Archivo de la etiqueta: funciones

Cálculo Diferencial e Integral I: Funciones trigonométricas (Parte 1)

Por Karen González Cárdenas

Introducción

De las clases en el bachillerato recordarás las siguientes definiciones utilizando el triángulo rectángulo de la imagen siguiente:


\begin{align*}
sen\theta&=\frac{\text{cat op}}{\text{hip}}=\frac{b}{c} & csc\theta&=\frac{\text{hip}}{\text{cat op}}=\frac{c}{b}\\
cos\theta&=\frac{\text{cat ad}}{\text{hip}}=\frac{a}{c} & sec\theta&=\frac{\text{hip}}{\text{cat ad}}=\frac{c}{a}\\
tan\theta&=\frac{\text{cat op}}{\text{cat ad}}=\frac{b}{a} & cot\theta&=\frac{\text{cat ad}}{\text{cat op}}=\frac{a}{b}\\
\end{align*}
donde:
cat op = cateto opuesto ; cat ad = cateto adyacente e hip= hipotenusa.

También recordemos que tenemos la siguiente equivalencia:
$$360° = 2\pi$$

A lo largo de esta entrada veremos las principales características de este conjunto de funciones, sus gráficas y algunas identidades trigonométricas.

Identidades trigonométricas Pitagóricas

Si tomamos a la circunferencia unitaria y un triángulo rectángulo circunscrito como en la imagen:

Observamos que al sustituir el valor hip $=1$ en las definiciones anteriores para el $sen\theta$ y el $cos\theta$ tenemos:
\begin{align*}
sen\theta&=\frac{\text{cat op}}{\text{1}} & cos\theta&=\frac{\text{cat ad}}{\text{hip}}\\
&= \text{cat op} & &=\text{cat ad}
\end{align*}


Dadas las igualdades obtenidas e hip$=1$ al sustituir para el resto de las funciones tenemos:
\begin{align*}
tan\theta &= \frac{sen\theta}{cos\theta} & cot\theta &=\frac{cos\theta}{sen\theta}\\
sec\theta &=\frac{1}{cos\theta} & csc\theta&=\frac{1}{sen\theta}
\end{align*}

Recordemos el conocido Teorema de Pitágoras que nos das una relación entre los catetos y la hipotenusa de un triángulo rectángulo:
$$a^{2}+b^{2}=c^{2}$$

Si lo aplicamos al triángulo rectángulo obtenido en la imagen anterior donde:
\begin{align*}
a&= cos\theta & b&=sen\theta & c&=1
\end{align*}
entonces tenemos la siguiente igualdad:
\begin{equation}
cos^{2}\theta + sen^{2}\theta =1
\end{equation}
Si dividimos $(1)$ entre $cos^{2}\theta$ obtenemos:
\begin{equation*}
\frac{cos^{2}\theta}{ cos^{2}\theta}+ \frac{sen^{2}\theta}{cos^{2}\theta} =\frac{1}{cos^{2}\theta}
\end{equation*}
Que simplificando sería:
\begin{equation}
1+ tan^{2}\theta=sec^{2}\theta
\end{equation}

Ahora bien si decidimos dividir $(1)$ entre $sen^{2}\theta$:
\begin{equation*}
\frac{cos^{2}\theta}{sen^{2}\theta} + \frac{sen^{2}\theta}{sen^{2}\theta} =\frac{1}{sen^{2}\theta}
\end{equation*}
Que finalmente sería:
\begin{equation}
cot^{2}\theta +1= csc^{2}\theta
\end{equation}

Las igualdades $(1)$, $(2)$ y $(3)$ son llamadas Identidades Pitagóricas:
\begin{align*}
cos^{2}\theta + sen^{2}\theta &=1\\
1+ tan^{2}\theta &=sec^{2}\theta\\
cot^{2}\theta +1&= csc^{2}\theta\\
\end{align*}

Otras identidades trigonométricas


Otras identidades trigonométricas que son de utilidad son las de suma de ángulos:
\begin{align*}
cos( \alpha + \beta)&=cos(\alpha) cos(\beta) – sen(\alpha) sen(\beta)\\
sen(\alpha + \beta)&= cos(\alpha) sen(\beta) + cos(\beta) sen(\alpha)
\end{align*}
Para la resta de ángulos tendríamos un par similar:
\begin{align*}
cos( \alpha -\beta)&=cos(\alpha) cos(\beta) + sen(\alpha) sen(\beta)\\
sen(\alpha – \beta)&= cos(\alpha) sen(\beta) – cos(\beta) sen(\alpha)
\end{align*}
Ahora veremos cómo obtener las identidades para los ángulos dobles:
\begin{align*}
cos(2\alpha)&= cos(\alpha + \alpha)\\
&= cos(\alpha) cos(\alpha) – sen(\alpha) sen(\alpha)\\
&= cos^{2}\alpha – sen^{2}\alpha
\end{align*}
Por lo tanto tendríamos para el coseno de $2\alpha$:
\begin{equation}
cos(2\alpha)=cos^{2}\alpha – sen^{2}\alpha
\end{equation}
Si procedemos análogamente para el seno de $2\alpha$:
\begin{align*}
sen(2\alpha)&= sen(\alpha + \alpha)\\
&= cos(\alpha) sen(\alpha) + cos(\alpha) sen(\alpha)\\
&= 2sen(\alpha) cos(\alpha)
\end{align*}
Así concluimos que:
\begin{equation}
sen(2\alpha)=2sen(\alpha) cos(\alpha)
\end{equation}
También tenemos un par de identidades que relacionadas con el $sen^{2}\theta$ y el $cos^{2}\theta$:
\begin{align*}
sen^{2}\theta &= \frac{1}{2}(1-cos(2\theta)) & cos^{2}\theta& =\frac{1}{2}(1+ cos(2\theta))\\
\end{align*}
Se dejará cómo ejercicios en la Tarea moral obtener este par de igualdades.

