Álgebra lineal II: Triangularizar y descomposición de Schur

Introducción

En esta entrada estudiaremos el concepto de triangularizar matrices. Esto simplemente quiere decir encontrar una base respecto a la cual podamos escribir a nuestra matriz como una matriz triangular superior. Esto tiene muchas ventajas, puesto que las matrices triangulares superiores son relativamente fáciles de calcular. Como veremos, el concepto de triangularización está íntimamente ligado con los ceros de polinomios.

Matrices triangulares

Recordamos que una matriz $A=[a_{ij}]\in M_n(F)$ se dice triangular superior si $a_{ij}=0$ siempre que $i>j$, es decir si todas las entradas por debajo de la diagonal son cero. Las matrices triangulares gozan de algunas propiedades que ya hemos explorado. Por ejemplo, sus valores propios son fácilmente calculables: ¡son precisamente las entradas de la diagonal! Más explícitamente su polinomio característico es exactamente

\begin{align*}
\chi_A(X)=\prod_{i=1}^{n}(X-a_{ii}).
\end{align*}

Además forman un subespacio cerrado bajo multiplicación del espacio de todas las matrices. Puesto que son matrices ‘sencillas’, es deseable poder escribir alguna otra matriz como una matriz triangular, tal vez mediante un cambio de base: esto es precisamente triangularizar. Tenemos entonces la siguiente definición.

Definición. Diremos que una matriz es triangularizable si es similar a una matriz triangular superior.

Primero, necesitaremos de un par de conceptos sobre polinomios.

Polinomios y sus raíces

Definición. Un polinomio $P\in F[X]$ se divide sobre F si es de la forma

\begin{align*}
P(X)=c(X-a_1)\cdots (X-a_n)
\end{align*}

para algunos escalares $c,a_1,\dots, a_n\in F$ no necesariamente distintos.

Por ejemplo el polinomio $X^2+1$ no se divide sobre $\mathbb{R}$ ya que sabemos que no tiene raíces reales. Sin embargo, el mismo polinomio si se divide sobre $\mathbb{C}$: en efecto

\begin{align*}
X^2+1=(X-i)(X+i).
\end{align*}

Por otro lado, el polinomio $X^2-3X+2$ si se divide sobre $\mathbb{R}$, puesto que lo podemos escribir como

\begin{align*}
X^2-3X+2=(X-1)(X-2).
\end{align*}

Nota que el polinomio también se divide sobre $\mathbb{C}$ puesto que $\mathbb{R}\subset \mathbb{C}$. De hecho, no existe ningún polinomio con coeficientes complejos que no se divida sobre $\mathbb{C}$, este es un sorprendente resultado de Gauss:

Teorema. (Fundamental del Álgebra)

Cualquier polinomio $P\in \mathbb{C}[X]$ se divide sobre $\mathbb{C}$.

Este teorema también se enuncia diciendo que $\mathbb{C}$ es algebraícamente cerrado. Es decir, todo polinomio con coeficientes complejos tiene al menos una raíz compleja. Es un buen ejercicio verificar que ambas versiones son equivalentes.

Por lo que mencionamos al principio, el polinomio característico de una matriz triangular superior se divide sobre el campo. Como el polinomio de matrices similares es igual, se sigue que si una matriz es triangularizable, entonces su polinomio característico se divide sobre el campo.

Problema. Da un ejemplo de una matriz $A\in M_2(\mathbb{R})$ que no sea triangularizable en $M_2(\mathbb{R})$.

Solución. Puesto que el polinomio característico de una matriz triangularizable se divide sobre el campo, es suficiente con encontrar una matriz cuyo polinomio característico no se divida sobre $\mathbb{R}$: por ejemplo $X^2+1$. Enseguida proponemos la matriz

\begin{align*}
A=\begin{pmatrix}
0 & 1 \\ -1 & 0 \end{pmatrix}.
\end{align*}

Entonces $\chi_A(X)=X^2+1$, que ya aclaramos que no se divide sobre $\mathbb{R}$. Por tanto $A$ no es triangularizable.

$\square$

Un teorema sobre triangularizar

Ya vimos que si $A$ es una matriz triangularizable su polinomio característico se divide sobre el campo. El siguiente teorema nos dice que el converso también es cierto.

