Archivo de la etiqueta: funciones

Cálculo Diferencial e Integral I: Funciones inyectivas, sobreyectivas y biyectivas. Función inversa

Por Karen González Cárdenas

Introducción

Anteriormente, vimos las operaciones que podemos llevar a cabo entre las funciones. Ahora revisaremos las características que debe cumplir una función para poder determinar si es inyectiva, sobreyectiva o biyectiva. De igual manera, definiremos el concepto de función inversa.

Definición de función inyectiva

Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos distintos en $A$, la función le asocia elementos distintos en $B$, es decir,
$$x_{1} \neq x_{2} \Rightarrow f(x_{1}) \neq f(x_{2})$$
para cualesquiera $x_{1}, x_{2} \in A$.

Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos iguales en $B$, provienen de dos elementos iguales en $A$ bajo la función, es decir,
$$f(x_{1}) = f (x_{2}) \Rightarrow x_{1} = x_{2}$$
para cualesquiera $x_{1}, x_{2} \in A$.

Ejemplo

Sea $f: (-\infty,-1] \rightarrow \r$ definida como:
$$f(x)=11- \sqrt{x^{2}-4x-5}\quad\text{.}$$

Tomemos $x_{1}, x_{2} \in (-\infty,-1]$ tales que $f(x_{1}) = f(x_{2})$. Así queremos probar que $x_{1}=x_{2}$.
Como $f(x_{1}) = f(x_{2})$ tenemos que:
\begin{align*}
11- \sqrt{x_{1}^{2}-4x_{1}-5} &=11- \sqrt{x_{2}^{2}-4x_{2}-5}\\
– \sqrt{x_{1}^{2}-4x_{1}-5} &=- \sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{sumando $11$}\\
\sqrt{x_{1}^{2}-4x_{1}-5} &=\sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{multiplcando por $-1$}\\
\sqrt{(x_{1}-2)^{2}-9} &=\sqrt{(x_{2}-2)^{2}-9} \quad \text{factorizando}\\
\sqrt{(x_{1}-2)^{2}} &=\sqrt{(x_{2}-2)^{2}}\\
|x_{1}-2| &=|x_{2}-2|\quad \text{quitando la raíz cuadrada}\\
x_{1}-2 &= x_{2}-2\\
x_{1}&= x_{2}\quad \text{sumando 2}
\end{align*}

De lo anterior vemos que $f$ es inyectiva.

Definición de función sobreyectiva

Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si todo elemento en $B$ proviene de algún elemento en $A$ bajo la función, es decir, para todo $y \in B$ existe $x \in A$ tal que:
$$f(x)=y\quad\text{.}$$

Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si
$$Im_{f}=Codom_{f}\quad\text{.}$$

Ejemplo

Un ejemplo sería la función tangente, ya que su $Im_{f}= \mathbb{R} $ y su $Codom_{f}= \mathbb{R}$, más adelante veremos su definición con mayor detenimiento:
$$f(x)=tan(x)\quad\text{.}$$

Definición de función biyectiva

Definición: Sea $f: A \rightarrow B$ una función. Decimos que $f$ es biyectiva si cumple con ser inyectiva y sobreyectiva.

Ejemplo

Sea $f: \r \rightarrow \r$ definida como:
$$Id(x)=x\quad\text{.}$$

Veremos que esta función es inyectiva:
Tomemos $x_{1}, x_{2} \in \r$ distintos, queremos ver que $f(x_{1}) \neq f(x_{2})$. Como tenemos que:
$$f(x_{1})= x_{1},$$
$$f(x_{2})= x_{2}\quad\text{.}$$
Y como sabemos $x_{1} \neq x_{2}$ se sigue así:
$$f(x_{1})\neq f(x_{2})\quad\text{.}$$
Por lo que $Id(x)$ es inyectiva.

Ahora vemos que también cumple ser sobreyectiva:
Consideremos $y \in \r$. Por definición de la función identidad tenemos que:
$$y=Id(y)\quad\text{.}$$
Así vemos que cumple ser sobreyectiva.

De lo anterior podemos concluimos que $Id(x)$ es una función biyectiva.

Proposición

Proposición: Si tomamos las funciones $g: A \rightarrow B$ y $f: B \rightarrow C$ se cumple que:

  1. $f$ inyectiva y $g$ inyectiva $\quad \Rightarrow \quad f \circ g$ es inyectiva.
  2. $f$ sobreyectiva y $g$ sobreyectiva $\quad \Rightarrow \quad f \circ g$ es sobreyectiva.
  3. $f$ biyectiva y $g$ biyectiva $\quad \Rightarrow \quad f \circ g$ es biyectiva.

Demostración:

  1. Tomemos $x_{1}, x_{2} \in A$ tales que $f \circ g (x_{1})= f \circ g (x_{2})$. Queremos probar que:
    $x_{1}=x_{2}$.
    Observemos que por hipótesis tenemos que:
    $$f(g(x_{1}))= f(g(x_{2}))$$
    donde $g(x_{1}), g(x_{2}) \in B$.
    Como $f$ es una función inyectiva entonces se cumple:
    $$g(x_{1})=g(x_{2})\quad\text{.}$$
    Y al ser $g$ inyectiva obtenemos:
    $$x_{1}=x_{2}\quad\text{.}$$
  2. Como $f \circ g : A \rightarrow C$ por lo que tomemos $c \in C$. Queremos ver que existe $a \in A$ tal que $f(a)=c$.
    Ya sabemos que $f: B \rightarrow C$ es sobreyectiva entonces existe $b \in B$ tal que:
    $$f(b)=c\quad\text{.}$$
    Recordemos que $g: A \rightarrow B$ al ser sobreyectiva ocurre que existe $a \in A$ tal que:
    $$g(a)=b\quad\text{.}$$
    De lo anterior al sustituir en la composición de funciones se sigue:
    \begin{align*}
    f \circ g(a)&=f(g(a))\\
    &=f(b)\\
    &=c
    \end{align*}
  3. Se queda como ejercicio de tarea moral.

$\square$

Función inversa

Definición (función invertible): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es invertible si y sólo si existe una función $g: B \rightarrow A$ tal que cumple las siguientes condiciones:

  • $g \circ f = Id_{A}$
  • $f \circ g = Id_{B}$

A continuación veremos una equivalencia que nos será de utilidad para poder decir si una función es invertible:

Teorema: Consideremos a $f: A \rightarrow B$ una función. Decimos que:
$f$ es Invertible $\Leftrightarrow f$ es biyectiva.
Demostración:
$\Rightarrow ):$ Tomemos $f$ invertible, así por definición existe una función $g: B \rightarrow A$ tal que cumple:

  • $g \circ f = Id_{A}$
  • $f \circ g = Id_{B}$

Debemos probar que $f$ es biyectiva, por lo que debemos verificar que sea inyectiva y sobreyectiva:

Inyectiva: Sean $x_{1} , x_{2} \in A$ tales que $f(x_{1})= f (x_{2})$ por lo que $g(f(x_{1}))=g( f (x_{2}))$ al ser $g$ función. Reescribiendo lo anterior tenemos lo siguiente:
\begin{align*}
g(f(x_{1}))=g( f (x_{2})) &\Rightarrow (g \circ f)(x_{1})=(g \circ f)(x_{2})\\
&\Rightarrow Id_{A}(x_{1})=Id_{A}(x_{2}) \tag{por definición de $g$}\\
&\Rightarrow x_{1}= x_{2}
\end{align*}

$\therefore f$ es inyectiva
Sobreyectiva: Sea $y \in B$. Debido a que $Id_{B}$ es sobreyectiva tenemos que $Id_{B}(y)=y$. De lo anterior tenemos:
\begin{align*}
Id_{B}(y)=y &\Rightarrow f \circ g (y)= y\\
&\Rightarrow f(g(y))=y\\
&\Rightarrow g(y) \in A
\end{align*}
$\therefore f$ es sobreyectiva
De todo lo anterior concluimos que $f$ es biyectiva.

$\Leftarrow ):$ Sea $f: A \rightarrow B$ una función biyectiva. De este modo para todo $y \in B$ existe $x \in A$ tal que:
$$f(x)=y$$
ya que $f$ es sobreyectiva. De igual manera cumple ser inyectiva por lo que esa $x$ es única.

