Archivo de la etiqueta: sistemas lineales

Álgebra Lineal I: Sistemas de ecuaciones lineales y sistemas homogéneos asociados

Introducción

En esta sección damos un primer acercamiento al concepto de sistemas de ecuaciones lineales. Este es un concepto de fundamental importancia en muchas áreas de las matemáticas, como las ecuaciones diferenciales o incluso la geometría algebraica.

Los sistemas de ecuaciones lineales nos son familiares. Desde la educación secundaria se aprende a resolver ecuaciones «de $2\times 2$», y más adelante «de $3\times 3$». Estos sistemas también aparecen en cursos de la licenciatura, como geometría analítica. Sin embargo, es en un curso de álgebra lineal que se estudian con toda generalidad. Las herramientas de esta área de las matemáticas permiten determinar si un sistema de ecuaciones lineales tiene solución y, en caso de que sí, ver cómo se ven todas las soluciones.

Como veremos a continuación, un sistema de ecuaciones lineales se puede ver en términos de matrices. Esta conexión es fundamental. La información acerca de una matriz nos permite obtener información acerca del sistema de ecuaciones lineales asociado. A la vez, la información sobre un espacio o matriz se puede determinar a partir de la resolución de sistemas de ecuaciones lineales.

Sistemas de ecuaciones lineales

Una ecuación lineal en variables $x_1, \dots, x_n$ es una ecuación de la forma

\begin{align*}
a_1 x_1 + \dots +a_n x_n =b,
\end{align*}

donde $a_1, \dots, a_n, b\in F$ son escalares dados y $n$ es un entero positivo. Las incógnitas $x_1,\dots, x_n$ suponen ser elementos de $F$.

Un sistema de ecuaciones lineales en las variables $x_1, \dots, x_n$ es una familia de ecuaciones lineales, usualmente escrito como

\begin{align*}
\begin{cases}
a_{11}x_1+a_{12} x_2+\dots +a_{1n} x_n = b_1\\
a_{21} x_1 +a_{22} x_2 + \dots + a_{2n} x_n = b_2\\
\quad \vdots\\
a_{m1} x_1+a_{m2} x_2+\dots + a_{mn}x_n = b_m
\end{cases}.
\end{align*}

Aquí de nuevo los $a_{ij}$ y los $b_i$ son escalares dados. Resolver un sistema de ecuaciones lineales consiste en describir todos los posibles valores que pueden tener $x_1,\ldots,x_n$ de modo que todas las ecuaciones anteriores se satisfagan simultáneamente.

La notación que usamos no es mera coincidencia y nos permite describir de manera mucho más concisa el sistema: Si $X$ es un vector columna con entradas $x_1, \dots, x_n$, $A$ es la matriz en $M_{m,n}(F)$ con entradas $[a_{ij}]$ y $b$ es un vector columna en $F^m$ con entradas $b_1, \dots, b_m$ entonces el sistema se reescribe como

\begin{align*}
AX=b.
\end{align*}

Puedes verificar esto usando la definición de $A$ como transformación lineal y comparando los vectores en ambos lados de la igualdad entrada a entrada. Resolver el sistema se traduce entonces a responder cómo son todos los vectores $X$ en $F^n$ que satisfacen la igualdad anterior.

Ejemplo. A continuación tenemos un sistema de ecuaciones en tres variables (o incógnitas) $x_1$, $x_2$ y $x_3$:

\begin{align*}
\begin{cases}
3x_1-2x_2+7x_3&=5\\
4x_1+3x_3&=7\\
2x_1+x_2-7x_3&=-1\\
-x_1+3x_2&=8
\end{cases}.
\end{align*}

Si tomamos al vector $b=\begin{pmatrix} 5 \\ 7 \\ -1 \\8 \end{pmatrix}$ en $\mathbb{R}^4$, al vector de incógnitas $X=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ y a la matriz $$A=\begin{pmatrix} 3 & -2 & 7\\ 4 & 0 & 3 \\ 2 & 1 & -7 \\ -1 & 3 & 0\end{pmatrix},$$ entonces el sistema de ecuaciones lineales consiste exactamente en determinar aquellos vectores $X$ en $\mathbb{R}^3$ tales que $$AX=b.$$

$\square$

También podríamos describir nuestro sistema en términos solo de vectores. Recordando un resultado visto en la entrada de producto de matrices, si $C_1, \dots, C_n$ son las columnas de $A$, vistos como vectores columna en $F^{m}$, el sistema es equivalente a

\begin{align*}
x_1 C_1+x_2 C_2 +\dots +x_n C_n=b.
\end{align*}

Sistemas de ecuaciones lineales homogéneos

Hay un tipo de sistemas de ecuaciones lineales muy especiales: aquellos en los que $b=0$. Son tan importantes, que tienen un nombre especial.

