Archivo de la etiqueta: sobreyectiva

Teoría de los Conjuntos I: Funciones sobreyectivas y biyectivas

Introducción

En esta entrada hablaremos acerca de funciones sobreyectivas, este tipo de funciones serán aquellas cuya imagen sea todo el codominio. Tras definir este concepto podremos definir el concepto de función biyectiva, este último será de gran utilidad pues haremos uso de él cuando queramos estudiar conjunto a traves de otros conjuntos que tengan la misma cantidad de elementos.

Función sobreyectiva

Definición: Sea $f:X\to Y$ una función. Si $f[X]=Y$, entonces decimos que $f$ es sobreyectiva.

$\square$

Teorema: Sea $f:X\to Y$ una función. Entonces los siguientes enunciados son equivalentes:

  1. $f$ es sobreyectiva.
  2. Para cualquier $y\in Y$, existe $x\in X$ tal que $f(x)=y$.
  3. Para cualesquiera $h,k:Y\to Z$ tales que si $h\circ f= k\circ f$, entonces $h=k$.

Demostración:

$1)\rightarrow 2)$

Supongamos que $f$ es sobreyectiva, es decir que $f[X]=Y$. Sea $y\in Y$, entonces $y\in f[X]$ por lo que existe $x\in X$ tal que $f(x)=y$. Por lo tanto, para cualquier $y\in Y$ existe $x\in X$ tal que $f(x)=y$.

$2)\rightarrow 3)$

Sean $h,k:Y\to Z$ tales que $h\circ f=k\circ f$. Veamos que $h=k$. Sea $y\in Y$, veamos que $h(y)=k(y)$. Dado que $y\in Y$, por hipótesis tenemos que existe $x\in X$ tal que $f(x)=y$, por lo que $h(y)= h(f(x))$ y $k(y)= k(f(x))$. Luego, como $h\circ f(x)= h(f(x))= k(f(x))= k\circ f(x)$, tenemos que $h(y)= k(y)$.

$3)\rightarrow 1)$

Supongamos que $f$ no es sobreyectiva en busca de una contradicción. Sean $h: Y\to \set{\emptyset}$ y $k: Y\to \set{\emptyset, \set{\emptyset}}$ funciones dadas por $h(y)=\emptyset$ para todo $y\in Y$ y

\begin{align*}
k(y) = \left\{ \begin{array}{lcc}
\emptyset &  \text{si} & y\in f(X)\\
\set{\emptyset} &  \text{si}  & y \notin f(X) \\
\end{array}
\right.
\end{align*}

respectivamente. Notemos que $k\not=h$ pues dado que $f$ no es sobreyectiva, entonces existe $y_0\in Y$ tal que $y_0\notin f[X]$. Así, $h(y_0)= \emptyset$ y $k(y_0)=\set{\emptyset}$, por lo tanto, $h\not=k$.

Luego, $h\circ f= k\circ f$. Sea $x\in X$, entonces $f(x)\in Y$ y así, $h\circ f(x)= h(f(x))= \emptyset$ y $k\circ f(x)= k(f(x))= \emptyset$. Por lo tanto, debe ocurrir que $h=k$, lo cuál es una contradicción.

Así, $f$ es sobreyectiva.

$\square$

Algunas funciones sobreyectivas

Ejemplo:

La función identidad es sobreyectiva. En efecto, sea $Id_X:X\to X$ la función identidad y sea $y\in X$, entonces existe $y\in X$ tal que $Id_X(y)= y$.

Por lo tanto, $Id_X$ es sobreyectiva.

$\square$

Ejemplo:

Sea $f:X\to \set{c}$ una función dada por $f(x)=c$ para todo $x\in X$. Tenemos que $f$ es sobreyectiva.

En efecto, sea $y\in \set{c}$. Dado que $y\in \set{c}$, entonces $y=c$. veamos que existe $x\in X$ tal que que $f(x)=c$. Esto último se cumple por como esta definida la función $f$.

$\square$

Ejemplo:

Sea $X$ un conjunto y $A\subseteq X$, la función característica de $A$ es una función sobreyectiva.