Consideremos la función $g: B \rightarrow A$ tal que:
$$g(y)=x \Leftrightarrow f(x)=y\quad\text{.}$$
Por lo que al realizar la siguiente composición de funciones tenemos:
$$ (g \circ f)(x)=g(f(x)) =g(y)=x = Id_{A}(x),$$
$$(f \circ g)(y)= f(g(y))= f(x)=y = Id_{B}(y)$$\quad\text{.}
Vemos que esto cumple la definición de ser invertible.
$\therefore f$ es una función invertible.

$\square$

Definición: Sea $f: A \rightarrow B$ entonces:

  • $f$ tiene inversa izquierda si existe $g: B \rightarrow A$ tal que $g \circ f=Id_{A}$.
  • $f$ tiene inversa derecha si existe $h: B \rightarrow A$ tal que $f\circ h=Id_{B}$.

Definición (función inversa): Si $f: A \rightarrow B$ es invertible donde $g: B \rightarrow A$ que cumple lo anterior. Decimos que $f^{-1}=g$ es la inversa de $f$.

Corolario: Si $f: A \rightarrow B$ es una función invertible entonces $f^{-1}$ también es biyectiva.

Demostración:
Como $f$ es invertible por definición cumple:

  • $f^{-1} \circ f =Id_{A}$
  • $f \circ f^{-1}=Id_{B}$

Por lo que cumple ser inyectiva y sobreyectiva.

$\square$

Del resultado anterior observamos que $f^{-1}$ es función inversa al componer por la derecha y por la izquierda.

Teorema: Si $f: A \rightarrow B$ entonces es equivalente lo siguiente:

  • $f$ es una función inyectiva
  • $f$ tiene inversa izquierda

Teorema: Si $f: A \subseteq \r \rightarrow \r$ entonces es equivalente lo siguiente:

  • $f$ es una función suprayectiva
  • $f$ tiene inversa derecha

Más adelante

En la siguiente entrada veremos otras características que las funciones pueden cumplir para clasificarse como pares o impares. Veremos su definición formal, algunos ejemplos y resultados.

Tarea moral

  • Demuestra que $f: [0, \infty) \rightarrow [0, \infty)$ definida como:
    $$f(x)= x^{2}$$
    es inyectiva.
  • Argumenta porque la función $f: \r \rightarrow \r$ definida como:
    $$f(x)= x^{2}$$
    no es inyectiva.
  • Demuestra que $f: \r \rightarrow \r$ definida como:
    $$f(x)= -2x+1$$
    es inyectiva.
  • Prueba que si $f$ y $g$ son funciones biyectivas entonces $f \circ g$ es biyectiva.
  • Demuestra la siguiente igualdad:
    $$(f \circ g)^{-1}= f^{-1} \circ g^{-1}$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Cálculo Diferencial e Integral I: Concepto de función

Por Karen González Cárdenas

Introducción

En la unidad anterior desarrollamos todo lo concerniente a los números reales, ahora comenzaremos a ver funciones. Para ello recordemos de nuestros cursos de álgebra cómo se define el producto cartesiano de un par de conjuntos $A$ y $B$:
$$ A\times B := \left\{ (a,b) : a \in A, b \in B \right\},$$
así vemos que sus elementos son pares ordenados.

Por lo que decimos que cualquier subconjunto $R \subseteq A\times B$, es llamado una relación entre $A$ y $B$.

Basándonos en este par de conceptos daremos la definición formal de función entre un par de conjuntos.

Definición de función

Definición (función): Una función $f$ entre los conjuntos $A$ y $B$ es una relación tal que:

  • Para todo $a \in A$ existe $b \in B$ donde $(a,b) \in f$.
  • Si $(a, b_{1}), (a, b_{2})$ entonces $b_{1}= b_{2}$.

Notación:

  • $f : A \rightarrow B$ es una función con dominio $A$ y codominio $B$.
  • $f(a)=b$ es llamada la regla de correspondencia de f.

En resumen, a una función $f : A \rightarrow B$ la conforman tres cosas:

  • Su dominio.
  • Su codominio.
  • Su regla de correspondencia.

El conjunto imagen de una función

Definición (Conjunto imagen): Sea $f : A \rightarrow B$ una función. La imagen de f se define como:
$$Im_{f}:= \left\{ b \in B : \exists a \in A (f(a) =b) \right\}.$$
Simplificado sería:
$$Im_{f}:= \left\{ f(a) \in B : a \in A \right\}.$$

Ejemplo: Sea $f: \r \rightarrow \r$. Si $f(x)=|x|$ entonces $Im_{f}=[0, \infty)$.

Demostración:
$\subseteq )$ Sea $x \in \r$. Vemos que $f(x)= |x|\geq 0$ por lo que $f(x) \in [0, \infty)$.

$\supseteq )$ Tomemos $y \in [0, \infty)$. Debemos probar que existe $x \in \r$ tal que $f(x)= y$.
Sea $x=y \in \r$ con $y \geq 0$. Así se sigue que $f(y)= |y|=y$ por lo que $f(y)=x$.

$\square$

Ejemplo

Encuentra el dominio y la imagen de la siguiente función:
$$f(x)= \sqrt{1-x^{2}}\quad \text{.}$$

Dominio:
Vemos que $y=\sqrt{1-x^{2}}$ está bien definido
\begin{align*}
&\Leftrightarrow 1-x^{2} \geq 0\\
&\Leftrightarrow 1 \geq x^{2}\\
&\Leftrightarrow 1 \geq |x|\\
\end{align*}
Así concluimos que el dominio es el conjunto:
$$D_{f}= [-1,1]\quad \text{.}$$
Imagen:
Como $x \in [-1,1]$ entonces
\begin{align*}
-1 \leq x \leq 1 &\Leftrightarrow 0 \leq x^{2} \leq 1\\
&\Leftrightarrow 0 \geq -x^{2} \geq -1\\
&\Leftrightarrow 1\geq 1-x^{2} \geq 1-1\\
&\Leftrightarrow 1\geq 1-x^{2} \geq 0\\
&\Leftrightarrow 1\geq \sqrt{1-x^{2}} \geq 0\\
\end{align*}

Por lo anterior tenemos:
$$Im_{f} = [0,1]\quad \text{.}$$

Ejercicio 1

Encuentra el dominio de la siguiente función:
\begin{equation*} f(x)= \frac{1}{4-x^{2}} \end{equation*}

Vemos que la función está bien definido si y sólo si:
\begin{align*}
4-x^{2} \neq 0 &\Leftrightarrow (2-x)(2+x) \neq 0\\
&\Leftrightarrow x \neq 2 \quad \text{y} \quad x\neq -2
\end{align*}
Por lo que su dominio sería:
$$D_{f}= \r – \left\{-2,2 \right\}\quad \text{.}$$
es decir, todos los reales quitando el $-2$ y el $2$.

Ejercicio 2

Encuentra el dominio de la siguiente función:
$$f(x)= \sqrt{x-x^{3}}\quad \text{.}$$

Dominio:
Vemos ahora que para $y=\sqrt{x-x^{3}}$ está bien definido
\begin{align*}
&\Leftrightarrow x-x^{3} \geq 0\\
&\Leftrightarrow x(1-x^{2}) \geq 0\\
&\Leftrightarrow x(1-x)(1+x) \geq 0\\
&\Leftrightarrow x_{1} \geq 0,\quad x_{2} \leq 1, \quad x_{3} \geq -1
\end{align*}

De las condiciones anteriores vemos que tenemos los siguientes posibles intervalos que cumplen la desigualdad inicial:

  • $(-\infty, -1]$
    Vemos que al sustituir $x= -1 \in (-\infty,-1]$ tenemos que:
    $$-1-(-1)^{3} = -1-(-1)= 0 \geq 0$$
    por lo que se cumple la desigualdad $x-x^{3} \geq 0$.
  • $(-1,0)$
    Tomando $x=-\frac{1}{2}$ vemos que:
    $$-\frac{1}{2} -\left(-\frac{1}{2} \right) ^{3} = -\frac{1}{2} + \frac{1}{8} = -\frac{3}{8}$$
    Por lo que no se cumple ser mayor o igual que cero.
  • $[1,0]$
    Ahora si tomamos $x=1$ observamos:
    $$1- 1^{3} =1-1 =0$$
    por lo que cumple la desigualdad.
  • $(1,\infty)$
    Por último si consideramos $x= 2$ ocurre que:
    $$2- (2)^{3} =2-8 =-6$$
    que no cumple la desigualdad.

