Archivo del Autor: Leonardo Ignacio Martínez Sandoval

Leonardo Ignacio Martínez Sandoval

Acerca de Leonardo Ignacio Martínez Sandoval

Hola. Soy Leonardo Martínez. Soy Profesor de Tiempo Completo en la Facultad de Ciencias de la UNAM. Hice un doctorado en Matemáticas en la UNAM, un postdoc en Israel y uno en Francia. Además, me gusta colaborar con proyectos de difusión de las matemáticas como la Olimpiada Mexicana de Matemáticas.

Álgebra Lineal I: Aplicaciones de bases ortogonales y descomposición de Fourier

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada continuamos hablando de bases ortogonales. Como recordatorio, para poder hablar de esto, necesitamos un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior, y por lo tanto podemos hablar de normas. Una base ortogonal de $V$ es una base en la cual cada par de vectores tiene producto interior $0$. Es ortonormal si además cada elemento es de norma $1$. Ahora veremos que dada una base ortonormal, podemos hacer una descomposición de Fourier de los vectores de $V$, que nos permite conocer varias de sus propiedades fácilmente.

La teoría que discutiremos está basada en el contenido de la Sección 10.5 del libro Essential Lineal Algebra with Applications de Titu Andreescu. Las últimas dos secciones de esta entrada son un poco abstractas, pero son la puerta a ideas matemáticas interesantes con muchas aplicaciones dentro de la matemática misma y en el mundo real.

Descomposición de Fourier

Es fácil conocer las coordenadas de un vector en términos de una base ortonormal.

Teorema. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortonormal con este producto interior, entonces para cualquier vector $v$, la coordenada de $v$ con respecto a $e_i$ es $\langle v, e_i \rangle$.

Demostración. Expresemos a $v$ en la base $B$ como $$v=\alpha_1e_1+\ldots+\alpha_n e_n.$$

Tomemos $j$ en $1,2,\ldots,n$. Usando la linealidad del producto interior, tenemos que
\begin{align*}
\langle v, e_j \rangle &= \left \langle \sum_{i=1}^n \alpha_i e_i, e_j \right \rangle\\
&=\sum_{i=1}^n \alpha_i \langle e_i,e_j \rangle.
\end{align*}

Como $B$ es base ortonormal, tenemos que en el lado derecho $\langle e_j,e_j\rangle = 1$ y que si $i\neq j$ entonces $\langle e_i, e_j\rangle=0$. De esta forma, el lado derecho de la expresión es $\alpha_j$, de donde concluimos que $$\langle v, e_j \rangle = \alpha_j,$$ como queríamos.

$\square$

Definición. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortonormal, a $$v=\sum_{i=1}^n \langle v, e_i \rangle e_i$$ le llamamos la descomposición de Fourier de $v$ con respecto a $B$.

Ejemplo. Trabajemos en el espacio vectorial $V=\mathbb{R}_2[x]$ de polinomios reales de grado a lo más $2$. Ya mostramos anteriormente (con más generalidad) que $$\langle p,q \rangle = p(-1)q(-1)+p(0)q(0)+p(1)q(1)$$ es un producto interior en $V$.

Los polinomios $\frac{1}{\sqrt{3}}$, $\frac{x}{\sqrt{2}}$ y $\frac{3x^2-2}{\sqrt{6}}$ forman una base ortonormal, lo cual se puede verificar haciendo las operaciones y queda de tarea moral. ¿Cómo expresaríamos a la base canónica $\{1,x,x^2\}$ en términos de esta base ortonormal? Los primeros dos son sencillos:
\begin{align}
1&=\sqrt{3}\cdot \frac{1}{\sqrt{3}}\\
x&=\sqrt{2}\cdot \frac{x}{\sqrt{2}}.
\end{align}

Para encontrar el tercero, usamos el teorema de descomposición de Fourier. Para ello, calculamos los siguientes productos interiores:

\begin{align*}
\left\langle x^2, \frac{1}{\sqrt{3}}\right\rangle &= \frac{2}{\sqrt{3}},\\
\left \langle x^2, \frac{x}{\sqrt{2}}\right\rangle &=0,\\
\left\langle x^2, \frac{3x^2-2}{\sqrt{6}} \right\rangle &=\frac{2}{\sqrt{6}}.
\end{align*}

De este modo, $$x^2= \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{6}}\cdot \frac{3x^2-2}{\sqrt{6}}.$$

$\triangle$

Norma usando la descomposición de Fourier

Cuando tenemos bases ortogonales u ortonormales, también podemos calcular la norma de un vector fácilmente.

Teorema. Si $V$ es un espacio Euclideano de dimensión $n$ con producto interior $\langle\cdot, \cdot\rangle$ y $B=\{e_1,\ldots,e_n\}$ es una base ortogonal con este producto interior, entonces para cualquier vector $$v=\alpha_1e_1+\ldots+\alpha_ne_n,$$ tenemos que $$\norm{v}^2 = \sum_{i=1}^n \alpha_i^2 \norm{e_i}^2.$$

En particular, si $B$ es una base ortonormal, entonces $$\norm{v}^2 = \sum_{i=1}^n \langle v, e_i \rangle^2.$$

Demostración. Usando la definición de norma y la bilinealidad del producto interior, tenemos que
\begin{align*}
\norm{v}^2 &= \langle v,v \rangle\\
&=\sum_{i=1}^n \sum_{j=1}^n \alpha_i \alpha_j \langle e_i, e_j\rangle.
\end{align*}

Como $B$ es base ortogonal, los únicos sumandos que quedan a la derecha son aquellos en los que $i=j$, es decir,
\begin{align*}
\norm{v}^2&=\sum_{i=1}^n \alpha_i^2 \langle e_i, e_i\rangle\\
&=\sum_{i=1}^n \alpha_i^2 \norm{e_i}^2\\
\end{align*}

como queríamos mostrar.

Si $B$ es base ortonormal, cada $\norm{e_i}^2$ es $1$, y por el teorema anterior, $\alpha_i=\langle v, e_i\rangle$. Esto prueba la última afirmación.

$\square$

Ejemplo. Continuando con el ejemplo anterior, como ya escribimos a $x^2$ en términos de la base ortogonal, podemos encontrar fácilmente su norma. Tendríamos que
\begin{align*}
\norm{x^2}^2&=\left(\frac{2}{\sqrt{3}}\right)^2+\left(\frac{2}{\sqrt{6}}\right)^2\\
&=\frac{4}{3}+\frac{4}{6}\\
&=2.
\end{align*}

De esta forma, $\norm{x^2}=\sqrt{2}$. En efecto, esto es lo que obtendríamos si hubiéramos calculado la norma de $x^2$ con la definición.

$\triangle$

Aplicación de descomposición de Fourier a polinomios

Vamos a continuar con un ejemplo que vimos en la entrada anterior. Recordemos que estábamos trabajando en $V=\mathbb{R}_n[x]$, que habíamos elegido $n+1$ reales distintos $x_0,\ldots,x_n$, y que a partir de ellos definimos $$\langle P, Q\rangle = \sum_{i=0}^n P(x_i)Q(x_i).$$ Mostramos que $\langle \cdot , \cdot \rangle$ es un producto interior y que para $j=0,\ldots,n$ los polinomios $$L_i=\prod_{0\leq j \leq n, j\neq i} \frac{x-x_j}{x_i-x_j}$$ forman una base ortonormal de $V$.

Por el teorema de descomposición de Fourier, tenemos que cualquier polinomio $P$ de grado a lo más $n+1$ con coeficientes reales satisface que $$P=\sum_{i=0}^n \langle P, L_i \rangle L_i,$$ lo cual en otras palabras podemos escribir como sigue.

Teorema (de interpolación de Lagrange). Para $P$ un polinomio con coeficientes en los reales de grado a lo más $n$ y $x_0,x_1,\ldots,x_n$ reales distintos, tenemos que $$P(x)=\sum_{i=0}^n P(x_i) \left(\prod_{0\leq j \leq n, j\neq i} \frac{x-x_j}{x_i-x_j}\right).$$

El teorema de interpolación de Lagrange nos permite decir cuánto vale un polinomio de grado $n$ en cualquier real $x$ conociendo sus valores en $n+1$ reales distintos. Ya habíamos mostrado este teorema antes con teoría de dualidad. Esta es una demostración alternativa con teoría de bases ortogonales y descomposición de Fourier.

