\
&= x e^{x} -(e^{x} + k_{2})\\
&= x e^{x} -e^{x} -k_{2}
\end{align*}

Igualando ambos resultados tenemos lo siguiente:

\begin{align*}
e^{y} + k_{1} &= x e^{x} -e^{x} -k_{2} \\
e^{y} &= x e^{x} -e^{x} -k_{2} -k_{1} \\
e^{y} &= x e^{x} -e^{x} + c
\end{align*}

En donde $c = -k_{2} -k_{1}$. Por lo tanto la solución implícita es $e^{y} = x e^{x} -e^{x} + c$. Si se requiere conocer la solución explícita sólo tomamos el logaritmo natural.

$$y = \ln|x e^{x} -e^{x} + c|$$

Ahora podemos obtener la solución particular aplicando la condición inicial $y(0) = \ln(2)$

$y(0) = \ln|0 e^{0} -e^{0} + c| = \ln(2)$
$y(0) = \ln|0 -1 + c| = \ln(2)$
$\ln|c -1| = \ln(2)$

Aplicando la exponencial en ambos lados de la última ecuación tenemos

$$c -1= 2$$

De donde $c = 3$. Por lo tanto la solución particular es

$$e^{y} = x e^{x} -e^{x} + 3$$

O bien.

$$y = \ln| x e^{x} -e^{x} + 3|$$

En conclusión, la solución general a la ecuación diferencial

$$\dfrac{dy}{dx} e^{y -x} = x$$

es

$$y(x) = \ln|x e^{x} -e^{x} + c|$$

Y la solución particular dada por la condición inicial $y(0) = \ln(2)$ es

$$y(x) = \ln| x e^{x} -e^{x} + 3|$$

$\square$

Este tipo de ecuaciones son muy sencillas de resolver, prácticamente se resuelven aplicando una integración directa. Veamos ahora las ecuaciones diferenciales no lineales homogéneas, lo interesante de este tipo de ecuaciones es que si hacemos el cambio de variable adecuado las podremos reducir a una ecuación separable las cuales ya sabemos resolver.

Ecuaciones homogéneas

Definición: Una ecuación diferencial homogénea es de la forma

\begin{align}
M(x, y) dx + N(x, y) dy = 0 \label{7} \tag{7}
\end{align}

donde $M$ y $N$ tienen la propiedad de que para todo $t > 0$, la sustitución de $x$ por $tx$ y la de $y$ por $ty$ hacen que $M$ y $N$ sean del mismo grado $n$, esto es:

\begin{align}
M(tx, ty) = t^{n} M(x, y) \label{8} \tag{8}
\end{align}

\begin{align}
N(tx, ty) = t^{n} N(x, y) \label{9} \tag{9}
\end{align}

De tus cursos de álgebra recordarás que un polinomio homogéneo es aquel en los que todos los términos son del mismo grado, por ejemplo, el polinomio

$$x^{2}y^{2} -5xy^{3} + x^{4} -y^{4}$$

es un polinomio homogéneo de grado $4$ ya que la suma de los exponentes del primer término es $2 +2 = 4$, del segundo término es $1 + 3 = 4$ y evidentemente el exponente de los últimos dos términos es $4$. Es en este sentido que la ecuación $(\ref{7})$ se dice que es homogénea si se cumplen las ecuaciones (\ref{8}) y (\ref{9}) conjuntamente.

Este tipo de ecuaciones se pueden reducir a la forma de una ecuación separable y aplicando el procedimiento anterior es como podremos encontrar la solución a las ecuaciones diferenciales homogéneas.

Reducción de una ecuación homogénea a una de variables separables

La ecuación diferencial que queremos resolver es de la forma

$M(x, y) dx + N(x, y) dy = 0$

Por definición se cumple que

$\dfrac{M(tx, ty)}{N(tx, ty)} = \dfrac{M(x, y)}{N(x, y)}$

Si se considera el valor $t = \dfrac{1}{x}$, la ecuación anterior queda como

$\dfrac{M(x, y)}{N(x, y)} = \dfrac{M(tx, ty)}{N(tx, ty)} = \dfrac{M \left( 1, \dfrac{y}{x} \right) }{N \left( 1, \dfrac{y}{x} \right) } = f \left( \dfrac{y}{x} \right)$

Consideremos el cambio de variable $y = xu$, con $u = u(x)$ una función de la variable independiente $x$ y derivable. Si derivamos la función $y(x)$, aplicando la regla de la cadena obtenemos lo siguiente:

\begin{align}
\dfrac{dy}{dx} = u \dfrac{dx}{dx} + x \dfrac{du}{dx} = u + x \dfrac{du}{dx} \label{10} \tag{10}
\end{align}

Pero si $M(x, y) dx + N(x, y) dy = 0$ entonces

$$\dfrac{dy}{dx} = -\dfrac{M(x, y)}{N(x, y)} = -f \left( \dfrac{y}{x} \right) = -f(u)$$

es decir

\begin{align}
f(u) = -\dfrac{dy}{dx} \label{11} \tag{11}
\end{align}

Si en la ecuación (\ref{11}) sustituimos el resultado (\ref{10}), tenemos

\begin{align*}
f(u) &= -\left( u + x \dfrac{du}{dx} \right) \\
f(u) &= -u -x \dfrac{du}{dx} \\
f(u) + u &= -x \dfrac{du}{dx} \\
-\dfrac{1}{x} (f(u) + u) &= \dfrac{du}{dx}
\end{align*}

De manera que

\begin{align}
\dfrac{du}{dx} = \left( -\dfrac{1}{x} \right) \left( u + f(u) \right) \label{12} \tag{12}
\end{align}

Si definimos $g(x) = -\dfrac{1}{x}$ y $h(u) = u + f(u)$ entonces

\begin{align}
\dfrac{du}{dx} = g(x) h(u) \label{13} \tag{13}
\end{align}

Vemos que este resultado corresponde a la definición de una ecuación diferencial de variables separables. Si resolvemos esta ecuación usando el método de separación de variables podremos darle solución a las ecuaciones homogéneas.

Método de resolución a las ecuaciones diferenciales homogéneas

A continuación se establecen, como recomendación, los pasos a seguir para resolver una ecuación diferencial homogénea (\ref{7}).

  1. El primer paso es verificar que en efecto la ecuación sea homogénea, para ello verificamos que $M$ y $N$ sean del mismo grado, tal como se muestra en las ecuaciones (\ref{8}) y (\ref{9}).
  1. Una vez que comprobamos que la ecuación es homogénea, podemos reescribir a la ecuación (\ref{7}) como

\begin{align}
M(x, y) + N(x, y) \dfrac{dy}{dx} = 0 \label{14} \tag{14}
\end{align}

Y hacemos el cambio de variable $y = ux$ y $\dfrac{dy}{dx} = u + x \dfrac{du}{dx}$ y sustituimos en la ecuación (\ref{14}).