Del análisis anterior vemos que los intervalos que cumplen con $x-x^{3} \geq 0$ son:
$$(-\infty, -1] \cup [1,0]\quad \text{.}$$
Por lo que el dominio de la función sería:
$$D_{f}=(-\infty, -1] \cup [1,0]\quad \text{.}$$

Gráfica de una función

Definición (gráfica): Sea $f:D_{f} \subseteq \r \rightarrow \r$ Definimos a la gráfica de f como el conjunto:
$$ Graf(f)= \left\{ (x,y)\in {\mathbb{R}}^2: x \in D_{f}, \quad y=f(x) \right\},$$
que es equivalente a decir:
$$Graf(f)= \left\{(x, f(x)): x \in D_{f} \right\}\quad \text{.}$$

Ejemplos

  • Para la función constante tenemos:
    $$f(x)=c ,$$
    donde $D_{f}= \r$ y $Im_{f}= {c}$.

    Por lo que su gráfica se vería como:
  • Para la función identidad tenemos:
    $$Id(x)=x ,$$
    donde $D_{f}= \r$ y $Im_{f}= \r$.

    Así su gráfica se vería:

Más adelante

En la próxima entrada veremos las definiciones relacionadas con las operaciones entre funciones: suma, producto, cociente y composición.

Tarea moral

A continuación encontrarás una serie de ejercicios que te ayudarán a repasar los conceptos antes vistos:

  • Sea $f: \r \rightarrow \r$. Demuestra que si $f(x)=x^{2}$ entonces $Im_{f}=[0, \infty).$
  • Encuentra el dominio de las siguientes funciones:
    • $\begin{multline*} f(x)= \sqrt{x+1} \end{multline*}$
    • $\begin{multline*} f(x)= x \sqrt{x^{2}-2} \end{multline*}$
    • $\begin{multline*} f(x)= \sqrt{-x}+ \frac{1}{\sqrt{x+2}} \end{multline*}$
    • $\begin{multline*} f(x)= \sqrt{2+x-x^{2}} \end{multline*}$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: El tamaño de los naturales y de cada natural

Por Roberto Manríquez Castillo

Introducción

En la entrada pasada, demostramos que todo número natural es el conjunto formado por los elementos $\{0,1,…,n-1\}$. Esto nos dice intuitivamente que cada número natural $n$, tiene exactamente $n$ elementos. Pero, de modo formal, ¿qué quiere decir que un conjunto tenga $n$ elementos? Esto lo precisaremos en esta entrada. Más aun, siguiendo esta idea, definiremos que quiere decir que un conjunto sea infinito. Después, veremos las propiedades que los conjuntos finitos e infinitos tienen.

El tamaño de los conjuntos

A la hora de pensar en determinar el tamaño de un conjunto, uno podría aventurarse y empezar a contar los elementos de este uno por uno. Esta forma de aproximar el problema no sólo parece muy laboriosa, sino que también presenta el problema de que no todos los conjuntos tienen la propiedad de que se pueda enlistar a sus elementos (aunque no lo definimos aún, seguramente has escuchado que el conjunto $\mathbb{R}$ de números reales no cumple esta propiedad).

De entrada, parecería que el problema de catalogar a los conjuntos por su tamaño es más complicado de lo que parece. Sin embargo, hay una idea famosa que viene a salvar la situación.

Imagina que eres el acomodador de una sala de cine con una cantidad desconocida de asientos (incluso posiblemente infinita) y que quieres sentar en ellos a un cierto conjunto de espectadores (cuya cantidad también se desconoce). Como dijimos anteriormente, la labor de contar todos los asientos de la sala podría ser demasiado complicada. ¿Cómo podríamos cerciorarnos de que cada espectador podrá tener un asiento?

La respuesta es inusualmente sencilla. La mejor forma de cerciorarse de que todos puedan sentarse, es pidiéndoles que se sienten. Si logran hacerlo de modo que a cada asistente le toque exactamente un asiento y no sobren asientos, podremos decir que hay el mismo número de personas que de lugares.

Notemos que de esta forma no necesitamos saber de forma explícita cuántas sillas hay, ni cuantas personas asistieron a la función, para saber que hay la misma cantidad de personas que de sillas. Formalmente hablando, hemos dado una relación entre el conjunto de personas y el de asientos.

Recordemos que a una relación entre conjuntos se le llama función si a cada elemento de nuestro dominio le corresponde uno y solo un elemento del codominio. Más aún, si a todo elemento del codominio, está relacionado con uno del dominio, la función se llamará suprayectiva. Si una función satisface que los elementos del codominio se relacionan con a lo más un elemento del dominio, se le llama función inyectiva. Cuando ambas condiciones se satisfacen, diremos que la función es biyectiva.

Nota que en el ejemplo de la sala de cine, si logramos hacer que todos los asistentes se sienten sin que sobre alguna silla, entonces la función que damos es una función biyectiva. Con estas observaciones, introducimos la siguiente definición.

Definición. Diremos que dos conjuntos $A$ y $B$ tienen la misma cantidad de elementos, o la misma cardinalidad, si existe una función biyectiva entre ellos. En este caso escribimos $\vert A\vert=\vert B \vert$.

El tamaño del conjunto $\mathbb{N}$

Aunque los conjuntos finitos parecen ser más cercanos a nuestra realidad, será más interesante definir primero qué son los conjuntos infinitos. Para ello usaremos una de las propiedades «raras» que estos tienen.

Definición. Diremos que un conjunto $X$ es infinito si existe un subconjunto propio $Y$ de $X$ y una función $f:X\to Y$ biyectiva entre ambos conjuntos.

Recuerda que un subconjunto propio es cualquier subconjunto que no sea el conjunto original. En otras palabras, un conjunto es infinito si tiene el mismo tamaño que alguno de sus subconjuntos propios.

Definición. Diremos que un conjunto es finito si no es infinito.

La propiedad que usamos para caracterizar a los conjuntos infinitos fue muy novedosa cuando se enunció por primera vez. Incluso con los años fue el origen de aparentes paradojas al sentido común. Si el tema te parece interesante, puedes leer o ver algún vídeo sobre el famoso Hotel de Hilbert.

Con nuestra definición lista, empezaremos a catalogar los conjuntos que ya conocemos en finitos e infinitos.

Teorema. El conjunto $\mathbb{N}$ de números naturales es infinito.

Demostración. Para demostrar esto, consideraremos el conjunto $\mathbb{N}\setminus\{0\}$. Este es un subconjunto propio de $\mathbb{N}$. Tomemos la función $\sigma:\mathbb{N}\to \mathbb{N}\setminus\{0\}$. De acuerdo con la definición de conjunto infinito hay que demostrar que $\sigma$ es biyectiva, es decir, que es inyectiva y suprayectiva.

El hecho de que el codominio esté bien definido y que $\sigma$ sea inyectiva, fue demostrado en la entrada La construcción de los naturales, a la hora de probar los axiomas de Peano. La prueba de la suprayectividad se dejó como un ejercicio moral en la entrada de Principio de inducción y teoremas de recursión, ya que se usó para la prueba del teorema de Recursión débil. De cualquier forma, a continuación damos esa prueba.

Demostraremos que $\{0\}\cup \sigma(\mathbb{N})$ es inductivo. Evidentemente $0\in\mathbb{N}$ , y si $n\in \{0\}\cup\sigma(\mathbb{N})$, entonces es trivial que $\sigma(n)\in\sigma(\mathbb{N})$. Entonces $\{0\}\cup \sigma(\mathbb{N})=\mathbb{N}$, por lo que $\sigma(n)$ sí es suprayectiva y por lo tanto biyectiva. Con esto se concluye la prueba.

$\square$

La idea de determinar si dos conjuntos tienen la misma cantidad de elementos usando funciones se puede extender un poco más. La usaremos a continuación para definir cuándo un conjunto tiene al menos tantos elementos como otro.

Definición. Decimos que un conjunto $A$ tiene a lo más tantos elementos como un conjunto $B$ si existe una función inyectiva $f:A\to B$. En este caso, escribimos $\vert A\vert\leq \vert B \vert$.