Simetrías

Retomando la imagen anterior, si ahora reflejamos al triángulo circunscrito respecto al eje $x$ tenemos lo siguiente:

donde observamos los siguiente:
\begin{align*}
\beta &= – \theta & c_{2}&=1 & b_{2}=sen(-\theta)\\
\end{align*}

Así al considerar a los puntos $p_{1}$ y $p_{2}$ tenemos que estarían definidos de la siguiente manera:
\begin{align*}
p_{1}&=(cos(\theta), sen(\theta)) & p_{2}&=(cos(-\theta), sen(-\theta))\\
\end{align*}
Resaltamos para $p_{2}$ que:
$$p_{2}=(cos(-\theta), sen(-\theta))=(cos(\theta), -sen(\theta))$$
de esta igualdad podemos determinar si las funciones seno y coseno son pares o impares, este ejercicio formará parte de la Tarea moral.

Función periódica

Definición (función periódica): Decimos que una función $f$ es periódica si existe $N \in \r$ tal que para todo $x \in D_{f}$ cumple que
$$f(x)=f(x+ N)$$
Y $|N|$ se llama periodo de $f$.
En la siguiente imagen observamos que $\alpha = \pi$ por lo que tendríamos que el nuevo triángulo agregado es en realidad el original rotado:

Así tendríamos la siguiente definición para los puntos $p_{1}$ y $p_{3}$:

\begin{align*}
p_{1}&=(cos(\theta), sen(\theta)) & p_{3}&=(cos(\theta + \pi), sen(\theta+ \pi))\\
\end{align*}

Si rotamos el triángulo ahora $\alpha = 2\pi$ tenemos que $p_{4}$ estaría definido cómo:
$$p_{4}=(cos(\theta + 2\pi), sen(\theta+ 2\pi))$$


¡Y observamos que obtenemos el triángulo original! Consecuentemente tenemos las siguientes igualdades:
\begin{align*}
sen(\theta)&=sen(\theta+2\pi)\\
cos(\theta)&=cos(\theta+ 2\pi)
\end{align*}
Aplicando la definición decimos que las funciones seno y coseno son periódicas con periodo $N=2\pi$.
En las gráficas de las funciones observamos el comportamiento anterior, cada $2 \pi$ se comienzan a repetir los valores:

Observación: Vemos que para todo $x \in \r$ ocurre
$$-1 \leq sen(x) \leq 1$$
$$-1 \leq cos(x) \leq 1$$
por lo que las funciones seno y coseno son acotadas.

Consideraremos sus ramas principales definidas en los siguientes dominios donde cada uno de las funciones cumple ser inyectiva :
\begin{align*}
sen: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \rightarrow [-1,1]
\end{align*}

\begin{align*}
cos: [0, \pi] \rightarrow [-1,1]
\end{align*}

Tarea moral

  • Obtener las siguientes identidades trigonométricas:
    • $$sen^{2}\theta = \frac{1}{2}(1-cos(2\theta))$$
    • $$cos^{2}\theta =\frac{1}{2}(1+ cos(2\theta))$$
    • $$tan(\alpha + \beta)=\frac{tan(\alpha) + tan(\beta)}{-tan(\alpha)tan(\beta)}$$
      HINT.-Considera la igualdad:
      $$tan\theta=\frac{sen\theta}{cos\theta}$$
  • Determina si las siguientes funciones son pares, impares o ninguna de las opciones anteriores:
    • $sen(\theta)$
    • $cos(\theta)$
  • Obtén la gráfica de las siguientes funciones:
    • $f(x)=sen(x+\frac{\pi}{2})$
    • $f(x)=-2cos(x)+1$

Más adelante

En la próxima entrada continuaremos con las definiciones de las funciones tangente, cotangente, secante y cosecante. Por lo que haremos un análisis similar al dado para las funciones seno y coseno.