  1. Una vez que se hizo la correspondiente sustitución ya podremos separar las variables reduciendo el problema a una ecuación de variables separables.

Veamos un ejemplo de una ecuación diferencial no lineal homogénea.

Ejemplo: Verificar que la siguiente ecuación diferencial es homogénea, determinar su grado y resolver la ecuación.

$(x^{2} + y^{2}) dx -xy dy = 0$

Solución: Podemos identificar a las funciones $M$ y $N$ como $M(x, y) = x^{2} + y^{2}$ y $N(x, y) = -xy$. Para obtener el grado de la ecuación diferencial hagamos la sustitución $x$ por $tx$ y $y$ por $ty$.

$M(tx, ty) = (tx)^{2} + (ty)^{2} = t^{2} (x^{2} + y^{2}) = t^{2} M(x, y)$

Por otro lado

$N(tx, ty) = -(tx)(ty) = t^{2} (-xy) = t^{2} N(x, y)$

Se cumple entonces que

$M(tx, ty) = t^{2} M(x, y)$ $\hspace{1cm}$ y $\hspace{1cm}$ $N(tx, ty) = t^{2} N(x, y)$

Por lo tanto la ecuación sí es homogénea y el grado es $n = 2$. Ahora resolvamos la ecuación reduciéndola a la forma de una ecuación de variables separables.

De acuerdo al método de resolución, una vez que ya vimos que sí es homogénea, escribimos a la ecuación diferencial en la forma (\ref{14}).

$$(x^{2} + y^{2}) -(xy) \dfrac{dy}{dx} = 0$$

Ahora hacemos el cambio de variable $y = xu$ y $\dfrac{dy}{dx} = u + x \dfrac{du}{dx}$ y sustituimos en la ecuación diferencial.

$$\left( x^{2} + (xu)^{2} \right) -x(xu) \left( u + x \dfrac{du}{dx} \right) = 0$$

Ahora reducimos esta ecuación a una ecuación de variables separables.

\begin{align*}
\left( x^{2} + (xu)^{2} \right) -x(xu) \left( u + x \dfrac{du}{dx} \right) &= 0 \\
x^{2} + x^{2} u^{2} -x^{2}u \left( u + x \dfrac{du}{dx} \right) &= 0 \\
x^{2} + x^{2} u^{2} -x^{2}u^{2} -x^{3}u \dfrac{du}{dx} &= 0 \\
x^{2} -x^{3}u \dfrac{du}{dx} &= 0 \\
x^{2} \left( 1 -xu \dfrac{du}{dx} \right) &= 0 \\
\end{align*}

Para $x \neq 0$ tenemos

\begin{align*}
1 -xu \dfrac{du}{dx} &= 0 \\
xu \dfrac{du}{dx} &= 1 \\
u \dfrac{du}{dx} &= \dfrac{1}{x} \\
\end{align*}

Ya logramos separar a las variables. Podemos escribir la última igualdad en la forma diferencial

$$u du = \dfrac{1}{x}dx$$

Integrando ambos lados de la ecuación sobre la variable correspondiente tenemos

\begin{align*}
\int{u du} &= \int{\dfrac{dx}{x}} \\
\dfrac{u^{2}}{2} + k_{1} &= \ln|x| + k_{2} \\
\dfrac{u^{2}}{2} &= \ln|x| + k_{2} -k_{1} \\
u^{2} &= 2 \ln|x| + 2(k_{2} -k_{1}) \\
u^{2} &= 2 \ln|x| + c
\end{align*}

Donde $c = 2(k_{2} -k_{1})$, como $u = \dfrac{y}{x}$, sustituimos en el resultado anterior para regresar a nuestras variables originales.

\begin{align*}
\left( \dfrac{y}{x} \right) ^{2} &= 2\ln|x| + c \\
\dfrac{y^{2}}{x^{2}} &= 2\ln|x| + c \\
y^{2} &= x^{2} (2\ln|x| + c)
\end{align*}

Por lo tanto, la solución implícita de la ecuación diferencial $(x^{2} + y^{2}) dx -xy dy = 0$ es

$$y^{2}(x) = x^{2} (2\ln|x| + c)$$

Si deseamos obtener la solución explícita sacamos raíz cuadrada a la ecuación

$$|y(x)| = x \left( \sqrt{2 \ln|x| + c} \right)$$

$\square$

En entradas siguientes continuaremos con el estudio de ecuaciones diferenciales no lineales de primer orden, en particular, en la siguiente entrada estudiaremos las llamadas ecuaciones exactas.

Tarea Moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Resuelve las siguientes ecuaciones diferenciales separables:
  • $\dfrac{ds}{dt} = -sen(3t)$
  • $\dfrac{dy}{dx} = \dfrac{y}{1 + x^{2}}$
  1. Resolver las siguientes ecuaciones diferenciales homogéneas.
  • $(x -y)dx + xdy = 0$
  • $(y^{2} +yx)dx -x^{2}dy = 0$
  1. Resuelve los siguientes problemas con valores iniciales.
  • $\dfrac{dy}{dx} = e^{3x + 2y}$ $\hspace{1.7cm}$ con $\hspace{0.3cm}$ $y(0) = 0$
  • $\dfrac{ds}{dr} = \dfrac{cos^{2}(r)}{s^{2}} $ $\hspace{1.3cm}$ con $\hspace{0.3cm}$ $s(\pi) = -1$
  • $xy \dfrac{dy}{dx} = y^{3} -x^{3}$ $\hspace{1cm}$ con $\hspace{0.3cm}$ $y(1) = 2$

Más adelante …

En esta entrada estudiamos dos tipos de ecuaciones diferenciales no lineales de primer orden, las separables y las homogéneas. En este curso además de las ya vistas revisaremos las ecuaciones exactas, la ecuación de Bernoulli y la ecuación de Riccati. Dedicaremos la siguiente entrada al estudio de las ecuaciones diferenciales exactas.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones diferenciales lineales de primer orden y el teorema de existencia y unicidad