Todo número natural es finito

Como hemos visto, los conjuntos infinitos se comportan de forma inesperada. Sin embargo los conjuntos finitos sí se comportarán de una forma más intuitiva. El teorema siguiente ejemplifica esto.

Teorema. Si $A$ es un conjunto finito, y $f:A\to A$, entonces son equivalentes las siguientes tres afirmaciones:

  1. $f$ es biyectiva
  2. $f$ es inyectiva
  3. $f$ es suprayectiva

Demostración. Evidentemente, $1)\Rightarrow 2)$ y $1)\Rightarrow 3)$. Si logramos demostrar la equivalencia entre $2)$ y $3)$ terminaremos, pues al tener uno, tendríamos el otro y por lo tanto tendríamos ambas partes de la definición de biyectividad.

$2)\Rightarrow 3)$ Supongamos que $f$ es inyectiva y supongamos que $f$ no es suprayectiva. Entonces $f:A\to f(A)$ es una biyección de $A$ con un subconjunto propio, lo cual diría que $A$ es infinito. Esto es una contradicción, así que $f$ debe ser suprayectiva.

$3)\Rightarrow 2)$ Si $f$ es suprayectiva, entonces tiene inversa derecha, es decir, existe $g:A\to A$ tal que $f\circ g=Id_A$. A partir de esta igualdad se puede probar que $g$ es inyectiva. En efecto, si $g(a)=g(b)$, entonces $f(g(a))=f(g(b))$, pero entonces $a=b$. Por la implicación del párrafo anterior, $g$, también es suprayectiva. Pero con esto se puede mostrar que $f$ es inyectiva. Si tenemos $a$ y $b$ tales que $f(a)=f(b)$, tomemos $c$ y $d$ tales que $g(c)=a$ y $g(d)=b$. De aquí, $c=f(g(c))=f(g(d))=d$ y por lo tanto $a=g(c)=g(d)=b$.

$\square$

Sigamos estudiando propiedades de los conjuntos infinitos. El siguiente resultado es bastante intuitivo: si le quitamos un elemento a un conjunto infinito, sigue siendo infinito. La demostración es algo elaborada pues debemos hacerla a partir de nuestras definiciones.

Lema 1. Si $X$ es un conjunto infinito y $x\in X$, entonces $X\setminus \{x\}$ también es un conjunto infinito.

Demostración. Sea $f:X\to A $ una biyección de $X$ a un subconjunto propio $A$. Tenemos que considerar dos casos: que $x\notin A$ o que $x\in A$. Comencemos con el caso $x\notin A$.

Para mostrar que $X\setminus \{x\}$ es infinito, utilizaremos como subconjunto a $A\setminus\{f(x)\}$ y como función a la restricción de $f$ a $X\setminus\{x\}$. Debemos demostrar que $A\setminus\{f(x)\}$ es un subconjunto propio de $X\setminus \{x\}$ y que dicha restricción es una biyección.

Lo primero sucede ya que $$A\setminus\{f(x)\}\subsetneq A\subseteq X\setminus \{x\}.$$ El hecho de que $f:X\setminus \{x\}\to A\setminus\{f(x)\}$ sea una biyección es consecuencia directa de que originalmente $f:X\to A $ era una biyección. Los detalles quedan como tarea moral.

Si por el contrario $x\in A$, como $A\subsetneq X$ debe existir $x’\in X\setminus A$. Consideremos la función

\begin{align*}
&g: & &X & &\longrightarrow & (A\cup \{x’&\})\setminus \{x\}& \\
& & &y & &\mapsto & f(&y) &\text{ si } y\neq f^{-1}(x) \\
& & f^{-1}&(x) & &\mapsto & &x’ &
\end{align*}

Veamos que $g$ es una biyección entre $X$ y $(A\cup \{x’\})\setminus \{x\}$. Lo primero que notamos es que el codominio está bien definido ya que para todo $y\in X$ se tiene que $g(y)\neq x$ (¿por qué?).

Además es inyectiva, ya que si $g(y)=g(z)$, con $y\neq f^{-1}(x)\neq z$, entonces se tiene que $f(y)=g(y)=g(z)=f(z)$, y por la inyectividad de $f$ se tiene que $y=z$. Mientras que si $y=f^{-1}(x)$, tenemos que $g(y)=x’=g(z)$ si $z\neq f^{-1}(x)$, tendríamos que $x’=f(z)$, por lo que $x’\in A$ lo cual es absurdo, entonces $z=f^{-1}(x)=y$, así $g$ es efectivamente inyectiva.

Para probar que es suprayectiva, consideremos $z\in(A\cup \{x’\})\setminus \{x\}$. Si $z=x’$, entonces $g(f^{-1}(x))=x’$, mientras que si $z\in A\setminus \{x\}$, por la suprayectvidad de $f$, debe de existir $y$ tal que $f(y)=z$. Además $y\neq f^{-1}(x)$ ya que si lo fuera $f(f^{-1}(x))=x=z$, lo cual sería absurdo. Se tiene entonces que $g(y)=f(y)=z$.

Con esto probamos que $g$ es una biyección de $X$ a un subconjunto propio al que no pertenece $x$. Para concluir, aplicamos el primer caso.

$\square$

Usando el lema anterior es fácil dar un corolario importante sobre conjuntos finitos, cuya prueba queda como un ejercicio.

Corolario. Si $X$ es un conjunto finito, y $x$ es un conjunto arbitrario, entonces $X\cup \{x\}$ es también un conjunto finito.

Armados con este corolario, podemos dar uno de los teoremas importantes de esta entrada.

Teorema. Si $n$ es un natural, entonces $n$ es un conjunto finito.

Demostración. Procedamos por inducción. Si $n=0$, entonces $n=\emptyset$, entonces $n$ no tiene subconjuntos propios con los que pueda biyectarse, ya que no tiene subconjuntos propios. Entonces por vacuidad el vacío es finito.

Supongamos que $n$ es un natural finito. Debemos demostrar que $\sigma(n) $ es también finito. Pero como $\sigma(n)=n\cup\{n\}$, el paso inductivo es consecuencia del corolario anterior. Con esto concluimos la inducción.

$\square$

Caracterizando los conjuntos finito e infinitos

Ya probamos que cada número natural es finito y que el conjunto de todos los naturales es infinito. Lo siguiente que haremos es ver que estos conjuntos nos sirven para catalogar a todos los demás conjuntos en finitos o infinitos. Comenzamos con un lema bastante intuitivo: si con conjunto tiene un subconjunto infinito, entonces es infinito.

Lema 2. Si $X$ es infinito y $X\subset Y$ entonces $Y$ también es infinito.

Demostración. Como $X$ es infinito, existe una biyección $f$ entre $X$ y uno de sus subconjuntos propios $A$. Consideremos entonces $(Y\setminus X)\cup A\subsetneq Y$, y demos una biyección entre $Y$ y este conjunto dada por

\begin{align*}
&g: & &Y & &\longrightarrow &(Y\setminus &X)\cup A & \\
& & &y & &\mapsto & &y &\text{ si } y\notin Y\setminus X\\
& & &x & &\mapsto & f(&x) &\text{ si } x\in X
\end{align*}

Probaremos que esta función es una biyección. Primero, veamos que es inyectiva. Esto se debe a que si $g(x)=g(y)$ y $x\in X$, entonces $g(y)=g(x)=f(x)\in A\subset X$, entonces $g(y)$ está en $X$, y como $Y\setminus X$ es enviado en si mismo, debe pasar que $y$ también está en $X$, por lo que $f(y)=g(y)=f(x)$ y por la inyectividad de $f$, tenemos que $y=x$. Por el contrario, si $x\notin X$, se tiene que $g(x)=x=g(y)$ entonces $g(y)\notin X$, por lo que $y$ tampoco puede estar en $X$, así, $g(y)=y=x$.

Veamos ahora que la función es suprayectiva. Si $z\in(Y\setminus X)\cup A$, consideremos dos casos: $z\in Y\setminus X$ en cuyo caso $g(z)=z$, o $z\in A$, por lo que por la suprayectividad de $f$, debemos tener que existe $x\in X$ tal que $z=f(x)=g(x)$. Así, $g$ es suprayectiva y por lo tanto es una biyección..