Entradas relacionadas

Cálculo Diferencial e Integral I: Funciones polinomiales y racionales. Análisis geométrico de funciones

Por Karen González Cárdenas

Introducción

Quizás en algunos de tus cursos anteriores te presentaron funciones parecidas a las siguientes:
\begin{align*}
f(x)&= 4x^{2}-3x+1 & t(x)&=\frac{x^{2}+2x+5}{x^{3}+3} & k(x)&= x^{3}\\
\end{align*}
todas pertenecen al conjunto de las funciones algebraicas. A lo largo de esta entrada veremos las definiciones formales para cada uno y comenzaremos a realizar un análisis geométrico con este conjunto de funciones.

Funciones polinomiales

Definición(función polinomial): Sea $f$ una función. Decimos que $f$ es una función polinomial si está definida como:
$$p(x)=a_{n}x^{n}+ a_{n-1}x^{n-1}+ \ldots + a_{0}$$
donde$ n \in \mathbb{N}\cup \left\{0 \right\}$ y los coeficientes $a_{i} \in \r$.

Definición (grado de una función polinomial): Llamamos grado de p(x) a la potencia mayor de $x$ con un coeficiente $a_{1} \neq 0$
Ejemplos:

  • $g(x)= 120x^{10}+34x^{6}+14$
    el grado de $g(x)$ es $10$
  • $h(x)= \pi x^{3}+ 2\pi x^{2}+x$
    el grado de $h(x)$ es $3$

Una observación importante es que las funciones del tipo $f(x)=x^{n}$ con $n\in \mathbb{N}$, mejor conocidas cómo potencias de $x$ son un caso particular de las funciones polinomiales.

Funciones racionales

Definición (función racional): Consideremos $g$ una función. Diremos que $g$ es una función racional si está definida como el cociente de dos polinomios:
$$g(x)=\frac{a_{n}x^{n}+ a_{n-1}x^{n-1}+ \ldots + a_{0}}{b_{n}x^{n}+ b_{n-1}x^{n-1}+ \ldots + b_{0}}$$
donde $ n \in \mathbb{N}\cup \left\{0 \right\}$, los coeficientes $a_{i}, b_{i} \in \r$ y $b_{n}x^{n}+ b_{n-1}x^{n-1}+ \ldots + b_{0} \neq 0$.

Ejemplos:

  • $$h(x)=\frac{x^{2}-1}{x+3}$$
  • $$g(x)=\frac{x}{x^{3}+1}$$

Análisis geométrico

En numerosas ocasiones tendremos la necesidad de realizar un bosquejo de la gráfica de una función. Para ello nos basaremos en la gráfica de una función conocida previamente y la siguiente serie de elementos donde consideremos a $f(x)$ una función en los reales y a $\alpha$ una constante:
Traslaciones

  • Para $h(x)= f(x)+ \alpha$ con $\alpha >0$ tenemos que la gráfica de $h$ es la gráfica de $f$ trasladada verticalmente $\alpha$ unidades hacia arriba (sobre el eje $y$).
  • Y para $h(x)= f(x)- \alpha$ con $\alpha >0$ la gráfica de $h$ es la gráfica de $f$ trasladada verticalmente $\alpha$ unidades hacia abajo (sobre el eje $y$).
  • Ahora si $h(x)= f(x-c)$ con $\alpha >0$ entonces la gráfica de $h$ sería la gráfica de $f$ trasladada horizontalmente $\alpha$ unidades hacia la derecha (sobre el eje $x$).
  • En cambio si $h(x)= f(x+c)$ con $\alpha >0$ entonces la gráfica de $h$ sería la gráfica de $f$ trasladada horizontalmente $\alpha$ unidades hacia la izquierda (sobre el eje $x$).

Consideremos los siguientes ejemplos para $f(x)= x^{2}$:

Ampliaciones y reducciones

  • Si $g(x)= f(\alpha x)$ con $\alpha >1$ su gráfica sería la gráfica de $f$ comprimida horizontalmente (sobre el eje $x$).
  • Para $g(x)= f(\alpha x)$ con $0<\alpha <1$ su gráfica sería la gráfica de $f$ expandida horizontalmente (sobre el eje $x$).
  • Y para $g(x)= f(\alpha x)$ con $\alpha <-1$ su gráfica sería la gráfica de $f$ comprimida horizontalmente (sobre el eje $x$) y reflejada respecto del eje $y$.
  • Finalizamos con $g(x)= f(\alpha x)$ con $-1<\alpha <0$ su gráfica sería la gráfica de $f$ expandida horizontalmente (sobre el eje $x$) y reflejada respecto del eje $y$.

Observación: Si $\alpha=1$ vemos que $f((1)x)=f(x)$ por lo que no hay cambios.