Introducción

En la entrada anterior estudiamos las ecuaciones diferenciales lineales de primer orden. Recapitulando, el tipo de ecuaciones que queremos resolver es

\begin{equation}
\dfrac{dy}{dx} + P(x) y = Q(x) \tag{1} \label{1}
\end{equation}

Vimos que la solución general $y(x)$ es la suma de la solución homogénea y la solución particular:

$$y(x) = y_{h}(x) + y_{p}(x)$$

La solución homogénea está dada como:

$$y_{h}(x) = k e^{- \int P(x) dx} = \dfrac{k}{\mu (x)}$$

mientras que la solución particular tiene la forma:

$$y_{p}(x) = e^{- \int{P(x) dx}} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right)$$

Donde $\mu (x)$ es el factor integrante, $\mu (x) = e^{\int{P(x) dx}}$

Así, la solución general a la ecuación diferencial (\ref{1}) es:

\begin{equation}
y(x) = k e^{-\int{P(x) dx}} + e^{-\int{P(x) dx}} \left(\int{e^{\int{P(x) dx}}Q(x) dx}\right) \tag{2} \label{2}
\end{equation}

O de forma más compacta

\begin{equation}
y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + k \right) \tag{3} \label{3}
\end{equation}

Con $\mu (x) = e^{\int{P(x) dx}}$.

En la entrada anterior mencionamos que hay dos métodos distintos para la obtención de la solución particular, ya presentamos el método por factor integrante, en este entrada vamos a desarrollar el método conocido como variación de parámetros.

Método de variación de parámetros

En la entrada anterior vimos que la solución a la ecuación homogénea

$$\dfrac{dy}{dx} + P(x) y = 0$$

es $y_{h}(x) = k e^{- \int P(x) dx}$. Vamos a suponer que para la ecuación

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

la solución particular es $y_{p}(x) = k(x) e^{- \int P(x) dx}$, en este caso $k$ es una función de $x$. Vamos a buscar la expresión explícita de $k(x)$, para ello vamos a sustituir $y_{p}$ en la ecuación diferencial.

\begin{align*}
\dfrac{dy_{p}}{dx} + P(x) y_{p} &= \dfrac{d}{dx} \left(k e^{- \int P(x) dx} \right) + P(x) k e^{- \int P(x) dx} \\
&= \left[k \dfrac{d}{dx} \left( e^{- \int P(x) dx} \right) + \dfrac{dk}{dx} e^{- \int P(x) dx}\right] + P(x) k e^{- \int P(x) dx} \\
&= – k P(x) e^{- \int P(x) dx} + \dfrac{dk}{dx} e^{- \int P(x) dx} + k P(x) e^{- \int P(x) dx} \\
&= \dfrac{dk}{dx} e^{- \int P(x) dx} \\
&= Q(x)
\end{align*}

De la última igualdad obtenemos que

$$\dfrac{dk}{dx} = e^{\int P(x) dx} Q(x)$$

Integrando ambos lados de la ecuación con respecto a $x$ tenemos

\begin{align*}
\int{\left( \dfrac{dk}{dx} \right) dx} &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
k(x) + c &= \int{ \left( e^{\int P(x) dx} Q(x) \right) dx} \\
k(x) &= \int{ e^{\int P(x) dx} Q(x) dx}
\end{align*}

Donde consideramos que $c = 0$. Sustituyendo el valor de $k(x)$ en la solución particular $y_{p} = k(x) e^{- \int P(x) dx}$ obtenemos finalmente que

$$y_{p}(x) = e^{- \int P(x) dx} \left( \int{e^{\int P(x) dx} Q(x) dx} \right)$$

Si sustituimos el factor integrante $\mu (x) = e^{\int P(x) dx}$ el resultado queda como

$$y_{p} = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} \right)$$

De esta manera recuperamos el mismo resultado que usando el método del factor integrante visto en la entrada anterior.

Algunas consideraciones

En esta sección queremos aclarar algunos puntos importantes sobre la resolución de ecuaciones diferenciales de primer orden lineales.

Al inicio de la entrada anterior vimos que la solución completa (o solución general) a la ecuación diferencial lineal $\dfrac{dy}{dx} + P(x) y = Q(x)$ es la suma de la solución homogénea $y_{h}(x)$ mas la solución particular $y_{p}(x)$, es importante reconocer este hecho ya que en muchas ocasiones la ecuación homogénea y por tanto la solución homogénea serán muy relevantes si estamos estudiando un fenómeno real, sin embargo, cuando nuestro objetivo es obtener la solución completa no es necesario obtener ambas soluciones por separado para después sumarlas, sino que podemos directamente intentar obtener la solución general. Obtener directamente la solución general está relacionado con la omisión de constantes de integración que hemos hecho, así que es momento de explicar qué está ocurriendo con estas constantes.

Te invito a que desarrolles de nuevo el método de factor integrante y de variación de parámetros pero ahora manteniendo a las constantes de integración, los cálculos serán un poco más extensos pero al final notarás que todas las constantes que resulten se pueden agrupar en una sola constante $C$, es así que en ambos métodos llegarás al siguiente resultado:

$$y(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} + C \right)$$

Donde $C$ es la constante resultante de juntar todas las contantes de integración que pudieran aparecer y $\mu$ es el factor integrante. Puedes notar que esta es la forma de la solución general que hemos obtenido anteriormente, es decir, si en ambos métodos mantenemos a las contantes de integración podemos obtener la solución general. Lo que nosotros hicimos anteriormente fue que la constante $k$ de la ecuación (\ref{3}) la asociábamos a la solución homogénea $y_{h}(x) = k e^{- \int P(x) dx}$ de manera que al sumar ambas soluciones ya obteníamos la solución general pero en realidad también se puede obtener de ambos métodos manteniendo a las constantes. Decidimos hacerlo así porque es importante el papel que pueden tomar por separado las soluciones homogénea y particular en algunas situaciones, además de que omitir las constantes evitó hacer cálculos extensos en ambos métodos.

Finalmente, como ya mencionamos antes, no se recomienda intentar resolver este tipo de ecuaciones usando las formulas obtenidas para las soluciones sino aplicar cada paso de cualquiera de los métodos desarrollados, sin embargo, a continuación presentamos una serie de pasos que se recomiendan seguir para la resolución de ecuaciones diferenciales lineales de primer orden.

Método para resolver ecuaciones lineales

Si bien es cierto que ya conocemos las formulas explícitas de las soluciones a las ecuaciones diferenciales lineales es conveniente seguir una serie de pasos para resolver este tipo de ecuaciones en lugar de sólo sustituir en las formulas y así evitar memorizarlas. Dichos pasos se describen a continuación.