Dado que el codominio de la función característica es el conjunto $\set{\emptyset, \set{\emptyset}}$, deseamos ver que para cualquier $y\in \set{\emptyset, \set{\emptyset}}$ existe $x\in X$ tal que $\chi_A(x)=y$.

Caso 1: Si $y=\emptyset$, entonces existe $x\in X$ tal que $x\notin A$, de modo que $\chi_A(x)=\emptyset$.

Caso 2: Si $y=\set{\emptyset}$, entonces existe $x\in X$ tal que $x\in A$, de modo que $\chi_A(x)=\set{\emptyset}$.

Por lo tanto, $\chi_A$ es sobreyectiva.

$\square$

Composición de funciones

Así como lo hicimos en la sección anterior con respecto a la inyectividad, podemos averiguar que pasa con la composición de funciones con respecto a la sobreyectividad. Veamos el siguiente teorema:

Teorema: Sean $f:X\to Y$ y $g:Y\to Z$ funciones sobreyectivas, $g\circ f$ es sobreyectiva.

Demostración:

Sea $z\in Z$, veamos que existe $x\in X$ tal que $g\circ f(x)=z$.
Dado que $g$ es sobreyectiva y $z\in Z$, entonces existe $y\in Y$ tal que $g(y)=z$. Luego, como $f$ es sobreyectiva y $y\in Y$, entonces existe $x\in X$ tal que $f(x)=y$, así $g(y)=g(f(x))= z$. Por lo tanto, $g\circ f$ es sobreyectiva.

$\square$

Funciones biyectivas

Definición: Decimos que $f:X\to Y$ es una función biyectiva si y sólo si $f$ es inyectiva y sobreyectiva.

Ejemplo:

La función identidad es biyectiva.

Verificamos en la sección de funciones inyectivas que la función identidad es una función inyectiva, además de que en esta sección verificamos que es sobreyectiva.

$\square$

Ejemplo:

Sean $X=\set{1,2,3}$ y $Y=\set{2,4,6}$ y sea $f:X\to Y$ una función dada por $f(x)=2x$. Tenemos que $f$ es inyectiva pues es una función uno a uno, es decir, elementos distintos van a dar a elementos distintos. Más explícitamente $1$ va a dar a $2$, $2$ a $4$ y $3$ a $6$.

Además $f$ es sobreyectiva, pues para cualquier $y\in Y$, existe $x\in X$ tal que $f(x)=y$. En efecto, ya que para $2\in Y$ existe $1\in X$ tal que $f(1)=2$; para $4\in Y$ existe $2\in X$ tal que $f(2)=4$ y por último para $6\in Y$ existe $3\in X$ tal que $f(3)=6$.

$\square$

Tarea moral

Realiza la siguiente lista de ejercicios que te ayudara a fortalecer los conceptos de función inyectiva, sobreyectiva y biyectiva:

  1. Sean $f:X\to Y$ y $g:Y\to Z$ funciones. Demuestra que si $g\circ f$ es sobreyectiva, entonces $g$ es sobreyectiva.
  2. Demuestra o da un contraejemplo del siguiente enunciado: Si $f:X\to Y$ y $g:Y\to Z$ son funciones tales que $g\circ f$ es sobreyectiva, entonces $f$ es sobreyectiva.
  3. Sean $X=\set{1,2,3, \cdots}$ y $Y=\set{3,4,5,\cdots}$ y sea $f:X\to Y$ dada por $f(x)=2x+3$. ¿$f$ es sobreyectiva? Argumenta tu repuesta.

Más adelante

Ahora que aprendimos el concepto de función inyectiva y sobreyectiva tenemos las bases suficientes para hablar de funciones invertibles. Veremos funciones invertibles por la derecha e invertibles por la izquierda, cuyos conceptos resultarán equivalentes al de función sobreyectiva y función inyectiva respectivamente.

Enlaces

En el siguiente enlace podrás encontrar más contenido acerca de funciones inyectivas y sobreyectivas:

Funciones inyectivas y sobreyectivas

Geometría Analítica I: Recordatorio de funciones

Introducción

En la entrada anterior [Enlace entrada anterior] se introdujo la esencia del concepto de transformaciones y que estaremos viendo diversos tipos de transformaciones, pero para que no trabajemos en un espacio desconocido, en ésta entrada hablaremos de nociones básicas de funciones que debemos tener presentes para luego definir formalmente el concepto de qué es una transformación.