  • Ahora bien si $g(x)= \alpha f(x)$ donde $\alpha >1$ la gráfica de $g$ es la gráfica de $f$ expandida verticalmente (sobre el eje $y$).
  • Cuando $g(x)= \alpha f(x)$ donde $0<\alpha <1$ la gráfica de $g$ es la gráfica de $f$ comprimida verticalmente (sobre el eje $y$).
  • Si $g(x)= \alpha f(x)$ donde $-1<\alpha $ la gráfica de $g$ es la gráfica de $f$ expandida verticalmente (sobre el eje $y$) y reflejada respecto del eje $x$.
  • Para $g(x)= \alpha f(x)$ donde $-1<\alpha <0$ la gráfica de $g$ es la gráfica de $f$ comprimida verticalmente (sobre el eje $y$) y reflejada respecto del eje $x$.

Observación: Para $\alpha =1$ tenemos que $(1)(f(x))=f(x)$.

Hablemos sobre la función inversa

Recordemos que si tenemos $f: A \rightarrow B$ una función esto significa que:
$$Graf(f)= \left\{(x, f(x)): x \in A \right\}$$

Ahora si consideramos a $f$ una función invertible, vemos que para $f^{1}: B \rightarrow A$ ocurre:
$$Graf(f^{-1})= \left\{(f(x), x): f(x) \in B \right\}$$
esto nos permite observar que un punto $(y,x) \in Graf(f^{-1})$ es la reflexión ortogonal del punto $(x,y) \in Graf(f)$ respecto a la función identidad.

De este modo podemos obtener la gráfica de $f^{-1}$ reflejando ortogonalmente la gráfica de $f$ respecto a la identidad.

En este ejemplo tomamos la función $f(x)=x^{2}$ en el dominio donde cumple ser biyectiva por lo que su función inversa sería $h(x)= \sqrt{x}$:

En la sección de Tarea moral encontrarás algunos ejercicios que te ayudará a poner en práctica lo desarrollado en esta entrada.

Tarea moral

Realiza las gráficas de las siguientes funciones dado que $f(x)=x^{3}$:

  • $f(x)+4$
  • $f(x-3)+2$
  • $f^{-1}(x)$
  • $f(2x)$
  • $2f(x)$

Más adelante

En la siguiente entrada comenzaremos a revisar al conjunto de las funciones trigonométricas, veremos sus definiciones, algunas identidades trigonométricas que serán de utilidad y sus gráficas.

Entradas relacionadas

Cálculo Diferencial e Integral I: Funciones crecientes y decrecientes. Funciones acotadas

Por Karen González Cárdenas

Introducción

Continuando con ahora con las funciones crecientes y decrecientes, veremos que condiciones se deben cumplir para decir si una función crece o decrece en un intervalo. De igual manera cuando una función es no creciente o no decreciente para finalizar con la definición de función acotada.

Definición de función creciente y decreciente

Definición: Sea $f: A \rightarrow B$ una función.

  • Decimos que $f$ es una función creciente si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ tales que
    $$x_{1}< x_{2} \Rightarrow f(x_{1})<f(x_{2})$$
  • Decimos que $f$ es una función decreciente si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ tales que
    $$x_{1}< x_{2} \Rightarrow f(x_{2})<f(x_{1})$$

Definición de función no creciente y no decreciente

Definición: Consideremos a la función $f: A \rightarrow B$.

  • Llamamos a $f$ una función no creciente (que decrece o permanece igual) si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ que cumplen
    $$x_{1}< x_{2} \Rightarrow f(x_{2})\leq f(x_{1})$$
  • Llamamos a $f$ una función no decreciente (que crece o permanece igual) si y sólo si para cualesquiera $x_{1}, x_{2} \in A$ que cumplen
    $$x_{1}< x_{2} \Rightarrow f(x_{1})\leq f(x_{2})$$

Ejemplo 1

Veamos que para la función definida como:
$$f(x)=x^{2}$$

Tenemos las siguientes observaciones:

  1. Es creciente en el intervalo $[0, \infty)$
  2. Es decreciente en el intervalo $(- \infty,0)$

Demostración:

  1. Sea $0 \leq x_{1} < x_{2}$ así se sigue que:
    \begin{align*}
    &\Rightarrow x_{1}^{2} < x_{2}^{2}\\
    &\Rightarrow f(x_{1}) < f(x_{2})
    \end{align*}
    $\therefore f$ es creciente en $[0, \infty)$
  2. Ahora tomemos $x_{1} < x_{2} < 0$
    \begin{align*}
    &\Rightarrow 0< -x_{2} <-x_{1}\tag{ Multiplicando por $-1$}\\
    &\Rightarrow f(-x_{2})<f(-x_{1})\tag{por 1.}\\
    &\Rightarrow (-x_{2})^{2} <(-x_{1})^{2}\\
    &\Rightarrow x_{2}^{2} < x_{1}^{2}\\
    &\Rightarrow f(x_{2})<f(x_{1})
    \end{align*}
    $\therefore f$ es decreciente en $(- \infty,0)$

$\square$

Ejemplo 2

Para la función $g(x)= x^{2}-5x+2$ probaremos que es creciente en el intervalo $[0,\infty)$.