  1. Escribir la ecuación lineal en la forma canónica

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

  1. Calcular el factor integrante $\mu (x)$ mediante la formula $\mu (x) = e^{\int{P(x) dx}}$.
  2. Multiplicar a la ecuación diferencial en su forma canónica por el factor integrante en ambos lados de la ecuación.

$$\mu (x) \dfrac{dy}{dx} + \mu (x) P(x) y = \mu (x) Q(x)$$

  1. Identificar que el lado izquierdo de la ecuación es la derivada de $\mu(x)$ por $y(x)$ y sustituir.

$$\dfrac{d}{dx} (\mu y) = \mu (x) Q(x)$$

  1. Integrar la última ecuación y dividir por $\mu (x)$ para obtener finalmente la solución general $y(x)$. En la última integración debemos considerar a la constante de integración.

Esta serie de pasos nos permiten obtener directamente la solución general de la ecuación diferencial lineal es por ello que en el último paso sí debemos considerar a la constante de integración, dicha constante representa el resultado de juntar todas las contantes que podremos omitir en pasos intermedios.

Anteriormente resolvimos algunas ecuaciones diferenciales en las que usando las formulas de las soluciones sólo sustituíamos las funciones correspondientes y sumábamos ambos resultados para obtener la solución general, veamos ahora un ejemplo en el que vamos a aplicar estos pasos para resolver la ecuación.

Ejemplo: Determinar la solución general de la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

Solución: Para resolver la ecuación diferencial vamos a seguir los pasos establecidos anteriormente. El primer paso será escribir a la ecuación en la forma canónica $\dfrac{dy}{dx} + P(x) y = Q(x)$:

\begin{align*}
\left( x^{2} +1 \right) \dfrac{dy}{dx} &= x^{2} + 2x -1 -4xy \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1 -4xy}{x^{2} +1} \\
\dfrac{dy}{dx} &= \dfrac{x^{2} + 2x -1}{x^{2} +1} -\left(\dfrac{4x}{x^{2} +1} \right) y\\
\dfrac{dy}{dx} + \left( \dfrac{4x}{x^{2} +1} \right) y &= \dfrac{x^{2} + 2x -1}{x^{2} +1}
\end{align*}

En la última relación ya podemos determinar que $P(x) = \dfrac{4x}{x^{2} +1}$ y $Q(x) = \dfrac{x^{2} + 2x -1}{x^{2} +1}$.

El segundo paso es determinar el factor integrante de acuerdo a la formula $\mu (x) = \large e^{\int{P(x) dx}}$

\begin{align*}
\mu (x) = e^{\int{P(x) xd}} = e^{\int{\left( \dfrac{4x}{x^{2} +1}\right) dx}}
\end{align*}

Vamos a resolver la integral

\begin{align*}
\int{\dfrac{4x}{x^{2} +1} dx} &= 4 \int{\dfrac{x}{x^{2} +1} dx} \\
&= \dfrac{4}{2} \ln{\left( x^{2} + 1 \right)} \\
&= 2 \ln{\left(x^{2} + 1\right)} \\
&= \ln{\left( x^{2} + 1\right)^{2}}
\end{align*}

Como se trata de un paso intermedio podemos omitir a la constante de integración. Sustituyendo en el factor integrante:

\begin{align*}
\mu (x) = e^{\ln{\left( x^{2} + 1\right)^{2}}} = \left( x^{2} + 1\right)^{2}
\end{align*}

Por lo tanto el factor integrante es: $\mu (x) = \left( x^{2} + 1\right)^{2}$

El tercer paso es multiplicar la ecuación diferencial en su forma canónica por el factor integrante:

\begin{align*}
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + \left( x^{2} + 1\right)^{2} \left( \dfrac{4x}{x^{2} +1} \right) y &= \left( x^{2} + 1\right)^{2} \left(\dfrac{x^{2} + 2x -1}{x^{2} +1}\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= \left( x^{2} + 1\right) \left(x^{2} + 2x -1\right) \\
\left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y &= x^{4} + 2x^{3} +2x -1
\end{align*}

El cuarto paso es identificar que

$$\dfrac{d}{dx}(\mu (x) y(x)) = \dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = \left( x^{2} + 1\right)^{2} \dfrac{dy}{dx} + 4x \left( x^{2} + 1\right) y$$

Así que ahora podemos escribir:

$$\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) = x^{4} + 2x^{3} +2x -1$$

El quinto y último paso es integrar esta relación por ambos lados con respecto a $x$, en esta última integración sí debemos considerar a la constante de integración.

\begin{align*}
\int{\dfrac{d}{dx}\left( y \left( x^{2} + 1\right)^{2}\right) dx} &= \int{\left( x^{4} + 2x^{3} +2x -1\right)}dx \\
y \left( x^{2} + 1\right)^{2} + k &= \int{\left( x^{4} + 2x^{3} +2x -1\right)} dx
\end{align*}

Resolvamos la integral.

\begin{align*}
\int{\left( x^{4} + 2x^{3} +2x -1\right)} dx &= \int{x^{4} dx} + \int{2x^{3} dx} + \int{2x dx} -\int{dx} \\
&= \dfrac{x^{5}}{5} + 2\left(\dfrac{x^{4}}{4}\right) + 2 \left(\dfrac{x^{2}}{2}\right) -x \\
&= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x
\end{align*}

Omitimos todas las constantes para englobarlas en la constante $K = -k$. Sustituyendo este resultado obtenemos que

\begin{align*}
y \left( x^{2} + 1\right)^{2} + k &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x \\
y\left( x^{2} + 1\right)^{2} &= \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \\
y(x) &= \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K \right)
\end{align*}

Por lo tanto, la solución general a la ecuación diferencial

$$\left( x^{2} +1 \right) \dfrac{dy}{dx} = x^{2} + 2x -1 -4xy$$

es

$$y(x) = \dfrac{1}{\left(x^{2} + 1\right)^{2}} \left( \dfrac{x^{5}}{5} + \dfrac{x^{4}}{2} + x^{2} -x + K\right)$$

Donde $K$ es la constante que engloba a todas las contantes de integración que omitimos.

$\square$

Para concluir el análisis de las ecuaciones diferenciales lineales de primer orden, presentaremos el teorema de existencia y unicidad para este tipo de ecuaciones.

Teorema de existencia y unicidad

Ya presentamos el teorema de existencia y unicidad para ecuaciones diferenciales de primer orden, podemos usar dicho resultado para justificar el teorema de existencia y unicidad para el caso de ecuaciones diferenciales lineales de primer orden.

