Archivo de la etiqueta: Conjunto fundamental de soluciones

Ecuaciones Diferenciales I: Valores y vectores propios para resolver sistemas lineales

En la vida real, te lo aseguro, no hay algo como el álgebra.
– Fran Lebowitz

Introducción

Ya hemos dado inicio con el desarrollo de métodos de resolución de sistemas lineales de primer orden. En la entrada anterior desarrollamos el método de eliminación de variables que, a pesar de ser muy limitado, es un método sencillo y práctico para resolver sistemas con dos ecuaciones diferenciales lineales de primer orden.

Debido a que un sistema lineal puede ser visto como una ecuación matricial los resultados de álgebra lineal sobre valores y vectores propios de matrices pueden ser aplicados aquí. En esta entrada daremos un breve repaso sobre estos conceptos y veremos cómo es que estos resultados nos pueden ayudar a determinar la solución general de algunos sistemas de ecuaciones diferenciales.

La teoría que desarrollaremos a continuación es aplicable a sistemas lineales homogéneos con coeficientes constantes.

Sistemas lineales homogéneos

Un sistema lineal homogéneo con coeficientes constantes es de la forma

\begin{align*}
y_{1}^{\prime}(t) &= a_{11}y_{1} + a_{12}y_{2} + \cdots + a_{1n}y_{n} \\
y_{2}^{\prime}(t) &= a_{21}y_{1} + a_{22}y_{2} + \cdots + a_{2n}y_{n} \\
&\vdots \\
y_{n}^{\prime}(t) &= a_{n1}y_{1} + a_{n2}y_{2} + \cdots + a_{nn}y_{n} \label{1} \tag{1}
\end{align*}

Si $\mathbf{A}$ es la matriz de $n \times n$ con componentes constantes

$$\mathbf{A} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & & & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix} \label{2} \tag{2}$$

entonces el sistema lineal a resolver es

$$\mathbf{Y}^{\prime} = \mathbf{AY} \label{3} \tag{3}$$

En la segunda entrada de esta unidad vimos que la solución general del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}e^{0t} + c_{2} \begin{pmatrix}
1 \\ 1 \\ 0
\end{pmatrix}e^{2t} + c_{3} \begin{pmatrix}
0 \\ 0 \\ 1
\end{pmatrix}e^{3t}$$

Y en la entrada anterior vimos que la solución del sistema lineal homogéneo

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
4 & -1 \\ 2 & 1
\end{pmatrix} \mathbf{Y}$$

es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ 2
\end{pmatrix} e^{2t} + c_{2} \begin{pmatrix}
1 \\ 1
\end{pmatrix}e^{3t}$$

Aunque para el primer caso aún no sabemos cómo obtener esa solución lo que sabemos es que efectivamente corresponde a la solución general del sistema homogéneo. Notemos que cada vector solución es de la forma

$$\mathbf{Y}_{i} = \begin{pmatrix}
k_{1} \\ k_{2} \\ k_{3}
\end{pmatrix}e^{\lambda_{i}t}, \hspace{1cm} i = 1, 2 ,3$$

donde $k_{i}$ y $\lambda_{i}$, $i = 1, 2, 3$, son constantes. Lo mismo para el segundo caso, con $k_{i}$, $\lambda_{i}$, $i = 1, 2$, constantes. Esta particularidad nos hace preguntarnos si siempre es posible hallar una solución de la forma

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t} \label{4} \tag{4}$$

como solución general del sistema lineal (\ref{3}).

La respuesta es que sí, pero antes de continuar con nuestro desarrollo nos parece pertinente repasar brevemente algunos conceptos de Álgebra Lineal, en particular el de valores y vectores propios.

Valores y vectores propios

Sea $T: V \rightarrow W$ una transformación lineal, en álgebra lineal muchas veces resulta útil encontrar un vector $v$ en el espacio vectorial $V$ tal que $T\mathbf{v}$ y $\mathbf{v}$ sean paralelos, es decir, se busca un vector $\mathbf{v}$ y un escalar $\lambda$, tal que

$$T\mathbf{v} = \lambda \mathbf{v} \label{5} \tag{5}$$

Recordemos que si $\mathbf{v} \neq \mathbf{0}$ y $\lambda$ satisfacen la ecuación (\ref{5}), entonces $\lambda$ se denomina un valor característico o valor propio de $T$ y $\mathbf{v}$ un vector característico o vector propio de $T$ correspondiente al valor propio $\lambda$.

También recordemos que si $V$ tiene dimensión finita, entonces la transformación $T$ se puede representar por una matriz $\mathbf{A}_{T}$, de manera que se pueden definir los valores y vectores propios de esta matriz.

Denotaremos con $M_{n \times n}$ al conjunto de todas las matrices cuadradas de $n \times n$ con componentes reales y constantes.

Definición: Sea $A \in M_{n \times n}$. El número $\lambda$ (real o complejo) se denomina valor propio de $A$ si existe un vector diferente de cero $\mathbf{v}$ en $V$, tal que

$$\mathbf{Av} = \lambda \mathbf{v} \label{6} \tag{6}$$

El vector $\mathbf{v} \neq \mathbf{0}$ se denomina vector propio de $\mathbf{A}$ correspondiente al valor propio $\lambda$.

Como nota interesante, los valores y vectores propios también son conocidos como valores y vectores característicos o eigenvalores y eigenvectores, donde el término eigen es un término alemán que significa propio. En este curso los llamaremos valores y vectores propios.

Recordemos nuevamente el concepto de matriz inversa.

Definición: Sean $\mathbf{A}$ y $\mathbf{B}$ dos matrices de $M_{n \times n}$. Suponiendo que

$$\mathbf{AB} = \mathbf{BA} = \mathbf{I}$$

Con $\mathbf{I}$ la matriz identidad. Entonces $\mathbf{B}$ se llama la matriz inversa de $\mathbf{A}$ y se denota por $\mathbf{A}^{-1}$.

$$\mathbf{AA}^{-1} = \mathbf{A}^{-1} \mathbf{A} = \mathbf{I} \label{7} \tag{7}$$

Definición: Si $\mathbf{A}$ tiene inversa, entonces se dice que $\mathbf{A}$ es invertible.

Definición: Una matriz cuadrada que no es invertible se le denomina singular y una matriz invertible se llama no singular.

Para el caso especial $\mathbf{A} = \mathbf{I}$, con $\mathbf{I}$ la matriz identidad, se tiene que para cualquier vector $\mathbf{v} \in V$

$$\mathbf{Av} = \mathbf{Iv} = \mathbf{v} \label{8} \tag{8}$$

Así, el único valor propio de $\mathbf{A}$ es $1$ y todo $\mathbf{v} \neq \mathbf{0} \in V$ es un vector propio de $\mathbf{I}$.

Otra observación interesante es que cualquier múltiplo de un vector propio de $\mathbf{A}$ es también un vector propio de $\mathbf{A}$, con el mismo valor propio.

$$\mathbf{A}(c \mathbf{v}) = c \mathbf{Av} = c \lambda \mathbf{v} = \lambda (c \mathbf{v}) \label{9} \tag{9}$$

Ecuación característica

Supongamos que $\lambda $ es un valor propio de $A$, entonces existe un vector diferente de cero

$$\mathbf{v} = \begin{pmatrix}
v_{1} \\ v_{2} \\ \vdots \\ v_{n}
\end{pmatrix} \neq \mathbf{0}$$

tal que

$$\mathbf{Av} = \lambda \mathbf{v} = \lambda \mathbf{Iv} \label{10} \tag{10}$$

Reescribiendo esto, se tiene

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{v} = \mathbf{0} \label{11} \tag{11}$$

Si $A$ es una matriz de $n \times n$, la ecuación anterior corresponde a un sistema homogéneo de $n$ ecuaciones con las incógnitas $v_{1}, v_{2}, \cdots, v_{n}$. Como se ha supuesto que $ \mathbf{v} \neq \mathbf{0}$, entonces el sistema no tiene solución trivial y por tanto el determinante de (\ref{11}) debe ser cero.

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{12} \tag{12}$$

De manera equivalente, si ocurre que $|\mathbf{A} -\lambda \mathbf{I}| \neq 0$, entonces la única solución a (\ref{11}) es la trivial $\mathbf{v} = \mathbf{0}$, lo que significa que $\lambda$ no es un valor propio de $A$.

Estos resultados quedan establecidos en el siguiente teorema.

Teorema: Sea $A \in M_{n \times n}$, entonces $\lambda$ es un valor propio de $A$ si y sólo si

$$P(\lambda) = |\mathbf{A} -\lambda \mathbf{I}| = 0 \label{13} \tag{13}$$

La relación (\ref{13}) es muy importante, tanto que merece nombres particulares.

Definición: La relación (\ref{13}) se denomina ecuación característica de $\mathbf{A}$

Definición: El polinomio $P(\lambda)$ dado por (\ref{13}) se denomina polinomio característico de $\mathbf{A}$.

El polinomio $P(\lambda )$ es del mismo grado que el número de filas y columnas de la matriz $\mathbf{A}$. Si $\mathbf{A} \in M_{n \times n}$, entonces $P(\lambda)$ es un polinomio de grado $n$ en $\lambda$. Por ejemplo, si

$$\mathbf{A} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} \label{14} \tag{14}$$

entonces,

$$\mathbf{A} -\lambda \mathbf{I} = \begin{pmatrix}
a & b \\ c & d
\end{pmatrix} -\begin{pmatrix}
\lambda & 0 \\ 0 & \lambda
\end{pmatrix} = \begin{pmatrix}
a -\lambda & b \\ c & d -\lambda
\end{pmatrix} \label{15} \tag{15}$$

y

\begin{align*}
P(\lambda ) &= |\mathbf{A} -\lambda \mathbf{I}| \\
&= (a -\lambda)(d -\lambda) -bc \\
&= \lambda^{2} -(a + d) \lambda + (ad -bc) \label{16} \tag{16}
\end{align*}

La matriz es de $2 \times 2$ y el polinomio característico es un polinomio de grado $2$.

El teorema fundamental del álgebra nos dice que cualquier polinomio de grado $n$ con coeficientes reales o complejos tiene exactamente $n$ raíces contando multiplicidades y dado que cualquier valor propio de $\mathbf{A}$ es una raíz de la ecuación característica de $\mathbf{A}$, se concluye que, contando multiplicidades, toda matriz $\mathbf{A} \in M_{n \times n}$ tiene exactamente $n$ valores propios.

Realicemos dos ejemplos sencillos en donde determinemos los valores y vectores propios de una matriz. Uno en donde los valores propios sean distintos (con multiplicidad $1$) y uno en donde los valores propios sean números complejos.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
-81 & 16 \\ -420 & 83
\end{pmatrix}$$

Solución: De acuerdo a (\ref{13}), determinemos la ecuación característica.

$$\begin{vmatrix}
-81 -\lambda & 16 \\ -420 & 83 -\lambda
\end{vmatrix} = (-81 -\lambda)(83 -\lambda) -16(-420) = 0$$

Reordenando obtenemos que la ecuación característica es

$$\lambda^{2} -2 \lambda -3 = 0$$

y el polinomio característico es

$$P(\lambda) = \lambda^{2} -2 \lambda -3$$

Resolviendo para $\lambda$ se obtienen las raíces $\lambda_{1} = -1$ y $\lambda_{2} = 3$. Para obtener los vectores propios buscamos un vector $\mathbf{v} \neq 0$, tal que se cumpla (\ref{11}) para cada valor propio $\lambda$. Comencemos con $\lambda_{1}$.

Caso 1: $\lambda_{1} = -1$.

$$\begin{pmatrix}
-81 -(-1) & 16 \\ -420 & 83 -(-1)
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-80 & 16 \\ -420 & 84
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Este resultado lo podemos escribir como las siguientes dos ecuaciones.

\begin{align*}
-80 v_{1} + 16 v_{2} &= 0 \\
-420 v_{1} + 84 v_{2} &= 0
\end{align*}

Que en realidad corresponden a una sola.

\begin{align*}
-5v_{1} + v_{2} &= 0 \\
v_{2} &= 5v_{1}
\end{align*}

Si elegimos $v_{1} = 1$, entonces $v_{2} = 5$, así el primer vector propio es

$$\mathbf{v}_{1} = \begin{pmatrix}
1 \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = 3$.

$$\begin{pmatrix}
-81 -3 & 16 \\ -420 & 83-3
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
-84 & 16 \\ -420 & 80
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

La ecuación que se obtiene es

\begin{align*}
-21v_{1} + 4v_{2} &= 0 \\
v_{2} &= \dfrac{21}{4}v_{1}
\end{align*}

Por conveniencia elegimos $v_{1} = 4$, entonces $v_{2} = 21$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
4 \\ 21
\end{pmatrix}$$

En conclusión, los valores y vectores propios de la matriz $\mathbf{A}$ son $\lambda_{1} = -1$, $\lambda_{2} = 3$, $\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$ y $\mathbf{v}_{2} = \begin{pmatrix} 4 \\ 21 \end{pmatrix}$, respectivamente.

$\square$

Realicemos el segundo ejemplo.

Ejemplo: Determinar los valores y vectores propios de la siguiente matriz.

$$\mathbf{A} = \begin{pmatrix}
2 & -1 \\ 5 & -2
\end{pmatrix}$$

Solución: Determinemos la ecuación característica.

$$\begin{vmatrix}
2 -\lambda & -1 \\ 5 & -2 -\lambda
\end{vmatrix} = (2 -\lambda)(-2 -\lambda) + 5 = 0$$

La ecuación característica es

$$\lambda^{2} + 1 = 0$$

De donde $\lambda_{1} = i$ y $\lambda_{2} = -i$. Determinemos los vectores propios.

Caso 1: $\lambda_{1} = i$.

$$\begin{pmatrix}
2 -i & -1 \\ 5 & -2 -i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 -i)v_{1} -v_{2} &= 0 \\
5v_{1} -(2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 + i$ y $v_{2} = 5$, así

$$\mathbf{v}_{1} = \begin{pmatrix}
2 + i \\ 5
\end{pmatrix}$$

Caso 2: $\lambda_{2} = -i$

$$\begin{pmatrix}
2 + i & -1 \\ 5 & -2 + i
\end{pmatrix} \begin{pmatrix}
v_{1} \\ v_{2}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0
\end{pmatrix}$$

Las ecuaciones que se obtienen son

\begin{align*}
(2 + i) v_{1} -v_{2} &= 0 \\
5v_{1} + (-2 + i)v_{2} &= 0
\end{align*}

Resolviendo el sistema se obtiene que $v_{1} = 2 -i$ y $v_{2} = 5$, así

$$\mathbf{v}_{2} = \begin{pmatrix}
2 -i \\ 5
\end{pmatrix}$$

$\square$

En caso de requerir conocer más a fondo sobre el algoritmo que llevamos a cabo para obtener los valores y vectores propios de una matriz se recomienda revisar directamente en el curso de Álgebra Lineal I. Recordemos que aquí sólo estamos haciendo un breve repaso.

Para concluir con nuestro repaso, enunciemos un teorema de suma importancia que nos será de utilidad mas adelante. Haremos la demostración por inducción.

Teorema: Sea $\mathbf{A} \in M_{n \times n}$ y sean $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}$ valores propios distintos de $\mathbf{A}$ ($\lambda_{i} \neq \lambda_{j}$, $i \neq j$) con vectores propios correspondientes $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}$, entonces los vectores $\mathbf{v}_{1}, \mathbf{v}_{2}, \cdots, \mathbf{v}_{m}$ son linealmente independientes.

Demostración: Como el caso $m = 1$ se trata de un solo vector es evidente que se satisface el teorema, hagamos el caso $m = 2$, para ello consideremos la combinación lineal

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} = \mathbf{0} \label{17} \tag{17}$$

Multipliquemos ambos lados de la ecuación por la matriz $\mathbf{A}$.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} = \mathbf{0} \label{18} \tag{18}$$

Como $\mathbf{Av}_{i} = \lambda_{i}\mathbf{v}_{i}$, para $i = 1, 2$, entonces

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} = \mathbf{0} \label{19} \tag{19}$$

A la ecuación (\ref{17}) la multiplicamos por $\lambda_{1}$ y la restamos de la ecuación (\ref{19}).

$$(c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2}) -(c_{1} \lambda_{1} \mathbf{v}_{1} -c_{2} \lambda_{1} \mathbf{v}_{2}) = \mathbf{0}$$

que se reduce a

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} = \mathbf{0} \label{20} \tag{20}$$

Como $\mathbf{v}_{2} \neq \mathbf{0}$ por definición de vector característico y por hipótesis $\lambda_{1} \neq \lambda_{2}$, entonces se concluye que $c_{2} = 0$, sustituyendo en (\ref{17}) se ve que $c_{1} = 0$, por tanto se cumple el teorema para $m = 2$, es decir, $\mathbf{v}_{1}$ y $\mathbf{v}_{2}$ son linealmente independientes.