Aplicación de ideas de Fourier en funciones periódicas

También ya habíamos visto que $$\langle f,g \rangle = \int_{-\pi}^\pi f(x)g(x)\, dx$$ define un producto interior en el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$ continuas y periódicas de periodo $2\pi$.

En ese ejemplo, definimos \begin{align*}
C_n(x)&=\frac{\cos(nx)}{\sqrt{\pi}}\\
S_n(x)&=\frac{\sin(nx)}{\sqrt{\pi}}.
\end{align*} y $C_0(x)=\frac{1}{\sqrt{2\pi}}$, y mostramos que $$\mathcal{F}:=\{C_n:n\geq 0\}\cup \{S_n:n\geq 1\}$$ era un conjunto ortonormal.

No se puede mostrar que $\mathcal{F}$ sea una base ortonormal, pues el espacio $V$ es de dimensión infinita, y es bastante más complicado que los espacios de dimensión finita. Sin embargo, la teoría de Fourier se dedica a ver que, por ejemplo, la familia $\mathcal{F}$ es buena aproximando a elementos de $V$, es decir a funciones continuas y periódicas de periodo $2\pi$. No profundizaremos mucho en esto, pero daremos algunos resultados como invitación al área.

Para empezar, restringimos a la familia $\mathcal{F}$ a una familia más pequeña:

$$\mathcal{F}_n:=\{C_m:0\leq m \leq n\}\cup \{S_m:1\leq m \leq n\}$$

Motivados en la descomposición de Fourier para espacios Euclideanos, definimos a la $n$-ésima serie parcial de Fourier de una función $f$ en $V$ a la expresión $$S_n(f)=\sum_{g\in \mathcal{F}_n} \langle f, g \rangle g.$$ Haciendo las cuentas, se puede mostrar que $$S_n(f)=\frac{a_0(f)}{2}+\sum_{k=1}^n \left(a_k(f)\cos(kx)+b_k(f)\sin(kx)\right),$$ en donde para $k\geq 1$ tenemos $$a_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\cos(kx)\, dx$$ y $$b_k=\frac{1}{\pi}\int_{-\pi}^\pi f(x)\sin(kx)\, dx.$$

A los números $a_k$ y $b_k$ se les conoce como los $k$-ésimos coeficientes de Fourier. Aunque $\mathcal{F}$ no sea una base para $V$, sí es buena «aproximando» a elementos de $V$. Por ejemplo, un resultado lindo de Dirichlet dice que si $f$ y su derivada son continuas, entonces $$\lim_{n\to \infty} S_n(f)(x) = f(x).$$ Este tipo de teoremas de aproximación se estudian con más a detalle en un curso de análisis matemático avanzado o de análisis de Fourier.

Considera ahora $W_n$ el subespacio de $V$ generado por $\mathcal{F}_n$. Tomemos una función $f$ cualquiera en $V$. La $n$-ésima serie de Fourier de $f$ es un elemento de $W_n$. De hecho, es precisamente la proyección de $f$ en $W_n$. Por esta razón, $$\norm{f_n}^2\leq \norm{f}^2<\infty$$

Podemos calcular la norma de $f_n$, usando el resultado para espacios Euclideanos en el espacio (de dimensión finita) $W_n$. Haciendo esto, podemos reescribir la desigualdad anterior como sigue:

$$\frac{a_0(f)^2}{2}+\sum_{k=1}^n(a_k(f)^2+b_k(f)^2)\leq \frac{1}{\pi} \norm{f}^2.$$

El lado derecho es constante, y en el lado izquierdo tenemos una suma parcial de la serie $$\sum_{k\geq 1}(a_k(f)^2+b_k(f)^2).$$ Los términos son positivos y la sucesión de sumas parciales es acotada, así que la serie converge. Entonces, necesariamente la sucesión de términos debe converger a cero. Acabamos de esbozar la demostración del siguiente teorema.

Teorema (de Riemann-Lebesgue). Sea $f$ una función continua y de periodo $2\pi$. Si $a_n(f)$ y $b_n(f)$ son los coeficientes de Fourier de $f$, entonces $$\lim_{n\to \infty} a_n(f) = \lim_{n\to \infty} b_n(f) = 0.$$

De hecho, se puede mostrar que la desigualdad que mostramos se convierte en igualdad cuando $n\to \infty$. Este es un resultado bello, profundo y cuya demostración queda fuera del alcance de estas notas.

Teorema (de Plancherel). Sea $f$ una función continua y de periodo $2\pi$. Si $a_n(f)$ y $b_n(f)$ son los coeficientes de Fourier de $f$, entonces $$\frac{a_0(f)^2}{2}+\sum_{k=1}^\infty(a_k(f)^2+b_k(f)^2)= \frac{1}{\pi} \int_{-\pi}^\pi f(x)^2\, dx.$$

Aunque no daremos la demostración de este resultado, en una entrada posterior veremos cómo podemos aplicarlo.

Más adelante…

En esta entrada seguimos estudiando las bases ortogonales. Usamos este concepto para hacer una descomposición de Fourier, para conocer propiedades de V y obtener otra manera de calcular la norma de un vector. Así mismo, vimos aplicaciones de la descomposición a polinomios, viendo el teorema de la interpolación de Lagrange ya previamente demostrado mediante teoría de dualidad.

Hasta ahora solo hemos hablado de cómo ver si una base es ortonomal y algunas propiedades de estas bases y conjuntos, en la siguiente entrada hablaremos de un método pata encontrar estas bases ortonormales usando el proceso de Gram-Schmidt.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Verifica que los tres polinomios del ejemplo de descomposición de Fourier en efecto forman una base ortogonal.
  • Calcula la norma de $x^2$ con el producto interior del ejemplo de descomposición de Fourier usando la definición, y verifica que en efecto es $\sqrt{2}$.
  • Con la misma base ortonormal $B$ de ese ejemplo, calcula las coordenadas y la norma del polinomio $1+x+x^2$.
  • Verifica que todo lo que mencionamos se cumple con el producto punto en $\mathbb{R}^n$ y con la base canónica.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: Sucesiones periódicas y pre-periódicas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior, comenzamos a hablar de sucesiones. Dimos las definiciones básicas y vimos sucesiones aritméticas y geométricas. Aunque una sucesión tenga una cantidad infinita de términos, las sucesiones aritméticas y geométricas son «sencillas», pues en realidad sólo dependen de dos parámetros: un término inicial y una diferencia (o razón). Ahora veremos otro tipo de sucesiones que también tienen cierta «finitud». Estudiaremos las sucesiones periódicas y pre-periódicas.

La intuición detrás de las sucesiones periódicas y pre-periódicas es que «se repiten y se repiten» después de un punto. Así, estas sucesiones sólo pueden tomar un número finito de valores, y de hecho después de un punto los empiezan a tomar «de manera cíclica».

Sucesiones periódicas

Las siguientes sucesiones tienen una característica peculiar:

  • $1,2,3,4,1,2,3,4,1,2,3,4,1,2,\ldots$
  • $7,8,7,11,7,7,8,7,11,7,7,\ldots$
  • Para $\omega$ una raíz cúbica de la unidad en $\mathbb{C}$: $1,\omega, \omega^2, \omega^3, \omega^4, \omega^5, \omega ^6,\ldots$

Dicho de manera informal, estas sucesiones se «repiten y se repiten».

Definición. Una sucesión es periódica si existe un entero positivo $p$ tal que $x_{n+p}=x_n$ para todo entero $n\geq 0$. A $p$ se le conoce como un periodo y al mínimo $p$ que satisface esto se le llama un periodo mínimo.

Las sucesiones ejemplo tienen periodo $4$, $5$ y $3$ respectivamente.