$\square$

Ahora sí, pasamos a demostrar los teoremas con los que concluiremos la entrada.

Teorema. El conjunto de números naturales es el conjunto infinito más pequeño, es decir, que si $X$ es un conjunto infinito, entonces $\vert\mathbb{N}\vert\leq\vert X\vert$.

Demostración. Como $X$ es infinito, debe ser distinto del vacío. Así, existe $x_0\in X$. Consideremos el conjunto $X\setminus \{x_0\}$, por el lema 1 que demostramos, este es de nuevo infinito. Una vez más, no es vacío, entonces existe $x_1\in X\setminus \{x_0\}$, y el conjunto $X\setminus\{x_0,x_1\}=(X\setminus \{x_0\})\setminus\{x_1\}$ será de nuevo infinito. Procediendo de manera recursiva, podemos dar una función

\begin{align*}
h: &\mathbb{N} \to X \\
& n \mapsto x_n
\end{align*}

tal que todos los $x_n$ son distintos entre sí (esto se puede demostrar inductivamente). Pero entonces $h$ es una función inyectiva de $\mathbb{N}$ al conjunto $X$, que es precisamente nuestra definición de que $\vert\mathbb{N}\vert\leq \vert X\vert $.

$\square$

El regreso del teorema anterior es evidentemente cierto, es decir que si un conjunto $X$ cumple que $\vert\mathbb{N}\vert\leq \vert X\vert $, entonces $X$ es infinito. Queda como ejercicio demostrarlo.

Para finalizar la entrada, damos un resultado análogo al anterior, para conjuntos finitos.

Teorema. Si $X$ es un conjunto finito, entonces existe $n\in\mathbb{N}$ tal que $\vert X\vert =\vert n\vert$.

Demostración. Si $X=\emptyset$, entonces $\vert\emptyset\vert= \vert X\vert $. Si $X$ no es vacío, entonces existe $x_0\in X$. Consideremos entonces $X\setminus \{x_0\}$. Si este conjunto es vacío, significa que $X=\{x_0\}$ y claramente podríamos biyectarlo con el conjunto $\sigma(0)=\{0\}$. Si por el contrario, $X\setminus \{x_0\}\neq \emptyset$, podemos elegir $x_1\in X\setminus \{x_0\}$ y verificar la misma condición.

Necesariamente debemos de terminar en algún momento pues, de otro modo, podremos usar el teorema de recursión para construir una función inyectiva de $\mathbb{N}$ a $X$. Esto diría que $X$ sería infinito, lo cual sería absurdo.

Entonces debe ocurrir que existe una $n$ tal que $X\setminus\{x_0,x_1,…,x_n\}$ es vacío, por lo que $X=\{x_0,x_1,…,x_n\}$, y por lo tanto podemos biyectarlo con $\sigma(n)$.

$\square$

Más adelante…

Así como los conjuntos transitivos, la teoría que se desarrolla al estudiar las cardinalidades de los conjuntos es un área de estudio importante en la teoría de conjuntos. Aunque no lo veremos a profundidad, la teoría que acabamos de desarrollar es suficiente para comparar la cardinalidad de la mayoría de los conjuntos que veamos con total precisión. Esto será cierto para, conjuntos como $\mathbb{Z}$ (el de los números enteros) o $\mathbb{Q}$ (el de los números racionales). No será sino hasta que definamos el conjunto de números reales que tendremos un conjunto con una cardinalidad estrictamente mayor que la de $\mathbb{N}$.

En la siguiente entrada definiremos el orden de los naturales, para lo cual de nuevo pensaremos a los números naturales como conjuntos. Más aún, las propiedades que estudiamos en la entrada pasada, serán de suma importancia a la hora de definir el buen orden de un conjunto. Esta es una propiedad que usamos anteriormente sin prueba, cuando demostramos el teorema de Recursión.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Supón que diriges un hotel con tantas habitaciones como números naturales. Supón que todas tus habitaciones se encuentran ocupadas, y de repente llega una persona solicitando un cuarto. ¿Cómo puedes hospedarlo sin desalojar a ningún cliente? Supón ahora que después llega un camión con tantas personas como números naturales, todas buscando un cuarto. ¿De qué forma puedes acomodarlos a ellos y a todos los clientes ya hospedados?
  2. Completa los detalles de la prueba del lema 1.
  3. Demuestra el corolario de la entrada: Si $X$ es un conjunto finito, y $x$ es un conjunto arbitrario, entonces $X\cup \{x\}$ es también un conjunto finito.
  4. Demuestra que si $X$ es tal que $\vert\mathbb{N}\vert\leq \vert X\vert $, entonces $X$ es infinito.
  5. Demuestra por inducción que si $X$ es infinito y $A$ es un subconjunto con $k$ elementos, entonces $X\setminus A$ es infinito. Si $A$ tiene tantos elementos como naturales, ¿el resultado sigue siendo cierto?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Espacios vectoriales

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la primer unidad de este curso de álgebra lineal estudiamos a profundidad al conjunto $F^n$ con sus operaciones de suma y multiplicación por escalar. Luego, hablamos de las matrices en $M_{m,n}(F)$ y vimos cómo pensarlas como transformaciones lineales. Les dimos una operación de producto que en términos de transformaciones lineales se puede pensar como la composición. Luego, hablamos de la forma escalonada reducida de una matriz y cómo llevar cualquier matriz a esta forma usando reducción gaussiana. Esto nos permitió resolver sistemas de ecuaciones lineales homogéneos y no homogeneos, así como encontrar inversas de matrices. Las habilidades desarrolladas en la primer parte del curso serán de mucha utilidad para la segunda, en donde hablaremos de espacios vectoriales.

En esta entrada definiremos el concepto de espacio vectorial y vectores. Para hacer esto, tomaremos como motivación el espacio $F^n$, que ya conocemos bien. Sin embargo, hay muchos otros ejemplos de objetos matemáticos que satisfacen la definición que daremos. Hablaremos de algunos de ellos.

En el transcurso de la unidad también hablaremos de otros conceptos básicos, incluido el de subespacio. Hablaremos de conjuntos linealmente independientes, de generadores y de bases. Esto nos llevará a establecer una teoría de la dimensión de un espacio vectorial. Las bases son de fundamental importancia pues en el caso de dimensión finita, nos permitirán pensar a cualquier espacio vectorial «como si fuera $F^n$ «. Más adelante precisaremos en qué sentido es esto.

Después, veremos cómo pasar de un espacio vectorial a otro mediante transformaciones lineales. Veremos que las transformaciones entre espacios vectoriales de dimensión finita las podemos pensar prácticamente como matrices, siempre y cuando hayamos elegido una base para cada espacio involucrado. Para ver que estamos haciendo todo bien, debemos verificar que hay una forma sencilla de cambiar esta matriz si usamos una base distinta, y por ello estudiaremos a las matrices de cambio de base.

Esta fuerte relación que existe entre transformaciones lineales y y matrices nos permitirá llevar información de un contexto a otro. Además, nos permitirá definir el concepto de rango para una matriz (y transformación vectorial). Hasta ahora, sólo hemos distinguido entre matrices invertibles y no invertibles. Las matrices invertibles corresponden a transformaciones lineales que «guardan toda la información». El concepto de rango nos permitirá entender de manera más precisa cuánta información guardan las transformaciones lineales no invertibles.

Recordando a $F^n$

Antes de definir el concepto de espacio vectorial en toda su generalidad, recordemos algunas de las cosas que suceden con $F^n$. De hecho, puedes pensar en algo mucho más concreto como $\mathbb{R}^4$.

Como recordatorio, comenzamos tomando un campo $F$ y dijimos que, para fines prácticos, podemos pensar que se trata de $\mathbb{R}$ y $\mathbb{C}$. A los elementos de $F$ les llamamos escalares.

Luego, consideramos todas las $n$-adas de elementos de $F$ y a cada una de ellas le llamamos un vector. A $F^n$ le pusimos una operación de suma, que tomaba dos vectores en $F^n$ y nos daba otro. Además, le pusimos una operación de producto por escalar, la cual tomaba un escalar en $F$ y un vector en $F^n$ y nos daba como resultado un vector. Para hacer estas operaciones procedíamos entrada a entrada.