Ahora supongamos que el teorema es cierto para $m = n$, es decir, cualquier conjunto de $n$ vectores propios de $\mathbf{A}$ con valores propios diferentes es linealmente independiente. Hay que demostrar que cualquier conjunto de $n + 1$ vectores propios de $\mathbf{A}$ con valores propios diferentes es también linealmente independiente. La demostración sigue el mismo procedimiento que como lo hicimos para $m = 2$, consideremos la siguiente combinación lineal.

$$c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{21} \tag{21}$$

Multipliquemos por $\mathbf{A}$ en ambos lados.

$$c_{1} \mathbf{Av}_{1} + c_{2} \mathbf{Av}_{2} + \cdots + c_{n + 1} \mathbf{Av}_{n + 1} = \mathbf{0} \label{22} \tag{22}$$

Aplicando $\mathbf{Av}_{i} = \lambda_{i} \mathbf{v}_{1}$ para $i = 1, 2, 3, \cdots, n + 1$, se tiene

$$c_{1} \lambda_{1} \mathbf{v}_{1} + c_{2} \lambda_{2} \mathbf{v}_{2} + \cdots + c_{n + 1} \lambda_{n + 1} \mathbf{v}_{n + 1} = \mathbf{0} \label{23} \tag{23}$$

Si se multiplica ambos lados de la ecuación (\ref{21}) por $\lambda_{1}$ y se resta de (\ref{23}), se obtiene

$$c_{2}(\lambda_{2} -\lambda_{1}) \mathbf{v}_{2} + c_{3}(\lambda_{3} -\lambda_{1}) \mathbf{v}_{3} + \cdots + c_{n + 1}(\lambda_{n + 1} -\lambda_{1})\mathbf{v}_{n + 1} = \mathbf{0} \label{24} \tag{24}$$

Pero $\mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son vectores propios de $\mathbf{A}$ con valores propios distintos $\lambda_{2}, \lambda_{3}, \cdots, \lambda_{n + 1}$, respectivamente. Por hipótesis de inducción, los vectores son linealmente independientes, así que

$$c_{2}(\lambda_{2} -\lambda_{1}) = 0, \hspace{1cm} c_{3}(\lambda_{3} -\lambda_{1}) = 0, \hspace{1cm} \cdots, \hspace{1cm} c_{n + 1}(\lambda_{n + 1} -\lambda_{1}) = 0$$

Como los valores propios son distintos entre sí, entonces necesariamente

$$c_{2} = c_{3} = \cdots = c_{n + 1} = 0$$

Con este resultado la ecuación (\ref{21}) obliga a que $c_{1}$ sea cero. Por lo tanto, $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \cdots, \mathbf{v}_{n + 1}$ son linealmente independientes. De esta manera queda demostrado el teorema.

$\square$

En conclusión, vectores propios correspondientes a valores propios distintos son linealmente independientes.

Con este breve repaso en mente regresemos a los sistemas de ecuaciones diferenciales.

Valores y vectores propios en sistemas de ecuaciones diferenciales

Ahora que hemos recordado las definiciones de valores y vectores propios y algunas propiedades veamos cómo es que estos conceptos son útiles para resolver sistemas lineales de primer orden homogéneos.

Al inicio de la entrada decíamos que es posible encontrar soluciones de la forma (\ref{4}).

$$\mathbf{Y}(t) = \begin{pmatrix}
k_{1} \\ k_{2} \\ \vdots \\ k_{n}
\end{pmatrix}e^{\lambda t} = \mathbf{K}e^{\lambda t}$$

Si derivamos este vector, se obtiene

$$\mathbf{Y}^{\prime} = \mathbf{K} \lambda e^{\lambda t} \label{25} \tag{25}$$

Sustituyamos en el sistema homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$.

$$\mathbf{K} \lambda e^{\lambda t} = \mathbf{AK}e^{\lambda t} \label{26} \tag{26}$$

Si dividimos entre $e^{\lambda t}$ y reordenamos, se tiene

$$\mathbf{AK} = \lambda \mathbf{K}$$

o bien,

$$\mathbf{AK} -\lambda \mathbf{K} = \mathbf{0}$$

Debido a que $\mathbf{K} = \mathbf{IK}$, con $\mathbf{I}$ la matriz identidad, la última expresión se puede escribir como

$$(\mathbf{A} -\lambda \mathbf{I}) \mathbf{K} = \mathbf{0}\label{27} \tag{27}$$

Si $\mathbf{A}$ es la matriz dada en (\ref{2}), entonces la ecuación matricial (\ref{27}) es equivalente a las $n$ ecuaciones algebraicas simultáneas

\begin{align*}
(a_{11} -\lambda)k_{1} + \hspace{1.2cm} a_{12}k_{2} + \cdots + \hspace{1.2cm} a_{1n}k_{n} &= 0 \\
a_{21}k_{1} + (a_{22} -\lambda)k_{2} + \cdots + \hspace{1.2cm} a_{2n}k_{n} &= 0 \\
\vdots \\
a_{n1}k_{1} + \hspace{1.2cm} a_{n2}k_{2} + \cdots + (a_{nn} -\lambda)k_{n} &= 0 \label{28} \tag{28}
\end{align*}

Si queremos encontrar soluciones $\mathbf{Y}(t)$ como (\ref{4}), necesitamos primero encontrar una solución no trivial del sistema (\ref{28}), de lo visto en nuestro repaso de valores y vectores propios, si la solución debe ser la no trivial, entonces se requiere que el determinante sea igual a cero, esto es

$$|\mathbf{A} -\lambda \mathbf{I}| = 0 \label{29} \tag{29}$$

Esta ecuación polinomial corresponde a la ecuación característica de la matriz $\mathbf{A}$. Sus soluciones son los valores propios de $\mathbf{A}$. Una solución $\mathbf{K} \neq 0$ de (\ref{27}) correspondiente a un valor propio $\lambda$ es el vector propio de $\mathbf{A}$.

La ecuación (\ref{29}) al tratarse de una ecuación polinomial existen tres casos posibles, cuando los valores propios son reales y distintos, cuando son repetidos y cuando son complejos. Para cada caso existe una forma particular de la solución de (\ref{3}).

Para concluir con esta entrada demostremos un resultado que establece la forma de la solución general del sistema lineal (\ref{3}).

Teorema: Sea $\mathbf{A} \in M_{n \times n}$ como (\ref{2}) y sean $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ valores propios de $\mathbf{A}$ que corresponden a vectores propios linealmente independientes $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$, respectivamente. Entonces,

$$S = \{e^{\lambda_{1}t} \mathbf{K}_{1}, e^{\lambda_{2}t} \mathbf{K}_{2}, \cdots, e^{\lambda_{n}t} \mathbf{K}_{n}\} \label{30} \tag{30}$$

es un conjunto fundamental de soluciones del sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$ en el intervalo $(-\infty, \infty)$. La solución general de dicho sistema es

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1}t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2}t} \mathbf{K}_{2} + \cdots + c_{n} e^{\lambda_{n}t} \mathbf{K}_{n} \label{31} \tag{31}$$

donde $c_{1}, c_{2}, \cdots, c_{n}$ son constantes arbitrarias.

Demostración: Definamos las funciones

$$\mathbf{Y}_{1}(t) = e^{\lambda_{1}t}\mathbf{K}_{1}, \hspace{1cm} \mathbf{Y}_{2}(t) = e^{\lambda_{2}t}\mathbf{K}_{2}, \hspace{1cm} \cdots, \hspace{1cm} \mathbf{Y}_{n}(t) = e^{\lambda_{n}t} \mathbf{K}_{n}$$

Notemos que para la $i$-ésima función $\mathbf{Y}_{i}(t) = e^{\lambda_{i}t} \mathbf{K}_{i}$ se cumple lo siguiente.

$$\mathbf{Y}^{\prime}_{i} = e^{\lambda_{i}t} (\lambda_{i} \mathbf{K}_{i}) = e^{\lambda_{i}t} (\mathbf{AK}_{i}) = \mathbf{AY}_{i} \label{32} \tag{32}$$

En donde se hecho uso de la relación (\ref{6}). Esto nos muestra que $\mathbf{Y}_{i}(t)$ es solución del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ para cada $i = 1, 2, \cdots, n$. Basta mostrar que el Wronskiano es distinto de cero para probar que las funciones definidas forman un conjunto fundamental de soluciones. El Wronskiano está dado por

\begin{align*}
W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots,\mathbf{Y}_{n}) &= \begin{vmatrix} e^{\lambda_{1}t} \mathbf{K}_{1} & e^{\lambda_{2}t} \mathbf{K}_{2} & \cdots & e^{\lambda_{n}t} \mathbf{K}_{n} \end{vmatrix} \\
&= e^{(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n})t} \begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \label{33} \tag{33}
\end{align*}

Como la exponencial nunca se hace cero y por hipótesis los vectores $\mathbf{K}_{1}, \mathbf{K}_{2}, \cdots, \mathbf{K}_{n}$ son linealmente independientes, es decir, el determinante nunca es cero

$$\begin{vmatrix} \mathbf{K}_{1} & \mathbf{K}_{2} & \cdots & \mathbf{K}_{n} \end{vmatrix} \neq 0 \label{34} \tag{34}$$

entonces el Wronskiano es distinto de cero. Por el teorema de solución general de un sistema homogéneo concluimos que el conjunto

$$S = \{e^{\lambda_{1}t} \mathbf{K}_{1}, e^{\lambda_{2}t} \mathbf{K}_{2}, \cdots, e^{\lambda_{n}t} \mathbf{K}_{n}\}$$

es un conjunto fundamental de soluciones del sistema $\mathbf{Y}^{\prime} = \mathbf{AY}$ y la solución general es

$$\mathbf{Y}(t) = c_{1} e^{\lambda_{1}t} \mathbf{K}_{1} + c_{2} e^{\lambda_{2}t} \mathbf{K}_{2} + \cdots + c_{n} e^{\lambda_{n}t} \mathbf{K}_{n}$$

con $c_{1}, c_{2}, \cdots, c_{n}$ constantes arbitrarias.

$\square$

En la siguiente entrada aplicaremos todo esto en el desarrollo de un nuevo método de resolución de sistemas lineales.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Obtener los valores y vectores propios de las siguientes matrices.
  • $\mathbf{A} = \begin{pmatrix}
    -62 & -20 \\ 192 & 62
    \end{pmatrix}$
  • $\mathbf{A} = \begin{pmatrix}
    -2 & 5 & 0 \\ 5 & -2 & 0 \\ 0 & 0 & 1
    \end{pmatrix}$
  1. Demostrar que para cualesquiera números reales $\alpha$ y $\beta$, la matriz $$\mathbf{A} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$$ tiene valores propios $\alpha \pm i\beta$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar lo siguiente:
  • Demostrar que $\mathbf{A}^{-1}$ (la matriz inversa de $\mathbf{A}$) existe si y sólo si $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ son todos distintos de cero.
  • Si $\mathbf{A}^{-1}$ existe, demostrar que los valores propios de $\mathbf{A}^{-1}$ son $\dfrac{1}{\lambda_{1}}, \dfrac{1}{\lambda_{2}}, \cdots, \dfrac{1}{\lambda_{n}}$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que la matriz $\mathbf{A} -\alpha \mathbf{I}$ tiene valores propios $\lambda_{1} -\alpha, \lambda_{2} -\alpha, \cdots, \lambda_{n} -\alpha$.
  1. Suponer que la matriz $\mathbf{A}$ tiene valores propios $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$. Demostrar que los valores propios de $\mathbf{A}^{m}$ son $\lambda^{m}_{1}, \lambda^{m}_{2}, \cdots, \lambda^{m}_{n}$ para $m = 1, 2, 3, \cdots$.

    Recuerda que para calcular la potencia de una matriz, debemos multiplicar la matriz por ella misma tantas veces como indique el exponente, por ejemplo
    $$\mathbf{A}^{5} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A}$$

Más adelante…

Un nuevo método para resolver sistemas de ecuaciones diferenciales lineales de primer orden homogéneas con coeficientes constantes es el que estamos por desarrollar. Dicho método involucra obtener los valores y vectores propios de la matriz que conforma al sistema lineal, es por ello que hemos dedicado esta entrada en hacer un breve repaso sobre estos conceptos y hemos visto cómo es que se ven involucrados en la resolución de estos sistemas.

Como vimos, los valores propios se obtienen de encontrar las raíces del polinomio característico lo que significa que se pueden tener raíces reales y distintas, raíces con multiplicidad mayor a uno, es decir, que se repiten o raíces complejas, para cada caso existe una forma distinta de obtener la solución de los sistemas lineales homogéneos $\mathbf{Y}^{\prime} = \mathbf{AY}$.

En las próximas tres entradas estudiaremos cada caso. Comenzaremos con el caso en el que los valores propios del sistema son todos reales y distintos entre sí.

Entradas relacionadas

Ecuaciones Diferenciales I: Soluciones a sistemas de ecuaciones diferenciales

Los errores y dificultades no resueltos en el pasado de las matemáticas
siempre han sido las oportunidades de su futuro.
– E. T. Bell

Introducción

En la entrada anterior vimos lo que es un sistema de ecuaciones diferenciales, en particular un sistema lineal de primer orden. Vimos también lo que es un problema de valores iniciales y establecimos la notación matricial.

Así mismo, vimos cómo es que una ecuación diferencial lineal de orden $n$ se puede transformar en un sistema lineal de primer orden, esto tiene bastante ventaja ya que, una vez que veamos cómo resolver sistemas de ecuaciones diferenciales, muchas veces será más sencillo resolver el sistema que resolver la ecuación de orden $n$ aplicando los métodos que ya conocemos.

En esta entrada estudiaremos las propiedades de las soluciones de los sistemas lineales de primer orden.

Cabe mencionar que mucho de lo que desarrollaremos en esta entrada es bastante similar a la teoría vista con las ecuaciones diferenciales de orden $n$, comenzando por la validez del principio de superposición.

A partir de ahora sólo usaremos la notación matricial y toda la teoría básica del álgebra lineal que éstas conllevan.

Soluciones de sistemas lineales de primer orden

Comencemos por estudiar el caso homogéneo. El sistema lineal de primer orden homogéneo es

$$\begin{pmatrix}
y_{1}^{\prime} \\ y_{2}^{\prime} \\ \vdots \\ y_{n}^{\prime}
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1} \\ y_{2} \\ \vdots \\ y_{n}
\end{pmatrix} \label{1} \tag{1}$$

O bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} \label{2} \tag{2}$$

En la entrada anterior definimos la solución de un sistema de ecuaciones diferenciales en el intervalo $\delta$ como el conjunto de $n$ funciones

$$S_{0} = \{y_{1}(t), y_{2}(t), \cdots, y_{n}(t)\} \label{3} \tag{3}$$

definidas en $\delta$ y diferenciables en el mismo intervalo, tales que satisfacen simultáneamente las $n$ ecuaciones diferenciables de un sistema lineal.

Las soluciones pueden ser escritas como el vector

$$\mathbf{Y} = \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} \label{4} \tag{4}$$

cuyos elementos son funciones derivables que satisfacen un sistema lineal en el intervalo $\delta$.

En las siguientes definiciones y teoremas se supondrá que los coeficientes $a_{ij}(t)$, $i, j \in \{1, 2, 3, \cdots, n\}$ y ,para el caso no homogéneo, las funciones $g_{i}(t)$, son continuas en algún intervalo común $\delta$.

Comencemos por mostrar que el principio de superposición también es valido para sistemas lineales.

Teorema: Sean $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{m}$ vectores solución del sistema homogéneo (\ref{2}) en un intervalo $\delta$, entonces la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m} \label{5} \tag{5}$$

donde las $c_{i}$, $i = 1, 2, \cdots, m$ son constantes arbitrarias, es también una solución en el intervalo $\delta$.

Demostración: Consideremos la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}$$

con

$$\mathbf{Y}_{i} = \begin{pmatrix}
y_{1i} \\ y_{2i} \\ \vdots \\ y_{ni}
\end{pmatrix}$$

para $i = 1, 2, \cdots, m$. La derivada de $\mathbf{Y}_{i}$ esta dada por

$$\mathbf{Y}_{i}^{\prime} = \begin{pmatrix}
y_{1i}^{\prime} \\ y_{2i}^{\prime} \\ \vdots \\ y_{ni}^{\prime}
\end{pmatrix}$$

Entonces la derivada de la combinación lineal es

\begin{align*}
\mathbf{Y}^{\prime} &= \begin{pmatrix}
c_{1}y_{11}^{\prime} + c_{2}y_{12}^{\prime} + \cdots + c_{m}y_{1m}^{\prime} \\
c_{1}y_{21}^{\prime} + c_{2}y_{22}^{\prime} + \cdots + c_{m}y_{2m}^{\prime} \\
\vdots \\
c_{1}y_{n1}^{\prime} + c_{2}y_{n2}^{\prime} + \cdots + c_{m}y_{nm}^{\prime}
\end{pmatrix} \\
&= c_{1} \begin{pmatrix}
y_{11}^{\prime} \\ y_{21}^{\prime} \\ \vdots \\ y_{n1}^{\prime}
\end{pmatrix} + c_{2} \begin{pmatrix}
y_{12}^{\prime} \\ y_{22}^{\prime} \\ \vdots \\ y_{n2}^{\prime}
\end{pmatrix} + \cdots + c_{m} \begin{pmatrix}
y_{1m}^{\prime} \\ y_{2m}^{\prime} \\ \vdots \\ y_{nm}^{\prime}
\end{pmatrix} \\
&= c_{1} \mathbf{Y}_{1}^{\prime} + c_{2} \mathbf{Y}_{2}^{\prime} + \cdots + c_{m} \mathbf{Y}_{m}^{\prime}
\end{align*}

Como cada $\mathbf{Y}_{i}$, $i = 1, 2, \cdots, m$, es solución del sistema homogéneo (\ref{2}) en $\delta$, entonces

$$\mathbf{Y}_{i}^{\prime} = \mathbf{A} \mathbf{Y}_{i}$$

así

\begin{align*}
\mathbf{Y}^{\prime} &= c_{1} (\mathbf{AY}_{1}) + c_{2} (\mathbf{AY}_{2}) + \cdots + c_{m} (\mathbf{AY}_{m}) \\
&= \mathbf{A}(c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}) \\
&= \mathbf{AY}
\end{align*}

En donde se ha hecho uso de la propiedad distributiva de la matriz $\mathbf{A}$ y de la hipótesis (\ref{5}). Por lo tanto, la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}$$

también es solución y los es en el mismo intervalo común $\delta$ ya que esta compuesta de soluciones definidas en dicho intervalo.

$\square$

Corolario: Un múltiplo constante de cualquier vector solución de un sistema lineal homogéneo es también solución.

Intenta hacer la demostración.

Definición: Denotaremos como $S$ al conjunto de vectores que son solución del sistema lineal homogéneo (\ref{2}).

$$S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{m}\} \label{6} \tag{6}$$

Realicemos un ejemplo.

Ejemplo: Probar que la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + c_{3} \mathbf{Y}_{3} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

es solución del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

Solución: Probemos que cada uno de los vectores de la combinación lineal es solución y usemos el principio de superposición.