Cuando una sucesión $\{x_n\}$ es periódica de periodo $p$, se puede mostrar inductivamente que $x_{n+p}=x_{n+mp}$ para todo entero positivo $m$. También, se puede mostrar que cualquier término es igual a alguno de los términos $x_0,\ldots,x_{p-1}$. Concretamente, si usamos el algoritmo de la división para expresar $n=qp+r$ con $r$ el residuo de la división de $n$ entre $q$, tenemos que $x_n=x_r$. Esto hace que trabajar con sucesiones periódicas de periodo $p$ se parezca a trabajar con los enteros módulo $p$.

Problema. La sucesión $\{x_n\}$ es periódica de periodo $91$ y tiene un número irracional. La sucesión $\{y_n\}$ es periódica de periodo $51$. Muestra que si la sucesión $\{x_n+y_n\}$ tiene puros números racionales, entonces la sucesión $\{y_n\}$ tiene puros números irracionales.

Sugerencia pre-solución. Recuerda cómo se resuelven las ecuaciones diofantinas lineales en enteros, o bien usa el teorema chino del residuo.

Solución. Como $\{x_n\}$ tiene periodo $91$, podemos suponer que su término irracional es $x_k$ con $k$ en $\{0,\ldots,90\}$. Ya que $\{y_n\}$ es periódica de periodo $51$, basta con que probemos que $y_r$ es irracional para cada $r$ en $\{0,\ldots,50\}$. Tomemos una de estas $r$.

Como $91$ y $51$ son primos relativos, por el teorema chino del residuo existe un entero $m$ tal que
\begin{align*}
m&\equiv k \pmod {91}\\
m&\equiv r \pmod {51}.
\end{align*}

Sumando múltiplos de $91\cdot 51$ a $m$, podemos suponer que $m$ es positivo. Para esta $m$ tenemos que $x_m=x_k$ y que $y_m=y_r$. De esta forma,
\begin{align*}
y_r&=y_m\\
&=(y_m+x_m)-x_m\\
&=(y_m+x_m)-x_k.
\end{align*}
A la derecha, tenemos una resta de un número racional, menos uno irracional, el cual es un número irracional. Esto muestra que $y_r$ es irracional, como queríamos.

$\square$

Veamos otro ejemplo, que toca un poco el tema de sucesiones recursivas, del cual hablaremos con más profundidad más adelante.

Problema. Considera la sucesión $\{a_n\}$ en $\mathbb{Z}_{13}$ (los enteros módulo $13$, con su aritmética modular), en donde los primeros tres términos son $a_0=[0]_{13}$, $a_1=[1]_{13}$ y $a_2=[2]_{13}$ y para todo entero $n\geq 0$ se tiene que $$a_{n+3}=[a_n+a_{n+1}+a_{n+2}+n]_{13}.$$ Muestra que la sucesión $\{a_n\}$ es periódica.

Sugerencia pre-solución. El residuo al dividir entre $13$ de cada término de la sucesión depende de cuatro enteros entre $0$ y $12$. ¿Cuáles? Usa el principio de las casillas y luego trabaja hacia atrás.

Solución. Para simplificar la notación, no usaremos el subíndice $13$, con el entendido de que siempre se deben simplificar los números de los que hablemos módulo $13$. Para cada $n\geq 0$, consideremos el vector $$v_n=(a_n,a_{n+1},a_{n+2},n).$$

Visto módulo $13$, este vector puede tomar $13^4$ posibles valores, y define el valor de $a_{n+3}$. Por principio de las casillas, debe haber dos enteros $m$ y $p$ tales que $v_m=v_{m+p}$. Afirmamos que $p$ es un periodo para $\{a_n\}$.

Vamos a probar esto. Primero lo haremos para los enteros $n\geq m$. Esto lo haremos mostrando que $v_{m+k}=v_{m+k+p}$ por inducción sobre $k$.

El caso $k=0$ es la igualdad $v_m=v_{m+p}$ de arriba. Si suponemos que $v_{m+k}=v_{m+p+k}$, entonces automáticamente tenemos la igualdad de las primeras dos entradas de $v_{m+k+1}$ y $v_{m+p+k+1}$, y como $a_{m+k+3}$ y $a_{m+k+p+3}$ quedan totalmente determinados por $v_{m+k}=v_{m+p+k}$, entonces también las terceras entradas son iguales. Para la cuarta entrada, usamos que $$m+k\equiv m+p+k\pmod {13},$$ de donde $$m+k+1\equiv m+p+k+1\pmod {13}.$$ Esto termina la inducción. En particular, tenemos que $a_{m+k}=a_{m+k+p}$ para todo $k\geq 0$.

Falta mostrar que la sucesión también es periódica antes de $a_m$. Pero este se hace con un argumento análogo al anterior, pero trabajando hacia atrás, notando que $a_{n-1}$ queda totalmente determinado mediante la ecuación $$a_{n-1}=a_{n+2}-a_n-a_{n+1}-(n-1).$$

$\square$

Sucesiones pre-periódicas

A veces una sucesión puede ser casi periódica, a excepción de sus primeros términos. Estas sucesiones comparten muchas propiedades con las sucesiones periódicas, así que vale la pena definirlas.

Definición. Una sucesión es pre-periódica si existen enteros positivos $N$ y $p$ tales que $x_{n+p}=x_p$ para todo entero $n \geq N$. Si tomamos $N$ como el menor entero para el que se cumpla la propiedad, a los términos $$(x_0,x_1,\ldots,x_{N-1})$$ se les conoce como la parte pre-periódica. La sucesión $\{x_{n+N}\}$ es una sucesión periódica y se le conoce como la parte periódica de $\{x_n\}$.

Las sucesiones pre-periódicas juegan un papel importante en la clasificación de los números racionales.

Teorema. Sea $x$ un real. Las siguientes tres afirmaciones son equivalentes:

  • $x$ es racional
  • Los dígitos después del punto decimal de $x$ en alguna base entera $b\geq 2$ forman una sucesión pre-periódica.
  • Los dígitos después del punto decimal de $x$ en toda base entera $b\geq 2$ forman una sucesión pre-periódica.

Problema. Demuestra que el número $$X:\sum_{j=1}^\infty \frac{1}{10^{j^2}}$$ es un número irracional.

Sugerencia pre-solución. Escribe las primeras sumas parciales de la serie para encontrar un patrón de cómo se ven los dígitos de $X$ después del punto decimal. Procede por contradicción.

Solución. Otra forma de escribir a $X$ es en base $10$: $$X=0.a_1a_2a_3a_4\ldots,$$ en donde $\{a_n\}$ es la sucesión de dígitos después del punto decimal. Nota que $a_i=1$ si y sólo si $i$ es un número cuadrado.

Si $X$ fuera racional, $\{a_n\}$ sería pre-periódica, de periodo, digamos $p$. Pero en $\{a_n\}$ podemos encontrar $p$ ceros consecutivos, incluso después del pre-periodo, ya que hay bloques tan largos como se quiera de enteros que no son números cuadrados. Esto mostraría que el periodo sería de puros ceros, y que por lo tanto a partir de un punto $\{a_n\}$ es constantemente cero. Esto es imposible pues hay números cuadrados arbitrariamente grandes.

$\square$

Combinando tipos de sucesiones

Hasta ahora, hemos hablado de sucesiones aritméticas, geométricas, periódicas y pre-periódicas. Seguiremos hablando de otros tipos de sucesiones en entradas posteriores. Una cosa sistemática que te puede ayudar a entender estos conceptos mejor es preguntarte cuándo una sucesión satisface más de una de estas propiedades.

Problema. Determina todas las sucesiones en $\mathbb{C}$ que sean simultáneamente geométricas y periódicas.

Sugerencia pre-solución. Elige una notación adecuada para trabajar en este problema.

Solución. El primer término $a$ de una sucesión así tiene que ser igual a otro. Como la sucesión es geométrica, eso otro término es de la forma $r^ma$ para $m$ un entero positivo.

Si $a=0$, la sucesión es la sucesión constante $0$, que es geométrica y periódica de periodo $1$. Si $a\neq 0$, entonces $r^m=1$, de modo que $r$ es una raíz $m$-ésima de la unidad.