Sin embargo, hay varias propiedades que demostramos para la suma y producto por escalar, para las cuales ya no es necesario hablar de las entradas de los vectores. Mostramos que todo lo siguiente pasa:

  1. (Asociatividad de la suma) Para cualesquiera vectores $u,v,w$ en $F^n$ se cumple que $(u+v)+w=u+(v+w)$.
  2. (Conmutatividad de la suma) Para cualesquiera vectores $u,v$ en $F^n$ se cumple que $u+v=v+u$.
  3. (Identidad para la suma) Existe un vector $0$ en $F^n$ tal que $u+0=u=0+u$.
  4. (Inversos para la suma) Para cualquier vector $u$ en $F^n$ existe un vector $v$ en $F^n$ tal que $u+v=0=v+u$.
  5. (Distributividad para la suma escalar) Para cualesquiera escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(a+b)v=av+bv$.
  6. (Distributividad para la suma vectorial) Para cualquier escalar $a$ en $F$ y cualesquiera vectores $v,w$ en $F^n$ se cumple que $a(v+w)=av+aw$.
  7. (Identidad de producto escalar) Para la identidad multiplicativa $1$ del campo $F$ y cualquier vector $v$ en $F^n$ se cumple que $1v=v$.
  8. (Compatibilidad de producto escalar) Para cualesquiera dos escalares $a,b$ en $F$ y cualquier vector $v$ en $F^n$ se cumple que $(ab)v=a(bv)$.

Los primeros cuatro puntos son equivalentes a decir que la operación suma en $F^n$ es un grupo conmutativo. Resulta que hay varios objetos matemáticos que satisfacen todas estas ocho propiedades o axiomas de espacio vectorial, y cuando esto pasa hay muchas consecuencias útiles que podemos deducir. La esencia del álgebra lineal precisamente consiste en deducir todo lo posible en estructuras que tienen las ocho propiedades anteriores. Estas estructuras son tan especiales, que tienen su propio nombre: espacio vectorial.

Definición de espacio vectorial

Estamos listos para la definición crucial del curso.

Definición. Sea $F$ un campo. Un espacio vectorial sobre el campo $F$ es un conjunto $V$ con operaciones de suma y producto por escalar, que denotaremos por \begin{align*}
+:& V\times V \to V \quad \text{y}\\
\cdot:& F\times V \to V,
\end{align*}

para las cuales se cumplen las ocho propiedades de la sección anterior. En otras palabras:

  • El conjunto $V$ es un grupo conmutativo con la suma.
  • Se tiene asociatividad para la suma escalar y la suma vectorial
  • Se tiene identidad y compatibilidad de la mulltiplicación escalar.

A los elementos de $F$ les llamamos escalares. A los elementos de $F^n$ les llamamos vectores. Para hacer restas, las definimos como $u-v=u+(-v)$, donde $-v$ es el inverso aditivo de $v$ con la suma vectorial. Usualmente omitiremos el signo de producto escalar, así que escribiremos $av$ en vez de $a\cdot v$ para $a$ escalar y $v$ vector.

La definición da la impresión de que hay que verificar muchas cosas. De manera estricta, esto es cierto. Sin embargo, de manera intuitiva hay que pensar que a grandes rasgos los espacios vectoriales son estructuras en donde podemos sumar elementos entre sí y multiplicar vectores por escalares (externos) sin que sea muy complicado.

Como ya mencionamos, el conjunto $F^n$ con las operaciones de suma y multiplicación por escalar que se hacen entrada por entrada es un espacio vectorial sobre $F$. En lo que resta de la entrada, hablaremos de otros ejemplos de espacios vectoriales que nos encontraremos frecuentemente.

Espacios vectoriales de matrices

Otros ejemplos de espacios vectoriales con los que ya nos encontramos son los espacios de matrices. Dado un campo $F$ y enteros positivos $m$ y $n$, el conjunto de matrices en $M_{m,n}(F)$ es un espacio vectorial en donde la suma se hace entrada a entrada y la multiplicación escalar también.

¿Qué es lo que tenemos que hacer para mostrar que en efecto esto es un espacio vectorial? Se tendrían que verificar las 8 condiciones en la definición de espacio vectorial. Esto lo hicimos desde la primer entrada del curso, en el primer teorema de la sección «Operaciones de vectores y matrices». Vuelve a leer ese teorema y verifica que en efecto se enuncian todas las propiedades necesarias.

Aquí hay que tener cuidado entonces con los términos que se usan. Si estamos hablando del espacio vectorial $F^n$, las matrices no forman parte de él, y las matrices no son vectores. Sin embargo, si estamos hablando del espacio vectorial $M_{m,n}(F)$, entonces las matrices son sus elementos, y en este contexto las matrices sí serían vectores.

Ejemplo. Sea $\mathbb{F}_2$ el campo con $2$ elementos. Consideremos $M_{2}(\mathbb{F}_2)$. Este es un espacio vectorial. Tiene $16$ vectores de la forma $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, en donde cada entrada es $0$ o $1$. La suma y la multiplicación por escalar se hacen entrada a entrada y con las reglas de $\mathbb{F}_2$. Por ejemplo, tenemos $$\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

$\triangle$

Espacios vectoriales de funciones

Ahora veremos algunos ejemplos de espacios vectoriales cuyos elementos son funciones. Esto puede parecer algo abstracto, pero en unos momentos veremos algunos ejemplos concretos que nos pueden ayudar a entender mejor.

Sea $F$ un campo y consideremos cualquier conjunto $X$. Consideremos el conjunto $V$ de todas las posibles funciones de $X$ a $F$. A este conjunto queremos ponerle operaciones de suma y de multiplicación por escalar.

Para definir la suma, tomemos dos funciones que van de $X$ a $F$, digamos $f:X\to F$ y $g:X\to F$. Definiremos a la función $f+g$ como la función que a cada $x$ en $X$ lo manda a $f(x)+g(x)$. Aquí estamos usando la suma del campo $F$. En símbolos, $(f+g):X\to F$ tiene regla de asignación $$(f+g)(x)=f(x)+g(x).$$

Para definir el producto por escalar, tomamos una función $f:X\to F$ y un escalar $c$ en el campo $F$. La función $cf$ será la función $cf:X\to F$ con regla de asignación $$(cf)(x)=cf(x)$$ para todo $x$ en $X$.

Resulta que el conjunto $V$ de funciones de $X$ a $F$ con estas operaciones de suma y producto, es un espacio vectorial. Podemos probar, por ejemplo, la asociatividad de la suma. Para ello, la primer cosa que necesitamos mostrar es la asociatividad de la suma. Es decir, que si tenemos $f:X\to F$, $g:X\to F$ y $h:X\to F$, entonces $$(f+g)+h = f+ (g+h).$$

Esta es una igualdad de funciones. Para que sea cierta, tenemos que verificarla en todo el dominio, así que debemos mostrar que para todo $x$ en $X$ tenemos que $$((f+g)+h)(x)=(f+(g+h))(x).$$

Para demostrar esto, usemos la definición de suma de funciones y la asociatividad de la suma del campo $F$. Con ello, podemos realizar la siguiente cadena de igualdades:

\begin{align*}
((f+g)+h)(x)&=(f+g)(x)+h(x)\\
&=(f(x)+g(x)) + h(x) \\
&=f(x) + (g(x)+h(x)) \\
&=f(x) + (g+h)(x)\\
&=(f+(g+h))(x).
\end{align*}

Así, la suma en $V$ es asociativa. El resto de las propiedades se pueden demostrar con la misma receta:

  • Se enuncia la igualdad de funciones que se quiere mostrar.
  • Para que dicha igualdad sea cierta, se tiene que dar en cada elemento del dominio, así que se evalúa en cierta $x$.
  • Se prueba la igualdad usando las definiciones de suma y producto por escalar, y las propiedades de campo de $F$.

Ejemplo. El ejemplo anterior es muy abstracto, pues $X$ puede ser cualquier cosa. Sin embargo, hay muchos espacios de funciones con los cuales se trabaja constantemente. Por ejemplo, si el campo es el conjunto $\mathbb{R}$ de reales y $X$ es el intervalo $[0,1]$, entonces simplemente estamos hablando de las funciones que van de $[0,1]$ a los reales.