Los vectores son

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

Por un lado, derivemos estos vectores.

$$\mathbf{Y}^{\prime}_{1} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}^{\prime}_{2} = \begin{pmatrix}
2e^{2t} \\ 2e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}^{\prime}_{3} = \begin{pmatrix}
0 \\ 0 \\ 3e^{3t}
\end{pmatrix}$$

Por otro lado, sustituyamos cada uno de los vectores en el sistema lineal y usemos los resultados anteriores.

$$\mathbf{AY}_{1} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} = \begin{pmatrix}
1 -1 \\ 1 -1 \\ 0
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix} = \mathbf{Y}^{\prime}_{1}$$

$$\mathbf{AY}_{2} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} = \begin{pmatrix}
e^{2t} + e^{2t} \\ e^{2t} + e^{2t} \\ 0
\end{pmatrix} = \begin{pmatrix}
2e^{2t} \\ 2e^{2t} \\ 0
\end{pmatrix} = \mathbf{Y}^{\prime}_{2}$$

y

$$\mathbf{AY}_{3} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 3e^{3t}
\end{pmatrix} = \mathbf{Y}^{\prime}_{3}$$

De esta manera queda mostrado que los tres vectores son solución, ya que satisfacen el sistema. Por el principio de superposición concluimos que la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + c_{3} \mathbf{Y}_{3} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

también es solución del sistema lineal.

$\square$

El principio de superposición nos indica que un sistema lineal puede tener más de una solución, sin embargo, similar al caso de ecuaciones diferenciales de orden $n$, buscamos soluciones que sean linealmente independientes entre sí. A continuación definimos la dependencia e independencia lineal de las soluciones en este contexto.

Definición: Sea $S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{m}\}$ un conjunto de vectores solución del sistema homogéneo (\ref{2}) en un intervalo $\delta$. Se dice que el conjunto es linealmente dependiente en el intervalo si existen constantes $c_{1}, c_{2}, \cdots, c_{m}$, no todas cero, tales que

$$c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m} = 0 \label{7} \tag{7}$$

para toda $t \in \delta$. Si el conjunto de vectores no es linealmente dependiente en $\delta$, es decir, si ocurre (\ref{7}) implicando que $c_{1} = c_{2} = \cdots = c_{m} = 0$, entonces se dice que el conjunto es linealmente independiente.

En la unidad anterior definimos una herramienta muy útil que, además de ayudarnos a resolver ecuaciones diferenciales de orden superior en algunos métodos, nos ayuda a determinar si un conjunto de soluciones es linealmente independiente, dicha herramienta es el Wronskiano, la definición en el caso de los sistemas lineales de primer orden, es la siguiente.

Definición: Sean

$$\mathbf{Y}_{1}(t) = \begin{pmatrix}
y_{11} \\ y_{21} \\ \vdots \\ y_{n1}
\end{pmatrix}, \hspace{0.8cm} \mathbf{Y}_{2}(t) = \begin{pmatrix}
y_{12} \\ y_{22} \\ \vdots \\ y_{n2}
\end{pmatrix}, \hspace{0.8cm} \cdots, \hspace{0.8cm} \mathbf{Y}_{n}(t) = \begin{pmatrix}
y_{1n} \\ y_{2n} \\ \vdots \\ y_{nn}
\end{pmatrix}$$

$n$ soluciones del sistema lineal homogéneo (\ref{2}) en un intervalo $\delta$, se define el Wronskiano como el siguiente determinante.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = \begin{vmatrix}
y_{11} & y_{12} & \cdots & y_{1n} \\
y_{21} & y_{22} & \cdots & y_{2n} \\
\vdots & & & \vdots \\
y_{n1} & y_{n2} & \cdots & y_{nn}
\end{vmatrix} \label{8} \tag{8}$$

Se puede demostrar que si el Wronskiano es distinto de cero, entonces las soluciones son linealmente independientes, igual que antes, esto es conocido como el criterio para soluciones linealmente independientes. Para demostrar este hecho es conveniente recordar algunos resultados de álgebra que podremos usar en la demostración.

Recordemos que un sistema lineal de $n$ ecuaciones con $n$ incógnitas es un conjunto de ecuaciones

$$\begin{matrix}
b_{11}u_{1} + b_{12}u_{2} + \cdots + b_{1n}u_{n} = d_{1} \\
b_{21}u_{1} + b_{22}u_{2} + \cdots + b_{2n}u_{n} = d_{2}\\
\vdots\\
b_{n1}u_{1} + b_{n2}u_{2} + \cdots + b_{nn}u_{n} = d_{n}
\end{matrix} \label{9} \tag{9}$$

Con $b_{i, j}$ y $d_{i}$, $i, j \in \{1,2, 3, \cdots, n\}$ números reales dados y $u_{i}$, $i = 1, 2, \cdots, n$ las incógnitas. Usando la notación matricial podemos escribir el sistema (\ref{9}) como

$$\mathbf{BU} = \mathbf{D} \label{10} \tag{10}$$

con

$$\mathbf{B} = \begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & & & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{nn}
\end{pmatrix}, \hspace{1cm} \mathbf{U} = \begin{pmatrix}
u_{1} \\ u_{2} \\ \vdots \\ u_{n}
\end{pmatrix}, \hspace{1cm} \mathbf{D} = \begin{pmatrix}
d_{1} \\ d_{2} \\ \vdots \\ d_{n}
\end{pmatrix}$$

Los resultados que nos interesan son los siguientes.

Teorema: El sistema de ecuaciones (\ref{10}) tiene una única solución si y sólo si el determinante de $\mathbf{B}$ es distinto de cero, es decir, $|\mathbf{B}| \neq 0$.

Teorema: Si $\mathbf{D} = \mathbf{0}$ y el sistema sólo tiene solución trivial $\mathbf{U} = \mathbf{0}$, entonces $|\mathbf{B}| \neq 0$. En su efecto, si el sistema no tiene solución trivial, es decir, $\mathbf{U} \neq \mathbf{0}$, entonces $|\mathbf{B}| = 0$.

Si $\mathbf{D} = \mathbf{0}$, el sistema (\ref{10}) también recibe el nombre de sistema homogéneo.

Con estos resultados podemos demostrar el criterio para soluciones linealmente independientes que se enuncia a continuación.

Teorema: Sean $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$, $n$ vectores solución del sistema homogéneo (\ref{2}) en un intervalo $\delta$, entonces el conjunto de vectores solución $S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}\}$ es linealmente independiente en $\delta$ si y sólo si $\forall$ $t \in \delta$ el Wronskiano es distinto de cero.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$$

Demostración:

$\Rightarrow$) Por demostrar: $W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$.

Sea $t_{0} \in \delta$ en el que $W(t_{0}) = 0$, en donde $W(t_{0})$ denota al Wronskiano con cada vector solución evaluado en el punto $t_{0}$.

$$W(t_{0}) = W(\mathbf{Y}_{1}(t_{0}), \mathbf{Y}_{2}(t_{0}), \cdots, \mathbf{Y}_{n}(t_{0})) $$

En una combinación de ambos teoremas de los resultados de álgebra podemos deducir que existen constantes $c_{1}, c_{2}, \cdots, c_{n}$, no todos cero, tal que

$$\mathbf{Y}(t_{0}) = c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = 0 \label{11} \tag{11}$$

Lo que tenemos es un sistema lineal de $n$ ecuaciones homogéneo con $n$ incógnitas (sistema lineal en el contexto algebraico (\ref{10}) con $\mathbf{D} = \mathbf{0}$, no sistema lineal de ecuaciones diferenciales), dichas incógnitas son las constantes $c_{i}$, $i = 1, 2, \cdots, n$. La relación (\ref{11}) se cumple debido a que si el Wronskiano es igual a cero, entonces es posible que el sistema no tenga solución trivial y mucho menos una solución única, esto lo deducimos de los teoremas de álgebra que establecimos.

Por otro lado, sabemos por hipótesis que los vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son solución del sistema homogéneo (\ref{2}) en el intervalo $\delta$, por el principio de superposición sabemos también que la combinación lineal

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n}$$

es solución de (\ref{2}) en $\delta$. Del resultado (\ref{11}) y de la unicidad de la solución se deduce que $\mathbf{Y}(t) = 0$ para algún punto $t = t_{0} \in \delta$, es decir,

$$c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} = 0$$

Pero por hipótesis los vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes en $\delta$, lo que implica que

$$c_{1} = c_{2} = \cdots = c_{n} = 0$$

lo cual es una contradicción con lo que establecimos en (\ref{11}). Por lo tanto, el Wronskiano tiene que ser distinto de cero, es decir

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$$

$\Leftarrow$) Por demostrar: $S$ es linealmente independiente.

Este caso también lo demostraremos por contradicción. Supongamos que los vectores solución $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente dependientes en $\delta$, esto implica que existen constantes $c_{1}, c_{2}, \cdots, c_{n}$ no todos cero, tal que

$$c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} = 0$$

Este sistema lo podemos escribir en la forma (\ref{9}) como

$$\begin{matrix}
c_{1}y_{11} + c_{2}y_{12} + \cdots + c_{n}y_{1n} = 0 \\
c_{1}y_{21} + c_{2}y_{22} + \cdots + c_{n}y_{2n} = 0 \\
\vdots\\
c_{1}y_{n1} + c_{2}y_{n2} + \cdots + c_{n}y_{nn} = 0
\end{matrix}$$

En donde las funciones $y_{ij}$, $i, j \in \{1, 2, 3, \cdots, n\}$ son los coeficientes y las constantes $c_{i}$, $i = 1, 2, \cdots, n$ son las incógnitas. Debido a que las $c_{i}$ no son todas cero implica que el sistema no tiene solución trivial y por el segundo teorema de los resultados de álgebra concluimos que

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = 0$$

Pero, por hipótesis

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$$

lo cual es una contradicción y todo nace de considerar a $S$ como un conjunto linealmente dependiente. Por lo tanto, el conjunto de soluciones

$$S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}\}$$

es linealmente independiente en $\delta$.

$\square$

Un resultado interesante se enuncia a continuación.

Teorema: Sean $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$, $n$ vectores solución del sistema homogéneo (\ref{2}), entonces para toda $t \in \delta$ ocurre sólo uno de los siguientes casos:

  • $W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = 0$
  • $W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$

Este resultado nos garantiza que si $W \neq 0$ para algún punto $t_{0} \in \delta$, entonces $W \neq 0$ para toda $t \in \delta$ y por el criterio anterior las soluciones serán linealmente independientes en ese intervalo.

El conjunto de soluciones linealmente independientes del sistema lineal (\ref{2}) recibe un nombre especial.

Definición: Al conjunto $S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n} \}$ de $n$ vectores solución linealmente independientes del sistema homogéneo (\ref{2}) en un intervalo $\delta$ se dice que es un conjunto fundamental de soluciones en dicho intervalo.

El siguiente teorema nos garantiza la existencia de este conjunto.

Teorema: Existe un conjunto fundamental de soluciones para el sistema homogéneo en un intervalo $\delta$.

El conjunto fundamental de soluciones está constituido por vectores que son linealmente independientes entre sí, con estos vectores es posible formar una matriz cuyas columnas están formadas con las entradas de dichos vectores, esta matriz tiene un nombre especial.

Definición: Sean $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$, $n$ soluciones linealmente independientes del sistema lineal homogéneo (\ref{2}). Se le denomina matriz fundamental de soluciones del sistema a la matriz conformada por los vectores solución.

$$\mathbf{M}(t) = \begin{pmatrix}
y_{11}(t) & y_{12}(t) & \cdots & y_{1n}(t) \\
y_{21}(t) & y_{22}(t) & \cdots & y_{2n}(t) \\
\vdots & & & \vdots \\
y_{n1}(t) & y_{n2}(t) & \cdots & y_{nn}(t)
\end{pmatrix} \label{12} \tag{12}$$

Un hecho interesante es que el determinante de la matriz fundamental de soluciones corresponde al Wronskiano.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = |\mathbf{M}(t)| \label{13} \tag{13}$$

Realicemos un ejemplo, para ello consideremos el sistema lineal del ejemplo anterior.

Ejemplo: Mostrar que las soluciones

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

son linealmente independientes.

Solución: En el ejemplo anterior ya comprobamos que efectivamente son solución del sistema lineal dado. Para determinar si son linealmente independientes veamos si el Wronskiano es distinto de cero.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}) = \begin{vmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{vmatrix} = e^{5t} + 0 + 0 -0 -0 -(-e^{5t}) = 2e^{5t} \neq 0$$

Como $W \neq 0$, $\forall$ $t \in \mathbb{R}$, entonces los vectores dados son linealmente independientes y por lo tanto forman un conjunto fundamental de soluciones en $\mathbb{R}$.

$$S = \left\{ \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} \right\}$$

La matriz fundamental de soluciones es

$$\mathbf{M}(t) = \begin{pmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix}$$

$\square$

Un buen ejercicio sería mostrar que un conjunto de soluciones del sistema lineal homogéneo (\ref{2}) forma un espacio vectorial, es relativamente sencillo probar cada una de las propiedades o axiomas que definen a un espacio vectorial. El resultado a demostrar de tarea moral es el siguiente.

Teorema: El conjunto de soluciones (\ref{6}) del sistema lineal homogéneo (\ref{2}) forma un espacio vectorial con la suma y el producto por escalares usuales de matrices.

Soluciones generales a sistemas lineales

Ahora que conocemos algunas propiedades de las soluciones de sistemas lineales, es momento de conocer la forma general de las soluciones de los sistemas lineales tanto homogéneos como no homogéneos.

Comencemos por enunciar el teorema que establece la forma de la solución general de un sistema lineal homogéneo (\ref{2}).

Teorema: Sea $S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}\}$ un conjunto fundamental de soluciones del sistema lineal homogéneo $\mathbf{Y^{\prime}} = \mathbf{AY}$ en un intervalo $\delta$. Entonces la solución general del sistema en el intervalo $\delta$ es

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} \label{14} \tag{14}$$

donde las $c_{i}$, $i = 1, 2, \cdots, n$ son constantes arbitrarias.

Demostración: Sea $\mathbf{Y}(t)$ una solución arbitraria del sistema lineal homogéneo en el intervalo $\delta$, sea $t_{0} \in \delta$ y supongamos que

$$\mathbf{Y}(t_{0}) = \begin{pmatrix}
b_{1} \\ b_{2} \\ \vdots \\ b_{n}
\end{pmatrix} = \mathbf{Y}_{0}$$

Es decir, la función $\mathbf{Y}(t)$ satisface el problema de valores iniciales $\mathbf{Y}^{\prime} = \mathbf{AY}; \mathbf{Y}(t_{0}) = \mathbf{Y}_{0}$.

Por otro lado, por el principio de superposición sabemos que la combinación lineal

$$\hat{\mathbf{Y}}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

también es solución del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Donde $c_{i}$, $i = 1, 2, \cdots, n$ son constantes arbitrarias y las $\mathbf{Y}_{i}$, $i = 1, 2, \cdots, n$ son las soluciones del conjunto fundamental de soluciones del sistema lineal. Supongamos que

$$\hat{\mathbf{Y}}(t_{0}) = c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = \mathbf{Y}_{0}$$

Lo que tenemos es el siguiente sistema de $n$ ecuaciones.

$$\begin{matrix}
c_{1}y_{11}(t_{0}) + c_{2}y_{12}(t_{0}) + \cdots + c_{n}y_{1n}(t_{0}) = b_{1} \\
c_{1}y_{21}(t_{0}) + c_{2}y_{22}(t_{0}) + \cdots + c_{n}y_{2n}(t_{0}) = b_{2} \\
\vdots \\
c_{1}y_{n1}(t_{0}) + c_{2}y_{n2}(t_{0}) + \cdots + c_{n}y_{nn}(t_{0}) = b_{n}
\end{matrix}$$

En donde las incógnitas son las contantes $c_{i}$, $i = 1, 2, \cdots, n$. Como las funciones $y_{ij}$, $i,j \in \{1, 2, 3, \cdots, n \}$ pertenecen a vectores del conjunto de soluciones, entonces sabemos que $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes y por el criterio para soluciones linealmente independientes inferimos que $W(t_{0}) \neq 0$, donde

$$W(t_{0}) = W(\mathbf{Y}_{1}(t_{0}), \mathbf{Y}_{2}(t_{0}), \cdots, \mathbf{Y}_{n}(t_{0}))$$

De los resultados de álgebra deducimos que el sistema de $n$ ecuaciones tiene solución única, esto significa que existen constantes únicas $c_{1}, c_{2}, \cdots, c_{n}$, tal que

$$c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = \mathbf{Y}_{0}$$

Esto nos indica que

$$\hat{\mathbf{Y}}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

es solución del problema de valores iniciales. Por el teorema de existencia y unicidad para sistemas lineales homogéneas concluimos que $\mathbf{Y}(t) = \hat{\mathbf{Y}}(t)$, es decir,

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

Como $\mathbf{Y}(t)$ es una solución arbitraria, entonces debe ser la solución general del sistema lineal homogéneo en $\delta$.

$\square$

Para concluir la entrada estudiemos el caso no homogéneo.

Sistemas no homogéneos

El sistema lineal de primer orden no homogéneo es

$$\begin{pmatrix}
y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} + \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{15} \tag{15}$$

O bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} + \mathbf{G} \label{16} \tag{16}$$

El vector de funciones que satisface el sistema (\ref{16}) es una solución y recibe un nombre.

Definición: Se le denomina solución particular $\mathbf{Y}_{p}$ a cualquier vector que es libre de parámetros arbitrarios cuyos elementos son funciones que satisfacen el sistema (\ref{16}) en algún intervalo $\delta$.

A continuación se enuncia el teorema que nos muestra la forma general de la solución de un sistema lineal no homogéneo.