Y en efecto, para $r$ una raíz $m$-ésima de la unidad y $a$ cualquier complejo, tenemos que $\{ar^n\}$ es una sucesión geométrica y de periodo $m$.

$\square$

Más problemas

Esta entrada es una extensión de las secciones 5 y 6 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Álgebra Superior II: Exponencial, logaritmo y trigonometría en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Gracias a las entradas anteriores ya hemos desarrollado un buen manejo de los números complejos. Sabemos cómo se construyen y cómo hacer operaciones básicas, incluyendo obtener conjugados, la forma polar, sacar normas y elevar a potencias. También hemos aprendido a resolver varias ecuaciones en los complejos: cuadráticas, sistemas lineales y raíces $n$-ésimas. Todo esto forma parte de los fundamentos algebraicos de $\mathbb{C}$. Ahora hablaremos un poco de la exponencial, el logaritmo y trigonometría en los complejos.

Aunque mencionaremos un poco de las motivaciones detrás de las definiciones, no profundizaremos tanto como con otros temas. Varias de las razones para elegir las siguientes definiciones tienen que ver con temas de ecuaciones diferenciales y de análisis complejo, que no se estudian sino hasta semestres posteriores.

Función exponencial compleja

Recordemos que, para un real $y$, definimos $\text{cis}(y)=\cos y + i \sin y$. La función $\text{cis}$ y la exponenciación en los reales nos ayudarán a definir la exponencial compleja.

Definición. Definimos la función $\exp:\mathbb{C}\to \mathbb{C}$ como $$\exp(x+yi)=e^x\text{cis}(y).$$

Ejemplo 1. Se tiene que $$\exp\left(1+\frac{\pi}{2} i\right) = e^1 \text{cis}\left(\frac{\pi}{2}\right) = ei.$$

$\triangle$

Ejemplo 2. Se tiene que $$\exp(\pi i) = e^0\text{cis}(\pi) = (1)(-1)=-1.$$ Como veremos más abajo, esto lo podemos reescribir como la famosa identidad de Euler $$e^{\pi i}+1=0.$$

$\triangle$

Ejemplo 3. Se tiene que $$\exp(2+3i)=e^2\text{cis}(3).$$ Como $\cos(3)$ y $\sin(3)$ no tienen ningún valor especial, esta es la forma final de la expresión.

$\triangle$

Propiedades de la función exponencial compleja

Una buena razón para definir la exponencial así es que si $y=0$, entonces la definición coincide con la definición en los reales: $$\exp(x)=e^x\text{cis}(0)=e^x.$$ Si $x=0$, tenemos que $\exp(iy)=\text{cis}(y)$, de modo que si $w$ tiene norma $r$ y argumento $\theta$, podemos reescribir su forma polar como $$w=r\exp(\theta i),$$ y una forma alternativa de escribir el teorema de De Moivre es $$w^n=r^n\exp(n\theta i).$$

Otra buena razón para definir la exponencial compleja como lo hicimos es que se sigue satisfaciendo que las sumas en la exponencial se abren en productos.

Proposición. Para $w$ y $z$ complejos se tiene que $$E(w+z)=E(w)E(z).$$

Demostración. Escribamos $w=a+bi$ y $z=c+di$ con $a,b,c$ y $d$ reales. Tenemos que
\begin{align*}
\exp(w+z)&=\exp((a+c)+(b+d)i)\\
&=e^{a+c}\text{cis}(b+d).
\end{align*}

Por propiedades de la exponencial en $\mathbb{R}$ tenemos que $e^{a+c}=e^ae^c$. Además, por cómo funciona la multiplicación compleja en términos polares, tenemos que $\text{cis}(b+d)=\text{cis}(b)\text{cis}(d)$. Usando estas observaciones podemos continuar con la cadena de igualdades,

\begin{align*}
&=e^ae^c\text{cis}(b)\text{cis}(d)\\
&=(e^a\text{cis}(b)) (e^c\text{cis}(d))\\
&=\exp(a+bi)\exp(c+di)\\
&=\exp(w)\exp(z).
\end{align*}

$\square$

Como $\exp$ extiende a la exponencial real y se vale abrir las sumas de exponentes en productos, puede ser tentador usar la notación $e^{x+yi}$ en vez de $\exp(x+yi)$. Hay que tener cuidado con esta interpretación, pues hasta ahora no hemos dicho qué quiere decir «elevar a una potencia». Cuando lo hagamos, veremos que usar la notación $e^{x+yi}$ sí tiene sentido, pero por el momento hay que apegarnos a la definición.

Hay otras buenas razones para definir la exponencial compleja como lo hicimos. Una muy importante es que es la solución a una ecuación diferencial muy natural. Más adelante, en tu formación matemática, verás esto.

Función logaritmo complejo

Con el logaritmo natural $\ln$ en $\mathbb{R}$ y la multifunción argumento podemos extender el logaritmo a $\mathbb{C}$.

Definición. Definimos la función $L:\mathbb{C}\setminus \{0\} \to \mathbb{C}$ como $$L(z)=\ln \Vert z \Vert + \arg(z) i.$$

Hay que ser un poco más precisos, pues $\arg(z)$ es una multifunción y toma varios valores. Cuando estamos trabajando con logaritmo, lo más conveniente por razones de simetría es que tomemos el argumento en el intervalo $(-\pi,\pi]$. En cursos posteriores hablarás de «otras» funciones logaritmo, y de por qué ésta es usualmente una buena elección.

Ejemplo. Los logaritmos de $i$ y de $-1$ son, respectivamente,
\begin{align*}
L(i)&=\ln \Vert i \Vert + \arg(i) i = \ln(1) + \frac{\pi}{2} i =\frac{\pi}{2} i\\
L(-1)&=\ln \Vert -1 \Vert + \arg(-1) i = \ln(1)+\pi i = \pi i.
\end{align*}

$\triangle$

Propiedades del logaritmo complejo

La función $\exp$ restringida a los números con parte imaginaria en $(-\pi,\pi]$ es invertible y su inversa es $L$. Esto justifica en parte la definición de logaritmo. Demostrar esto es sencillo y queda como tarea moral.

La función $L$ restringida a los reales positivos coincide con la función logaritmo natural, pues para $z=x+0i=x$, con $x>0$ se tiene que $\arg(x)=0$ y entonces $$L(z)=L(x)=\Vert x\Vert+\arg(x)i=x.$$

Como en el caso real, la función logaritmo abre productos en sumas, pero con un detalle que hay que cuidar.

Proposición. Para $w$ y $z$ complejos no $0$, se tiene que $L(wz)$ y $L(w)+L(z)$ difieren en un múltiplo entero de $2\pi i$.

Con la función logaritmo podemos definir potencias de números complejos.

Definición. Para $w,z$ en $\mathbb{C}$ con $w\neq 0$, definimos $$w^z=\exp(zL(w)).$$

Ejemplo. En particular, podemos tomar $w=e$, de donde \begin{align*}e^z&=\exp(zL(e))\\&=\exp(z\ln(e))\\&=\exp(z),\end{align*} de donde ahora sí podemos justificar usar la notación $e^{x+yi}$ en vez de $\exp(x+yi)$.

$\square$

Esta definición de exponenciación en $\mathbb{C}$ es buena, en parte, porque se puede probar que se satisfacen las leyes de los exponentes.

Proposición. Para $w, z_1, z_2$ en $\mathbb{C}$, con $w\neq 0$, se cumple que $$z^{w_1+w_2}=z^{w_1}z^{w_2}$$ y que $$(z^{w_1})^{w_2}=z^{w_1w_2}.$$

La demostración es sencilla y se deja como tarea moral.

Funciones trigonométricas complejas

Finalmente, definiremos las funciones trigonométricas en $\mathbb{C}$. Para ello, nos basaremos en la función exponencial que ya definimos.

Definición. Para $z$ cualquier complejo, definimos $$\cos(z)=\frac{e^{iz}+e^{-iz}}{2}$$ y $$\sin(z)=\frac{e^{iz}-e^{-iz}}{2}.$$

Una de las razones por las cuales esta definición es buena es que extiende a las funciones trigonométricas reales. En efecto, si $z=x+0i=x$ es real, entonces $\cos(z)$ es \begin{align*}
\frac{e^{iz}+e^{-iz}}{2}&=\frac{\text{cis}(x)+\text{cis}(-x)}{2}\\
&=\frac{2\cos(x)}{2}\\
&=\cos(x),
\end{align*} y de manera similar para $\sin(z)$.