Si tomamos $f:[0,1]\to \mathbb{R}$ y $g:[0,1]\to \mathbb{R}$ dadas por \begin{align*}f(x)&= \sin x – \cos x\\ g(x) &= \cos x + x^2,\end{align*} entonces su suma simplemente es la función $f+g:[0,1]\to \mathbb{R}$ definida por $(f+g)(x)=\sin x + x^2$. Si tomamos, por ejemplo, el escalar $2$, entonces la función $2f:[0,1]\to \mathbb{R}$ no es nada más que aquella dada por
$$(2f)(x)= 2\sin x – 2\cos x.$$

Así como usamos el intervalo $[0,1]$, pudimos también haber usado al intervalo $[-2,2)$, al $(-5,\infty]$, o a cualquier otro.

$\triangle$

Espacios vectoriales de polinomios

Otro ejemplo de espacios vectoriales que nos encontraremos frecuentemente son los espacios de polinomios. Si no recuerdas con precisión cómo se construyen los polinomios y sus operaciones, te recomendamos repasar este tema con material disponible aquí en el blog.

Dado un campo $F$ y un entero positivo $n$ usaremos $F[x]$ para referirnos a todos los polinomios con coeficientes en $F$ y usaremos $F_n[x]$ para referirnos a aquellos polinomios con coeficientes en $F$ y grado a lo más $n$. Aunque el polinomio cero no tiene grado, también lo incluiremos en $F_n[x]$.

Ejemplo. Si $F$ es $\mathbb{C}$, el campo de los números complejos, entonces todos los siguientes son polinomios en $\mathbb{C}[x]$: \begin{align*}p(x)&=(2+i)x^6 + (1+i),\\ q(x)&=3x^2+2x+1,\\ r(x)&=5x^7+(1-3i)x^5-1.\end{align*}

Tanto $p(x)$ como $q(x)$ están en $\mathbb{C}_6[x]$, pues su grado es a lo más $6$. Sin embargo, $r(x)$ no está en $\mathbb{C}_6[x]$ pues su grado es $7$.

El polinomio $q(x)$ también es un elemento de $\mathbb{R}[x]$, pues tiene coeficientes reales. Pero no es un elemento de $\mathbb{R}_1[x]$ pues su grado es demasiado grande.

$\triangle$

Recuerda que para sumar polinomios se tienen que sumar los coeficientes de grados correspondientes. Al hacer multiplicación por escalar se tienen que multiplicar cada uno de los coeficientes. De esta forma, si $f(x)=x^2+1$ y $g(x)=x^3+\frac{x^2}{2}-3x-1$, entonces $$(f+g)(x)=x^3+\frac{3x^2}{2}-3x,$$ y $$(6g)(x)=6x^3+3x^2-18x-6.$$

Resulta que $F[x]$ con la suma de polinomios y con el producto escalar es un espacio vectorial. Puedes verificar cada uno de los axiomas por tu cuenta.

Observa que la suma de dos polinomios de grado a lo más $n$ tiene grado a lo más $n$, pues no se introducen términos con grado mayor que $n$. Del mismo modo, si tenemos un polinomio con grado a lo más $n$ y lo multiplicamos por un escalar, entonces su grado no aumenta. De esta forma, podemos pensar a estas operaciones como sigue:
\begin{align*}
+:& F_n[x] \times F_n[x] \to F_n[x]\\
\cdot: & F\times F_n[x] \to F_n[x].
\end{align*}

De esta forma, $F_n[x]$ con la suma de polinomios y producto escalar de polinomios también es un espacio vectorial.

Más adelante…

Ya dimos la definición de espacio vectorial y vimos varios ejemplos. Dentro de algunas entradas veremos como conseguir muchos más espacios vectoriales.

En el último ejemplo pasa algo curioso: el espacio $F_n[x]$ es un subconjunto del espacio $F[x]$ y además es un espacio vectorial con las mismas operaciones que $F[x]$. Este es un fenómeno muy importante en álgebra lineal. Decimos que $F_n[x]$ es un subespacio de $F[x]$. En la siguiente entrada definiremos en general qué es un subespacio de un espacio vectorial y veremos algunas propiedades que tienen los subespacios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • A partir de los axiomas de espacio vectorial, muestra lo siguiente para un espacio vectorial $V$:
    • La identidad de la suma vectorial es única, es decir, que si existe otro elemento $e$ en $V$ tal que $u+e=u=e+u$ para todo $u$ en $V$, entonces $e=0$.
    • Que si $0$ es la identidad aditiva del campo $F$ y $v$ es cualquier vector en $V$, entonces $0v$ es la identidad de la suma vectorial. En símbolos, $0v=0$, donde el primer $0$ es el de $F$ y el segundo el de $V$.
    • Se vale la regla de cancelación para la suma vectorial, es decir, que si $u,v,w$ son vectores en $V$ y $u+v=u+w$, entonces $v=w$.
    • Se vale la regla de cancelación para el producto escalar, es decir, que si $a$ es un escalar no cero del campo $F$ y $u,v$ son vectores de $V$ para los cuales $au=av$, entonces $u=v$.
    • Que el inverso aditivo de un vector $v$ para la suma vectorial en $V$ es precisamente $(-1)v$, es decir, el resultado de hacer la multiplicación escalar de $v$ con el inverso aditivo del $1$ del campo $F$.
  • Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Sean $u$, $v$ y $w$ vectores en $V$. Justifica la siguiente igualdad enunciando de manera explícita todos los axiomas de espacio vectorial que uses $$u+5v-3w+2u-8v= -3(w+v-u).$$
  • Termina de demostrar que en efecto los espacios de funciones con la suma y producto escalar que dimos son espacios de funciones.
  • Enlista todos los polinomios de $(\mathbb{F}_2)_3[x]$. A continuación hay algunos: $$0, x+1, x^2+x, x^3+1.$$ Para cada uno de ellos, encuentra quien es su inverso aditivo para la suma vectorial de $(\mathbb{F}_2)_3[x]$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Seminario de Resolución de Problemas: El teorema del valor medio

Por Leonardo Ignacio Martínez Sandoval

Introducción

Las funciones continuas son bonitas pues tienen la propiedad del valor intermedio y además alcanzan sus valores extremos. Las funciones diferenciables en un intervalo también tienen un par de teoremas que hablan acerca de algo que sucede «dentro del intervalo». Estos son el teorema de Rolle, del cual platicamos en la entrada anterior, y el teorema del valor medio. Ambos nos permiten encontrar en el intervalo un punto en el que la derivada tiene un valor específico.

Teorema de Rolle. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Supongamos que $f(a)=f(b)$. Entonces existe un punto $c\in (a,b)$ tal que $f'(c)=0$.

Teorema del valor medio. Sean $a<b$ reales y $f:[a,b]\to \mathbb{R}$ una función continua en el intervalo $[a,b]$ y diferenciable en el intervalo $(a,b)$. Entonces existe un punto $c\in (a,b)$ tal que $$f'(c)=\frac{f(b)-f(a)}{b-a}.$$

En la entrada anterior vimos aplicaciones del teorema de Rolle a resolución de problemas matemáticos. En esta entrada hablaremos brevemente de la intuición geométrica del teorema del valor medio, de algunas de sus consecuencias inmediatas y de cómo usar al teorema y sus consecuencias para resolver problemas concretos.

La intuición geométrica del teorema del valor medio

El teorema del valor medio dice que una función diferenciable en $(a,b)$ y continua en $[a,b]$ cumple que hay un punto $c$ tal que el valor de la derivada en $c$ es igual a la pendiente de la recta que une los puntos del plano $(a,f(a))$ y $(b,f(b))$. En la siguiente figura, se marca en azul el punto $c$ en donde la pendiente de la tangente es lo que queremos, es decir, la pendiente entre los puntos rojos.

Intuición geométrica del teorema del valor medio
Intuición geométrica del teorema del valor medio

En varios problemas en los que se usa el teorema del valor medio, o bien en los cuales se pide demostrar enunciados parecidos a lo que dice el teorema del valor medio, es conveniente hacer una figura para entender la intuición geométrica del problema.

Consecuencias del teorema del valor medio

Si $f$ y $g$ son funciones continuas en $[a,b]$ y diferenciables en $(a,b)$ entonces se pueden deducir los siguientes resultados a partir del teorema del valor medio. No profundizamos en las demostraciones, y dejamos su verificación como un ejercicio de práctica.