Definición.

  1. El sistema de ecuaciones lineales $AX=b$ se dice homogéneo si $b=0$ (es decir si $b_1= b_2=\dots= b_m=0$).
  2. Dado un sistema $AX=b$, el sistema lineal homogéneo asociado es el sistema $AX=0$.

Así, un sistema es homogéneo si es de la forma $AX=0$ para alguna matriz $A$.

Ejemplo. Considera el siguiente sistema de ecuaciones lineales:

\begin{align*}
\begin{cases}
2x+3y-z&=-1\\
5x+8z&=0\\
-x+y&=1.
\end{cases}
\end{align*}

Este es un sistema de ecuaciones que en representación matricial se ve así:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} =
\begin{pmatrix} -1 \\ 0 \\ 1\end{pmatrix}.
\end{align*}

Como el vector en el lado derecho de la igualdad no es el vector cero, entonces este no es un sistema homogéneo. Sin embargo, tiene asociado el siguiente sistema lineal homogéneo:

\begin{align*}
\begin{pmatrix} 2 & 3 & -1 \\ 5 & 0 & 8 \\ -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}=
\begin{pmatrix} 0 \\ 0 \\ 0\end{pmatrix}.
\end{align*}

$\square$

Para la resolución de sistemas lineales en general, el sistema homogéneo asociado juega un papel crucial gracias al siguiente resultado, que nos dice esencialmente que para resolver un sistema $AX=b$ basta con encontrar un vector solución $X_0$ y resolver el sistema homogéneo asociado.

Proposición. (Principio de superposición) Sea $A\in M_{m,n}(F)$ y $b\in F^{m}$. Sea $\mathcal{S}\subset F^{n}$ el conjunto de soluciones del sistema homogéneo asociado $AX=0$. Si el sistema $AX=b$ tiene una solución $X_0$, entonces el conjunto de soluciones del sistema $AX=b$ no es más que

\begin{align*}
X_0+\mathcal{S}= \lbrace X_0 +s\mid s\in \mathcal{S} \rbrace.
\end{align*}

Demostración: Por hipótesis, $AX_0=b$. Ahora al sustituir, $AX=b$ si y sólo si $AX=A X_0$, o bien $A(X-X_0)=0$. Es decir, un vector $X$ es solución de $AX=b$ si y sólo si $X-X_0$ es solución de $AY=0$, de otra manera, si y sólo si $X-X_0\in \mathcal{S}$. Pero esto último es equivalente a decir que existe $s\in \mathcal{S}$ tal que $X-X_0=s$, luego $X= X_0 +s\in X_0 +\mathcal{S}$. Esto prueba el resultado.

$\square$

Consistencia de sistemas lineales

Definición. Un sistema lineal es dicho consistente si tiene al menos una solución. Se le llama inconsistente si no es consistente (es decir, si no existe una solución).

Presentamos una última definición para esta entrada.

Definición.

  1. Dos sistemas lineales se dicen equivalentes si tienen el mismo conjunto de soluciones
  2. Sean $A$ y $B$ dos matrices del mismo tamaño. Si los sistemas $AX=0$ y $BX=0$ son equivalentes, escribiremos $A\sim B$.

Ejemplo. Un ejemplo clásico de un sistema inconsistente es

\begin{align*}
\begin{cases}
x_1=0\\
x_1=1
\end{cases}
\end{align*}

o bien

\begin{align*}
\begin{cases}
x_1 -2x_2=1\\
2 x_2-x_1=0
\end{cases}.
\end{align*}

$\square$

Observación. Observamos que todo sistema homogéneo siempre es consistente, ya que el vector cero (cuyas coordenadas son todas cero) satisface el sistema. A esta solución la conocemos como solución trivial. Se sigue de la proposición que un sistema consistente $AX=b$ tiene una única solución si y sólo si el sistema homogéneo asociado tiene como única solución la solución trival.

Tarea moral

  • Muestra que el sistema \begin{align*}
    \begin{cases}
    x_1 -2x_2=1\\
    2 x_2-x_1=0
    \end{cases}.
    \end{align*}
    es inconsistente. Para ello, puedes proceder por contradicción, suponiendo que existe una solución.
  • Rescribe el primer ejemplo de sistemas de ecuaciones lineales en términos de vectores.
  • Sea $b$ un vector en $F^n$ y $I_n$ la matriz identidad en $M_n(F)$. ¿Cómo se ve de manera explícita el sistema de ecuaciones $(2I_n)X=b$? ¿Cuáles son todas sus soluciones?
  • Sean $A,B$ matrices de tamaño $n\times n$ tales que el sistema $ABX=0$ solo tiene como solución la solución trivial. Demuestre que el sistema $BX=0$ también tiene como única solución a la solución trivial.
  • Sea $A\in M_2(\mathbb{C})$ y considere el sistema homogéneo $AX=0$. Demuestre que son equivalentes:
    1. El sistema tiene una única solución, la solución trivial.
    2. $A$ es invertible.