Teorema: Sea $\mathbf{Y}_{p}$ una solución particular del sistema no homogéneo (\ref{16}) en un intervalo $\delta$ y sea

$$\mathbf{Y}_{c} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} \label{17} \tag{17}$$

la solución general en el mismo intervalo $\delta$ del sistema homogéneo asociado $\mathbf{Y^{\prime}} = \mathbf{AY}$. Entonces la solución general del sistema no homogéneo en el intervalo $\delta$, es

$$\mathbf{Y}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t) \label{18} \tag{18}$$

Demostración: Sea

$$\mathbf{Y}_{p}(t) = \begin{pmatrix}
y_{1p} \\ y_{2p} \\ \vdots \\ y_{np}
\end{pmatrix}$$

una solución particular de (\ref{16}) y sean $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$, $n$ soluciones linealmente independientes del sistema homogéneo asociado $\mathbf{Y^{\prime}} = \mathbf{AY}$.

Sea $\mathbf{Y}(t)$ una solución arbitraria del sistema no homogéneo, notemos lo siguiente.

\begin{align*}
(\mathbf{Y}(t) -\mathbf{Y}_{p}(t))^{\prime} &= \mathbf{Y}^{\prime}(t) -\mathbf{Y}_{p}^{\prime}(t) \\
&= (\mathbf{AY}(t) + \mathbf{G}) -(\mathbf{AY}_{p}(t) + \mathbf{G}) \\
&= \mathbf{A} (\mathbf{Y}(t) -\mathbf{Y}_{p}(t))
\end{align*}

Este resultado nos indica que $\mathbf{Y}(t) -\mathbf{Y}_{p}(t)$ es solución del sistema homogéneo, eso significa que se puede escribir como

$$\mathbf{Y}(t) -\mathbf{Y}_{p}(t) = c_{1}\mathbf{Y}_{1}(t) + c_{2}\mathbf{Y}_{2}(t) + \cdots + c_{n}\mathbf{Y}_{n}(t)$$

entonces, la solución $\mathbf{Y}$ tiene la forma

$$\mathbf{Y}(t) = c_{1}\mathbf{Y}_{1}(t) + c_{2}\mathbf{Y}_{2}(t) + \cdots + c_{n}\mathbf{Y}_{n}(t) + \mathbf{Y}_{p}(t) \label{19} \tag{19}$$

La solución $\mathbf{Y}(t)$, al ser cualquier solución del sistema lineal no homogéneo, podemos deducir que la solución general debe tener la forma (\ref{19}), por lo que concluimos que $\mathbf{Y}(t)$ se trata de la solución general de (\ref{16}).

Considerando la hipótesis (\ref{17}) concluimos que la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t)$$

$\square$

Cuando estamos trabajando con un sistema lineal no homogéneo, la solución general del sistema lineal homogéneo asociado (\ref{17}) recibe un nombre particular.

Definición: La solución general $\mathbf{Y}_{c}$ del sistema lineal homogéneo asociado se le denomina función complementaria del sistema lineal no homogéneo.

Concluyamos con un ejemplo.

Ejemplo: Probar que el vector

$$\mathbf{Y}_{p} = \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix}$$

es una solución particular del siguiente sistema lineal no homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
e^{t} \\ e^{2t} \\ te^{3t}
\end{pmatrix}$$

Solución: Por un lado, derivemos el vector dado.

$$\mathbf{Y}^{\prime}_{p} = \begin{pmatrix}
-\dfrac{1}{2}e^{2t} + \dfrac{1}{2}e^{2t} + te^{2t} \\ -e^{t} + \dfrac{1}{2}e^{2t} + \dfrac{1}{2}e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix} = \begin{pmatrix}
te^{2t} \\ -e^{t} + e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix}$$

Por otro lado, sustituyamos directamente en el sistema al vector dado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix} + \begin{pmatrix}
e^{t} \\ e^{2t} \\ te^{3t}
\end{pmatrix}$$

Operando obtenemos lo siguiente.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} + e^{t} \\ -\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t}+e^{2t} \\ \dfrac{3}{2}t^{2}e^{3t} + te^{3t}
\end{pmatrix} = \begin{pmatrix}
te^{2t} \\ -e^{t} + e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix}$$

Los resultados obtenidos son los mismos, por lo tanto el vector $\mathbf{Y}_{p}$ es solución del sistema.

En los ejemplos anteriores de esta entrada probamos que el conjunto fundamental de soluciones del sistema lineal homogéneo asociado

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

esta constituido por los vectores linealmente independientes

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

de manera que la función complementaria es

$$\mathbf{Y}_{c} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

Como la solución general es

$$\mathbf{Y} = \mathbf{Y}_{c} + \mathbf{Y}_{p}$$

Entonces la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} + \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix}$$

$\square$

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Los siguientes vectores son soluciones de un sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$. Determinar si forman un conjunto fundamental de soluciones en $\mathbb{R}$.
  • $\mathbf{Y}_{1} = \begin{pmatrix}
    1 \\ -1
    \end{pmatrix} e^{t}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
    2 \\ 6
    \end{pmatrix}e^{t} + \begin{pmatrix}
    8 \\ -8
    \end{pmatrix}te^{t}$
  • $\mathbf{Y}_{1} = \begin{pmatrix}
    1 \\ 6 \\ -13
    \end{pmatrix},\hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
    1 \\ -2 \\ -1
    \end{pmatrix}e^{-4t}, \hspace{1cm} \mathbf{Y}_{3}= \begin{pmatrix}
    2 \\ 3 \\ -2
    \end{pmatrix}e^{3t}$
  1. Probar que el vector $\mathbf{Y}_{p}$ es una solución particular del sistema lineal dado.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 1 \\ 3 & 4
    \end{pmatrix} \mathbf{Y} -\begin{pmatrix}
    1 \\ 7
    \end{pmatrix}e^{t}, \hspace{1cm} \mathbf{Y}_{p} = \begin{pmatrix}
    1 \\ 1
    \end{pmatrix}e^{t} + \begin{pmatrix}
    1 \\ -1
    \end{pmatrix}te^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 & 3 \\
    -4 & 2 & 0 \\
    -6 & 1 & 0
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    -1 \\ 4 \\ 3
    \end{pmatrix} \sin(3t), \hspace{1cm} \mathbf{Y}_{p} = \begin{pmatrix}
    \sin(3t) \\ 0 \\ \cos (3t)
    \end{pmatrix}$
  1. Mostrar que la solución general de

    $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0
    \end{pmatrix} \mathbf{Y}$

    en el intervalo $(-\infty, \infty)$ es

    $\mathbf{Y} = c_{1} \begin{pmatrix}
    6 \\ -1 \\ -5
    \end{pmatrix}e^{-t} + c_{2} \begin{pmatrix}
    -3 \\ 1 \\ 1
    \end{pmatrix}e^{-2t} + c_{3} \begin{pmatrix}
    2 \\ 1 \\ 1
    \end{pmatrix}e^{3t}$
  1. Mostrar que la solución general de

    $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & -1 \\ -1 & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 1
    \end{pmatrix}t^{2} + \begin{pmatrix}
    4 \\ -6
    \end{pmatrix}t + \begin{pmatrix}
    -1 \\ 5
    \end{pmatrix}$

    en el intervalo $(-\infty, \infty)$ es

    $\mathbf{Y} = c_{1} \begin{pmatrix}
    1 \\ -1 -\sqrt{2}
    \end{pmatrix}e^{\sqrt{2t}} + c_{2} \begin{pmatrix}
    1 \\ -1 + \sqrt{2}
    \end{pmatrix}e^{-\sqrt{2t}} + \begin{pmatrix}
    1 \\ 0 \end{pmatrix}t^{2} + \begin{pmatrix}
    -2 \\ 4
    \end{pmatrix}t + \begin{pmatrix}
    1 \\ 0
    \end{pmatrix}$
  1. Demostrar que el conjunto de soluciones del sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$ forma un espacio vectorial con la suma y el producto por escalares usuales de matrices.

Más adelante…

Ahora que conocemos lo que son los sistemas lineales de ecuaciones diferenciales y las propiedades de sus soluciones estamos casi listos para comenzar a desarrollar los distintos métodos de resolución, sin embargo, antes de ello es necesario definir una herramienta matemática que será de suma utilidad en el desarrollo posterior de esta unidad. Dicha herramienta es la exponencial de una matriz.

En la siguiente entrada definiremos lo que significa $e^{\mathbf{A} t}$, donde $\mathbf{A}$ es una matriz de $n \times n$ con componentes constantes y veremos como se relaciona con un sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Así mismo, profundizaremos en el concepto de matriz fundamental de soluciones.

Entradas relacionadas

Ecuaciones Diferenciales I: Soluciones a ecuaciones diferenciales de orden superior

Las matemáticas son la música de la razón.
– James Joseph Sylvester

Introducción

En la entrada anterior comenzamos a estudiar los problemas con valores iniciales (PVI) y problemas con valores en la frontera (PVF), ambos para el caso de las ecuaciones diferenciales lineales de orden superior. Vimos también que si $y_{1}, y_{2}, \cdots, y_{k}$ son $k$ soluciones de una ecuación homogénea de $n$-ésimo orden en un intervalo $\delta$, entonces la combinación lineal

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{k}y_{k}(x) \label{1} \tag{1}$$

donde las $c_{i}$, $i = 1, 2, \cdots, k$ son constantes, también es solución en el intervalo $\delta$, este resultado es conocido como principio de superposición y nuestro propósito en esta entrada es estudiar las propiedades de todas estas soluciones donde la independencia lineal de las funciones jugará un papel muy importante en la construcción del conjunto fundamental de soluciones y de la solución general.

Es importante tener presente el concepto de conjunto fundamental de soluciones presentado en la entrada anterior.

Definición: Cualquier conjunto $\{y_{1}, y_{2}, \cdots, y_{n}\}$ de $n$ soluciones linealmente independientes de una ecuación diferencial lineal homogénea de $n$-ésimo orden en un intervalo $\delta$ es un conjunto fundamental de soluciones en dicho intervalo.

Soluciones a ecuaciones diferenciales lineales de orden superior

Estamos interesados en soluciones linealmente independientes de una ecuación diferencial lineal homogénea de orden superior de la forma

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n-1}(x) \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{2} \tag{2}$$

Al intentar responder la pregunta de si el conjunto de $n$ soluciones $\{y_{1}, y_{2}, \cdots, y_{n}\}$ de (\ref{2}) es linealmente independiente podemos apelar directamente a la definición de independencia lineal, sin embargo esta pregunta se puede responder de una forma mecánica usando un determinante llamado el Wronskiano.

Definición: Sean $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ funciones que tienen al menos $n -1$ derivadas cada una. El determinante

$$W(f_{1}, f_{2}, \cdots, f_{n}) = \begin{vmatrix}
f_{1} & f_{2} & \cdots & f_{n} \\
f_{1}^{\prime} & f_{2}^{\prime} &\cdots &f_{n}^{\prime} \\
\vdots &\vdots & & \vdots \\
f_{1}^{(n -1)} & f_{2}^{(n -1)} & \cdots & f_{n}^{(n -1)}
\end{vmatrix} \label{3} \tag{3}$$

donde las primas denotan derivadas, se llama el Wronskiano de las funciones.

El Wronskiano es una herramienta que podemos utilizar para determinar si el conjunto de soluciones de la ecuación diferencial (\ref{2}) es un conjunto linealmente independiente y la forma de hacerlo es a través del siguiente teorema conocido como criterio para soluciones linealmente independientes.

Teorema: Sean $y_{1}, y_{2}, \cdots, y_{n}$, $n$ soluciones de la ecuación diferencial lineal homogénea de $n$-ésimo orden (\ref{2}) en el intervalo $\delta$. El conjunto de soluciones es linealmente independiente en $\delta$ si, y solo si

$$W(y_{1}, y_{2}, \cdots, y_{n}) \neq 0 \label{4} \tag{4}$$

para toda $x$ en el intervalo $\delta$.

Este teorema nos dice que sólo basta mostrar que el Wronskiano es distinto de cero para garantizar que el conjunto de soluciones $\{y_{1}, y_{2}, \cdots, y_{n}\}$ es linealmente independiente y por tanto formará un conjunto fundamental de soluciones.

Al conjunto de soluciones linealmente independiente $\{y_{1}, y_{2}, \cdots, y_{n}\}$ de la ecuación (\ref{2}) se le denomina fundamental porque, así como cualquier vector en $\mathbb{R}^{3}$ se puede expresar como una combinación lineal de los vectores linealmente independientes $\hat{i}, \hat{j}$ y $\hat{k}$, cualquier solución de una ecuación diferencial de la forma (\ref{2}) se puede expresar como una combinación lineal de las $n$ soluciones del conjunto fundamental, podemos decir que las soluciones $\{y_{1}, y_{2}, \cdots, y_{n}\}$ son los bloques básicos para la solución general de la ecuación.

En el siguiente teorema se enuncia la forma general de la solución de la ecuación diferencial (\ref{2}).

Teorema: Sea $\{y_{1},y_{2}, \cdots, y_{n}\}$ un conjunto fundamental de soluciones de la ecuación diferencial lineal homogénea de $n$-ésimo orden (\ref{2}) en el intervalo $\delta$. Entonces la solución general de la ecuación en el intervalo es

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) \label{5} \tag{5}$$

donde $c_{i} , i = 1,2, \cdots, n$ son constantes arbitrarias.

Aterricemos estas ideas generales al caso de las ecuaciones diferenciales lineales homogéneas de segundo orden.

Ecuaciones lineales homogéneas de segundo orden

Una ecuación diferencial lineal homogénea de segundo orden es de la forma

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{6} \tag{6}$$

Sobre esta ecuación desarrollaremos la siguiente teoría. Primero definamos el Wronskiano para el caso $n = 2$.

Definición: Sean $y_{1}(x)$ y $y_{2}(x)$ soluciones de la ecuación (\ref{6}), el Wronskiano de las funciones es

$$W(y_{1}, y_{2}) = \begin{vmatrix}
y_{1} & y_{2} \\
\dfrac{dy_{1}}{dx} & \dfrac{dy_{2}}{dx} \\
\end{vmatrix} = y_{1}\dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx} \label{7} \tag{7}$$

Ahora que conocemos la forma del Wronskiano para $n = 2$, demostremos el teorema de la solución general para el caso $n = 2$.

Teorema: Sean $y_{1}(x)$ y $y_{2}(x)$ soluciones de la ecuación diferencial (\ref{6}) en el intervalo $\delta$ y supongamos que

$$W(y_{1}, y_{2}) \neq 0$$

para toda $x \in \delta$, entonces

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x)$$

es la solución general de la ecuación diferencial (\ref{4}).

Demostración: Sea $y(x)$ una solución de la ecuación diferencial (\ref{6}) en el intervalo $\delta$ y sea $x_{0} \in \delta$, tal que

$y(x_{0}) = \alpha \hspace{1cm} y \hspace{1cm} \dfrac{dy}{dx}(x_{0}) = \beta$$

con $\alpha$ y $\beta$ constantes. Supongamos que existen $c_{1}$ y $c_{2}$ constantes tales que

$$\alpha = c_{1}y_{1}(x_{0}) + c_{2}y_{2}(x_{0}) \label{8} \tag{8}$$

y

$$\beta = c_{1} \dfrac{dy_{1}}{dx}(x_{0}) + c_{2} \dfrac{dy_{2}}{dx}(x_{0}) \label{9} \tag{9}$$

esto debido a que por hipótesis $y_{1}(x)$ y $y_{2}(x)$ son soluciones de la ecuación diferencial y por tanto la combinación lineal también lo será. Aplicando el teorema de existencia y unicidad obtenemos que la solución $y(x)$ tiene que ser de la forma

$$y(x) = c_{1}y_{1} + c_{2}y_{2}$$

por lo que nuestro problema se reduce a demostrar que las constantes $c_{1}$ y $c_{2}$ existen.

Si multiplicamos a la ecuación (\ref{8}) por $\dfrac{dy_{2}}{dx}(x_{0})$ y a la ecuación (\ref{9}) por $y_{2}(x_{0})$ obtenemos lo siguiente, respectivamente.

$$\alpha \dfrac{dy_{2}}{dx}(x_{0}) = c_{1}y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) + c_{2}y_{2}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) \label{10} \tag{10}$$

y

$$\beta y_{2}(x_{0}) = c_{1} y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) + c_{2} y_{2}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) \label{11} \tag{11}$$

Restémosle a la ecuación (\ref{10}) la ecuación (\ref{11}).

\begin{align*}
\alpha \dfrac{dy_{2}}{dx}(x_{0}) -\beta y_{2}(x_{0}) &= c_{1} y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) -c_{1} y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) \\
&= c_{1} \left( y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) -y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) \right) \label{12} \tag{12}
\end{align*}

Sabemos que el Wronskiano, en $x = x_{0}$, está definido como

$$W(y_{1}(x_{0}), y_{2}(x_{0})) = y_{1}(x_{0}) \dfrac{dy_{2}}{dx}(x_{0}) -y_{2}(x_{0}) \dfrac{dy_{1}}{dx}(x_{0}) \label{13} \tag{13}$$

Por comodidad denotaremos a $W(y_{1}(x_{0}), y_{2}(x_{0}))$ como $W(x_{0})$. Entonces la ecuación (\ref{12}) se puede escribir de la siguiente manera.

$$\alpha \dfrac{dy_{2}}{dx}(x_{0}) -\beta y_{2}(x_{0}) = c_{1} W(x_{0}) \label{14} \tag{14}$$

Debido a que por hipótesis $W(y_{1}, y_{2}) \neq 0$ para toda $x \in \delta$, en particular lo es en $x = x_{0}$, por tanto podemos despejar a la constante $c_{1}$ y así obtener un valor para dicha constante lo que muestra su existencia.

Para obtener la expresión de $c_{2}$ hacemos algo similar, multiplicamos a la ecuación (\ref{8}) por $\dfrac{dy_{1}}{dx}(x_{0})$ y a la ecuación (\ref{9}) por $y_{1}(x_{0})$ y repetimos el mismo procedimiento demostrando así que existe un valor para la constante $c_{2}$.