Teorema. Sea $A\in M_n(F)$. Las siguientes afirmaciones son equivalentes:

  1. El polinomio característico de $A$ se divide sobre $F$.
  2. $A$ es similar a una matriz triangular superior.

Demostración. La discusión previa ya nos mostró que $2$ implica $1$. Probaremos el converso por inducción sobre $n$. El resultado se cumple para $n=1$ (pues toda matriz es triangular superior), así que podemos asumir que $n\geq 2$ y que el resultado se cumple para $n-1$.

Sea $\lambda\in F$ una raíz de $\chi_A$. Nota que dicha raíz existe pues estamos suponiendo que $\chi_A$ se divide sobre $F$. También escogemos un vector no-cero $v$ tal que $Av=\lambda v$, es decir, un eigenvector asociado a $\lambda$. Como $v\neq 0$, podemos completar a una base $v=v_1,\dots, v_n$ de $V=F^n$. La matriz asociada a la transformación lineal $T$ asociada a $A$ se ve entonces de la forma

\begin{align*}
\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}
\end{align*}

para alguna $B\in M_{n-1}(F)$. Entonces podemos encontrar una matriz de cambio de base (y por tanto invertible) $P_1$ tal que

\begin{align*}
P_1 AP_1^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & B
\end{pmatrix}.
\end{align*}

Puesto que matrices similares comparten el mismo polinomio característico, tenemos que

\begin{align*}
\chi_A(X)=\chi_{P_1AP_1^{-1}}(X)=(X-\lambda)\chi_B(X).
\end{align*}

Se sigue que $\chi_B$ se divide sobre el campo. Además, $B\in M_{n-1}(F)$, por lo que podemos aplicar la hipótesis de inducción para afirmar que existe una matriz invertible $Q\in M_{n-1}(F)$ tal que $QBQ^{-1}$ es triangular superior. Luego definiendo

\begin{align*}
P_2=\begin{pmatrix}
1 & 0\\
0 & Q
\end{pmatrix},
\end{align*}

se cumple no solo que $P_2$ es invertible (¿por qué?) pero además que

\begin{align*}
P_2(P_1AP_1^{-1})P_2^{-1}=\begin{pmatrix}
\lambda & \ast\\
0 & QBQ^{-1}\end{pmatrix}.
\end{align*}

Notamos que esta última matriz es triangular superior, puesto que $QBQ^{-1}$ lo es. Esto completa la prueba.

$\square$

Un corolario importante

Combinando el teorema fundamental del álgebra junto con el teorema pasado obtenemos un corolario importante, conocido como el teorema de descomposición de Schur. Lo enunciamos como teorema.

Teorema. (De descomposición de Schur)

Para cualquier matriz $A\in M_n(\mathbb{C})$ podemos encontrar una matriz invertible $P\in M_n(\mathbb{C})$ y una matriz triangular superior $T\in M_n(\mathbb{C})$ tal que $A=PTP^{-1}$. Por tanto toda matriz con entradas complejas es triangularizable.

Demostración. Por el teorema fundamental del álgebra, tenemos que $\chi_A$ se divide sobre $\mathbb{C}$. Luego usando el teorema anterior concluimos que $A$ es triangularizable.

$\square$

Más adelante

En la próxima entrada veremos un concepto parecido a triangularizar pero más fuerte: diagonalizar, que consiste en llevar a una matriz a una matriz diagonal similar.

Tarea moral

A continuación presentamos algunos ejercicios que sirven para repasar los temas vistos en esta entrada.

  1. ¿Es la matriz
    \begin{align*}
    A=\begin{pmatrix}
    1 & 2 & 1\\ 3 & 2 & 2\\ 0 & 1 & 1\end{pmatrix}
    \end{align*}
    triangularizable sobre $\mathbb{R}$?
  2. Encuentra una matriz traingular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 2\\ 3 & 2\end{pmatrix}.
    \end{align*}
  3. Encuentra una matriz triangular superior similar a la matriz
    \begin{align*}
    \begin{pmatrix}
    1 & 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{pmatrix}.
    \end{align*}
  4. ¿Por qué la matriz $P_2$ construida en la demostración del segundo teorema es invertible?
  5. Demuestra que una matriz $A\in M_n(F)$ es nilpotente si y sólo si es similar a una matriz triangular superior con entradas cero en la diagonal.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.