Tomemos $x_{1}, x_{2} \in [0,\infty)$ tales que $x_{1} < x_{2}$. Queremos demostrar que $g(x_{1})<g(x_{2})$ por lo que desarrollamos lo siguiente:
\begin{align*}
x_{1} < x_{2} &\Rightarrow x_{1} – 5 < x_{2}-5 \tag{restando $-5$}\\
&\Rightarrow x_{1}(x_{1} – 5) <x_{2}( x_{2}-5) \tag{multiplicando por $x_{1}$ y $x_{2}$}\\
&\Rightarrow x_{1}^{2} – 5x_{1} < x_{2}^{2}-5x_{2}\\
&\Rightarrow x_{1}^{2} – 5x_{1}+2 < x_{2}^{2}-5x_{2}+2 \tag{sumado $2$}\\
&\Rightarrow g(x_{1})<g(x_{2})
\end{align*}
Así concluimos que $g$ es creciente en el intervalo $[0,\infty)$.

$\square$

Algunos teoremas

Teorema: Sean $f,g: D \subseteq \r \rightarrow \r$ si $f$ y $g$ son crecientes en $D$ tales que
$f(x)>0$ y $g(x) >0$ para todo $x \in D \Rightarrow fg$ es creciente en D.
Demostración:
Tomemos $x_{1}, x_{2} \in D$ tales que $x_{1}<x_{2}$. Queremos probar que:
$$(fg)(x_{1})< (fg)(x_{2})$$
Es decir, queremos ver que se cumple la siguiente desigualdad:
$$f(x_{1})g(x_{1})< f(x_{2})g(x_{2})$$
Observemos que por hipótesis tenemos que se cumplen para todo $x \in D$ las siguientes desigualdades:

  1. $f(x)>0$ y $g(x)>0$
  2. $f(x_{1}) < f(x_{2})$ ya que $f$ es creciente
  3. $g(x_{1}) < g(x_{2})$ ya que $g$ es creciente

De los puntos 2 y 3 al realizar el producto obtenemos:
$$f(x_{1})g(x_{1})< f(x_{2})g(x_{2})$$

$\square$

Teorema: Si tenemos una función $f$ tal que:

  1. $f$ par y creciente en el intervalo $[0, \infty) \Rightarrow f$ es decreciente en $(-\infty, 0)$
  2. $f$ par y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
  3. $f$ impar y creciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
  4. $f$ impar y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es decreciente en $(-\infty, 0)$

Demostración 4:

Queremos probar que $f$ es decreciente en $(-\infty, 0)$.
Tenemos por hipótesis que $f$ es una función impar, así por definición:
$$f(-x)=-f(x)$$
Ahora si tomamos $0< x_{1}<x_{2}$ ocurre que:
\begin{align*}
f(-x_{1})&= -f(x_{1}) & f(-x_{2})&= -f(x_{2})\\
\end{align*}
Vemos que si multiplicamos por $-1$ las igualdades anteriores tenemos la siguiente equivalencia:
\begin{align}
-f(-x_{1})&= f(x_{1}) & -f(-x_{2})&= f(x_{2})\\
\end{align}

Como $f$ es una función decreciente en $[0, \infty)$ para $x_{1}$ y $x_{2}$ se sigue:
$$f(x_{2})< f(x_{1})$$
Aplicando $(1)$ tendríamos la siguiente desigualdad:
$$-f(-x_{2})< -f(-x_{1})$$
donde $-x_{1},-x_{2} \in (-\infty,0)$

$\square$

Definición de función acotada

Definición: Sea $f: A \rightarrow B$. Decimos que:

  • $f$ está acotada superiormente $\Leftrightarrow$ existe $M \in \r$ tal que $f(x) \leq M$ para todo $x \in A$.
La gráfica de $f$ queda por debajo del valor $M$.
  • $f$ está acotada inferiormente $\Leftrightarrow$ existe $m \in \r$ tal que $m \leq f(x)$ para todo $x \in A$.
La gráfica de $f$ queda por arriba del valor $m$.
  • $f$ está acotada $\Leftrightarrow$ existe $m, M \in \r$ tal que $m \leq f(x) \leq M$ para todo $x \in A$.
La gráfica de $f$ queda entre los valores de $M$ y $m$.
  • Una equivalencia para la última definición sería:
    $f$ está acotada $\Leftrightarrow$ existe $N \in \r$ tal que $|f(x)| \leq N$ para todo $x \in A$.
La gráfica de $f$ queda entre los valores de $N$ y $-N$.
  • $f$ no está acotada $\Leftrightarrow$ para toda $M >0$ existe $x_{M} \in A$ tal que $|f(x_{M})|>M$.

Ejemplo 1

Si tenemos la función $f: \r^{+} \rightarrow \r$ definida como:
$$f(x)=\sqrt{x}$$

Probaremos que $f$ no es acotada en su dominio.
Demostración: Consideremos a $M>0$ y a $x_{M}=(M+1)^{2}$ donde $x_{M} \in D_{f}$. Así al evaluar la función en $x_{M}$ tenemos:
\begin{align*}
f(x_{M})&=f((M+1)^{2})\\
&=\sqrt{(M+1)^{2}}\\
&= M+1
\end{align*}
aquí observamos siempre ocurre que: $M+1>M$
$\therefore f$ es no acotada en su dominio.