Como hemos encontrado valores para $c_{1}$ y $c_{2}$, entonces existen y por lo tanto la solución general a la ecuación (\ref{4}) es

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) \label{15} \tag{15}$$

$\square$

Ya hemos definido lo que es el conjunto fundamental de soluciones de una ecuación diferencial de orden $n$, para el caso $n = 2$ lo podemos definir de la siguiente manera.

Definición: Decimos que $\{ y_{1}(x), y_{2}(x) \}$ es un conjunto fundamental de soluciones para la ecuación diferencial (\ref{6}) si cualquier solución puede escribirse como combinación lineal de $y_{1}$ y $y_{2}$, o lo que es equivalente, que $y_{1}$ y $y_{2}$ sean linealmente independientes en $\delta$.

Así, si encontramos un conjunto fundamental de soluciones $\{ y_{1}(x), y_{2}(x) \}$, entonces

$$W(y_{1}, y_{2}) \neq 0$$

para toda $x \in \delta$ y por tanto

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x)$$

será la solución general de la ecuación diferencial (\ref{4}).

Del criterio para soluciones linealmente independientes se puede hacer notar que cuando $y_{1}, y_{2}, \cdots, y_{n}$ son $n$ soluciones de la ecuación diferencial (\ref{2}) en un intervalo $\delta$, el Wronskiano $W(y_{1}, y_{2}, \cdots, y_{n})$ es siempre igual a cero o nunca es cero en todo $\delta$. Vamos a demostrar este hecho para el caso $n = 2$.

Teorema: Sean $a_{2}(x) \neq 0$, $a_{1}(x)$ y $a_{0}(x)$ funciones continuas en $\delta$ de la ecuación diferencial (\ref{6}) y sean $y_{1}(x)$ y $y_{2}(x)$ soluciones de la misma ecuación en $\delta$. Entonces

$$W(y_{1}, y_{2}) = 0 \hspace{1cm} o \hspace{1cm} W(y_{1}, y_{2}) \neq 0$$

para todo $x \in \delta$.

Demostración: Como $y_{1}(x)$ y $y_{2}(x)$ son soluciones de la ecuación (\ref{6}), entonces

$$a_{2}(x) \dfrac{d^{2}y_{1}}{dx^{2}} + a_{1}(x) \dfrac{dy_{1}}{dx} + a_{0}(x)y_{1} = 0 \label{16} \tag{16}$$

y

$$a_{2}(x) \dfrac{d^{2}y_{2}}{dx^{2}} + a_{1}(x) \dfrac{dy_{2}}{dx} + a_{0}(x)y_{2} = 0 \label{17} \tag{17}$$

Si multiplicamos a la ecuación (\ref{16}) por $y_{2}$ y a la ecuación (\ref{17}) por $y_{1}$ obtenemos lo siguiente, respectivamente.

$$y_{2}a_{2}(x) \dfrac{d^{2}y_{1}}{dx^{2}} + y_{2} a_{1}(x) \dfrac{dy_{1}}{dx} + y_{2}a_{0}(x)y_{1} = 0 \label{18} \tag{18}$$

y

$$y_{1}a_{2}(x) \dfrac{d^{2}y_{2}}{dx^{2}} + y_{1}a_{1}(x) \dfrac{dy_{2}}{dx} + y_{1}a_{0}(x)y_{2} = 0 \label{19} \tag{19}$$

A la ecuación (\ref{19}) vamos a restarle la ecuación (\ref{18}).

$$a_{2}(x) \left( y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -y_{2}\dfrac{d^{2}y_{1}}{dx^{2}} \right) + a_{1}(x) \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx}\right) = 0 \label{20} \tag{20}$$

Sabemos que

$$W(y_{1}, y_{2}) = y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx}$$

y notemos lo siguiente

\begin{align*}
\dfrac{dW}{dx} &= \dfrac{d}{dx} \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx}\right) \\
&= \dfrac{dy_{1}}{dx} \dfrac{dy_{2}}{dx} + y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -\dfrac{dy_{2}}{dx} \dfrac{dy_{1}}{dx} -y_{2} \dfrac{d^{2}y_{1}}{dx^{2}} \\
&= y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -y_{2}\dfrac{d^{2}y_{1}}{dx^{2}}
\end{align*}

Es decir,

$$\dfrac{dW}{dx} = y_{1} \dfrac{d^{2}y_{2}}{dx^{2}} -y_{2}\dfrac{d^{2}y_{1}}{dx^{2}} \label{21} \tag{21}$$

En términos del Wronskiano la ecuación (\ref{20}) se puede escribir como

$$a_{2}(x) \dfrac{dW}{dx} + a_{1}(x) W = 0 \label{22} \tag{22}$$

Como $a_{2}(x) \neq 0$ para toda $x \in \delta$, entonces podemos definir la función

$$P(x) = \dfrac{a_{1}(x)}{a_{2}(x)}$$

tal que la ecuación (\ref{22}) se pueda escribir como

$$\dfrac{dW}{dx} + P(x) W = 0 \label{23} \tag{23}$$

Esta resultado corresponde a una ecuación diferencial lineal homogénea de primer orden y ya sabemos que la solución es de la forma

$$W(x) = ke^{-\int{P(x)} dx}$$

de manera que hay dos posibilidades:

  • Si $k = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} W(x) = 0, \hspace{0.5cm} \forall x \in \delta$
  • Si $k \neq 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} W(x) \neq 0, \hspace{0.5cm} \forall x \in \delta$

$\square$

El criterio para soluciones linealmente independientes nos garantiza que si el Wronskiano es distinto de cero, entonces el conjunto de soluciones es linealmente independiente en $\delta$, lo opuesto es cierto bajo ciertas condiciones, si el Wronskiano es igual a cero, entonces el conjunto de soluciones es linealmente dependiente. Demostremos este hecho.

Teorema: Sean $a_{2}(x) \neq 0$, $a_{1}(x)$ y $a_{0}(x)$ funciones continuas en $\delta$ de la ecuación diferencial (\ref{6}) y sean $y_{1}$ y $y_{2} \neq 0$ soluciones de la misma ecuación en $\delta$. Supongamos que

$$W(y_{1}(x), y_{2}(x)) = 0$$

$\forall x \in \delta$. Entonces $y_{1}(x)$ y $y_{2}(x)$ son linealmente dependientes.

Demostración: Por hipótesis

$$W(y_{1}(x), y_{2}(x)) = 0$$

$\forall x \in \delta$, es decir

$$y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx} = 0 \label{24} \tag{24}$$

Consideremos el siguiente resultado.

$$\dfrac{d}{dx} \left( -\dfrac{y_{1}}{y_{2}} \right) = \dfrac{1}{y^{2}_{2}} \left( y_{1} \dfrac{dy_{2}}{dx} -y_{2}\dfrac{dy_{1}}{dx} \right) \label{25} \tag{25}$$

Donde hemos considerado la hipótesis $y_{2} \neq 0$. Si usamos la hipótesis (\ref{24}) obtenemos que

$$\dfrac{d}{dx} \left( -\dfrac{y_{1}}{y_{2}} \right) = 0$$

$\forall x \in \delta$, integrando esta ecuación obtenemos que

$$-\dfrac{y_{1}}{y_{2}} = -k$$

O bien,

$$y_{1}(x) = k y_{2}(x) \label{26} \tag{26}$$

con $k$ una constante. Esto demuestra que $y_{1}$ y $y_{2}$ son linealmente dependientes.

$\square$

Hay que tener muy presentes las hipótesis de este teorema, pues es posible que el Wronskiano sea cero aún cuando las funciones consideradas en un cierto intervalo sean linealmente independientes en él.

Como consecuencia del teorema anterior podemos establecer el criterio para soluciones linealmente independientes en el caso $n = 2$.

Corolario: Dos soluciones $y_{1}(x)$ y $y_{2}(x)$ de la ecuación diferencial (\ref{6}) son linealmente independientes en $\delta$ si, y sólo si $\forall x \in \delta$,

$$W(y_{1}(x), y_{2}(x)) \neq 0$$

Realicemos un ejemplo.

Ejemplo: En la entrada anterior de tarea moral tenías que verificar que las funciones

$$y_{1}(x) = e^{-3x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{4x}$$

forman un conjunto fundamental de soluciones de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -12y = 0$$

en $\delta = (-\infty, \infty)$. Demostremos esto mismo usando los teoremas vistos anteriormente.

Solución: Consideremos las soluciones

$$y_{1}(x) = e^{-3x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = e^{4x}$$

y sus respectivas derivadas

$$\dfrac{dy_{1}}{dx} = -3e^{-3x} \hspace{1cm} y \hspace{1cm} \dfrac{dy_{2}}{dx} = 4e^{4x}$$

Calculemos el Wronskiano.

\begin{align*}
W(y_{1}, y_{2}) = \begin{vmatrix}
e^{-3x} & e^{4x} \\
-3e^{-3x} & 4e^{4x} \\
\end{vmatrix} = e^{-3x}(4e^{4x}) -e^{4x}(-3e^{-3x}) = 7e^{-x} \neq 0
\end{align*}

Como

$$W(y_{1}, y_{2}) = 7 e^{-x} \neq 0$$

entonces $\{ y_{1}(x) = e^{-3x}, y_{2}(x) = e^{4x}\}$ forma un conjunto fundamental de soluciones y la solución general está dada por

$$y(x) = c_{1}e^{-3x} + c_{2}e^{4x}$$

$\square$

Con esto concluimos el estudio de algunas propiedades importantes de las soluciones a la ecuación diferencial lineal homogénea de orden superior, terminemos esta entrada con el estudio del caso no homogéneo.

Ecuaciones no homogéneas

La ecuación diferencial lineal no homogénea de $n$-ésimo orden es

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n-1}(x) \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{27} \tag{27}$$

Nuestro objetivo es obtener la forma general de la solución de la ecuación no homogénea (\ref{27}) y estudiar algunas propiedades de las soluciones.

Definición: Una función $y_{p}(x)$ que es libre de parámetros arbitrarios y que satisface la ecuación diferencial lineal no homogénea de $n$-ésimo orden (\ref{27}) se dice que es una solución particular o integral particular de la ecuación.

Si recordamos al operador polinomial

$$\mathcal{L} = a_{n}(x)D^{n} + a_{n -1}(x)D^{n -1} + \cdots + a_{1}(x)D + a_{0}(x) \label{28} \tag{28}$$

la definición anterior implica que

$$\mathcal{L}\{y_{p}\} = g(x) \label{29} \tag{29}$$

Veamos el siguiente resultado.

Teorema: Sean $y_{1}, y_{2}, \cdots, y_{n}$ soluciones de la ecuación diferencial homogénea (\ref{2}) en el intervalo $\delta$ y sea $y_{p}$ la solución particular de la ecuación no homogénea (\ref{27}) en $\delta$. Entonces la combinación lineal

$$y(x) = c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p} \label{30} \tag{30}$$

es solución de la ecuación no homogénea (\ref{27}), en $\delta$.

Demostración: Sea $y(x)$ la combinación lineal

$$y(x) = c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}$$

si aplicamos el operador polinomial, tenemos

\begin{align*}
\mathcal{L} \{y(x)\} &= \mathcal{L} \{c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}\} \\
&= c_{1}\mathcal{L}\{y_{1}\} + c_{2}\mathcal{L}\{y_{2}\} + \cdots + c_{n}\mathcal{L}\{y_{n}\} + \mathcal{L}\{y_{p}\} \\
&= 0 + g(x) \\
&= g(x)
\end{align*}

Ya que $\mathcal{L}\{y_{i}\} = 0$ para cada $i = 1, 2, \cdots, n$ por ser cada $y_{i}$ solución de la ecuación homogénea, mientras que $\mathcal{L}\{y_{p}\} = g(x)$ por ser solución de la ecuación no homogénea. Entonces, como

$$\mathcal{L} \{y(x)\} = g(x)$$

concluimos que la combinación lineal

$$y(x) = c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}$$

es solución de la ecuación diferencial no homogénea.

$\square$

¿Y qué ocurre si las soluciones $y_{1}, y_{2}, \cdots, y_{n}$ forman un conjunto fundamental de soluciones?. La respuesta es que la combinación lineal

$$y(x) = c_{1}y_{1} + c_{2}y_{2} + \cdots + c_{n}y_{n} + y_{p}$$

sería la solución general de la ecuación diferencial no homogénea (\ref{27}). Demostremos este resultado.

Teorema: Sea $y_{p}(x)$ cualquier solución particular de la ecuación diferencial lineal no homogénea de $n$-ésimo orden (\ref{27}) en el intervalo $\delta$, y sea $\{ y_{1}, y_{2}, \cdots, y_{n} \}$ un conjunto fundamental de soluciones de la ecuación diferencial homogénea asociada (\ref{2}) en $\delta$. Entonces la solución general de la ecuación no homogénea es

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) + y_{p}(x) \label{31} \tag{31}$$

en el intervalo $\delta$ y donde $c_{i}, i = 1, 2, \cdots, n$ son constantes arbitrarias.

Demostración: Sea $y(x)$ la solución general de la ecuación no homogénea (\ref{27}) y sea $y_{p}(x)$ una solución particular de la misma ecuación, ambas definidas en el intervalo $\delta$, de manera que

$$\mathcal{L} \{ y(x)\} = \mathcal{L} \{ y_{p}(x)\} = g(x)$$

con $\mathcal{L}$ el operador polinomial (\ref{28}). Nuestro objetivo es encontrar la forma explícita de $y(x)$.

Definamos la función

$$h(x) = y(x) -y_{p}(x) \label{32} \tag{32}$$

y notemos lo siguiente.

\begin{align*}
\mathcal{L} \{ h(x) \} &= \mathcal{L} \{ y(x) -y_{p}(x) \} \\
&= \mathcal{L} \{ y(x) \} -\mathcal{L} \{ y_{p}(x) \} \\
&= g(x) -g(x) \\
&= 0
\end{align*}

Esto es,

$$\mathcal{L} \{ h(x) \} = 0$$

lo que significa que la función $h(x)$ es solución de la ecuación homogénea (\ref{2}) y por el teorema de la solución general de ecuaciones homogéneas podemos establecer que la función $h(x)$ tiene la siguiente forma.

$$h(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) \label{33} \tag{33}$$

Con $\{ y_{1}, y_{2}, \cdots, y_{n} \}$ un conjunto fundamental de soluciones. Sustituyendo (\ref{33}) en (\ref{32}) y despejando a la solución general $y(x)$ obtenemos finalmente que

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x) + y_{p}(x)$$

que es lo que queríamos demostrar.

$\square$

La diferencia entre las soluciones $(\ref{30})$ y $(\ref{31})$ es que en $(\ref{31})$ las $y_{i}, i = 1, 2, \cdots, n$ forman un conjunto fundamental de soluciones, es decir, son linealmente independientes entre sí, mientras que en (\ref{30}) no necesariamente forman una conjunto fundamental y sin embargo, también son solución de la ecuación (\ref{27}).

En el caso de las ecuaciones no homogéneas vemos que la solución general corresponde a la suma de la solución general de la ecuación homogénea asociada más una solución particular de la ecuación no homogénea. En este caso no homogéneo la solución general de la ecuación homogénea tiene un nombre particular.

Definición: La combinación lineal

$$y_{c}(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{n}y_{n}(x)$$

que es la solución general de la ecuación diferencial lineal homogénea de $n$-ésimo orden (\ref{2}), se denomina función complementaria para la ecuación no homogénea (\ref{27}).

Por tanto, resolver una ecuación lineal no homogénea implica resolver primero la ecuación homogénea asociada para obtener la función complementaria $y_{c}(x)$ y luego se encuentra una solución particular $y_{p}(x)$ de la ecuación no homogénea para finalmente sumarlas

$$y(x) = y_{c}(x) + y_{p}(x) \label{34} \tag{34}$$

Realicemos un ejemplo.

Ejemplo: Probar que la función

$$y(x) = c_{1} e^{2x} + c_{2}x e^{2x} + x^{2} e^{2x} + x -2$$

definida en el intervalo $\delta = (-\infty, \infty)$, es la solución general de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2 e^{2x} + 4x -12$$

Solución: Primero probemos que las funciones

$$y_{1} = e^{2x} \hspace{1cm} y \hspace{1cm} y_{2} = x e^{2x}$$

forman un conjunto fundamental de soluciones de la ecuación homogénea asociada

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 0$$

Para ello veamos que $y_{1}$ y $y_{2}$ son soluciones de la ecuación homogénea y que son linealmente independientes, es decir, que $W(y_{1}, y_{2}) \neq 0$. Calculemos las derivadas.

$$y_{1} = e^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{dy_{1}}{dx} = 2 e^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{1}}{dx^{2}} = 4 e^{2x}$$

$$y_{2} = xe^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{dy_{2}}{dx} = e^{2x} + 2x e^{2x} \hspace{1cm} \Rightarrow \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} = 4 e^{2x} + 4x e^{2x}$$

De tarea moral muestra que ambas funciones son solución de la ecuación homogénea asociada, es decir, que

$$\dfrac{d^{2}y_{1}}{dx^{2}} -4 \dfrac{dy_{1}}{dx} + 4y_{1} = 0 \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y_{2}}{dx^{2}} -4 \dfrac{dy_{2}}{dx} + 4y_{2} = 0$$

Ahora probemos que forman un conjunto fundamental de soluciones, para ello calculemos el Wronskiano.

\begin{align*}
W(y_{1}, y_{2}) = \begin{vmatrix}
e^{2x} & xe^{2x} \\
2 e^{2x} & e^{2x} + 2x e^{2x} \\
\end{vmatrix} = e^{2x}(e^{2x} + 2x e^{2x}) -xe^{2x}(2e^{2x}) = e^{4x} \neq 0
\end{align*}

Como $W(y_{1}, y_{2}) \neq 0$, $\forall x \in \delta$, por los teoremas vistos anteriormente concluimos que $\{y_{1} = e^{2x}, y_{2} = x e^{2x} \}$ forma un conjunto fundamental de soluciones de la ecuación homogénea asociada y que la solución general a dicha ecuación es

$$y_{c}(x) = c_{1} e^{2x} + c_{2}x e^{2x}$$

donde el subíndice $c$ indica que es la función complementaria.