Las funciones trigonométricas en $\mathbb{C}$ siguen cumpliendo varias propiedades que cumplían en $\mathbb{R}$.

Proposición. Para $w$ y $z$ complejos, se tiene que
\begin{align*}
\cos(w+z)=\cos(w)\cos(z)-\sin(w)\sin(z)\\
\sin(w+z)=\sin(w)\cos(z)+\sin(z)\cos(w).
\end{align*}

Demostración. Procedemos por definición. Tenemos que
\begin{align*}
4&\cos(w)\cos(z)\\
&=(e^{iw}+e^{-iw})(e^{iz}+e^{-iz})\\
&=(e^{i(w+z)}+e^{i(w-z)}+e^{i(z-w)}+e^{i(-z-w)})
\end{align*}

y que
\begin{align*}
4&\sin(w)\sin(z)\\
&=(e^{iw}-e^{-iw})(e^{iz}-e^{-iz})\\
&=(e^{i(w+z)}-e^{i(w-z)}-e^{i(z-w)}+e^{i(-z-w)}),
\end{align*}

de modo que
\begin{align*}
4(\cos(w)&\cos(z)-\sin(w)\sin(z))\\
&=2(e^{i(w+z)}+e^{-i(w+z)})\\
&=4\cos(w+z).
\end{align*}

Dividiendo entre $4$ ambos lados de la igualdad, obtenemos la primer identidad. La segunda se demuestra de manera análoga, y queda como tarea moral.

$\square$

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina los valores de $\exp(3+\frac{3\pi}{4}i)$ y de $L(-i)$.
  2. Muestra que para $z$ con parte imaginaria en $(-\pi,\pi]$ se tiene que $L(\exp(z))=z$.
  3. Determina el valor de $(1+i)^{1+i}$.
  4. Muestra las leyes de los exponentes para la exponenciación en $\mathbb{C}$.
  5. Determina el valor de $\sin(i)$ y de $\cos(1+i)$.
  6. Muestra la identidad de seno de la suma de ángulos en $\mathbb{C}$.
  7. Investiga qué otras propiedades de las funciones trigonométricas reales se extienden al caso complejo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Sucesiones aritméticas y geométricas

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta y las siguientes entradas platicaremos varios temas relacionados con sucesiones, y cómo se aplican a la resolución de problemas matemáticos. Comenzaremos recordando qué es una sucesión y estudiando a las sucesiones aritméticas y geométricas. Más adelante, platicaremos de los siguientes tipos de sucesiones:

  • Periódicas
  • Acotadas
  • Recursivas
  • Con recursiones lineales
  • Monótonas
  • Convergentes

Supondremos que el que lee estas notas está al menos un poco familiarizado con estos conceptos. De cualquier forma, recordaremos las definiciones que vayamos necesitando.

Recordatorio de sucesiones

Una sucesión formalmente es una función de los naturales a un conjunto $X$. Aunque esta es la definición formal, es bastante más práctico pensar a una sucesión como ciertos elementos de $X$ en donde hay uno que es el primero, después del cual aparecen más, uno tras otro.

En muchos problemas, $X$ es un conjunto de números, como los naturales, enteros, racionales o reales. Sin embargo, $X$ también puede ser un conjunto de funciones, de polinomios, de figuras geométricas o de prácticamente cualquier otra cosa. Por ejemplo, en topología algebraica son de interés ciertas sucesiones de grupos.

Usaremos la notación $\{x_n\}$ para referirnos a una sucesión. Aunque usa llaves (como si fuera conjunto), en realidad los elementos están «ordenados de izquierda a derecha», entonces se tiene que pensar como $$\{x_n\}=(x_0,x_1,x_2,x_3,\ldots).$$ El término $x_n$ es el $n$-ésimo término de la sucesión.

Podemos definir a una sucesión de manera implícita mediante una fórmula, o mediante forma explícita escribiendo algunos de sus términos cuando el patrón que sigue es muy claro (lo cual no siempre pasa). Por ejemplo, la sucesión $\{x_n\}$ tal que para todo $n\geq 0$, tenemos $x_n=1$ es explícitamente la sucesión $$1,1,1,1,1,\ldots,$$ mientras que la sucesión $\{y_n\}$ tal que para todo $n\geq 0$ se tiene $y_n=n(n+1)$ es explícitamente la sucesión $$0, 2, 6, 12, 20, \ldots.$$

A partir de la forma implícita podemos dar tantos términos como queramos de la forma explícita, pero lo contrario no es cierto. Algunos acertijos se tratan de tomar pocos términos de una sucesión dada de manera explícita, y preguntar cuál es el siguiente término, o bien cuál es la regla general.

En términos formales, la respuesta no es única, pues la sucesión, en teoría, podría continuar como sea. Sin embargo, como acertijo es divertido encontrar una regla fácil de enunciar y que funcione siempre. Algunas sucesiones en las que se puede hacer esto son las siguientes:

  • $1,1,1,1,1,1,1,\ldots$
  • $1,2,3,4,5,6,7,\ldots$
  • $2,4,6,8,10,12,14,\ldots$
  • $1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16},\frac{1}{32}, \frac{1}{64},\ldots$
  • $i, 1, 2, 3i, 5, 8i, 13, 21i, \ldots$
  • $1,\sqrt{2},\sqrt{3},2,\sqrt{5},\sqrt{6},\sqrt{7},\ldots$
  • $4,3,2,1,4,3,2,1,4,3,\ldots$

En todos estos ejemplos, la sucesión tiene cierto patrón u orden. Pero hay muchas otras sucesiones que no tienen un patrón claro para enunciarlas de forma implícita, o bien en las que este patrón es más difícil de encontrar:

  • $3,1,4,1,5,9,2,6,5,\ldots$
  • $4,13,0,1,7,18,54,\ldots$
  • $2,1,24,6,720,120,40320,5040,\ldots$

Como ya comentamos, la forma explícita de una sucesión tiene el problema de que no sabemos cuáles términos siguen. Si en un problema aplicamos la heurística de buscar un patrón y tenemos que los primeros términos de una sucesión son $$2,4,6,8,10,12$$ por muy tentador que sea no podemos garantizar que el siguiente será $14$, hasta que no tengamos una demostración para ello.

Es posible que resolviendo problemas, o en otro quehacer matemático, encuentres los primeros términos de una sucesión de enteros y quieras saber cuál es. Una herramienta muy útil para ello es Enciclopedia en Línea de Sucesiones en Enteros (OEIS). Tiene un buscador en el que pones los primeros términos, y de ahí te sugiere algunas sucesiones que pueden ser la que estás buscando.

Problema. Para un entero $n\geq 1$, se toman $n$ puntos distintos sobre la orilla de una circunferencia. Se dibujan todos los segmentos entre pares de esos puntos. Se sabe que no hay tres de esos segmentos que coincidan en el interior de la circunferencia. ¿En cuántas regiones queda dividida el área de la circunferencia?

Sugerencia pre-solución. Haz varias figuras para hacer casos pequeños y buscar un patrón. Ten cuidado, pues el patrón no es el que puedes deducir inmediatamente.

Solución. Veamos qué sucede con casos pequeños. Cuando tenemos un punto, no hay segmentos y sólo queda $1$ región. Si tenemos dos puntos, se hace un segmento y tenemos $2$ regiones. Para tres puntos, queda un triángulo y tres regiones a sus lados, así que son $4$ regiones en total. Las siguientes figuras muestran que para cuatro y cinco puntos tenemos $8$ y $16$ regiones en total:

Casos de cuatro y cinco puntos

Así, la sucesión de cuántas regiones hay hasta ahora va así de manera explícita: $$1,2,4,8,16$$

Parecería que es la sucesión de potencias de dos, y que la respuesta sería entonces $2^{n-1}$. Pero esto es incorrecto. Al hacer un caso más, nos damos cuenta de esto, pues para seis puntos tenemos únicamente $31$ regiones:

Caso de seis puntos

Cuando estamos haciendo matemáticas, o resolviendo un problema con acceso a internet, podemos poner esta sucesión en la OEIS para ver si hay algo que nos pueda ayudar.