$\square$

Ejemplo 2

Ahora si consideramos la función $g: (0, \infty) \rightarrow \r^{+}$ definida como:
\begin{equation*}
g(x)=\frac{1}{\sqrt[3]{x^{2}}}
\end{equation*}

Veremos ahora que $g$ no es acotada en su dominio.
Demostración: Sea $N>0$ y a $x_{N} \in D_{g}$ definida como:
\begin{equation*}
x_{N}= \frac{1}{(N+1)^{\frac{3}{2}}}
\end{equation*}
Al tomar $g(x_{N})$ tenemos:
\begin{align*}
g(x_{N})&=g\left(\frac{1}{(N+1)^{\frac{3}{2}}}\right)\\
&=\frac{1}{\left(\frac{1}{(N+1)^{\frac{3}{2}}}\right)^{\frac{2}{3}}}\\
&=\frac{1}{\frac{1}{N+1}}\\
&=N+1
\end{align*}
donde $N+1>N$ por lo que conluimos que $g$ es no acotada en su dominio.

$\square$

Tarea moral

  • Dada la función $f(x)=x^{3}$. Demuestra que:
    • $f$ es creciente en $[0, \infty)$
    • $f$ es creciente en $(-\infty,0)$
  • Demuestra los puntos 2 y 3 del Teorema:
    • $f$ par y decreciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
    • $f$ impar y creciente en el intervalo $[0, \infty) \Rightarrow f$ es creciente en $(-\infty, 0)$
  • Demuestra que la función $h: (0,1) \rightarrow \r$ definida como:
    $$h(x)=\frac{1}{x^{3}}$$
    no es acotada en su dominio.

Más adelante

En la siguiente entrada veremos a un conjunto de funciones muy particular: las funciones polinomiales. Adicionalmente revisaremos las funciones racionales. Para ambos tipos de funciones revisaremos su definición y algunos ejemplos.

Entradas relacionadas

Cálculo Diferencial e Integral I: Funciones pares e impares

Por Karen González Cárdenas

Introducción

Ahora veremos cuales son las características que debe cumplir una función para poder decir si es par o impar. Veremos geométricamente que ocurre con estas funciones, de igual manera que ocurre al realizar operaciones entre ellas.

Definición de función par

Definición: Decimos que $f: A \rightarrow B$ una función es par si y sólo si para todo $x \in A$ ocurre que:
$$f(x)=f(-x)$$

Ejemplo

La función $f(x)=x^{2}$ cumple ser par ya que:
$$f(-x)=(-x)^{2}=x^{2}=f(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al eje $y$:

Definición de función impar

Definición: Decimos que $f: A \rightarrow B$ una función es impar si y sólo si para todo $x \in A$ ocurre que:
$$f(x)= – f(x)$$

Ejemplo

La función $g(x)=x$ cumple ser impar ya que:
$$g(-x)=(-x) = – (x) = -g(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al origen:

Un teorema importante

Teorema: Cualquier función $f: \r \rightarrow \r$ puede expresarse como la suma de una función par e impar, es decir,
$$f(x)= P(x)+ I(x)$$
para toda $x \in \r$, donde $P(x)$ e $I(x)$ son únicas.
Demostración: Consideremos las funciones $P(x)$ par e $I(x)$ impar como sigue:
\begin{align*}
P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
\end{align*}

Vemos que al realizar la suma obtenemos:
\begin{align*}
P(x)+I(x) &= \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2}\\
&= \frac{f(x)+f(-x)+f(x)-f(-x)}{2}\\
&= \frac{2f(x)}{2}\\
&= f(x)
\end{align*}

Ahora nos falta ver que $P(x)$ e $I(x)$ son únicas. Como ya sabemos que $f(x)= P(x)+ I(x)$ tenemos lo siguiente:
\begin{align}
f(x)&=P(x)+I(x)\\
f(-x)&=P(x)-I(x)\\
\end{align}
Así sumando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)+f(-x) &= 2 P(x)\\
P(x) &= \frac{f(x)+f(-x)}{2}
\end{align*}
Ahora restando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)-f(-x) &= 2 I(x)\\
P(x) &= \frac{f(x)-f(-x)}{2}
\end{align*}
Dado que tenemos la igualdad $f(x)= P(x)+ I(x)$ concluimos que $P(x)$ e $I(x)$ son únicas.

$\square$

Ejercicio

Consideremos las funciones $f,g: \r \rightarrow \r$. ¿Cómo es $f+g$, $fg$ y $f \circ g$ si:

  1. $f$ y $g$ son pares.
  2. $f$ y $g$ son impares.
  3. $f$ es par y $g$ es impar.
  4. $f$ es impar y $g$ es par.

es par, impar o no necesariamente alguna de las anteriores?