Más adelante

El principio de superposicion dice que para entender las soluciones de los sistemas lineales de la forma $AX=b$, basta con entender a los homogéneos, es decir, los de la forma $AX=0$.

Nuestro siguiente paso será ver cómo podemos entender las soluciones de los sistemas lineales homogéneos. Para ello, tenemos que hablar de los sistemas que corresponden a matrices en forma escalonada reducida. La ventaja de estos sistemas es que sus soluciones son muy fáciles de entender, y para cualquier sistema de ecuaciones $AX=0$, hay uno de la forma $A_{red}X=0$, con $A_{red}$ una matriz escalonada reducida, y equivalente a $A$.

Más adelante, ya que tengamos a nuestra disposición herramientas de determinantes, hablaremos de otra forma en la que se pueden resolver sistemas de ecuaciones lineales usando la regla de Cramer.

Entradas relacionadas

Álgebra Lineal I: Problemas de determinantes y ecuaciones lineales

Introducción

En esta entrada, realizaremos problemas que nos ayudarán a repasar el tema visto el pasado lunes, sobre soluciones de sistemas lineales, Teorema de Rouché-Capelli y la regla de Cramer.

Problemas de ecuaciones lineales

Una de las maneras más usuales para demostrar que un conjunto de vectores es linealmente independientes es probar que tomamos una combinación lineal de éstos tal que es igual a 0, sólo es posible si todos los coeficientes son igual a cero. Pero como ya lo hemos visto anteriormente en diversos problemas, algunas veces ésto nos genera un sistema de ecuaciones que puede ser difícil y/o tardado resolver.

Por ello, otra manera de demostrar independencia lineal es ilustrada con el siguiente problema.

Problema. Considera los vectores

$v_1=(1,x,0,1), \quad v_2=(0,1,2,1), \quad v_3=(1,1,1,1)$

en $\mathbb{R}^4$. Prueba que para cualquier elección de $x\in\mathbb{R}$, los vectores $v_1,v_2,v_3$ son linealmente independientes.

Solución. Sea $A$ la matriz cuyas columnas son $v_1,v_2,v_3$, es decir,

$A=\begin{pmatrix} 1 & 0 & 1 \\ x & 1 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$

Sabemos que $v_1,v_2,v_3$ son linealmente independiente si y sólo si $\text{dim(span}(v_1,v_2,v_3))=3$, ya que $\text{rank}(A)=3$, y eso es equivalente (por la clase del lunes) a demostrar que $A$ tiene una submatriz de $3\times 3$ invertible.

Notemos que si borramos el segundo renglón, obtenemos la submatriz cuyo determinante es

$\begin{vmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix}=-1,$

lo que implica que es invertible, y por lo tanto $v_1,v_2, v_3$ son vectores linealmente independientes.

$\square$

En este curso, los ejemplos usualmente utilizan espacios vectoriales sobre $\mathbb{R}$ o sobre $\mathbb{C}$. Como $\mathbb{R}\subset \mathbb{C}$, es natural preguntarnos si los resultados obtenidos en los problemas trabajados en $\mathbb{R}$ se cumplen en $\mathbb{C}$. En este caso particular, si las soluciones de una matriz en $M_{m,n}(\mathbb{R})$ son soluciones de la misma matriz pero vista como elemento en $M_{m,n}(\mathbb{C})$. El siguiente teorema nos da el resultado a esta pregunta.

Teorema. Sea $A\in M_{m,n}(F)$ y sea $F_1$ un campo contenido en $F$. Consideremos el sistema lineal $AX=0$. Si el sistema tiene una solución no trivial en $F_1^n$, entonces tiene una solución no trivial en $F^n$.

Demostración. Dado que el sistema tiene una solución no trivial en $F_1^n$, $r:=\text{rank}(A) < n$ vista como elemento en $M_{m,n}(F_1)$. Por el primer teorema visto en la clase del lunes, el rango es el tamaño de la submatriz cuadrada más grande que sea invertible, y eso es independiente si se ve a $A$ como elemento de $M_{m,n}(F_1)$ o de $M_{m,n}(F)$. Y por el teorema de Rouché-Capelli, el conjunto de soluciones al sistema es un subespacio de $F^n$ de dimensión $n-r>0$. Por lo tanto, el sistema $AX=0$ tiene una solución no trivial en $F^n$.