Realizando la búsqueda, obtenemos varios resultados, y el segundo resultado tiene exactamente la descripción que queremos. La OEIS tiene una sección de fórmulas que podemos usar.

Ahí, dice que la cantidad de regiones es $$\binom{n-1}{0}+\binom{n-1}{1}+\binom{n-1}{2}+\binom{n-1}{3}+\binom{n-1}{4},$$ (lo cual se puede probar usando inducción) y de hecho, usando la definición de coeficientes binomiales, se puede ver que la expresión anterior es igual a $$\frac{n^4 – 6n^3 + 23n^2 – 18n + 24}{24}.$$

$\square$

Sucesiones aritméticas

Una sucesión aritmética es una sucesión en la cual de un término al siguiente siempre hay una misma diferencia. Un ejemplo es la sucesión $$1,4,7,10,13,16,19,\ldots,$$ que construimos de modo que la diferencia de un término al siguiente siempre sea $3$.

Si conocemos el término inicial $a_0=a$ de una sucesión aritmética y la diferencia $d$, entonces conocemos todos los términos. En efecto, se puede probar inductivamente que $a_n=a+nd$.

Esta fórmula es muy útil para trabajar con sucesiones aritméticas. Por ejemplo, si sabemos que $\{a_n\}$ es una sucesión aritmética tal que $a_5=30$ y $a_7=48$, entonces por un lado $$a_7-a_5=48-30=18,$$ y por otro $$a_7-a_5=(a+7d)-(a+5d)=2d.$$ De este modo, la diferencia es $d=9$, y el término inicial es $a=a_7-7\cdot 9=48-63=-15$.

Problema. Muestra que en cualquier sucesión aritmética de enteros con diferencia $d>0$ que tenga al menos un número al cubo $k^3$, tiene una infinidad de cubos.

Sugerencia pre-solución. Usa una identidad algebraica.

Solución. Podemos suponer sin perder generalidad que $k>0$. Para que una sucesión aritmética sea de enteros, su diferencia tiene que ser un número entero. Así, $d$ es un entero positivo.

Como $k^3$ es uno de los términos y la diferencia es $d$, entonces $k^3+nd$ también es un término para cualquier entero positivo $n$. En particular, lo es para los enteros de la forma $n=3mk^2+3m^2dk+m^3d^2$, con $m$ un entero positivo. De esta forma, $$k^3+3mdk^2+3m^2d^2k+m^3d^3=(k+md)^3$$ es un término de la sucesión para todo entero positivo $m$, así que la sucesión tiene una infinidad de cubos.

$\square$

Una observación sencilla, pero útil, es que si $\{a_n\}$ es una sucesión aritmética de enteros con término inicial $a$ y diferencia $d>0$, entonces los términos de $a$ son exactamente los números $m\geq a$ tales que $m\equiv a \pmod d$. Las sucesiones aritméticas juegan un papel importante en algunos resultados de teoría de números, por ejemplo, el siguiente teorema.

Teorema de Dirichlet. Sean $a$ y $b$ enteros primos relativos. En la sucesión de enteros $\{a+bn\}$ hay una infinidad de primos. De manera equivalente, hay una infinidad de primos $p$ tales que $p\equiv a \pmod b$.

Sucesiones geométricas

Si tenemos una sucesión en la cual para pasar de un término al siguiente siempre multiplicamos por un mismo número, entonces tenemos una sucesión geométrica. Estos son tres ejemplos:

  • $1,2,4,816,32,64,\ldots$
  • $2020,0,0,0,0,0,\ldots$
  • $64,96,144,216,324,486,729,\ldots$

La primera está construida de modo que hay que multiplicar por $2$ para pasar de un término al siguiente. La segunda de modo que hay que multiplicar por $0$. En la última se multiplica por $\frac{3}{2}$. Parece que la última sucesión es de enteros, pero el siguiente término ya no es entero, pues es $\frac{2187}{2}$.

De nuevo, si el término inicial es $a_0=a$ y la razón (el número por el que se multiplica en cada paso) es $r$, entonces una sencilla inducción muestra que el término $a_n$ es $ar^n$. Si $a=0$, la sucesión es toda igual a $0$. Si $r=0$, a partir del segundo término la sucesión es $0$. En otro caso, conociendo dos valores de una sucesión geométrica podemos conocer información acerca de $r$.

Problema. La sucesión de números complejos $\{a_n\}$ es geométrica y cumple que $a_6=a_{24}=2020$. ¿Qué posibles valores puede tener $a_0$?

Sugerencia pre-solución. Usa la fórmula para sucesiones geométricas. Como estás trabajando en $\mathbb{C}$, recuerda considerar todas las posibilidades que te da la aritmética de complejos.

Solución. Si el término inicial de la sucesión es $a_0=a$ y la razón es $r$, sabemos que $ar^6=2020=ar^{24}$. La primer igualdad implica $r\neq 0$ y $a=2020r^{-6}\neq 0$. La igualdad entre la primera y última igualdad implica que $r^{18}=1$, que podemos escribir como $(r^6)^3=1$. De aquí, $r^6$ puede ser cualquier cúbica de la unidad, y por lo tanto $r^{-6}$ también. De esta forma, $a=2020\omega$, con $\omega$ cualquier raíz cúbica de la unidad.

$\square$

Un problema de sucesiones geométricas y aritméticas

En el siguiente problema se mezclan los dos tipos de sucesiones de los que hemos hablado.

Problema. La sucesión $\{x_n\}$ es aritmética. La sucesión $\{y_n\}$ es geométrica. Tenemos que

\begin{align*}
x_1+y_1&=1\\
x_2+y_2&=8\\
x_3+y_3&=10\\
x_4+y_4&=32.
\end{align*}

Determina el valor de $x_5+y_5$.

Sugerencia pre-solución. Modifica el problema a encontrar los términos iniciales, diferencia y razón de las sucesiones. Usa las fórmulas para cada tipo de sucesión.

Solución. Supongamos que $\{x_n\}$ tiene término inicial $x_0=a$ y diferencia $d$. Supongamos que $\{y_n\}$ tiene término inicial $y_0=s$ y razón $r$. Vamos a determinar $a,d,r,s$. Usando las fórmulas para sucesiones aritmétricas y geométricas, las ecuaciones de la hipótesis se pueden reescribir como sigue:

\begin{align*}
a+d + rs&=1\\
a+2d + r^2s&=8\\
a+3d + r^3s&=10\\
a+4d + r^4s&=32.
\end{align*}

Restando la primera ecuación de la segunda, la segunda de la tercera, y la tercera ecuación de la cuarta, tenemos las siguientes tres ecuaciones:

\begin{align*}
d + r(r-1) s &= 7\\
d+r^2(r-1)s &= 2\\
d + r^3(r-1)s &= 22.
\end{align*}

Restando la primer ecuación de la segunda, y la segunda ecuación de la tercera, tenemos las siguientes dos ecuaciones:

\begin{align*}
r(r-1)^2 s &= -5\\
r^2(r-1)^2 s &= 20.
\end{align*}

De aquí, $s\neq 0$, $r\neq 0$ y $r\neq 1$. Multiplicando la primer ecuación por $-4$, tenemos que $$-4r(r-1)^2s=20=r^2(r-1)^2s.$$ Cancelando $r(r-1)^2s$ (pues no es cero) de ambos lados, obtenemos que $r=-4$. Así, la primera ecuación se transforma en $-4(25)s=-5$, por lo que $s=1/20$.

De la ecuación $d+r(r-1)s=7$, obtenemos entonces $d=7-1=6$. Finalmente, de la ecuación $a+d+rs=1$, obtenemos $a=1-6+1/5=-\frac{24}{5}$.