Ahora verifiquemos que la función

$$y_{p}(x) = x^{2} e^{2x} + x -2$$

es una solución particular de la ecuación no homogénea. Calculemos la primera y segunda derivada.

$$\dfrac{dy_{p}}{dx} = 2x e^{2x} + 2x^{2} e^{2x} + 1$$

$$\dfrac{d^{2}y_{p}}{dx^{2}} = 2 e^{2x} + 8x e^{2x} + 4x^{2} e^{2x}$$

Sustituyamos en la ecuación diferencial.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y &= (2 e^{2x} + 8x e^{2x} + 4x^{2} e^{2x}) -4(2x e^{2x} + 2x^{2} e^{2x} + 1) +4(x^{2} e^{2x} + x -2) \\
&= 2e^{2x} + (8x e^{2x} -8x e^{2x}) + (4x^{2} e^{2x} -8x^{2} e^{2x} + 4x^{2} e^{2x}) + 4x -12 \\
&= 2e^{2x} +4x -12
\end{align*}

Esto es,

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2e^{2x} +4x -12$$

que justo corresponde a la ecuación diferencial no homogénea, por lo tanto, efectivamente $y_{p}$ es una solución particular.

Como $\{y_{1} = e^{2x}, y_{2} = x e^{2x} \}$ es un conjunto fundamental de soluciones de la ecuación homogénea asociada y

$$y_{p}(x) = x^{2} e^{2x} + x -2$$

es una solución particular de la ecuación no homogénea, por el teorema de la solución general de ecuaciones no homogéneas concluimos que la función

$$y(x) = c_{1} e^{2x} + c_{2}x e^{2x} + x^{2} e^{2x} + x -2$$

es la solución general de la ecuación no homogénea.

$\square$

Hay algo muy interesante que ocurre en el ejemplo anterior. Mostramos que la función

$$y_{p}(x) = x^{2} e^{2x} + x -2$$

es una solución particular de la ecuación no homogénea

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2e^{2x} +4x -12 = g(x)$$

Sin embargo, si haces los cálculos correspondientes notarás que la función

$$y_{p1}(x) = x^{2} e^{2x}$$

es una solución particular de la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 2e^{2x} = g_{1}(x)$$

mientras que la función

$$y_{p2}(x) = x -2$$

es una solución particular de la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + 4y = 4x -12 = g_{2}(x)$$

Así, si superponemos las soluciones particulares

$$y_{p}(x) = y_{p1}(x) + y_{p2}(x)$$

obtenemos en la ecuación diferencial la superposición de la funciones

$$g(x) = g_{1}(x) + g_{2}(x)$$

Lo anterior es efecto del principio de superposición para ecuaciones no homogéneas.

Teorema: Sean $y_{p1}, y_{p2}, \cdots, y_{pk}$, $k$ soluciones particulares de la ecuación diferencial lineal no homogénea de $n$-ésimo orden (\ref{27}) en un intervalo $\delta$, que corresponde, a su vez, a $k$ funciones diferentes $g_{1}, g_{2}, \cdots, g_{k}$. Es decir, se supone que $y_{pi}$ denota una solución particular de la ecuación diferencial correspondiente

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n-1}(x) \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g_{i}(x) \label{35} \tag{35}$$

donde $i = 1, 2, , \cdots, k$. Entonces,

$$y_{p}(x) = y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x) \label{36} \tag{36}$$

es una solución particular de

$$a_{n} \dfrac{d^{n}y}{dx^{n}} + a_{n -1} \dfrac{d^{n -1}y}{dx^{n-1}} + \cdots + a_{1} \dfrac{dy}{dx} + a_{0}y = g_{1}(x) + g_{2}(x) + \cdots + g_{k}(x) \label{37} \tag{37}$$

Demostración: Sea $\mathcal{L}$ el operador polinomial (\ref{28}) y sean $y_{pi}(x)$, $i = 1, 2, \cdots, k$, soluciones particulares de las ecuaciones no homogéneas

$$\mathcal{L} \{ y_{pi}(x) \} = g_{i}(x)$$

$i = 1, 2, \cdots, k$ respectivamente. Definamos la función

$$y_{p}(x) = y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x)$$

Nuestro objetivo es demostrar que la función $y_{p}(x)$ es una solución particular de la ecuación (\ref{37}), es decir, que se cumple que

$$\mathcal{L} \{ y_{p}(x) \} = g_{1}(x) + g_{2}(x) + \cdots + g_{k}(x)$$

En efecto

\begin{align*}
\mathcal{L} \{ y_{p}(x)\} &= \mathcal{L} \{ y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x) \} \\
&= \mathcal{L} \{ y_{p1}(x) \} + \mathcal{L} \{ y_{p2}(x) \} + \cdots + \mathcal{L} \{ y_{pk}(x) \} \\
&= g_{1}(x) + g_{2}(x) + \cdots + g_{k}(x)
\end{align*}

Con esto queda probado que

$$y_{p}(x) = y_{p1}(x) + y_{p2}(x) + \cdots + y_{pk}(x)$$

es solución de (\ref{37}).

$\square$

Corolario: Si la soluciones $y_{pi}(x)$ son soluciones particulares de (\ref{35}) para $i = 1, 2, \cdots, k$, entonces la combinación lineal

$$y_{p}(x) = c_{1}y_{p1}(x) + c_{2}y_{p2}(x) + \cdots + c_{k}y_{pk}(x) \label{38} \tag{38}$$

donde las $c_{i}$ son constantes, es también una solución particular de la ecuación diferencial

$$a_{n} \dfrac{d^{n}y}{dx^{n}} + a_{n-1} \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1} \dfrac{dy}{dx} + a_{0}y = c_{1}g_{1} + c_{2}g_{2} + \cdots + c_{k}g_{k} \label{39} \tag{39}$$

Realicemos un último ejemplo.

Ejemplo: Probar que

  • $y_{p1}(x) = -4x^{2} \hspace{0.5cm}$ es solución particular de $\hspace{0.5cm} \dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = -16x^{2} + 24x -8$,
  • $y_{p2}(x) = e^{2x} \hspace{0.9cm}$ es solución particular de $\hspace{0.5cm} \dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = 2e^{2x}$,
  • $y_{p3}(x) = xe^{x} \hspace{0.9cm}$ es solución particular de $\hspace{0.5cm} \dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = 2x e^{x} -e^{x}$.

y probar que la superposición

$$y(x) = y_{p1}(x) + y_{p2}(x) + y_{p3}(x) = -4x^{2} + e^{2x} + xe^{x}$$

es una solución de

$$\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = -16x^{2} + 24x -8 + 2e^{2x} + 2xe^{x} -e^{x}$$

Solución: Sean

$$g_{1}(x) = -16x^{2} + 24x -8, \hspace{1cm} g_{2}(x) = 2e^{2x} \hspace{1cm} y \hspace{1cm} g_{3}(x) = 2x e^{x} -e^{x}$$

De tarea moral muestra que efectivamente,

$$\dfrac{d^{2}y_{p1}}{dx^{2}} -3\dfrac{dy_{p1}}{dx} + 4y_{p1} = g_{1}(x)$$

$$\dfrac{d^{2}y_{p2}}{dx^{2}} -3\dfrac{dy_{p2}}{dx} + 4y_{p2} = g_{2}(x)$$

$$\dfrac{d^{2}y_{p3}}{dx^{2}} -3\dfrac{dy_{p3}}{dx} + 4y_{p3} = g_{3}(x)$$

Por el principio de superposición para ecuaciones no homogéneas sabemos que la función

$$y(x) = y_{p1}(x) + y_{p2}(x) + y_{p3}(x)$$

es solución de la ecuación

$$\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = g_{1}(x) + g_{2}(x) + g_{3}(x)$$

Por lo tanto, la función

$$y(x) = -4x^{2} + e^{2x} + xe^{x}$$

es solución de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} -3\dfrac{dy}{dx} + 4y = -16x^{2} + 24x -8 + 2e^{2x} + 2xe^{x} -e^{x}$$

Si gustas puedes calcular la primera y segunda derivada de $y(x)$ y verificar la ecuación anterior para asegurarte del resultado.

$\square$

Con esto concluimos nuestro estudio sobre algunas propiedades de las ecuaciones diferenciales lineales de orden superior. En la siguiente entrada conoceremos un primer método para resolver ecuaciones diferenciales de segundo orden.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Dadas las soluciones de las siguientes ecuaciones diferenciales lineales homogéneas de orden superior en el intervalo dado, calcular el Wronskiano para determinar si es un conjunto fundamental de soluciones y en caso de serlo dar la solución general.
  • $x^{3} \dfrac{d^{3}y}{dx^{3}} + 6x^{2} \dfrac{d^{2}y}{dx^{2}} + 4x \dfrac{dy}{dx} -4y = 0$, con soluciones

$\hspace{1cm} y_{1} = x, \hspace{0.6cm} y_{2} = \dfrac{1}{x^{2}}, \hspace{0.6cm} y_{3} = \dfrac{1}{x^{2}} \ln(x); \hspace{1cm} \delta = (0, \infty)$.

  • $\dfrac{d^{4}y}{dx^{4}} + \dfrac{d^{2}y}{dx^{2}} = 0$, con soluciones

$\hspace{1cm} y_{1} = 1, \hspace{0.6cm} y_{2} = x, \hspace{0.6cm} y_{3} = \cos(x), \hspace{0.6cm} y_{4} = \sin(x); \hspace{1cm} \delta = (\infty, \infty)$.

  1. Dadas las soluciones de las siguientes ecuaciones diferenciales lineales no homogéneas de orden superior en el intervalo dado, probar que se trata de la solución general de la ecuación.
  • $\dfrac{d^{2}y}{dx^{2}} -7 \dfrac{dy}{dx} + 10y = 24 e^{x}$, con solución

$\hspace{1cm} y(x) = c_{1} e^{2x} + c_{2} e^{5x} + 6 e^{x}; \hspace{1cm} \delta = (\infty, \infty)$.

  • $2x^{2} \dfrac{d^{2}y}{dx^{2}} + 5x \dfrac{dy}{dx} + y = x^{2} -x$, con solución

$\hspace{1cm} y(x) = c_{1} \dfrac{1}{\sqrt{x}} + c_{2} \dfrac{1}{x} + \dfrac{1}{15}x^{2} -\dfrac{1}{6}x; \hspace{1cm} \delta = (0, \infty)$.

  1. Comprobar que las funciones $$y_{p1}(x) = 3 e^{2x} \hspace{1cm} y \hspace{1cm} y_{p2}(x) = x^{2} + 3x$$ son, respectivamente, soluciones particulares de $$\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = -9 e^{2x} \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = 5x^{2} + 3x -16$$
  1. Usando el ejercicio anterior, encontrar la solución particular de las siguientes ecuaciones.
  • $\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = 5x^{2} + 3x -16 -9 e^{2x}$
  • $\dfrac{d^{2}y}{dx^{2}} -6\dfrac{dy}{dx} + 5y = -10x^{2} -6x +32 + e^{2x}$

Más adelante…

Ahora que ya conocemos algunas propiedades de las ecuaciones diferenciales de orden superior y sus soluciones, en particular de las ecuaciones lineales de segundo orden, es momento de comenzar a desarrollar los distintos métodos de resolución de estas ecuaciones diferenciales.

En la siguiente entrada comenzaremos con un método que permite reducir una ecuación de segundo orden en una ecuación de primer orden, de tal manera que podremos resolverla aplicando alguno de los métodos vistos en la unidad anterior. No es casualidad que dicho método se conozca como método de reducción de orden.

Entradas relacionadas

Ecuaciones Diferenciales I: Ecuaciones diferenciales de orden superior

Las matemáticas expresan valores que reflejan el cosmos, incluyendo
el orden, equilibrio, armonía, lógica y belleza abstracta.
– Deepak Chopra

Introducción

¡Bienvenidos a la segunda unidad del curso de Ecuaciones Diferenciales I!.

En la primera unidad estudiamos las ecuaciones diferenciales lineales y no lineales de primer orden, en esta unidad estudiaremos las ecuaciones diferenciales de orden superior a uno, en particular las ecuaciones lineales de segundo orden.

Anteriormente vimos que las ecuaciones diferenciales se pueden clasificar por orden, el cual corresponde al orden de la derivada más alta presente en la ecuación diferencial. A las ecuaciones diferenciales de orden mayor a uno se le conocen como ecuaciones diferenciales de orden superior. Nuestro enfoque en esta unidad serán las ecuaciones diferenciales lineales de segundo orden, pero antes de desarrollar los distintos métodos de resolución es necesario establecer una serie de conceptos y teoremas que sustentarán a dichos métodos.

Si bien, la segunda unidad tratará sobre las ecuaciones diferenciales lineales de segundo orden, gran parte de esta teoría preliminar la desarrollaremos para el caso general en el que el orden de la ecuación es $n$, con $n$ un número entero mayor a uno, así sólo será suficiente fijar $n = 2$ para referirnos a las ecuaciones de segundo orden.

Ecuaciones Diferenciales lineales de orden superior

Recordemos que una ecuación diferencial de $n$-ésimo orden en su forma general es

$$F(x, y, y^{\prime}, \cdots, y^{(n)}) = 0 \label{1} \tag{1}$$

Donde $F$ es una función con valores reales de $n + 2$ variables. La ecuación (\ref{1}) se puede escribir en su forma normal como

$$\dfrac{d^{n}y}{dx^{n}} = f(x, y, y^{\prime}, \cdots, y^{(n -1)}) \label{2} \tag{2}$$

Con $f$ una función continua con valores reales. Para el caso en el que la ecuación es lineal, una ecuación diferencial de $n$-ésimo orden se puede escribir como

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n-1}(x) \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{3} \tag{3}$$

Satisfaciendo las propiedades que ya conocemos. La ecuación (\ref{3}) es una ecuación no homogénea, en el caso en el que $g(x) = 0$, decimos que la ecuación es homogénea.

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n-1}(x) \dfrac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = 0 \label{4} \tag{4}$$

Las ecuaciones (\ref{3}) y (\ref{4}) serán, entonces, el tipo de ecuaciones sobre la cual desarrollaremos esta teoría preliminar.

Para comenzar estudiemos los problemas con valores iniciales y problemas con valores en la frontera en el caso de las ecuaciones diferenciales lineales de orden superior.

Problema con valores iniciales para ecuaciones lineales

En la unidad anterior definimos lo que es un problema con valores iniciales, esta definición fue general, definamos ahora lo que es un problema con valores iniciales para el caso en el que la ecuación es lineal.

Definición: Sea $\delta$ un intervalo que contiene al punto $x_{0}$, el problema de resolver la ecuación lineal

$$a_{n}(x) \dfrac{d^{n}y}{dx^{n}} + a_{n -1}(x) \dfrac{d^{n -1}y}{dx^{n -1}} + \cdots + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x)$$

Sujeta a que se cumpla

$$y(x_{0}) = y_{0}, \hspace{0.5cm} y^{\prime}(x_{0}) = y_{1}, \hspace{0.5cm} \cdots , \hspace{0.5cm} y^{(n -1)}(x_{0}) = y_{n -1}$$

Donde $y_{0}, y_{1}, \cdots, y_{n -1}$ son constantes reales arbitrarias dadas, se llama problema con valores iniciales (PVI) para ecuaciones lineales.

Para el caso de segundo orden ya hemos mencionado que geométricamente un PVI involucra obtener una curva solución que pase por el punto $(x_{0}, y_{0})$ y la pendiente en dicho punto sea $m = y_{1}$.

Enunciaremos, sin demostrar, el teorema de existencia y unicidad que contiene las condiciones suficientes para la existencia y unicidad de una solución de un PVI de $n$-ésimo orden para el caso de las ecuaciones lineales.

Teorema: Sean $a_{n}(x), a_{n -1}(x), \cdots, a_{1}(x), a_{0}(x)$ y $g(x)$ continuas en un intervalo $\delta$, y sea $a_{n}(x) \neq 0$, $\forall x \in \delta$. Si $x = x_{0}$ es cualquier punto en $\delta$, entonces una solución $y(x)$ del problema con valores iniciales para el caso de las ecuaciones diferenciales lineales existe en el intervalo y es única.

Podemos enunciar el teorema de existencia y unicidad para el caso de las ecuaciones diferenciales lineales de segundo orden ($n = 2$) de la siguiente manera.

Teorema: Sean $a_{2}(x), a_{1}(x), a_{0}(x)$ y $g(x)$ continuas en un intervalo $\delta$, y sea $a_{2}(x) \neq 0$, $\forall x \in \delta$. Si $x = x_{0}$ es cualquier punto en $\delta$, entonces existe una única solución al problema con valores iniciales

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x) \label{5} \tag{5}$$

Sujeta a que se cumplan las condiciones iniciales

$$y(x_{0}) = y_{0} \hspace{1cm} y \hspace{1cm} y^{\prime}(x_{0}) = y_{1}$$

en el intervalo $\delta$.

No demostraremos este teorema, pero es importante notar que dentro del enunciado hemos escrito la definición de PVI para el caso $n = 2$ (segundo orden). Veamos un ejemplo en donde apliquemos este último teorema.

Ejemplo: Probar que la función

$$y(x) = 3 e^{2x} + e^{-2x} -3x$$

es solución al PVI

$$\dfrac{d^{2}y}{dx^{2}} -4y = 12x; \hspace{1cm} y(0) = 4, \hspace{0.5cm} y^{\prime}(0) = 1$$

y además es única.

Solución: Primero probemos que es solución al PVI, para ello veamos que satisface la ecuación diferencial y además cumple con las condiciones iniciales.