Teorema: Consideremos la ecuación diferencial lineal

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Si $P(x)$ y $Q(x)$ son funciones continuas en un intervalo $\delta \subseteq \mathbb{R}$, entonces existe una única función $\gamma (x)$ tal que satisface el problema de valor inicial (PVI):

$$\dfrac{dy}{dx} + P(x) y = Q(x), \hspace{0.8cm} y(x_{0}) = y_{0}, \hspace{0.8cm} x_{0} \in \delta, \hspace{0.8cm} y_{0} \in Im(y).$$

Demostración: Consideremos la ecuación diferencial

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Reescribiendo esta ecuación en la forma normal tenemos que

$$\dfrac{dy}{dx} = Q(x) -P(x) y$$

Definimos

$$f(x, y) = Q(x) -P(x) y$$

De manera que

$$\dfrac{dy}{dx} = f(x, y)$$

Debido a que en un intervalo de solución $\delta$ debe satisfacerse que $P(x)$ y $Q(x)$ sean continuas entonces tenemos garantizado que $f(x, y) = Q(x) -P(x) y$ es continua y por tanto $\dfrac{\partial f}{\partial y}$ también lo es, con esto estamos cumpliendo las hipótesis del teorema de existencia y unicidad para ecuaciones diferenciales de primer orden que establecimos anteriormente, aplicando dicho teorema obtenemos que entonces existe algún intervalo $\delta_{0}: (x_{0} -h, x_{0} + h)$, $h > 0$, contenido en $\delta$, y una función única $\gamma (x)$, definida en $\delta_{0}$, que satisface la condición inicial $y(x_{0}) = y_{0}$.

$\square$

Apliquemos este resultado a la solución general. Consideremos la condición inicial $y(x_{0}) = y_{0}$ y la solución general a la ecuación (\ref{1})

\begin{align}
y(x) = \dfrac{1}{\mu (x)} \left( \int{ \mu (x) Q(x) dx} + k\right) \label{4} \tag{4}
\end{align}

A la solución vamos a aplicarle la condición inicial:

\begin{align}
y_{0} = y(x_{0}) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx}\Bigg|_{x =x_{0}} + k\right) \label{5} \tag{5}
\end{align}

De este resultado se puede despejar $k$ obteniendo un único valor, digamos $k = k_{0}$, por lo tanto la función

\begin{align}
\gamma (x) = \dfrac{1}{\mu (x_{0})} \left( \int{ \mu (x) Q(x) dx} + k_{0}\right) \label{6} \tag{6}
\end{align}

es solución al problema de valor inicial (PVI). Así para cada $x_{0} \in \delta_{0}$, encontrar una solución particular a la ecuación (\ref{4}) es exactamente lo mismo que encontrar un valor adecuado de $k$ en la ecuación (\ref{5}), es decir, a toda $x_{0} \in \delta_{0}$ le corresponde un distinto $k$.

Con esto damos por concluido el análisis de las ecuaciones diferenciales lineales de primer orden, en la siguiente entrada comenzaremos con el estudio de las ecuaciones diferenciales de primer orden que no son lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Realizando los pasos del método para resolver ecuaciones diferenciales lineales de primer orden, encuentra la solución general de las siguientes ecuaciones.
  • $3\dfrac{y}{x} -8 + 3\dfrac{dy}{dx} = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$
  • $\dfrac{dy}{dx} + cos(x) (y -1) = 0$
  1. Ya que conoces la solución general a la ecuación diferencial $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0$. Resuelve los siguientes problemas de valor inicial y analiza cada situación considerando el teorema de existencia y unicidad.
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(0) = y_{0}, \hspace{1cm} y_{0} > 0$
  • $x + \dfrac{y}{x} -\dfrac{dy}{dx} = 0, \hspace{1cm} y(x_{0}) = y_{0}, \hspace{1cm} x_{0} > 0, \hspace{0.3cm} y_{0} > 0$

¿Que puedes concluir al respecto?.

Más adelante…

En esta entrada continuamos con el estudio de las ecuaciones diferenciales de primer orden lineales y presentamos el teorema de existencia y unicidad para este tipo de ecuaciones. En la siguiente entrada continuaremos con el estudio de métodos de resolución de ecuaciones diferenciales de primer orden pero ahora estudiaremos las ecuaciones que no son lineales.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones diferenciales lineales de primer orden

Introducción

Hasta ahora hemos hecho un análisis cualitativo de las soluciones a distintas ecuaciones diferenciales, esto nos ha permitido tener un panorama general sobre el comportamiento de dichas soluciones y su implicación al tratarse de la descripción de un fenómeno real. Como recordarás, para alguna ecuación diferencial ordinaria de la forma $\dfrac{dy}{dx} = f(x, y)$ podemos obtener su campo de pendientes y a través de él graficar una infinidad de funciones que satisfacen la ecuación, ahora es momento de saber cómo obtener explícitamente esas funciones. Cabe mencionar que no siempre será posible resolver de manera analítica una ecuación diferencial por lo que el análisis cualitativo siempre será una herramienta que nos ayudará en esos casos.

¡Así es, es momento de aprender a resolver ecuaciones diferenciales de manera analítica!. Como vimos en la primera entrada, hay diferentes tipos de ecuaciones diferenciales, en esta entrada vamos a comenzar con unas de las ecuaciones más sencillas que podemos encontrar, las ecuaciones diferenciales lineales de primer orden.

Ecuaciones Diferenciales lineales de primer orden

En la primer entrada hicimos una clasificación por linealidad de las ecuaciones diferenciales. Vimos que una ecuación diferencial de $n$-ésimo orden es lineal si:

\begin{equation}
a_{n}(x) \frac{d^{n}y}{dx^{n}} + a_{n -1 }(x) \frac{d^{n -1}y}{dx^{n -1}} + … + a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{1} \label{1}
\end{equation}

Con las propiedades de que la variable dependiente $y$, así como todas sus derivadas $y^{\prime}, y^{\prime \prime}, …, y^{(n)}$ son de primer grado y los coeficientes $a_{0}, a_{1}, …, a_{n}$, así como la función $g(x)$ dependen a lo sumo de la variable independiente $x$. Una ecuación que no satisface estas propiedades es una ecuación no lineal.

Las primeras ecuaciones que estudiaremos son las ecuaciones diferenciales lineales de primer orden, reduciendo la ecuación (\ref{1}) tenemos la siguiente definición:

Definición: Una ecuación diferencial de primer orden de la forma

\begin{equation}
a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x) \tag{2} \label{2}
\end{equation}

se dice que es una ecuación lineal en la variable dependiente $y$.