En resumen, $$a=-\frac{24}{5}, d=6, s=\frac{1}{20}, r=-4.$$

De esta forma,
\begin{align*}
x_5+y_5&=a+5d+rs^5\\
&=-\frac{24}{5}+30-\frac{4^5}{20}\\
&=-26.
\end{align*}

$\square$

Más problemas

Esta entrada es una extensión de las secciones 1, 2 y 3 del curso de sucesiones que impartí para los entrenadores de la Olimpiada Mexicana de Matemáticas. Puedes consultar las notas de este curso en el siguiente PDF, en donde hay más problemas de práctica:

Álgebra Superior II: Raíces en los complejos y raíces de la unidad.

Por Leonardo Ignacio Martínez Sandoval

Introducción

En esta entrada veremos cómo resolver, en $\mathbb{C}$, la ecuación $w^n=z$, en donde $z$ es un complejo y $n$ es un entero positivo. Puedes pensar esto como que aprenderemos a obtener raíces en los complejos, pero sólo para $n$ entero. Más adelante hablaremos de la función exponencial compleja que nos permitirá elevar a otro tipo de exponentes.

Nuestra herramienta principal será la fórmula de De Moivre, que ya demostramos en una entrada anterior. Encontrar raíces $n$-ésimas es una herramienta más en nuestra caja para trabajar con números complejos, que hasta el momento ya incluye resolver ecuaciones cuadráticas complejas y sistemas de ecuaciones lineales complejos.

Introducción a raíces en los complejos

Pensemos en un ejemplo sencillo. ¿Cuáles son los complejos $w$ tales que $w^4=1$? En $\mathbb{R}$ tenemos dos de ellos: $1$ y $-1$. Como $$(-i)^4=i^4=(-1)^2=1,$$ en $\mathbb{C}$ tenemos otras dos soluciones: $i$ y $-i$. Así que tenemos $4$ soluciones en $\mathbb{C}$: $1$, $-1$, $i$ y $-i$.

Para mostrar que son las únicas en este sencillo caso, podemos hacer lo siguiente. Expresamos $1$ en forma polar $1=\text{cis}(0)$ y también, en forma polar, una solución $w=s\text{cis}(\alpha)$, con $\theta$ en $[0,2\pi)$. Por el teorema de De Moivre, tenemos que $$1=w^4=s^4\text{cis}(4\alpha).$$

Así, la norma $s$ de $w$ debe satisfacer $s^4=1$, y además $\text{cis}(4\alpha)$ debe ser $1$, por lo que $4\alpha$ debe ser un múltiplo entero de $2\pi$. La norma es un real positivo, así que la única solución para $s$ es $1$. Ahora, ¿cuántos argumentos $\alpha$ en $[0,2\pi)$ hacen que $4\alpha$ sea un múltiplo entero de $2\pi$?

Para determinar esto, notemos que $4\alpha$ está en $[0,8\pi)$, y ahí hay exactamente cuatro múltiplos enteros de $2\pi$, que son $$0,2\pi, 4\pi, 6\pi.$$ Esto es justo lo que limita las soluciones a que sean a lo más $4$.

Podemos continuar para verificar que en efecto son las soluciones que ya encontramos. Las soluciones para $\alpha$ en cada caso son $$0,\frac{\pi}{2},\pi,\frac{3\pi}{2}.$$ Concluimos entonces que las soluciones complejas de $w^4=1$ son, en forma polar,
\begin{align*}
w_1&=\text{cis}(0)\\
w_2&=\text{cis}\left(\frac{\pi}{2}\right)\\
w_3&=\text{cis}\left(\pi\right)\\
w_4&=\text{cis}\left(\frac{3\pi}{2}\right),
\end{align*}

que son exactamente $1,i,-1,-i$.

$\triangle$

El teorema de raíces en los complejos

La discusión anterior funciona en general para cualquier entero positivo $n$ y para cualquier complejo $\mathbb{C}$. Siempre tenemos exactamente $n$ soluciones y sabemos cómo se ven en forma polar.

Teorema. Sea $z=r\text{cis}(\theta)$ un número complejo, distinto de cero, dado en forma polar y $n$ un entero positivo. Existen exactamente $n$ elementos distintos de $\mathbb{C}$ tales que $w^n = z$. Están dados en forma polar por $$w_j=r^{1/n} \text{cis}\left(\frac{\theta}{n} + j\frac{2\pi}{n}\right)$$ para $j=0,1,2\ldots,n-1$.

Demostración. Tomemos una solución $w$ y la escribimos en forma polar $w=s\text{cis}(\alpha)$, con $\alpha$ en $[0,2\pi)$. Usando que $w$ es solución y la fórmula de De Moivre, obtenemos que $$r\text{cis}(\theta)=s^n\text{cis}(n\alpha).$$ Como $s$ tiene que ser real positivo, obtenemos que $s=r^{1/n}$ (aquí estamos usando la raíz $n$-ésima en los reales).

El ángulo $n\alpha$ está en el intervalo $[0,2n\pi)$, y debe diferir en un múltiplo entero de $2\pi$ del ángulo $\theta$. Como $\theta$ está en $[0,2\pi)$, las únicas posibilidades para $n\alpha$ pueden ser los $n$ valores $$\theta, \theta+2\pi,\ldots, \theta+2(n-1)\pi,$$ de donde las soluciones para $\alpha$ son $$\frac{\theta}{n},\frac{\theta}{n}+\frac{2\pi}{n}, \ldots, \frac{\theta}{n} + (n-1)\frac{2\pi}{n},$$ respectivamente. Como son ángulos distintos en $[0,2\pi)$, obtenemos las posibles soluciones distintas $$r^{1/n} \text{cis}\left(\frac{\theta}{n} + j\frac{2\pi}{n}\right)\quad \text{para $j=0,\ldots,n-1$}.$$

Verificar que en efecto son soluciones es sencillo, ya sea revirtiendo los pasos que hicimos, o usando directamente la fórmula de De Moivre. Esta verificación queda como tarea moral.

$\square$

Observa que el teorema dice que para obtener una raíz podemos empezar del complejo de norma $r^{1/n}$ y argumento $\frac{\theta}{n}$, y de ahí obtener el resto de las raíces en los complejos «rotando repetidamente $\frac{2\pi}{n}$ en el plano complejo». Esto muestra que las raíces forman los vértices de un $n$-ágono regular.

Nos costó un poco de trabajo mostrar que teníamos a lo más $n$ soluciones. En realidad, cualquier ecuación polinomial de grado $n$, es decir, de la forma $$a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0=0$$ tiene a lo más $n$ soluciones. Esto lo veremos con toda generalidad en la última unidad, cuando hablemos de polinomios.

Ejemplos de obtener raíces en los complejos

Ejemplo. Encontremos todas las raíces séptimas del complejo $128\text{cis}\left(\frac{14\pi}{13}\right)$. Para empezar, notemos que $128^{1/7}=2$, de modo que todas las raíces tienen norma $2$.

Una de las raíces tiene argumento $\frac{14\pi}{7\cdot 13}=\frac{2\pi}{13}$ y el argumento del resto difiere en múltiplos enteros de $\frac{2\pi}{7}$. De esta forma, las raíces son

\begin{align*}
w_1&=2\text{cis}\left(\frac{2\pi}{13}\right)\\
w_2&=2\text{cis}\left(\frac{2\pi}{13}+\frac{2\pi}{7}\right)=2\text{cis}\left(\frac{40\pi}{91}\right)\\
w_3&=2\text{cis}\left(\frac{2\pi}{13}+\frac{4\pi}{7}\right)=2\text{cis}\left(\frac{66\pi}{91}\right)\\
w_4&=2\text{cis}\left(\frac{2\pi}{13}+\frac{6\pi}{7}\right)=2\text{cis}\left(\frac{92\pi}{91}\right)\\
w_5&=2\text{cis}\left(\frac{2\pi}{13}+\frac{8\pi}{7}\right)=2\text{cis}\left(\frac{118\pi}{91}\right)\\
w_6&=2\text{cis}\left(\frac{2\pi}{13}+\frac{10\pi}{7}\right)=2\text{cis}\left(\frac{144\pi}{91}\right)\\
w_7&=2\text{cis}\left(\frac{2\pi}{13}+\frac{12\pi}{7}\right)=2\text{cis}\left(\frac{170\pi}{91}\right).
\end{align*}

$\triangle$

Problema. Sabemos que $(2-3i)^4=-119+120i$. Encuentra las otras raíces cuartas de $-119+120i$.