Funciones

Sean $E$ y $F$ dos conjuntos no vacíos, denominaremos función de un conjunto $E$ en un conjunto $F$ (o función definida en $E$ con valores en $F$) a una regla o ley $f$ que a todo elemento $x \in E$ le pone en correspondencia un determinado elemento $f(x) \in F$.

Al conjunto de los elementos $x \in E$ les llamamos dominio o argumento de la función $f$ y normalmente su notación es $Dom(f)$. Al conjunto de los elementos $f(x) \in F$ le llamamos rango o imagen y se denota por $Im(f)$. Además se encuentra el conjunto $F$ del contradominio, el cual contiene al rango.

A una función la designamos por lo general con la letra $f$ o con el símbolo $f: E \longrightarrow F$, que nos señala que $f$ aplica el conjunto $E$ en $F$. También podemos emplear la notación $x \mapsto f(x)$ para indicarnos que al elemento $x$ le corresponde el elemento $f(x)$. Cabe mencionar que en la mayoría de los casos las funciones se definen mediante igualdades, las cuales describen la ley de correspondencia.

Ejemplo 1. Podemos decir que la función $f$ está definida mediante la igualdad $f(x) = \sqrt{ x^2 + 1}$, $x \in [a,b]$. Si $y$ es la notación general de los elementos del conjunto $F$, o sea $F = \{y\}$, la aplicación $f: E \longrightarrow F$ se escribe en forma de la igualdad $y = f(x)$, y decimos entonces que la función se encuentra dada en su forma explícita.

Ejemplo 2. Mediante la siguiente imagen vamos a obtener $Domf$, $Imf$ y el $Codf$.

Podemos ver que $Domf$ es el conjunto formado por $\{1, -2, 2, -3, 3, 4\} $. La $Imf$ es $\{2, -4, 4, -6, 6, 8\}$ y el $Codf$ es $\{-2,2,-4,4,-6,6,8,-8\}$. Podemos darnos cuenta que no necesariamente la $Imf$ debe coincidir siempre con el $Codf$.

Ejemplo 3. Sea la función definida por la ecuación $y = \sqrt{3 – 9x}$. Debido a que la función es una raíz cuadrada, $y$ es función de $x$ sólo para $3-9x \geq 0$; pues para cualquier $x$ que satisfaga esta desigualdad, se determina un valor único de $y$. Procedemos a resolver la desigualdad:

\begin{align*}
3-9x & \geq 0,\\
3 & \geq 9x,\\
\dfrac{3}{9} & \geq x,\\
\dfrac{1}{3} & \geq x.
\end{align*}

Sin embargo si $x > \dfrac{1}{3}$, obtenemos la raíz cuadrada de un número negativo y en consecuencia no existe un número real $y$. Por tanto $x$ debe estar restringida a $\dfrac{1}{3} \geq x $. Concluimos que el $Domf$ es el intervalo $\left(- \infty, \dfrac{1}{3}\right]$ y la $Imf$ es $[0, + \infty).$

Gráfica de $f(x) = \sqrt{3-9x}$

Función inyectiva, sobreyectiva y biyectiva

Definición. Una función $f: E \longrightarrow F$ se denomina:

  • Inyectiva si $f(x) = f(x’)$ implica que $x = x’$. Otra forma de expresarlo es que no existen dos elementos de $E$ con una misma imagen ($x \neq x $ implica que $f(x) \neq f(x’)$).
  • Suprayectiva o sobreyectiva si $\forall y \in F$ existe $x \in E$ tal que $f(x)=y$. Es decir que todos los elementos del conjunto $F$ son imagen de algún elemento de $E$.
  • Biyectiva si la función cumple ser inyectiva y suprayectiva.

Problema 1. Consideren la función $f: \mathbb{R} \longrightarrow \mathbb{R} $ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio y si es biyectiva.