La función dada es

$$y(x) = 3 e^{2x} + e^{-2x} -3x$$

La primera y segunda derivada de esta función son, respectivamente

$$\dfrac{dy}{dx} = y^{\prime}(x) = 6 e^{2x} -2 e^{-2x} -3 \hspace{1cm} y \hspace{1cm} \dfrac{d^{2}y}{dx^{2}} = y^{\prime \prime}(x) = 12 e^{2x} + 4e^{-2x}$$

Notemos que

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} -4y &= (12 e^{2x} + 4e^{-2x}) -4(3 e^{2x} + e^{-2x} -3x) \\
&= 12 e^{2x} + 4e^{-2x} -12 e^{2x} -4e^{-2x} + 12x \\
&= 12x
\end{align*}

Esto es,

$$\dfrac{d^{2}y}{dx^{2}} -4y = 12x$$

La función satisface la ecuación diferencial. Verifiquemos que satisface las condiciones iniciales.

En la solución evaluemos $x = 0$.

$$y(0) = 3 e^{0} + e^{0} -0 = 3 + 1 = 4 \hspace{1cm} \Rightarrow \hspace{1cm} y(0) = 4$$

Se cumple la primera condición inicial. Ahora, en la derivada de la función evaluemos en $x = 0$.

$$y^{\prime}(0) = 6 e^{0} -2 e^{0} -3 = 6 -2 -3 = 1 \hspace{1cm} \Rightarrow \hspace{1cm} y^{\prime}(0) = 1$$

Se cumple la segunda condición inicial. Por lo tanto, la función dada es solución al PVI.

Es claro que el intervalo de solución es $\delta = (-\infty, \infty)$ y que $x_{0} = 0 \in \delta.$ Como $a_{2}(x) = 1 \neq 0, a_{0}(x) = -4$ y $g(x) = 12x$ son funciones continuas en $\delta$, por el teorema de existencia y unicidad para ecuaciones diferenciales lineales de segundo orden concluimos que la función $y(x) = 3 e^{2x} + e^{-2x} -3x$ es una solución única.

$\square$

Al haber aumentado el orden de las ecuaciones diferenciales aparece un nuevo problema que estudiaremos a continuación.

Problema con valores en la frontera

En el estudio de las ecuaciones diferenciales de orden superior existe otro problema similar al PVI conocido como problema con valores en la frontera (PVF) en el que se busca resolver una ecuación diferencial de orden dos o mayor, tal que la variable dependiente y/o sus derivadas se especifican en distintos puntos.

Para que quede claro este concepto definiremos un problema con valores en la frontera para el caso de una ecuación diferencial lineal de segundo orden y siguiendo esta misma idea es que se puede definir para una ecuación de orden superior a dos.

Definición: Sea un intervalo $\delta$ que contiene a los puntos $a$ y $b$. Un problema en el que se debe resolver la ecuación diferencial lineal

$$a_{2}(x) \dfrac{d^{2}y}{dx^{2}} + a_{1}(x) \dfrac{dy}{dx} + a_{0}(x)y = g(x)$$

Sujeta a que se cumpla

$$y(a) = y_{0} \hspace{1cm} y \hspace{1cm} y(b) = y_{1}$$

Con $y_{0}$ y $y_{1}$ constantes reales arbitrarias dadas, se llama problema con valores en la frontera (PVF).

Definición: Los valores prescritos $y(a) = y_{0}$ y $y(b) = y_{1}$ se llaman condiciones en la frontera.

Así, resolver un PVF es hallar una función $y(x)$ que satisfaga la ecuación diferencial en algún intervalo $\delta$ que contiene a $a$ y $b$ y que cuya curva solución pase por los puntos $(a, y_{0})$ y $(b, y_{1})$.

La razón por la que definimos un PVF para el caso de una ecuación diferencial de segundo orden es porque es posible hacer notar que otros pares de condiciones en la frontera pueden ser

$$y^{\prime}(a) = y_{0} \hspace{1cm} y \hspace{1cm} y(b) = y_{1}$$

$$y(a) = y_{0} \hspace{1cm} y \hspace{1cm} y^{\prime}(b) = y_{1}$$

$$y^{\prime}(a) = y_{0} \hspace{1cm} y \hspace{1cm} y^{\prime}(b) = y_{1}$$

Sin embargo, las condiciones en la frontera presentadas son sólo casos particulares de las condiciones en la frontera generales

\begin{align*}
\alpha_{1} y(a) + \beta_{1} y^{\prime}(a) &= \gamma_{1} \\
\alpha_{2} y(b) + \beta_{2} y^{\prime}(b) &= \gamma_{2}
\end{align*}

Es así que aumentando el orden de la ecuación, las combinaciones de pares de condiciones en la frontera aumentan.

A diferencia de un PVI en el que si existe una solución, entonces ésta es única, en un PVF pueden existir varias soluciones distintas que satisfacen las mismas condiciones en la frontera, o bien, puede sólo existir una solución única o no tener ninguna solución. Veamos un ejemplo que muestre este hecho.

Ejemplo: Probar que la función general

$$y(x) = c_{1}x^{2} + c_{2}x^{4} + 3$$

es solución de la ecuación diferencial

$$x^{2} \dfrac{d^{2}y}{dx^{2}} -5x \dfrac{dy}{dx} + 8y = 24$$

y además, de acuerdo a las condiciones en la frontera dadas a continuación, se cumplen las siguientes propiedades:

  • $y(-1) = 0, \hspace{0.5cm} y(1) = 4 \hspace{0.5cm} \Rightarrow \hspace{0.5cm}$ No existe una solución.
  • $y(0) = 3, \hspace{0.8cm} y(1) = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm}$ Existen infinitas soluciones.
  • $y(1) = 3, \hspace{0.8cm} y(2) = 15 \hspace{0.3cm} \Rightarrow \hspace{0.5cm}$ Existe una única solución.

Solución: De tarea moral verifica que la función dada es solución de la ecuación diferencial. Más adelante estudiaremos los métodos de resolución de este tipo de ecuaciones diferenciales, de manera que seremos capaces de obtener esta función y probar, de hecho, que es la solución general. Por ahora sólo verifica que es solución.

Una vez comprobado que $y(x)$ es solución apliquemos las condiciones de frontera de cada caso y veamos que ocurre con la solución.

  • Caso 1: $\hspace{0.5cm} y(-1) = 0, \hspace{0.5cm} y(1) = 4$

$$y(-1) = c_{1}(-1)^{2} + c_{2}(-1)^{4} + 3 = c_{1} + c_{2} + 3 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} c_{1} + c_{2} = -3$$

$$y(1) = c_{1}(1)^{2} + c_{2}(1)^{4} + 3 = c_{1} + c_{2} + 3 = 4 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} c_{1} + c_{2} = 1$$

De ambas condiciones de la frontera obtenemos que $c_{1} + c_{2} = -3$ y a la vez $c_{1} + c_{2} = 1$ lo cual es imposible, por lo tanto en este caso NO existe una solución al PVF.

  • Caso 2: $\hspace{0.5cm} y(0) = 3, \hspace{0.5cm} y(1) = 0$

$$y(0) = c_{1}(0)^{2} + c_{2}(0)^{4} + 3 = 3 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} y(0) = 3$$

$$y(1) = c_{1}(1)^{2} + c_{2}(1)^{4} + 3 = c_{1} + c_{2} + 3 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} c_{1} + c_{2} = -3$$

Vemos que la primer condición de frontera se cumple y aplicando la segunda obtenemos que $c_{1} + c_{2} = -3$ de donde $c_{2} = -(c_{1} +3)$, sustituyendo en la solución $y(x)$ obtenemos la función

$$y(x) = c_{1}x^{2} -(c_{1} +3) x^{4} + 3$$

Donde $c_{1}$ es un parámetro libre, lo que indica que en este caso existen infinitas soluciones, una por cada posible valor de $c_{1}$.

  • Caso 3: $\hspace{0.5cm} y(1) = 3, \hspace{0.5cm} y(2) = 15$

$$y(1) = c_{1}(1)^{2} + c_{2}(1)^{4} + 3 = c_{1} + c_{2} + 3 = 3 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} c_{1} + c_{2} = 0$$

$$y(2) = c_{1}(2)^{2} + c_{2}(2)^{4} + 3 = 4c_{1} + 16c_{2} + 3 = 15 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} c_{1} + 4c_{2} = 3$$

De ambas condiciones de frontera obtenemos el sistema de ecuaciones

\begin{align*}
c_{1} + c_{2} &= 0 \\
c_{1} + 4c_{2} &= 3
\end{align*}

De la primer ecuación obtenemos que $c_{1} = -c_{2}$, sustituyendo en la segunda ecuación obtenemos

$$-c_{2} + 4c_{2} = 3c_{2} = 3$$

de donde $c_{2} = 1$ y por tanto $c_{1} = -1$. Sustituyendo en la solución $y(x)$ obtenemos la función

$$y(x) = -x^{2} + x^{4} + 3$$

Por lo tanto, al ser una función sin parámetros, la solución es única.

$\square$

A continuación estudiaremos algunos operadores importantes que nos ayudarán en las posteriores demostraciones de algunos teoremas importantes, además de que nos serán de utilidad en cuestiones de notación.

Operadores Diferenciales

Comencemos por definir el operador de derivada.

Definición: El operador

$$D = \dfrac{d}{dx} \label{6} \tag{6}$$

se llama operador diferencial y su propósito es considerar a la diferenciación como una operación abstracta que acepta una función derivable y devuelve otra función.

Con ayuda del operador diferencial podemos escribir la derivada de una función $y(x)$ como

$$Dy = \dfrac{dy}{dx} = y^{\prime}(x) \label{7} \tag{7}$$

En el entendido que $D$ opera sobre la variable independiente de $y$, en este caso de $x$.

Por ejemplo, ahora podemos escribir

$$D \{ 2x \sin(x) \} = 2 \sin(x) + 2x \cos(x)$$

Usando el operador diferencial, las expresiones de las derivadas de orden superior se pueden escribir como

$$\dfrac{d}{dx} \left( \dfrac{dy}{dx} \right) = \dfrac{d^{2}y}{dx^{2}} = D(Dy) = D^{2}y \label{8} \tag{8}$$

Y de manera general

$$\dfrac{d^{n}y}{dx^{n}} = D^{n}y \label{9} \tag{9}$$

Sabemos que la derivada es lineal (en el contexto del álgebra lineal), por tanto el operador diferencial también satisface las propiedades de linealidad:

  • $D \{ f(x) + g(x) \} = D \{f(x) \} + D \{g(x) \}$
  • $D \{cf(x) \} = cD \{f(x) \}$

Por otro lado, una ecuación diferencial como

$$\dfrac{d^{2}y}{dx^{2}} -2\dfrac{dy}{dx} + 5y = 0$$

se puede escribir en términos del operador diferencial como

$$D^{2}y -2Dy +5y = (D^{2} -2D +5)y = 0$$

Observamos que el lado izquierdo de ésta última expresión corresponde a una expresión polinomial en la que interviene el operador $D$, estas expresiones polinomiales son también un operador diferencial y tiene un nombre particular.

Definición: El operador

$$\mathcal{L} = a_{n}(x)D^{n} + a_{n -1}(x)D^{n -1} + \cdots + a_{1}(x)D + a_{0}(x) \label{10} \tag{10}$$

Se llama operador diferencial de $n$-ésimo orden u operador polinomial.

Debido a que el operador polinomial esta definido con operadores diferenciales $D$, las propiedades de linealidad de $D$ le atribuyen a $\mathcal{L}$ linealidad. Más general, $\mathcal{L}$ operando sobre una combinación lineal de dos funciones derivables es lo mismo que la combinación lineal de $\mathcal{L}$ operando en cada una de las funciones, esto es

$$\mathcal{L} \{ \alpha f(x) + \beta g(x) \} = \alpha \mathcal{L} \{f(x) \} + \beta \mathcal{L} \{g(x) \} \label{11} \tag{11}$$

Una primera ventaja de usar el operador polinomial es que las ecuaciones (\ref{3}) y (\ref{4}) se pueden escribir como

$$\mathcal{L}(y) = g(x) \hspace{1cm} y \hspace{1cm} \mathcal{L}(y) = 0$$

respectivamente.

A continuación el operador polinomial nos será de mucha utilidad.

Principio de superposición

Es posible obtener varias soluciones de una ecuación diferencial lineal homogénea (\ref{4}) y si sumamos o superponemos todas estas soluciones veremos que dicha función es también solución de la ecuación diferencial. Este hecho se muestra en el siguiente resultado conocido como principio de superposición para ecuaciones homogéneas.

Teorema: Sean $y_{1}, y_{2}, \cdots, y_{k}$ soluciones de la ecuación homogénea de $n$-ésimo orden (\ref{4}) en un intervalo $\delta$. Entonces la combinación lineal

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{k}y_{k}(x) \label{12} \tag{12}$$

donde las $c_{i}$, $i = 1, 2, \cdots, k$ son constantes arbitrarias, también es una solución de (\ref{4}) en el intervalo $\delta$.

Demostración: Sea $\mathcal{L}$ el operador polinomial (\ref{10}) de $n$-ésimo orden y sean $y_{1}, y_{2}, \cdots, y_{k}$ soluciones de la ecuación homogénea (\ref{4}) en el intervalo $\delta$. Definamos la combinación lineal

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{k}y_{k}(x)$$

con $c_{i}$, $i = 1,2, \cdots, k$ constantes arbitrarias. Notemos que

$$\mathcal{L}(y) = \mathcal{L} \{ c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{k}y_{k}(x) \}$$

Por la linealidad de $\mathcal{L}(y)$ (\ref{11}), se tiene

$$\mathcal{L}(y) = c_{1} \mathcal{L} \{ y_{1}(x) \} + c_{2} \mathcal{L} \{ y_{2}(x) \} + \cdots + c_{k} \mathcal{L} \{ y_{k}(x) \}$$

Pero cada $y_{i}$, $i = 1, 2, \cdots, k$ es solución de (\ref{4}), entonces

$$\mathcal{L}(y_{i}) = 0$$

para todo $i = 1, 2, \cdots, k$, así la expresión anterior se reduce a lo siguiente.

$$\mathcal{L}(y) = c_{1} 0 + c_{2} 0 + \cdots + c_{k} 0 = 0$$

Por lo tanto

$$\mathcal{L}(y) = 0$$

es decir, la combinación lineal

$$y(x) = c_{1}y_{1}(x) + c_{2}y_{2}(x) + \cdots + c_{k}y_{k}(x)$$

es también solución de la ecuación diferencial homogénea (\ref{4}).

$\square$

Dos corolarios importantes del teorema anterior son los siguientes.

Corolario: Un múltiplo constante

$$y(x) =c_{1}y_{1}(x)$$

de una solución $y_{1}(x)$ de una ecuación diferencial lineal homogénea es también una solución.

Demostración: Consideremos la función $y = c_{1}y_{1}(x)$, aplicando el operador polinomial $\mathcal{L}$, tenemos

$$\mathcal{L}(y) = \mathcal{L} \{ c_{1}y_{1}(x) \} = c_{1} \mathcal{L} \{ y_{1}(x) \} = 0$$

Ya que $y_{1}(x)$ es solución de la ecuación homogénea, es decir, $\mathcal{L} \{y_{1} \} = 0 $. Por lo tanto la función $y(x) =c_{1}y_{1}(x)$ es también solución de la ecuación diferencial homogénea.

$\square$

  • Una ecuación diferencial lineal homogénea tiene siempre la solución trivial $y(x) = 0$.

Usando el teorema anterior y la definición de $\mathcal{L}$ es clara la demostración, inténtalo.

Realicemos un ejemplo sobre el principio de superposición.

Ejemplo: Mostrar que las funciones

$$y_{1}(x) = x^{2} \hspace{1cm} y \hspace{1cm} y_{2}(x) = x^{2} \ln(x)$$

son soluciones de la ecuación diferencial lineal homogénea

$$x^{3} \dfrac{d^{3}y}{dx^{3}} -2x \dfrac{dy}{dx} + 4y = 0$$

en el intervalo $\delta = (0, \infty)$. Y mostrar que la combinación lineal

$$y(x) = c_{1} x^{2} + c_{2} x^{2} \ln(x)$$

es también solución de la ecuación diferencial en el mismo intervalo.

Solución: De tarea moral verifica que las funciones por separado

$$y_{1}(x) = x^{2} \hspace{1cm} y \hspace{1cm} y_{2}(x) = x^{2} \ln(x)$$

son soluciones de la ecuación diferencial en el intervalo $\delta = (0, \infty)$.

Una vez asegurado que ambas funciones son solución, de acuerdo al principio de superposición, la combinación lineal de ambas funciones

$$y(x) = c_{1} x^{2} + c_{2} x^{2} \ln(x)$$

debe ser también solución de la ecuación diferencial, veamos que es así. Para ello calculemos la primera, segunda y tercera derivada. Para la primer derivada tenemos

$$\dfrac{dy}{dx} = 2c_{1}x + 2c_{2}x \ln(x) + c_{2} x$$

La segunda derivada es

$$\dfrac{d^{2}y}{dx^{2}} = 2c_{1} + 2c_{2} \ln(x) + 3c_{2}$$

Finalmente, la tercer derivada es

$$\dfrac{d^{3}y}{dx^{3}} = \dfrac{2c_{2}}{x}$$

Sustituyendo los valores correspondientes en la ecuación diferencial, tenemos

\begin{align*}
x^{3} \dfrac{d^{3}y}{dx^{3}} -2x \dfrac{dy}{dx} + 4y &= x^{3} \left( \dfrac{2c_{2}}{x} \right) -2x \left( 2c_{1}x + 2c_{2}x \ln(x) + c_{2} x \right) + 4 \left( c_{1} x^{2} + c_{2} x^{2} \ln(x) \right) \\
&= 2c_{2}x^{2} -4c_{1}x^{2} -4c_{2}x^{2} \ln(x) -2c_{2} x^{2} + 4c_{1} x^{2} + 4c_{2} x^{2} \ln(x) \\
&= c_{1}(4x^{2} -4x^{2}) + c_{2} \left( 2x^{2} -2x^{2} + 4x^{2}\ln(x) -4x^{2}\ln(x) \right) \\
&= c_{1}(0) + c_{2}(0) \\
&= 0
\end{align*}

Hemos recuperado la ecuación diferencial

$$x^{3} \dfrac{d^{3}y}{dx^{3}} -2x \dfrac{dy}{dx} + 4y = 0$$

por lo tanto, la combinación lineal

$$y(x) = c_{1} x^{2} + c_{2} x^{2} \ln(x)$$

es también solución de la ecuación diferencial verificando así el principio de superposición.