Solución. Podríamos pasar $-119+120i$ a forma polar y usar el método anterior. Esto funciona y dará una solución. Pero veamos una solución alternativa más corta, que nos ayuda a entender mejor el teorema de raíces en los complejos.

De acuerdo con lo que probamos, las raíces varían únicamente en argumento, al que se le va sumando $\frac{\pi}{2}$. Es decir, si tenemos una raíz en el plano complejo, las demás se obtienen de ir rotando $\frac{\pi}{2}$ (recuerda que esto es $90^\circ$) desde el origen. Al ir rotando el punto $(2,-3)$ en el plano complejo en este ángulo, obtenemos los puntos $(-3,-2)$, $(-2,3)$ y $(3,2)$, de modo que las otras tres raíces son $-3-2i$, $-2+3i$ y $3+2i$.

Otra forma más de pensarlo es la siguiente. Si ya tenemos una raíz cuarta $w$ de un complejo $z$, entonces todas las raíces se obtienen multplicando por $1,i,-1, -i$. En efecto, por ejemplo, $$(iw)^4=i^4w^4=w^4=1.$$ Así, para el problema que nos interesa, las soluciones son

\begin{align*}w_1&=2-3i\\w_2&=i(2-3i)=3+2i\\w_3&=-(2-3i)=-2+3i\\w_4&=-i(2-3i)=-3-2i,\end{align*}
lo cual coincide con lo que habíamos encontrado antes.

$\triangle$

Raíces $n$-ésimas de la unidad

Un caso particular importante de la teoría desarrollada en la sección anterior es cuando $z$ es $1$. Sea $n$ un entero positivo y $w$ un complejo tal que $w^n=1$. A $w$ se le conoce como una raíz $n$-ésima de la unidad.

Teorema (de las raíces $n$-ésimas de la unidad). Sea $n$ un entero positivo. Existen exactamente $n$ raíces $n$-ésimas de la unidad distintas. Si $\omega$ es la que tiene el menor argumento positivo, entonces dichas raíces son $$1,\omega, \omega^2,\ldots, \omega^{n-1}.$$

La demostración se sigue fácilmente del teorema de raíces $n$-ésimas y queda como tarea moral. Cualquier raíz $n$-ésima $\omega$ tal que sus primeras potencias generen todas las raíces $n$-ésimas de la unidad se le conoce como una raíz primitiva.

Las raíces $n$-ésimas de la unidad tienen una interpretación geométrica bonita. Forman los vértices del $n$-ágono regular con $n$ vértices, sobre la circunferencia unitaria, donde uno de los vértices es $1$.

Ejemplo. Obtengamos las raíces quintas de la unidad. Primero, obtengamos la de menor argumento positivo, que por el teorema de raíces en los complejos, es $$\omega = \text{cis}\left(\frac{2\pi}{5}\right).$$ El resto de las raíces son entonces $\omega^2$, $\omega^3$, $\omega^4$ y $1$. Las podemos encontrar en el plano complejo como vértices del siguiente pentágono regular:

Ejemplo de raíces en los complejos: raíces quintas de la unidad
Raíces quintas de la unidad

Cualquiera de $\omega$, $\omega^2$, $\omega^3$ y $\omega^4$ son raíces primitivas, pero $1$ no es raíz primitiva pues sus potencias sólo son él mismo.

$\triangle$

Las raíces $n$-ésimas de la unidad se utilizan en muchos contextos. Aunque se puede trabajar con ellas de forma explícita, muchas veces se utilizan sólo las propiedades algebraicas que cumplen. A continuación enunciamos algunas.

Teorema. Sea $\omega$ una raíz primitiva $n$-ésima de la unidad. Las raíces $n$-ésimas de la unidad $$\omega_i = \omega^i $$ para $i=0,\ldots,n-1$ satisfacen las siguientes propiedades:

  • Para $n>1$, se tiene que $\omega_0+\ldots+\omega_{n-1}=0$.
  • Para $k=0,1,\ldots,n-1$, se tiene que $$(\omega_k)^{-1}=\overline{\omega_k}=\omega_{n-k}.$$
  • Se tiene que $\omega_0\cdot\ldots\cdot \omega_{n-1} = (-1)^{n+1}$.

Demostración. Empezamos con el primer inciso. Si $n>1$, tenemos que $1$ no es raíz primitiva, así que para el primer inciso sabemos que $\omega\neq 1$. Usamos la fórmula para suma de términos en una progresión geométrica:
\begin{align*}
\omega_0+\omega_1&+\ldots+\omega_{n-1}\\
&= 1+\omega+\ldots+\omega^{n-1}\\
&=\frac{1-\omega^n}{1-\omega}\\
&=\frac{1-1}{1-\omega}\\
&=0.
\end{align*}

Para la segunda parte, notemos que $$\omega_k\omega_{n-k}=\omega^k\omega^{n-k}=\omega^n=1,$$ lo cual prueba una de las igualdades. La otra igualdad se sigue del hecho general que el inverso de un complejo de norma $1$ es su conjugado, cuya demostración queda como tarea moral.

La tercera parte se sigue de la propiedad anterior. Al multiplicar todas las raíces de la unidad, podemos emparejar a cada raíz con su conjugado para obtener producto $1$. Las únicas excepciones es cuando emparejamos a un complejo consigo mismo, es decir, para cuando $\omega_k=\overline{\omega_k}$, lo cual sucede sólo cuando $\omega_k$ es real. Las únicas posibilidades son $1$ ó $-1$. El $1$ no tiene problema pues colabora con un factor $1$. Si $n$ es impar, $-1$ no es raíz $n$-ésima, así que no contribuye al producto. Si $n$ es par sí. Esto muestra lo que queremos pues $(-1)^{n+1}$ es $1$ si $n$ es impar y $-1$ si es par.

$\square$

Para un entero positivo $n$, llamemos $(U_n,\cdot)$ al conjunto de raíces $n$-ésimas de la unidad equipadas con el producto complejo.

Teorema. Para cada entero positivo $n$, se tiene que $(U_n,\cdot)$ es un grupo y es isomorfo a $(\mathbb{Z}_n,+)$.

Demostración. El producto de cualesquiera dos raíces $n$-ésimas es también una raíz $n$-ésima. Por el teorema anterior, los inversos multiplicativos de las raíces $n$-ésimas también son raíces $n$-ésimas. Esto basta para mostrar que se forma un grupo.

Para la segunda parte, notamos que ambos grupos son el grupo cíclico de $n$ elementos. Una correspondencia entre ellos está dada por mandar $[1]_n$ a cualquier raíz primitiva.

$\square$

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra las raíces cúbicas de $8-8i$ y dibújalas en el plano complejo.
  2. Verifica que las soluciones obtenidas en el teorema de raíces $n$-ésimas en efecto son soluciones.
  3. Muestra el teorema de las raíces $n$-ésimas de la unidad.
  4. Prueba que si $z$ es un complejo de norma $1$, entonces su inverso es su conjugado.
  5. Sea $\omega$ una raíz $n$-ésima primitiva de la unidad. Muestra que $w^k$ es una raíz primitiva si y sólo si $n$ y $k$ son primos relativos, es decir, $\MCD{n,k}=1$. Sugerencia: Usa lo que sabemos de soluciones a ecuaciones diofantinas lineales.
  6. Encuentra de manera explícita la parte real y la parte imaginaria de todas las raíces quintas de la unidad.
    Sugerencia: La ecuación $w^5-1=0$ se puede factorizar como $$(w-1)(w^4+w^3+w^2+w+1)$$ y $w^4+w^3+w^2+w+1$ se puede factorizar como $$\left(w^2+\frac{1+\sqrt{5}}{2}w+1\right)\left(w^2+\frac{1-\sqrt{5}}{2}w+1\right).$$ Usa lo que sabemos de resolver ecuaciones cuadráticas cojmplejas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»