Como $a_{1}(x) \neq 0$, ya que si lo es ya no tendríamos una ecuación diferencial, podemos dividir toda la ecuación por este coeficiente:

$$\dfrac{dy}{dx} + \dfrac{a_{0}(x)}{a_{1}(x)} y = \dfrac{g(x)}{a_{1}(x)}$$

Si definimos $P(x) = \dfrac{a_{0}(x)}{a_{1}(x)}$ y $Q(x) = \dfrac{g(x)}{a_{1}(x)}$, podemos reescribir la ecuación (\ref{2}) como

\begin{equation}
\dfrac{dy}{dx} + P(x) y = Q(x) \tag{3} \label{3}
\end{equation}

A esta ecuación se le conoce como la forma canónica y es la definición de ecuación lineal que también encontrarás en la literatura.

Lo que buscamos es una solución a la ecuación (\ref{3}) en un intervalo $\delta$ donde $P$ y $Q$ sean continuas.

Definición: En la ecuación

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x)$$

Si $g(x) = 0$ decimos que la ecuación es homogénea y si $g(x) \neq 0$ decimos que la ecuación es no homogénea.

En la forma canónica (\ref{3}), decimos que la ecuación

\begin{equation}
\dfrac{dy}{dx} + P(x) y = 0 \tag{4} \label{4}
\end{equation}

es la ecuación homogénea. Recuerda que $Q(x) = \dfrac{g(x)}{a_{1}(x)}$, así si $g(x) = 0$ entonces $Q(x) = 0$.

Nuestro objetivo es encontrar la forma explícita de la solución $y(x)$ de la ecuación lineal (\ref{3}). Esta ecuación tiene la propiedad de que la solución general $y$ es la suma de la solución a la ecuación homogénea (\ref{4}) que denotaremos como $y_{h}$ y llamaremos solución homogénea y la solución a la ecuación no homogénea (\ref{3}) que denotaremos como $y_{p}$ y que llamaremos solución particular, esto es, $y = y_{h} + y_{p}$. Para mostrar este hecho observemos que

\begin{align*}
\dfrac{dy}{dx} + P(x)y &= \dfrac{d}{dx} (y_{h} + y_{p}) + P(x) (y_{h} + y_{p}) \\
&= \left( \dfrac{d y_{h}}{dx} + P(x) y_{h} \right) + \left( \dfrac{d y_{p}}{dx} + P(x) y_{p} \right) \\
&= 0 + Q(x) \\
&= Q(x)
\end{align*}

Ya que, $\dfrac{d y_{h}}{dx} + P(x) y_{h} = 0$ y $\dfrac{d y_{p}}{dx} + P(x) y_{p} = Q(x)$, como mencionamos anteriormente.

Así, para hallar la forma explícita de $y = y(x)$ debemos, entonces, hallar la forma explícita de la solución homogénea $y_{h} = y_{h}(x)$ y la forma explícita de la solución particular $y_{p} = y_{p}(x)$ para finalmente sumar ambos resultados.

Solución a ecuaciones diferenciales lineales homogéneas de primer orden

Comencemos por resolver la ecuación diferencial homogénea para obtener la solución $y = y_{h}(x)$. La ecuación que queremos resolver es

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = 0$$

O bien,

$$\dfrac{dy}{dx} + P(x) y = 0$$

Realicemos un poco de algebra y cálculo:

\begin{align*}
\dfrac{dy}{dx} + P(x) y &= 0 \\
\dfrac{dy}{dx} &= -P(x) y \\
\dfrac{1}{y} \dfrac{dy}{dx} &= -P(x)
\end{align*}

En la última expresión podemos identificar que

$$\dfrac{d}{dx} (\ln{|y|}) = \dfrac{1}{y} \dfrac{dy}{dx}$$

Sustituyendo:

$$\dfrac{d}{dx} (\ln{|y|}) = -P(x)$$

Ahora podemos integrar ambos lados de la ecuación con respecto a la variable $x$

\begin{align*}
\int \left( \dfrac{d}{dx} (\ln{|y|}) \right) dx &= \int -P(x) dx \\
\ln{|y|} + c &= -\int P(x) dx
\end{align*}

Donde hemos hecho uso del teorema fundamental del cálculo y $c$ es la constante de integración. Ahora apliquemos la exponencial en ambos lados de la ecuación:

\begin{align*}
\large e^{(\ln{|y|} + c)} &= \large e^{-\int P(x) dx} \\
\large e^{\ln{|y|}}e^{c} &= \large e^{-\int P(x) dx} \\
\large |y|e^{c} &= \large e^{-\int P(x) dx} \\
\large |y| &= \large e^{-c} e^{-\int P(x) dx} \\
\large y &= \large \pm e^{-c} e^{-\int P(x) dx}
\end{align*}

Como $\large \pm e^{- c}$ es una constante, definimos $k = \large \pm e^{- c}$, obteniendo finalmente que

\begin{equation}
\large y = \large y_{h}(x) = \large k e^{-\int P(x) dx} \tag{5} \label{5}
\end{equation}

La función $y(x) = k e^{-\int P(x) dx}$ es solución a la ecuación diferencial $\dfrac{dy}{dx} + P(x) y = 0$.

Recuerda que si lo que estamos resolviendo es una ecuación de la forma (\ref{3}) entonces $y(x) = y_{h}(x)$ es la solución a la ecuación diferencial homogenea.

Ejemplo: Obtener la solución a la ecuación diferencial $x\dfrac{dy}{dx} + 2y = 0$ dada la condición inicial $y(3) = 1$.

Solución: Vemos que la variable $x$ multiplica a $\dfrac{dy}{dx}$ por lo que debemos dividir toda la ecuación por $x \neq 0$ para obtener la forma (\ref{4}). El resultado es

$$\dfrac{dy}{dx} + \dfrac{2}{x} y = 0$$

Identificamos que $P(x) = \dfrac{2}{x}$. Por supuesto podemos resolver la ecuación realizando todos los pasos que hicimos anteriormente, sin embargo, ya sabemos que la solución general es de la forma $y(x) = \large k e^{- \int P(x) dx}$, podemos sustituir $P(x)$ en la integral y resolver.

\begin{align*}
\int{P(x) dx} &= \int{\dfrac{2}{x} dx} \\
&= 2 \int{\dfrac{1}{x} dx} \\
&= 2 \ln{|x|} + c
\end{align*}

Entonces

\begin{align*}
\large y(x) &= \large k e^{- \int P(x) dx} \\
&= \large k e^{(- 2 \ln{|x|} + c)} \\
&= \large k e^{\ln{(x^{-2})}} e^{c} \\
&= Kx^{-2}
\end{align*}

Donde definimos la constante $K = ke^{c}$. Por lo tanto, la solución general a la ecuación diferencial $x\dfrac{dy}{dx} + 2y = 0$ es $y(x) = \dfrac{K}{x^{2}}$ con $x$ en cualquier intervalo que no contenga al $0$.