Solución. Veamos el dominio de la función, para que la función racional $f(x) = \dfrac{3x-1}{x+3}$ no se indetermine debe cumplirse que:

\begin{align*}
x+3 & \neq 0,\\
x & \neq -3,\\
\therefore Domf & = \mathbb{R} – \{-3 \}.\\
\end{align*}

Ahora veamos si $f$ es biyectiva. Sean $a,b \in \mathbb{R} – \{ -3 \}$, para que $f$ sea inyectiva debe cumplir que $f(x) = f(x’)$ implica que $x = x’$, por ello:

\begin{equation*}
f(a) = f(b) \hspace{0.5cm} \Longrightarrow \hspace{0.5cm} \dfrac{3a-1}{a+3} = \dfrac{3b-1}{b+3}.\\
\end{equation*}

Resolviendo:

\begin{align*}
(3a-1)(b+3) &= (3b-1)(a+3),\\
3ab + 9a – b -3 &= 3ab +9b -a -3,\\
10a &= 10b,\\
a &= b.
\end{align*}

Por tanto $f$ es inyectiva. Ahora veamos si $f$ es suprayectiva, sean $x, y \in E$ entonces:

\begin{align*}
f(x) = f(y) \hspace{0.5cm} &\Longrightarrow \hspace{0.5cm} y = \dfrac{3x-1}{x+3},\\
\end{align*}

Resolviendo

\begin{align*}
y(x+3) &= 3x-1,\\
yx +3y &= 3x-1,\\
yx-3x &= -3y-1,\\
x(y-3) &= -3y-1,
\end{align*}

y despejando a $x$

\begin{align*}
x &= \dfrac{-3y-1}{y-3},\\
x &= \dfrac{3y+1}{3-y},
\end{align*}

y como $3-y \neq 0$, entonces $y \neq 3$. En consecuencia $y \in \mathbb{R} – \{3 \}$. Pero al estar definida $f$ por $f: \mathbb{R} \longrightarrow \mathbb{R}$, tenemos que $f$ no es suprayectiva.

\begin{align*}
\therefore f \text{ no es biyectiva}.
\end{align*}

Composición de funciones y funciones inversas.

Definición. Dadas las funciones $f: A \longrightarrow B$ y $g: B \longrightarrow C$ , donde la imagen de $f$ está contenida en el dominio de $g$, se define la función composición $(g \circ f): A \longrightarrow C$ como $(g \circ f)(x) = g(f(x)),$ para todos los elementos $x$ de $A$.

La composición de funciones se realiza aplicando dichas funciones en orden de derecha a izquierda, de manera que en $(g \circ f)(x)$ primero actúa la función $f$ y luego la $g$ sobre $f(x)$.

Ejemplo 4. Sean las funciones $f$ y $g$ tales que $f(x)=x+1$ y $g(x) = x^2 +2$, calcularemos las funciones composición $(g \circ f)(x)$ y $(f \circ g)(x)$. Tenemos para $(g \circ f)(x)$

\begin{align*}
(g \circ f)(x) = g[f(x)] &= g(x+1),\\
&= (x+1)^2 + 2,\\
&= x^2 +2x +1 +2,\\
&= x^2 + 2x +3.
\end{align*}

Y para $(f \circ g)(x)$

\begin{align*}
(f \circ g)(x) = f[g(x)] &= f(x^2+2),\\
&= (x^2 + 2) + 1,\\
&= x^2 + 3.\\
\end{align*}

Observemos que la composición no es conmutativa pues las funciones $(f \circ g)$ y $(g \circ f)$ no son iguales.

Definición. Llamaremos función inversa de $f$ a otra función $f^{-1}$ que cumple que si $f(x)=y$, entonces $f^{-1}(y)=x$.

Sólo es posible determinar la función inversa $f^{-1}: B \longrightarrow A$ si y sólo si $f: A \longrightarrow B$ es biyectiva.