$\square$

A continuación, se mostrarán dos ejemplos de la búsqueda de soluciones a sistemas lineales donde usaremos todas las técnicas aprendidas a lo largo de esta semana.

Problema. Sea $S_a$ el siguiente sistema lineal:

$\begin{matrix} x-2y+z=1 \\ 3x+2y-2z=2 \\ 2x-y+az=3 \end{matrix}.$

Encuentra los valores de $a$ para los cuales el sistema no tiene solución, tiene exactamente una solución y tiene un número infinito de soluciones.

Solución. El sistema lo podemos escribir como $AX=b$ donde

$A=\begin{pmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{pmatrix} \quad \text{y} \quad b=\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$

Notemos que

$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & -2 \\ 2 & -1 & a \end{vmatrix}=8a-1,$

entonces si $a\neq 1/8$, $A$ es invertible, y por lo tanto $\text{rank}(A)=3$, mientras que si $a=1/8$, $A$ no es invertible y $\text{rank}(A)=2$ ya que la submatriz es invertible

$\begin{vmatrix} 1 & -2 \\ 3 & 2 \end{vmatrix}=8.$

Además, si la matriz $(A,b)$ es igual a

$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 3 & 2 & -2 & 2 \\ 2 & -1 & a & 3 \end{pmatrix},$

quitando la tercera columna, obtenemos una submatriz invertible (ejercicio). Por lo tanto, $\text{rank}(A,b)=3$.

Aplicando el Teorema de Rouché-Capelli, para $a=1/8$, el sistema $AX=b$ no tiene soluciones. También podemos concluir que como $\text{rank}(A)=3$ para todo $a\neq 1/8$, el sistema tiene exactamente una solución. (Y $AX=b$ nunca tiene infinitas soluciones).

$\square$

Problema. Sean $a,b,c$ números reales dados. Resuelve el sistema lineal

$\begin{matrix} (b+c)x+by+cz=1 \\ ax+ (a+c)y+cz=1 \\ ax+by+(a+b)z=1 \end{matrix}.$

Solución. La matriz del sistema es

$A=\begin{pmatrix} b+c & b & c \\ a & a+c & c \\ a & b & a+b \end{pmatrix}.$

No es difícil ver que $\text{det}(A)=4abc$. Si $abc\neq 0$, usando la regla de Cramer, la única solución al sistema está dada por

$x=\frac{\begin{vmatrix} 1 & b & c \\ 1 & a+c & c \\ 1 & b & a+b \end{vmatrix}}{4abc}, \quad y=\frac{\begin{vmatrix} b+c & 1 & c \\ a & 1 & c \\ a & 1 & a+b \end{vmatrix}}{4abc}$

$y=\frac{\begin{vmatrix} b+c & b & 1 \\ a & a+c & 1 \\ a & b & 1 \end{vmatrix}}{4abc},$

resolviendo los determinantes obtenemos que

$x=\frac{a^2 -(b-c)^2}{4abc}, \quad y=\frac{b^2 -(a-c)^2}{4abc}, \quad z=\frac{c^2-(a-b)^2}{4abc}.$

Ahora, si $abc=0$, entonces $A$ no es invertible ($\text{rank}(A)<3$). El sistema es consistente si y sólo si $\text{rank}(A)=\text{rank}(A,b)$.

Sin pérdida de generalidad, decimos que $a=0$ (pues $abc=0$). Esto reduce el sistema a

$\begin{matrix} (b+c)x+by+cz=1 \\ c(y+z)=1 \\ b(y+z)=1 \end{matrix}.$

El sistema es consistente si $b=c$ y distintos de cero. En este caso, tenemos que $b(2x+y+z)=1$ y $b(y+z)=1$, implicando $x=0$, $y+z=1/b$. De manera similar, obtenemos las posibles soluciones si $b=0$ o si $c=0$.

Resumiendo:

  • Si $abc\neq 0$, el sistema tiene una solución única dada por la regla de Cramer.
  • Si tenemos alguno de los siguientes tres casos: caso 1) $a=0$ y $b=c \neq 0$; caso 2) $b=0$ y $a=c\neq 0$; caso 3) $c=0$ y $a=b\neq 0$, tenemos infinitas soluciones descritas como, para todo $w\in \mathbb{R}$: caso 1) $(0,w,1/b-w)$; caso 2) $(w,0,1/a-w)$; caso 3) $(w,1/a-w,0)$.
  • Si no se cumplen ninguno de las cuatro condiciones anteriores para $a,b,c$, el sistema no es consistente.

$\square$

Entradas relacionadas