Ahora apliquemos la condición inicial para obtener una solución particular. Se debe satisfacer que $y(3) = 1$, evaluemos la función en $3$ e igualemos a $1$.

$$y(3) = \dfrac{K}{3^{2}} = \dfrac{K}{9} = 1$$

De la última igualdad obtenemos que $K = 9$, por lo tanto la solución particular es $y(x) = \dfrac{9}{x^{2}}$.

Para evitar confusiones cabe mencionar que en el ejemplo cuando hablamos de solución general y solución particular nos referimos al contexto general de las ecuaciones diferenciales donde solución general es la función que satisface la EDO y tienen contantes arbitrarias mientras que la solución particular es la función que satisface la EDO y cuyas constantes toman un valor específico y por el contrario no nos referimos a la solución general $y = y_{h} + y_{p}$ y solución particular $y_{p}$ vistos al inicio de esta entrada pues recuerda que en esta sección estamos estudiando ecuaciones diferenciales homogéneas.

$\square$

En conclusion, ahora sabemos resolver ecuaciones diferenciales lineales homogéneas de la forma

$$\dfrac{dy}{dx} + P(x) y = 0$$

cuya solución general es $ \large y(x) = k e^{- \int P(x) dx}$.

Ahora veamos el caso en el que $\dfrac{dy}{dx} + P(x) y \neq 0$.

Solución a ecuaciones diferenciales lineales NO homogéneas de primer orden

La ecuación diferencial que queremos resolver es

$$a_{1}(x) \frac{dy}{dx} + a_{0}(x) y = g(x)$$

O bien,

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

Vamos a estudiar dos métodos distintos para resolver este tipo de ecuaciones, uno de ellos es conocido como método por factor integrante y el otro como método por variación de parámetros. Esta entrada la concluiremos con el desarrollo del método por factor integrante y en la siguiente entrada estudiaremos en método por variación de parámetros.

Método por factor integrante

Consideremos la ecuación diferencial que queremos resolver

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

El método del factor integrante consiste en encontrar una función $\mu = \mu (x)$ que satisfaga la siguiente relación

\begin{equation}
\dfrac{d}{dx} (\mu y) = \mu \dfrac{dy}{dx} + \mu P(x) y = \mu Q(x) \tag{6} \label{6}
\end{equation}

Es decir, que la derivada del producto de $\mu (x)$ con la solución $y(x)$ sea igual a multiplicar la ecuación original por $\mu$. La función $\mu$ debe ser una función dependiente de $x$ y derivable de manera que, usando la regla del producto

\begin{equation}
\dfrac{d}{dx} (\mu y) = \mu \frac{dy}{dx} + y \dfrac{d\mu}{dx} \tag{7} \label{7}
\end{equation}

Igualando las ecuaciones (\ref{6}) y (\ref{7}) tenemos:

\begin{align*}
\mu \dfrac{dy}{dx} + \mu P(x) y &= \mu \frac{dy}{dx} + y \dfrac{d\mu}{dx} \\
\mu P(x) y &= y \dfrac{d\mu}{dx} \\
\mu P(x) &= \dfrac{d\mu}{dx} \\
P(x) &= \frac{1}{ \mu} \dfrac{d\mu}{dx} \\
P(x) &= \dfrac{d}{dx} (\ln{|\mu}|)
\end{align*}

Integramos la última relación con respecto a $x$.

\begin{align*}
\int{\left( \dfrac{d}{dx} (\ln{|\mu}|) \right) dx} &= \int{P(x) dx} \\
\ln{|\mu|} + c_{1} &= \int{P(x) dx}
\end{align*}

En esta ocasión vamos a suponer que $c_{1} = 0$, veremos más adelante que esto no afecta el resultado. Por otro lado, como $e^{x} > 0$, $\forall x$, en particular $\large e^{\int{P(x) dx}} > 0$, entonces aplicando la exponencial en ambos lados de la última expresión obtenemos

\begin{equation}
\large \mu (x) = e^{\int{P(x) dx}} \tag{8} \label{8}
\end{equation}

A esta función se le conoce como factor integrante y es siempre positiva.

De la ecuación (\ref{6}) sabemos que

$$\dfrac{d}{dx} (\mu y) = \mu Q(x)$$

Integrando ambos lados de la ecuación con respecto a $x$ tenemos:

\begin{align*}
\int{\left( \dfrac{d}{dx} (\mu y) \right) dx} &= \int{\mu Q(x) dx} \\
\mu y + c_{2} &= \int{\mu Q(x)} dx \\
y &= \dfrac{1}{\mu} \left( \int{\mu Q(x) dx} \right)
\end{align*}

Donde suponemos de nuevo que $c_{2} = 0$. La última expresión ya nos da la solución que buscamos, con $\mu$ el factor integrante. Por lo tanto, la solución a la ecuación diferencial

$$\dfrac{dy}{dx} + P(x) y = Q(x)$$

es

\begin{equation}
\large y = y_{p}(x) = \dfrac{1}{e^{\int{P(x) dx}}} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right) \tag{9} \label{9}
\end{equation}

O en una forma más compacta

\begin{equation}
y = y_{p}(x) = \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right) \tag{10} \label{10}
\end{equation}

Con $ \mu (x) = \large e^{\int{P(x) dx}}$ el factor integrante.

El resultado que obtuvimos corresponde a la solución particular $y(x) = y_{p}(x)$, como mencionamos antes, la solución completa o solución general a la ecuación (\ref{3}) es la suma de la solución homogénea mas la solución particular: $y(x) = y_{h}(x) + y_{p}(x)$, así sumando el resultado (\ref{5}) con el resultado (\ref{9}) obtenemos que la solución completa a la ecuación (\ref{3}) es:

\begin{equation*}
\large y(x) = y_{h}(x) + y_{p}(x) = k e^{-\int P(x) dx} + e^{-\int P(x) dx} \left( \int{e^{\int{P(x) dx}} Q(x) dx} \right)
\end{equation*}

Factorizando

\begin{equation}
\large y(x) = e^{-\int P(x) dx} \left( \int{e^{\int{P(x) dx}} Q(x) dx} + k \right) \tag{11} \label{11}
\end{equation}

O bien, en términos del factor integrante:

\begin{equation}
y(x) = \dfrac{1}{\mu(x)}\left(\int{\mu (x) Q(x) dx} + k \right) \tag{12} \label{12}
\end{equation}

La ecuación (\ref{12}) es la solución general a las ecuaciones diferenciales lineales de primer orden. En la siguiente entrada mencionaremos el por qué es posible haber tomado como cero a las constantes de integración que aparecieron en el método, sin embargo sería bueno que intentes justificar este hecho con lo visto hasta este momento.