Notemos que la función inversa $f^{-1}: B \longrightarrow A$ también es biyectiva y cumple:

\begin{align*}
f^{-1}(f(x)) &= x, \hspace{0.2cm} \forall x \in A,\\
f(f^{-1}(y)) &= y, \hspace{0.2cm} \forall y \in B.
\end{align*}

Dicho de otro modo,

\begin{align*}
f^{-1} \circ f &= id_{A},\\
f \circ f^{-1} &= id_{B},
\end{align*}

donde $id_{A}$ e $id_{B}$ son las funciones identidad de $A$ y $B$ respectivamente. Es decir, son las funciones $id_{A}: A \longrightarrow A$ definida por $id_{A}(x) = x$ e $id_{B}: B \longrightarrow B$ definida por $id_{B}(y) = y$.

Concepto formal de transformación

Ahora hemos llegado a la definición de nuestro interés.

Definición. Una transformación en un plano A es una función biyectiva $f: A \longrightarrow A$ del plano en sí mismo.

Llamaremos transformación en el plano, a toda función que hace corresponder a cada punto del plano, otro punto del mismo.

Tarea moral

Vamos a realizar unos par de ejercicios para repasar y practicar los conceptos que vimos en esta entrada.

Ejercicio 1. Consideren la siguiente función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio, si ella es inyectiva, suprayectiva y la inversa de $f$.

Ejercicio 2. Sean $f: X \longrightarrow Y$ y $g: Y \longrightarrow Z$ funciones, demuestren que

(1) Si $f$ y $g$ son inyectivas, entonces $g \circ f$ es inyectiva.

(2) Si $g \circ f$ es suprayectiva, entonces $g$ es suprayectiva.

Más adelante

En esta entrada vimos las nociones básicas de funciones que nos llevaron a definir formalmente el concepto de una transformación. Dicho concepto nos permitirá comenzar a trabajar en la siguiente entrada con unos primeros conjuntos cuyas propiedades hacen que tengan un nombre especial: los grupos de transformaciones.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Cálculo Diferencial e Integral I: Funciones inyectivas, sobreyectivas y biyectivas. Función inversa

Introducción

Anteriormente vimos las operaciones que podemos llevar a cabo entre las funciones. Ahora revisaremos las características que debe cumplir una función para poder decir si es: inyectiva, sobreyectiva o biyectiva. De igual manera definiremos el concepto de función inversa.

Definición de función inyectiva

Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos distintos en $A$, la función le asocia elementos distintos en $B$, es decir,
$$x_{1} \neq x_{2} \Rightarrow f(x_{1}) \neq f(x_{2})$$
para cualesquiera $x_{1}, x_{2} \in A$.

Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es inyectiva si para cualesquiera dos elementos iguales en $B$, provienen de dos elementos iguales en $A$ bajo la función, es decir,
$$f(x_{1}) = f (x_{2}) \Rightarrow x_{1} = x_{2}$$
para cualesquiera $x_{1}, x_{2} \in A$.

Ejemplo

Sea $f: (-\infty,-1] \rightarrow \r$ definida como:
$$f(x)=11- \sqrt{x^{2}-4x-5}$$

Tomemos $x_{1}, x_{2} \in (-\infty,-1]$ tales que $f(x_{1}) = f(x_{2})$. Así queremos probar que $x_{1}=x_{2}$.
Cómo $f(x_{1}) = f(x_{2})$ tenemos que:
\begin{align*}
11- \sqrt{x_{1}^{2}-4x_{1}-5} &=11- \sqrt{x_{2}^{2}-4x_{2}-5}\\
– \sqrt{x_{1}^{2}-4x_{1}-5} &=- \sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{sumando $11$}\\
\sqrt{x_{1}^{2}-4x_{1}-5} &=\sqrt{x_{2}^{2}-4x_{2}-5} \quad \text{multiplcando por $-1$}\\
\sqrt{(x_{1}-2)^{2}-9} &=\sqrt{(x_{2}-2)^{2}-9} \quad \text{factorizando}\\
\sqrt{(x_{1}-2)^{2}} &=\sqrt{(x_{2}-2)^{2}}\\
|x_{1}-2| &=|x_{2}-2|\quad \text{quitando la raíz cuadrada}\\
x_{1}-2 &= x_{2}-2\\
x_{1}&= x_{2}\quad \text{sumando 2}
\end{align*}

De lo anterior vemos que $f$ es inyectiva.