Para $f+g$:


1. Si $f$ y $g$ son pares $\Rightarrow f+g$ es par.
Demostración:
Vemos que al desarrollar:
\begin{align*}
(f+g)(-x)&= f(-x)+g(-x)\tag{ definición de $f+g$}\\
&= f(x)+g(x)\tag{ por $f$ y $g$ pares}\\
&= (f+g)(x)\tag{ definición de $f+g$}\\
\end{align*}
3. Si $f$ es par y $g$ es impar $\Rightarrow f+g$ no necesariamente es par o impar.
Consideremos $f(x)= x^{2}$ y $g(x)=x$. Luego si $x=1$ entonces:
\begin{align*}
(f+g)(-1)&= f(-1)+g(-1) & (f+g)(1)&= f(1)+g(1)\\
&= 1-1 & &= 1+1\\
&= 0 & &=2
\end{align*}
$\therefore (f+g)(-1) \neq (f+g)(1)$
$\therefore f+g$ no es par.

Además veamos que $-(f+g)(1)=-2$ por lo que:
$$-(f+g)(1) \neq (f+g)(-1)$$
$\therefore f+g$ tampoco es impar.

Para $fg$:


1. Si $f$ y $g$ son pares $\Rightarrow fg$ es par.
Demostración:
Si tomamos $fg(-x)$ observamos lo siguiente:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= f(x)g(x) \tag{por$f$ y $g$ pares}\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par

2. Si $f$ y $g$ son impares $\Rightarrow fg$ es par.
Demostración:
Comenzando con $fg(-x)$ y desarrollando tenemos:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= (-f(x))(-g(x)) \tag{por$f$ y $g$ impares}\\
&=f(x)g(x)\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par

Para $f \circ g$:


3. Si $f$ es par y $g$ es impar $\Rightarrow f \circ g$ es par.
Demostración:
Realizando la composición $(f \circ g)(-x)$:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(-g(x)) \tag{ por $g$ impar}\\
&= f(g(x)) \tag{por $f$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par

4.Si $f$ es impar y $g$ es par $\Rightarrow f \circ g$ es par.
Demostración:
Procediendo análogamente al punto anterior:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(g(x)) \tag{ por $g$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par

Los puntos faltantes se dejarán cómo ejercicios de Tarea moral, para resolverlos se debe proceder como en los incisos anteriores según sea el caso.

Tarea moral

  • Prueba que las funciones $P(x)$ e $I(x)$ cumplen con ser par e impar respectivamente:
    \begin{align*}
    P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
    \end{align*}
  • Demuestra que la función constante cero es la única que cumple ser par e impar.
  • Exprese a las siguientes funciones como suma de una función par y una impar:
    • $f(x)= x^{2}-4x+2$
    • \begin{multline*}h(x)=\frac{1}{1+x^{2}}\end{multline*}
  • Termina los puntos faltantes del ejercicio de $f+g$, $fg$ y $f \circ g$

Más adelante

En la siguiente entrada continuaremos con las funciones crecientes y decrecientes, veremos que características debe cumplir una función para poder decir si crece o decrece en un intervalo. También veremos que significa ser una función acotada y algunas pruebas relacionadas con este concepto.

Entradas relacionadas

Cálculo Diferencial e Integral I: Suma, producto, cociente y composición de funciones

Por Karen González Cárdenas

Introducción

Ya que hemos visto el concepto de función, en esta entrada veremos como están definidas las operaciones de suma, producto y cociente. De igual modo definiremos la composición entre un par de funciones. Para dejar más claras dichas operaciones daremos ejemplos.

Operaciones de funciones

Definición (operaciones): Sean $f: D_{f}\subseteq \r \rightarrow \r$, $\quad g: D_{g}\subseteq \r \rightarrow \r$. Definimos las siguientes operaciones cómo:

  • $f+g: D_{f} \cap D_{g} \subseteq \r \rightarrow \r$
    $$(f+g)(x)= f(x)+g(x)$$
  • $\alpha f: D_{f}\subseteq \r \rightarrow \r \quad$ y $\quad \alpha \in \r$
    $$(\alpha f)(x)= \alpha f(x)$$
  • $fg: D_{f} \cap D_{g} \subseteq \r \rightarrow \r$
    $$(fg)(x)= f(x)g(x)$$
  • $\begin{multline*} \frac{f}{g}: D_{f/g} \subseteq \r \rightarrow \r \end{multline*}$
    \begin{equation*}
    \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
    \end{equation*}
    donde $D_{f/g}=D_{f} \cap (D_{g} – \left\{x \in D_{g}: g(x)=0 \right\})$

Notación: Cuando escribamos $f-g$ hacemos referencia a:
$$f-g=f+ (-g)$$

Ejemplos

Consideremos a las siguientes funciones:
\begin{align*}
f: \r – \left\{-1\right\} &\rightarrow \r & g: \r &\rightarrow \r & h: \r &\rightarrow \r^{+}
\end{align*}
\begin{align*}
f(x)&= \frac{1}{x+1}& g(x)&= x^{3}+3 & h(x)&=x^{2}+2x+1
\end{align*}
Notación: Usamos $\r^{+}$ para referirnos al conjunto de los números reales positivos.