A primera vista podríamos creer que resolver una ecuación diferencial de la forma (\ref{3}) implica sólo sustituir las funciones correspondientes en la ecuación (\ref{11}) e integrar, en principio lo podemos hacer pero no se recomienda hacerlo pues esto implica memorizar los resultados obtenidos, lo que se recomienda es seguir los pasos que hicimos para deducir las soluciones. En la siguiente entrada presentaremos un algoritmo o serie de pasos para resolver este tipo de ecuaciones.

Para concluir realicemos un ejemplo en el que vamos a obtener la solución homogénea y la solución particular por separado para después sumarlas y obtener la solución general.

Ejemplo: Determinar la solución general de la ecuación diferencial $\dfrac{dy}{dx} = -y + x^{2}$.

Solución: Lo primero que debemos hacer es reescribir a la ecuación diferencial hasta tener la forma (\ref{3}).

\begin{align*}
\dfrac{dy}{dx} &= -y + x^{2} \\
\dfrac{dy}{dx} + y &= x^{2}
\end{align*}

De la última expresión podemos identificar que $P(x) = 1$ y $Q(x) = x^{2}$. Con el valor de $P(x)$ podemos calcular el factor integrante:

\begin{align*}
\mu (x) = e^{\int{P(x) dx}} = e^{\int dx} = e^{x} \Rightarrow \mu (x) = e^{x}
\end{align*}

Para obtener la solución homogénea sustituimos el factor integrante en la ecuación (\ref{5}):

$$y_{h}(x) = \dfrac{k}{\mu (x)} = \dfrac{k}{e^{x}}$$

Por lo tanto la solución homogénea de la ecuación homogénea $\dfrac{dy}{dx} + y = 0$ es:

\begin{equation}
y_{h}(x) = \dfrac{k}{e^{x}} \tag{13} \label{13}
\end{equation}

Para obtener la solución particular usemos la ecuación (\ref{10}), donde

$$\int{\mu (x)Q(x) dx} = \int{e^{x} x^{2} dx}$$

Resolvamos la integral, usando integración por partes con $u(x) = x^{2}$ y $dv(x) = e^{x}$, tenemos

$$\int{e^{x} x^{2} dx} = x^{2} e^{x} -\int{2x e^{x} dx}$$

Para la nueva integral volvemos a usar integración por partes usando $r(x) = x$ y $ds(x) = e^{x}$

\begin{align*}
\int{e^{x} x^{2} dx} &= x^{2} e^{x} -2 \left(x e^{x} -\int{e^{x} dx}\right) \\
&= x^{2} e^{x} -2x e^{x} + 2e^{x} \\
&= e^{x}\left(x^{2} -2x + 2\right)
\end{align*}

Podemos omitir las contantes de integración. Sustituyendo este resultado en la solución particular tenemos que

\begin{align*}
y_{p}(x) &= \dfrac{1}{\mu (x)} \left( \int{\mu (x)Q(x) dx} \right) \\
&= \dfrac{1}{e^{x}} \left( e^{x}\left(x^{2} -2x + 2\right) \right) \\
&= x^{2} -2x + 2 \\
&= x^{2} -2 \left(x-1\right)
\end{align*}

Por lo tanto la solución particular de la ecuación $\dfrac{dy}{dx} + y = x^{2}$ es:

\begin{equation}
y_{p}(x) = x^{2} -2 \left(x-1\right) \tag{14} \label{14}
\end{equation}

La solución general la obtenemos sumando los resultados (\ref{13}) y (\ref{14}):

$$y(x) = \dfrac{k}{e^{x}} + \left(x^{2} -2 \left(x-1\right)\right)$$

Por lo tanto, la solución general a la ecuación diferencial $\dfrac{dy}{dx} = -y + x^{2}$ es:

$$y(x) = x^{2} -2 \left(x-1\right) + \dfrac{k}{e^{x}}$$

$\square$

Con esto terminamos esta entrada, en la siguiente estudiaremos el método de variación de parámetros.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Para las siguientes ecuaciones diferenciales lineales de primer orden obtén las soluciones generales $y(x)$ calculando primero la solución homogénea $y_{h}(x)$, después la solución particular $y_{p}(x)$ y finalmente sumando los resultados. (puedes omitir las constantes de integración en el proceso).
  • $\dfrac{dy}{dx} -y = e^{2x}$
  • $\dfrac{dy}{dx} + y = e^{2x}$
  • $x \dfrac{dy}{dx} + 4y = x^{-3}e^{x}$
  • $x^{2} \dfrac{dy}{dx} = -2xy + 3e^{3x}$
  1. Resuelve la siguiente ecuación diferencial sujeta a la condición inicial dada.
  • $\dfrac{dy}{dx} + y = e^{-x}$ $\hspace{1cm}$ para $\hspace{0.2cm}$ $y(0) = -\dfrac{1}{4}$
  1. Un marcapasos de corazón consiste en un interruptor, una batería de voltaje constante $E_{0}$, un capacitor con capacitancia constante $C$ y un corazón como un resistor con resistencia constante $R$. Cuando se cierra el interruptor, el capacitor se carga; cuando el interruptor se abre, el capacitor de descarga enviando estímulos eléctricos al corazón. Todo el tiempo el corazón se está estimulando, el voltaje $E$ a través del corazón satisface la ecuación diferencial lineal
    $$\dfrac{dE}{dt} = -\dfrac{1}{RC}E$$
    Resolver la ED sujeta a $E(4) = E_{0}$.
  2. Intenta justificar el hecho de que podamos omitir a las constantes de integración en los métodos de resolución vistos.

Más adelante…

En esta entrada aprendimos a resolver ecuaciones diferenciales lineales de primer orden de manera analítica, a pesar de haber encontrado una formula general para la solución es conveniente realizar una serie de pasos para determinar la solución. En la siguiente entrada estudiaremos el método de variación de parámetros para obtener la solución particular de la ecuación diferencial no homogénea y estableceremos una serie de pasos a seguir para resolver este tipo de ecuaciones sin tener que memorizar las formulas de las soluciones. Finalmente retomaremos el teorema de existencia y unicidad y lo estudiaremos en el contexto de las ecuaciones diferenciales lineales.

Entradas relacionadas