Definición de función sobreyectiva

Definición (1): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si todo elemento en $B$ proviene de algún elemento en $A$ bajo la función, es decir, para todo $y \in B$ existe $x \in A$ tal que:
$$f(x)=y$$

Definición (2): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es sobreyectiva si
$$Im_{f}=Codom_{f}$$

Ejemplo

Un ejemplo sería la función tangente, más adelante veremos su definición con mayor detenimiento:
$$f(x)=tan(x)$$

Definición de función biyectiva

Definición: Sea $f: A \rightarrow B$ una función. Decimos que $f$ es biyectiva si cumple con ser inyectiva y sobreyectiva.

Ejemplo

Sea $f: \r \rightarrow \r$ definida cómo:
$$Id(x)=x$$

Veremos que esta función es inyectiva:
Tomemos $x_{1}, x_{2} \in \r$ distintos, queremos ver que $f(x_{1}) \neq f(x_{2})$. Como tenemos que:
$$f(x_{1})= x_{1}$$
$$f(x_{2})= x_{2}$$
Y cómo sabemos $x_{1} \neq x_{2}$ se sigue así:
$$f(x_{1})\neq f(x_{2})$$
Por lo que $Id(x)$ es inyectiva.

Ahora vemos que también cumple ser sobreyectiva:
Consideremos $y \in \r$. Por definición de la función identidad tenemos que:
$$y=Id(y)$$
Así vemos que cumple ser sobreyectiva.

De lo anterior podemos concluimos que $Id(x)$ es una función biyectiva.

Proposición

Proposición: Si tomamos las funciones $g: A \rightarrow B$ y $f: B \rightarrow C$ se cumple que:

  1. $f$ inyectiva y $g$ inyectiva $\Rightarrow \quad f \circ g$ es inyectiva.
  2. $f$ sobreyectiva y $g$ sobreyectiva $\Rightarrow \quad f \circ g$ es sobreyectiva.
  3. $f$ biyectiva y $g$ biyectiva $\Rightarrow \quad f \circ g$ es biyectiva.

Demostración:

  1. Tomemos $x_{1}, x_{2} \in A$ tales que $f \circ g (x_{1})= f \circ g (x_{2})$. Queremos probar que:
    $x_{1}=x_{2}$.
    Observemos que por hipótesis tenemos que:
    $$f(g(x_{1}))= f(g(x_{2}))$$
    donde $g(x_{1}), g(x_{2}) \in B$.
    Como $f$ es una función inyectiva entonces se cumple:
    $$g(x_{1})=g(x_{2})$$
    Y al ser $g$ inyectiva obtenemos:
    $$x_{1}=x_{2}$$
  2. Como $f \circ g : A \rightarrow C$ por lo que tomemos $c \in C$. Queremos ver que existe $a \in A$ tal que $f(a)=c$.
    Ya sabemos que $f: B \rightarrow C$ es sobreyectiva entonces existe $b \in B$ tal que:
    $$f(b)=c$$
    Recordemos que $g: A \rightarrow B$ al ser sobreyectiva ocurre que existe $a \in A$ tal que:
    $$g(a)=b$$
    De lo anterior al sustituir en la composición de funciones se sigue:
    \begin{align*}
    f \circ g(a)&=f(g(a))\\
    &=f(b)\\
    &=c
    \end{align*}
  3. Se queda cómo ejercicio de tarea moral.

$\square$

Función inversa

Definición (función invertible): Sea $f: A \rightarrow B$ una función. Decimos que $f$ es invertible si y sólo si existe una función $g: B \rightarrow A$ tal que cumple las siguientes condiciones:

  • $g \circ f = Id_{A}$
  • $f \circ g = Id_{B}$

A continuación veremos una equivalencia que nos será de utilidad para poder decir si una función es invertible:

Teorema: Consideremos a $f: A \rightarrow B$ una función. Decimos que:
$f$ es Invertible $\Leftrightarrow f$ es biyectiva.
Demostración:
$\Rightarrow ):$ Tomemos $f$ invertible, así por definición existe una función $g: B \rightarrow A$ tal que cumple:

  • $g \circ f = Id_{A}$
  • $f \circ g = Id_{B}$

Debemos probar que $f$ es biyectiva, por lo que debemos verificar que sea inyectiva y sobreyectiva:

Inyectiva: Sean $x_{1} , x_{2} \in A$ tales que $f(x_{1})= f (x_{2})$ por lo que $g(f(x_{1}))=g( f (x_{2}))$ al ser $g$ función. Reescribiendo lo anterior tenemos lo siguiente:
\begin{align*}
g(f(x_{1}))=g( f (x_{2})) &\Rightarrow (g \circ f)(x_{1})=(g \circ f)(x_{2})\\
&\Rightarrow Id_{A}(x_{1})=Id_{A}(x_{2}) \tag{por definición de $g$}\\
&\Rightarrow x_{1}= x_{2}
\end{align*}

$\therefore f$ es inyectiva
Sobreyectiva: Sea $y \in B$. Debido a que $Id_{B}$ es sobreyectiva tenemos que $Id_{B}(y)=y$. De lo anterior tenemos:
\begin{align*}
Id_{B}(y)=y &\Rightarrow f \circ g (y)= y\\
&\Rightarrow f(g(y))=y\\
&\Rightarrow g(y) \in A
\end{align*}
$\therefore f$ es sobreyectiva
De todo lo anterior concluimos que $f$ es biyectiva.

$\Leftarrow ):$ Sea $f: A \rightarrow B$ una función biyectiva. De este modo para todo $y \in B$ existe $x \in A$ tal que:
$$f(x)=y$$
ya que $f$ es sobreyectiva. De igual manera cumple ser inyectiva por lo que esa $x$ es única.

Consideremos la función $g: B \rightarrow A$ tal que:
$$g(y)=x \Leftrightarrow f(x)=y$$
Por lo que al realizar la siguiente composición de funciones tenemos:
$$ (g \circ f)(x)=g(f(x)) =g(y)=x = Id_{A}(x)$$
$$(f \circ g)(y)= f(g(y))= f(x)=y = Id_{B}(y)$$
Vemos que esto cumple la definición de ser invertible.
$\therefore f$ es una función invertible

$\square$

Definición (función inversa): Si $f: A \rightarrow B$ es invertible donde $g: B \rightarrow A$ que cumple lo anterior. Decimos que $f^{-1}=g$ es la inversa de $f$.

Corolario: Si $f: A \rightarrow B$ es una función invertible entonces $f^{-1}$ también es biyectiva.

Demostración:
Como $f$ es invertible por definición cumple:

  • $f^{-1} \circ f =Id_{A}$
  • $f \circ f^{-1}=Id_{B}$

Que nos dice que cumple ser inyectiva y sobreyectiva.

$\square$

Del resultado anterior observamos que $f^{-1}$ es función inversa al componer por la derecha y por la izquierda.

Teorema: Si $f: A \rightarrow B$ entonces es equivalente lo siguiente:

  • $f$ es una función inyectiva
  • $f$ tiene inversa izquierda

es decir, existe $g: B \rightarrow A$ tal que $g \circ f=Id_{A}$.

Teorema: Si $f: A \subseteq \r \rightarrow \r$ entonces es equivalente lo siguiente:

  • $f$ es una función suprayectiva
  • $f$ tiene inversa derecha

es decir, existe $h: B \rightarrow A$ tal que $g \circ f=Id_{B}$.

Tarea moral

  • Demuestra que $f: [0, \infty) \rightarrow [0, \infty)$ definida como:
    $$f(x)= x^{2}$$
    es inyectiva.
  • Argumenta porque la función $f: \r \rightarrow \r$ definida como:
    $$f(x)= x^{2}$$
    no es inyectiva.
  • Demuestra que $f: \r \rightarrow \r$ definida como:
    $$f(x)= -2x+1$$
    es inyectiva.
  • Prueba que si $f$ y $g$ son funciones biyectivas entonces $f \circ g$ es biyectiva.
  • Demuestra la siguiente igualdad:
    $$(f \circ g)^{-1}= f^{-1} \circ g^{-1}$$

Más adelante

En la siguiente entrada veremos otras características que las funciones pueden cumplir para clasificarse como pares o impares. Veremos su definición formal, algunos ejemplos y resultados.

Entradas relacionadas