Proposición. Si $f'(x)=0$ para toda $x$ en $(a,b)$, entonces $f$ es constante.

Proposición. Si $f'(x)=g'(x)$ para toda $x$ en $(a,b)$, entonces existe una constante $c$ tal que $f(x)=g(x)+c$ para toda $x$.

Proposición. Si $f'(x)>0$ para toda $x$ en $(a,b)$, entonces $f$ es una función estrictamente creciente. Si $f'(x)<0$ en $(a,b)$, entonces $f$ es una función estrictamente decreciente.

Cuando $f'(x)\geq 0$ y $f'(x)\leq 0$, tenemos resultados análogos que dicen que es no decreciente y no creciente, respectivamente.

Veamos algunas aplicaciones de los resultados anteriores.

Problema. Sean $f:\mathbb{R}\to \mathbb{R}$ y $g:\mathbb{R}\to \mathbb{R}$ funciones tales que para todo par de reales $x$ y $y$ se cumple que $$|f(x)+g(y)-f(y)-g(x)|\leq (x-y)^2.$$ Demuestra que $f$ y $g$ varían sólo por una constante aditiva.

Sugerencia pre-solución. Identifica cuál de las proposiciones anteriores puedes usar. Hay que tener cuidado con las hipótesis, pues en el enunciado no se habla de la diferenciabilidad de ninguna de las funciones involucradas.

Solución. Podría ser tentador usar la segunda proposición que enunciamos arriba, pero no tenemos hipótesis acerca de la diferenciabilidad de $f$ o de $g$. Sin embargo, vamos a mostrar que sí se puede mostrar que $f-g$ es diferenciable en todo real, y que su derivada es $0$ en todo real. Para ello, definamos $h=f-g$ y notemos que la hipótesis dice que $|h(x)-h(y)|\leq (x-y)^2.$

A partir de aquí, notemos que por la hipótesis, para $x\neq y$, $$\frac{|h(y)-h(x)|}{|y-x|}\leq \frac{(y-x)^2}{|y-x|} = |y-x|,$$ y el límite de esta última expresión conforme $y\to x$ es $0$, de modo que $$\left|\lim_{y\to x} \frac{h(y)-h(x)}{y-x}\right|=\lim_{y\to x} \frac{|h(y)-h(x)|}{|y-x|} = 0.$$ Esto muestra que para cualquier $x$ se tiene que $h$ es diferenciable en $x$ y su derivada es igual $0$ en todo $x$. De este modo, $h$ es una función constante, y por lo tanto existe un $c$ tal que $f(x)=g(x)+c$ para todo $x$.

$\square$

Veamos cómo el teorema del valor medio nos puede ayudar a demostrar desigualdades.

Problema. Sea $f:\mathbb{R}\to \mathbb{R}$ una función dos veces diferenciable tal que $f»(x)\geq 0$ para todo $x$. Demuestra que para todo par de reales $a$ y $b$ con $a<b$ se tiene que $$f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2}.$$

Sugerencia pre-solución. Haz una figura para convencerte de que el resultado es cierto. En el enunciado del problema, la función está siendo enunciada en tres valores, $a$, $b$ y $\frac{a+b}{2}$. Esto te dará una pista de dónde usar el teorema del valor medio.

Solución. Por el teorema del valor medio, existe un real $r$ en el intervalo $\left(a,\frac{a+b}{2}\right)$ para el cual $$\frac{f\left(\frac{a+b}{2}\right)-f(a)}{\frac{a+b}{2}-a} = f'(r).$$

De manera similar, existe un real $s$ en el intervalo $\left(\frac{a+b}{2},b\right)$ para el cual $$\frac{f(b)-f\left(\frac{a+b}{2}\right)}{b-\frac{a+b}{2}} = f'(s).$$

Como $f»(x)>0$ para todo real $x$, tenemos que $f’$ es una función creciente, y como $r<s$, tenemos entonces que $f'(r)<f'(s)$. De esta forma, $$ \frac{f\left(\frac{a+b}{2}\right)-f(a)}{\frac{a+b}{2}-a}<\frac{f(b)-f\left(\frac{a+b}{2}\right)}{b-\frac{a+b}{2}}.$$ Notemos que el denominador de ambos lados es $\frac{b-a}{2}$. Cancelando los denominadores y reacomodando los términos en esta desigualdad, obtenemos la desigualdad deseada.

$\square$

Problemas resueltos con el teorema del valor medio y otras técnicas

Veamos algunos problemas que combinan el teorema del valor medio con otras técnicas de solución de problemas.

Problema. Sea $f(x)$ una función diferenciable en $(0,1)$ y continua en $[0,1]$ con $f(0)=0$ y $f(1)=1$. Muestra que existen puntos distintos $a,b,c,d$ en el intervalo $[0,1]$ tales que $$\frac{1}{f'(a)}+ \frac{1}{f'(b)} + \frac{1}{f'(c)} + \frac{1}{f'(d)} = 4.$$

Sugerencia pre-solución. Para resolver el problema, hay que combinar el teorema del valor medio con el teorema del valor intermedio. El primer paso del problema es encontrar reales $p<q<r$ tales que $f$ valga en ellos $1/4$, $2/4$ y $3/4$.

Solución. Como $f(0)=0$, $f(1)=1$ y $0<1/4<1$, por el teorema del valor intermedio existe un real $p$ en $(0,1)$ tal que $f(p)=1/4$. De manera similar, existe un real $q$ en $(p,1)$ tal que $f(q)=2/4$ y un real $r$ en $(q,1)$ tal que $f(r)=3/4$.

Aplicando el teorema del valor medio a los intervalos $[0,p]$, $[p,q]$, $[q,r]$ y $[r,1]$ obtenemos reales $a,b,c,d$ respectivamente tales que

\begin{align*}
f'(a)&=\frac{f(p)-f(0)}{p-0}=\frac{1/4}{p}\\
f'(b)&=\frac{f(q)-f(p)}{q-p}=\frac{1/4}{q-p} \\
f'(c)&=\frac{f(r)-f(q)}{r-q}=\frac{1/4}{r-q} \\
f'(d)&=\frac{f(1)-f(r)}{1-r}=\frac{1/4}{1-r}.
\end{align*}

Estos son los valores de $a,b,c,d$ que queremos pues

\begin{align*}
\frac{1}{f'(a)}+ \frac{1}{f'(b)} + \frac{1}{f'(c)} + \frac{1}{f'(d)} &= 4(1-r+r-q+q-p+p)\\
&=4.
\end{align*}

$\square$

Problema. Sean $a$, $b$ y $c$ números distintos. Muestra que la siguiente expresión $$\frac{(x-a)(x-b)}{(c-a)(c-b)}+ \frac{(x-b)(x-c)}{(a-b)(a-c)} + \frac{(x-c)(x-a)}{(b-c)(b-c)}$$ no depende del valor de $x$.

Sugerencia pre-solución. Encuentra la derivada de la expresión. Puedes aprovechar la simetría para hacer menos cuentas.

Solución. Usando la regla del producto, la derivada del primer sumando es
\begin{align*}
\frac{(x-a)+(x-b)}{(c-a)(c-b)}&=\frac{(2x-a-b)(b-a)}{(a-b)(b-c)(c-a)}\\
&=\frac{2x(b-a)+a^2-b^2}{(a-b)(b-c)(c-a)}.
\end{align*}

Por simetría, las derivadas de los otros dos términos tienen el mismo denominador que esta y en el numerador tienen, respectivamente,
\begin{align*}
&2x(c-b)+b^2-c^2\quad \text{y}\\
&2x(a-c)+c^2-a^2,
\end{align*} de modo que al sumar las tres expresiones obtenemos cero. Así, la derivada de la expresión es cero y por lo tanto es constante.

$\square$

Hay otro argumento para resolver el problema anterior, que usa teoría de polinomios. A grandes rasgos, la expresión es un polinomio de grado $2$, que toma tres veces el valor $1$, de modo que debe ser igual al polinomio constante $1$.

Más problemas

Hay más ejemplos de problemas relacionados con el teorema del valor medio en la Sección 6.6 del libro Problem Solving through Problems de Loren Larson.