Es claro que la función $\ln(x)$ restringe los valores de $x$, de manera que el intervalo $\delta = (0, \infty)$ es el intervalo en el que la función $y(x)$ es continua.

$\square$

Dependencia e independencia lineal

El principio de superposición trae consigo el concepto de combinación lineal y, de álgebra lineal, sabemos que si un elemento de un espacio vectorial se puede escribir como combinación lineal de otros elementos del mismo espacio vectorial, decimos que dicho elemento es linealmente dependiente y si no es dependiente, entonces decimos que es linealmente independiente. Ahora es necesario definir estos conceptos en el contexto de las ecuaciones diferenciales lineales.

Definición: Se dice que un conjunto de funciones $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ es linealmente dependiente en un intervalo $\delta$ si existen constantes $c_{1}, c_{2}, \cdots, c_{n}$ no todas cero, tales que

$$c_{1}f_{1}(x) + c_{2}f_{2}(x) + \cdots + c_{n}f_{n}(x) = 0 \label{13} \tag{13}$$

para toda $x$ en $\delta$. Si el conjunto de funciones no es linealmente dependiente en $\delta$, se dice que es linealmente independiente.

Podemos decir que un conjunto de funciones es linealmente independiente en un intervalo $\delta$ si las únicas constantes para las que

$$c_{1}f_{1}(x) + c_{2}f_{2}(x) + \cdots +c_{n}f_{n}(x) = 0, \hspace{1cm} \forall x \in \delta$$

son $c_{1} = c_{2} = \cdots = c_{n} = 0$.

Realicemos algunas observaciones para el caso $n = 2$.

Dos funciones $f_{1}(x), f_{2}(x)$ son linealmente dependientes en el intervalo $\delta$, donde ambas están definidas, si en dicho intervalo son proporcionales, esto es, si

$$f_{1}(x) = c_{1}f_{2}(x) \hspace{1cm} o \hspace{1cm} f_{2}(x) = c_{2}f_{1}(x) \label{14} \tag{14}$$

donde $c_{1}$ y $c_{2}$ son constantes distintas de cero, de esta manera, si $f_{1}(x)$ y $f_{2}(x)$ no son proporcionales en el intervalo $\delta$, entonces ambas funciones son linealmente independientes en dicho intervalo.

De las relaciones de proporcionalidad (\ref{14}) notamos que

$$\dfrac{f_{1}(x)}{f_{2}(x)} = c_{1} \hspace{1cm} y \hspace{1cm} \dfrac{f_{2}(x)}{f_{1}(x)} = c_{2} \label{15} \tag{15}$$

Con estas relaciones podemos establecer que $f_{1}(x)$ y $f_{2}(x)$ son linealmente dependientes en el intervalo $\delta$ si cada cociente es una constante a lo largo de todo el intervalo $\delta$ y, por otro lado, si los cocientes dependen de $x$ en el intervalo $\delta$, entonces las funciones $f_{1}(x)$ y $f_{2}(x)$ son linealmente independientes.

En definitiva, las funciones $f_{1}(x), f_{2}(x), \cdots, f_{n}(x)$ son linealmente dependientes en el intervalo $\delta$ si al menos una de ellas puede expresarse como combinación lineal de las otras. En caso contrario, las funciones son linealmente independientes.

Por ejemplo, dado el conjunto de funciones

$$f_{1}(x) = 4x^{3}, \hspace{0.5cm} f_{2}(x) = 2x^{2}, \hspace{0.5cm} f_{3}(x) = 8x^{3} + 12x^{2}$$

es sencillo darse cuenta que

$$f_{3}(x) = 2f_{1}(x) + 6f_{2}(x)$$

Por lo tanto, el conjunto de funciones es linealmente dependiente.

Ejemplo: Determinar si las funciones

$$y_{1}(x) = c_{1} e^{-x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = c_{2}x e^{-x}$$

son linealmente dependientes o linealmente independientes. Probar además que dichas funciones por separado son solución de la ecuación diferencial

$$\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y = 0$$

y verificar que la combinación lineal

$$y(x) = c_{1} e^{-x} + c_{2}x e^{-x}$$

es también solución de la ecuación diferencial.

Solución: Como vimos, hay distintas formas de verificar si las funciones son linealmente dependientes o linealmente independientes, quizá la forma más práctica es observar si el cociente $\dfrac{y_{1}}{y_{2}}$ o $\dfrac{y_{2}}{y_{1}}$ es constante o dependiente de $x$ en el intervalo $\delta$ en el que ambas están definidas.

Observamos primero que ambas funciones

$$y_{1}(x) = c_{1} e^{-x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = c_{2}x e^{-x}$$

están definidas en todo $\mathbb{R}$, por tanto

$$\delta = (-\infty, \infty)$$

Ahora bien, notamos que

$$\dfrac{y_{1}}{y_{2}} = \dfrac{c_{1}}{c_{2} x}$$

O bien,

$$\dfrac{y_{2}}{y_{1}} = \dfrac{c_{2} x}{c_{1}}$$

Como podemos ver, ambos cocientes son dependientes de la variable independiente $x$. Por lo tanto, las funciones son linealmente independientes.

Ahora verifiquemos que cada función $y_{1}(x)$ y $y_{2}(x)$ es solución de la ecuación diferencial dada.

Para la primer función tenemos

$$y_{1}(x) = c_{1} e^{-x} \hspace{0.8cm} \Rightarrow \hspace{0.8cm} \dfrac{dy_{1}}{dx} = -c_{1} e^{-x} \hspace{0.8cm} \Rightarrow \hspace{0.8cm} \dfrac{d^{2}y_{1}}{dx^{2}} = c_{1} e^{-x}$$

Sustituimos en la ecuación diferencial.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y &= c_{1} e^{-x} + 2(-c_{1} e^{-x}) + c_{1} e^{-x} \\
&= 2c_{1} e^{-x} -2c_{1} e^{-x} \\
&= 0
\end{align*}

Esto es,

$$\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y = 0$$

Por lo tanto, la función $y_{1}(x) = c_{1} e^{-x}$ satisface la ecuación diferencial.

Para la segunda función tenemos

$$y_{2}(x) = c_{2}x e^{-x} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \dfrac{dy_{2}}{dx} = c_{2} e^{-x} -c_{2}x e^{-x} \hspace{0.5cm} \Rightarrow \hspace{0.5cm} \dfrac{d^{2}y_{2}}{dx^{2}} = -2c_{2} e^{-x} + c_{2}x e^{-x}$$

Sustituimos en la ecuación diferencial.

\begin{align*}
\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y &= (-2c_{2} e^{-x} + c_{2}x e^{-x}) + 2(c_{2} e^{-x} -c_{2}x e^{-x}) + c_{2}x e^{-x} \\
&= -2c_{2} e^{-x} + c_{2}x e^{-x} + 2c_{2} e^{-x} -2c_{2}x e^{-x} + c_{2}x e^{-x} \\
&= (2c_{2} e^{-x} -2c_{2} e^{-x}) + (2c_{2}x e^{-x} -2c_{2}x e^{-x}) \\
&= 0
\end{align*}

Nuevamente

$$\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y = 0$$

Por lo tanto, la función $y_{2}(x) = c_{2}x e^{-x}$ es también solución de la ecuación diferencial.

Ahora que sabemos que ambas funciones son solución de la ecuación diferencial, podemos aplicar el principio de superposición y concluir que la combinación lineal

$$y(x) = c_{1} e^{-x} + c_{2}x e^{-x}$$

es también solución de la ecuación diferencial. De tarea moral verifica que en efecto es solución.

$\square$

Para finalizar esta entrada definiremos un concepto sumamente importante y el cual estudiaremos con mayor detalle en la siguiente entrada.

En el ejemplo anterior mostramos que las funciones

$$y_{1}(x) = c_{1} e^{-x} \hspace{1cm} y \hspace{1cm} y_{2}(x) = c_{2}x e^{-x}$$

son linealmente independientes y ambas por separado son solución de la ecuación diferencial homogénea

$$\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y = 0$$

En general, al conjunto de $n$ soluciones linealmente independientes de una ecuación diferencial lineal homogénea de $n$-ésimo orden se le da el nombre de conjunto fundamental de soluciones.

Definición: Cualquier conjunto $\{y_{1}, y_{2}, \cdots, y_{n}\}$ de $n$ soluciones linealmente independientes de una ecuación diferencial lineal homogénea de $n$-ésimo orden en un intervalo $\delta$ es un conjunto fundamental de soluciones en dicho intervalo.

Así, el conjunto $\{ y_{1}(x) = c_{1} e^{-x}, y_{2}(x) = c_{2}x e^{-x} \}$ es un conjunto fundamental de soluciones de la ecuación diferencial homogénea

$$\dfrac{d^{2}y}{dx^{2}} + 2 \dfrac{dy}{dx} + y = 0$$

en el intervalo $\delta = (-\infty, \infty)$.

En la siguiente entrada retomaremos este concepto.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Problemas con valores iniciales.
  • La solución general de la ecuación diferencial $$\dfrac{d^{2}y}{dx^{2}} -y = 0$$ es $$y(x) = c_{1} e^{x} + c_{2} e^{-x}$$ definida en $\delta = (-\infty, \infty)$. Determinar la solución particular que es solución al PVI dadas las condiciones iniciales $$y(0) = 0, \hspace{1cm} y^{\prime}(0) = 1$$
  • Dado que $$x(t) = c_{1} \cos(\omega t) + c_{2} \sin(\omega t)$$ es la solución general de $$x^{\prime \prime} + \omega^{2} x = 0$$ en el intervalo $(-\infty, \infty)$, demostrar que la solución que satisface las condiciones iniciales $x(0) = x_{0}$ y $x^{\prime}(0) = x_{1}$ esta dada por $$x(t) = x_{0} \cos(\omega t) + \dfrac{x_{1}}{\omega} \sin(\omega t)$$
  1. Problema con condiciones en la frontera.
  • La función $$y(x) = c_{1} e^{x} \cos(x) + c_{2} e^{x} \sin(x)$$ es una solución de la ecuación diferencial $$\dfrac{d^{2}y}{dx^{2}} -2 \dfrac{dy}{dx} + 2y = 0$$ en el intervalo $(-\infty, \infty)$. Determinar si se puede encontrar una solución que satisfaga las siguientes condiciones en la frontera.

$$a) \hspace{0.1cm} y(0) = 1, \hspace{0.4cm} y^{\prime}(\pi) = 0; \hspace{1.5cm} b) \hspace{0.1cm} y(0) = 1, \hspace{0.4cm} y(\pi) = -1$$

$$c) \hspace{0.1cm} y(0) = 1, \hspace{0.4cm} y \left( \dfrac{\pi}{2} \right) = 1; \hspace{1.2cm} d) \hspace{0.1cm} y(0) = 0, \hspace{0.4cm} y(\pi) = 0$$

  1. Determinar si los siguientes conjuntos de funciones son linealmente independientes en el intervalo $(-\infty, \infty )$.
  • $f_{1}(x) = x, \hspace{0.5cm} f_{2}(x) = x^{2}, \hspace{0.5cm} f_{3}(x) = 4x -3x^{2}$
  • $f_{1}(x) = 1+ x, \hspace{0.5cm} f_{2}(x) = x, \hspace{0.5cm} f_{3}(x) = x^{2}$
  • $f_{1}(x) = e^{x}, \hspace{0.5cm} f_{2}(x) = e^{-x}, \hspace{0.5cm} f_{3}(x) = \sinh (x)$
  1. Comprobar que las funciones dadas forman un conjunto fundamental de soluciones de la ecuación diferencial en el intervalo que se indica y formar la solución general.
  • $\dfrac{d^{2}y}{dx^{2}} -\dfrac{dy}{dx} -12y = 0; \hspace{1cm} y_{1} = e^{-3x}, \hspace{0.4cm} y_{2} = e^{4x}; \hspace{1cm} (-\infty, \infty)$
  • $4 \dfrac{d^{2}y}{dx^{2}} -4 \dfrac{dy}{dx} + y = 0; \hspace{1cm} y_{1} = e^{x/2}, \hspace{0.4cm} y_{2} = x e^{x/2}; \hspace{1cm} (-\infty, \infty)$
  • $x^{2} \dfrac{d^{2}y}{dx^{2}} -6x \dfrac{dy}{dx} + 12y = 0; \hspace{1cm} y_{1} = x^{3}, \hspace{0.4cm} y_{2} = x^{4}; \hspace{1cm} (0, \infty)$

Más adelante…

Hemos comenzado nuestro estudio sobre las ecuaciones diferenciales de orden superior, vimos que, además del problema con valores iniciales, ahora nos enfrentamos a un nuevo problema conocido como problema con valores en la frontera. Definimos algunos operadores de interés y demostramos el principio de superposición. Finalmente, vimos que si las soluciones son funciones linealmente independientes, entonces forman un conjunto fundamental de soluciones de la ecuación diferencial.

En la siguiente entrada estudiaremos algunas propiedades de las soluciones retomando el concepto de conjunto fundamental de soluciones. Veremos cuál es la forma de la solución general, la importancia de que las soluciones sean linealmente independientes y definiremos el concepto de Wronskiano, el cual será una herramienta muy importante para determinar la dependencia o independencia lineal de las soluciones.

Entradas relacionadas

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales homogéneas de segundo orden. Propiedades del conjunto de soluciones

Introducción

Hola a todos. Después de haber estudiado ecuaciones diferenciales de primer orden, llegamos a la segunda unidad del curso donde analizaremos ecuaciones diferenciales de segundo orden. Dada la dificultad para resolver este tipo de ecuaciones, nos enfocaremos únicamente en las ecuaciones lineales de segundo orden, es decir, de la forma $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t).$$

En esta entrada comenzaremos con el caso de las ecuaciones homogéneas de segundo orden, es decir, cuando $g(t)$ es la función constante cero en un intervalo $(\alpha,\beta)$. Estudiaremos la teoría de las soluciones a este tipo de ecuaciones antes de analizar las distintas técnicas para resolverlas. Debido a que el conjunto de soluciones a este tipo de ecuaciones se comportan de buena manera, podremos encontrar la solución general a la ecuación si previamente conocemos dos soluciones particulares que cumplan una hipótesis que daremos a conocer en el intervalo $(\alpha,\beta)$. Definiremos el Wronskiano y la independencia lineal de dos soluciones a una ecuación diferencial, y probaremos distintos teoremas y propiedades de las soluciones con base en estos conceptos.

¡Comencemos!

Ecuaciones lineales homogéneas de segundo orden, Teorema de existencia y unicidad y solución general

En este video damos una introducción a las ecuaciones diferenciales de segundo orden, y en particular, a las ecuaciones lineales de segundo orden. Enunciamos el teorema de existencia y unicidad para ecuaciones lineales de segundo orden, y comenzamos a desarrollar la teoría para encontrar la solución general a ecuaciones homogéneas.

Conjunto fundamental de soluciones y el Wronskiano

Continuando con la teoría de las soluciones a ecuaciones homogéneas de segundo orden, demostramos un par de teoremas que nos ayudan a encontrar la solución general a este tipo de ecuaciones. Además, definimos al conjunto fundamental de soluciones de la ecuación homogénea y el Wronskiano de dos funciones.

Independencia lineal de soluciones

En este último video definimos el concepto de independencia lineal de soluciones a la ecuación homogénea de segundo orden, y demostramos un teorema que nos da otra forma de encontrar un conjunto fundamental de soluciones a la ecuación diferencial homogénea.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Prueba que $y_{1}(t)=\sin{t}$ y $y_{2}(t)=\cos{t}$ son soluciones a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}+y=0.$$ Posteriormente prueba que $y(t)=k_{1}\sin{t}+k_{2}\cos{t}$ también es solución a la ecuación, donde $k_{1}$, $k_{2}$ son constantes.
  • Prueba que $\{\sin{t},\cos{t}\}$ es un conjunto fundamental de soluciones a la ecuación del ejercicio anterior. ¿En qué intervalo es el conjunto anterior un conjunto fundamental de soluciones?
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, $y_{1}(t)$, $y_{2}(t)$ son soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(\alpha,\beta)$ y existe $t_{0}$ en dicho intervalo, donde $W[y_{1},y_{2}](t_{0})\neq 0$, entonces $\{y_{1}(t),y_{2}(t)\}$ forman un conjunto fundamental de soluciones en $(\alpha,\beta)$.
  • Prueba que si $p(t)$, $q(t)$ son continuas en $(\alpha,\beta)$, entonces existe un conjunto fundamental de soluciones $\{y_{1}(t),y_{2}(t)\}$ a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en el mismo intervalo. (Hint: Toma un punto en el intervalo $(\alpha,\beta)$ y dos problemas de condición inicial adecuados de tal forma que puedas utilizar el teorema de existencia y unicidad y el Wronskiano para deducir el resultado).
  • Prueba que $y_{1}(t)=t|t|$, $y_{2}(t)=t^{2}$ son linealmente independientes en $[-1,1]$ pero linealmente dependientes en $[0,1]$. Verifica que el Wronskiano se anula en $\mathbb{R}$. ¿Pueden ser $y_{1}(t)$, $y_{2}(t)$ soluciones a la ecuación $$\frac{d^{2}y}{dt^{2}}+p(t)\frac{dy}{dt}+q(t)y=0$$ en $(-1,1)$ si $p$ y $q$ son continuas en este intervalo?

Más adelante

En la próxima entrada conoceremos el método de reducción de orden, donde supondremos que ya conocemos una solución particular $y_{1}(t)$ a la ecuación lineal homogénea de segundo orden, y con ayuda de esta hallaremos una segunda solución $y_{2}(t)$ tal que forma un conjunto fundamental de soluciones junto con $y_{1}$.

Entradas relacionadas