Realizaremos las siguientes operaciones entre ellas para ejemplificar lo visto anteriormente:

  • $$(f+g)(x)= f(x)+g(x)= \frac{1}{x+1} + x^{3}+3$$
    con $D_{f+g}=D_{f} \cap D_{g}= \r \cap (\r- \left\{-1\right\})= \r- \left\{-1\right\}$
  • $$(fg)(x)= f(x)g(x)=\left(\frac{1}{x+1}\right)(x^{3}+3)=\frac{x^{3}+3}{x+1}$$
    con $D_{fg}=D_{f} \cap D_{g}= \r \cap (\r- \left\{-1\right\})= \r- \left\{-1\right\}$
  • Si $\alpha = – 4$:
    $$(\alpha g)(x)= \alpha g(x)= -4(x^{3}+3)=-4x^{3}-12$$
    con $D_{\alpha g}= D_{g}= \r$
  • $$\left(\frac{g}{h}\right)(x)=\frac{g(x)}{h(x)}=\frac{x^{3}+3}{x^{2}+2x+1}$$
    como $D_{g/h}=D_{g} \cap (D_{h} – \left\{x \in D_{h}: h(x)=0 \right\})$
    Observemos que $x^{2}+2x+1 = (x+1)^{2}$ por lo que $(x+1)^{2}=0$ cuando $x=-1$.
    Así el dominio sería:
    $$D_{g/h}=\r \cap (\r- \left\{-1 \right\})= \r – \left\{-1\right\}$$
  • $$(h-g)(x)=h(x)-g(x)=x^{2}+2x+1-(x^{3}+3)=x^{2}+2x+1-x^{3}-3$$
    con $D_{h-g}= D_{h} \cap D_{g}= \r \cap \r= \r$

Composición de funciones

Definición (composición): Consideremos a las funciones $g: A \rightarrow B$ y $f: B \rightarrow C$ definimos a la composición de $f$ en $g$ como:

$$f \circ g: A \rightarrow C$$
$$f \circ g(x)= f(g(x))$$
observamos así que $g(x) \in B$.
En el siguiente diagrama podemos ver más claramente cómo funciona la composición $f \circ g$:

PASO 1

Primero tomamos $x \in A$ a la cuál le aplicamos la función $g$ para así obtener $g(x) \in B$.

PASO 2

Ahora tomamos a $g(x) \in B$ para aplicarle la función $f$ y finalmente obtener $f(g(x)) \in C$.

DIAGRAMA PARA $f \circ g$

Así la composición de $f \circ g$ se vería cómo en el diagrama anterior.

Observación: La composición no es conmutativa, es decir, ocurre que:
$$f \circ g \neq g \circ f$$

Ejemplos

Retomando las funciones:
\begin{align*}
f(x)&= \frac{1}{x+1}& g(x)&= x^{3}+3 & h(x)&=x^{2}+2x+1
\end{align*}

Realicemos las siguientes composiciones de funciones para tener más claro cómo funciona lo antes explicado:

  • Ejemplo 1:
    \begin{align*}
    (g \circ f)(x)&= g(f(x))\\
    &= g\left(\frac{1}{x+1} \right)\\
    &= \left( \frac{1}{x+1} \right)^{3} +3\\
    &= \frac{1}{(x+1)^{3}}+3
    \end{align*}
    Así la tenemos que la composición obtenida es:
    \begin{equation*}
    (g \circ f)(x)=\frac{1}{(x+1)^{3}}+3
    \end{equation*}
  • Ejemplo 2:
    \begin{align*}
    (f \circ h)(x)&= f(h(x))\\
    &= f((x^{2}+2x+1))\\
    &= \frac{1}{(x^{2}+2x+1)+1}\\
    &=\frac{1}{x^{2}+2x+2}
    \end{align*}
    Por lo que la composición quedaría como:
    \begin{equation*}
    (f \circ h)(x) = \frac{1}{x^{2}+2x+2}
    \end{equation*}

Tarea moral

  • Si tenemos a las funciones $f : \r \rightarrow \r$ y $g : \r \rightarrow \r^{+}$ definidas como siguen:
    $$ f(x) = x-8$$
    $$g(x)= x^{4}$$
    Realiza las siguientes operaciones:
    • $f + g$
    • $f – g$
    • $fg$
    • $\frac{g}{f}$
    • $g \circ f$
  • Da una función $f$ y una función $g$ que ejemplifiquen que la composición no es conmutativa:
    $$f \circ g \neq g \circ f$$
  • Demuestra que la composición es asociativa, es decir,
    $$f\circ (g \circ h)= (f\circ g) \circ h$$

Más adelante

Ahora que ya hemos definido las operaciones entre funciones y la composición, en la siguiente entrada veremos que características debe cumplir una función para poder decir si es inyectiva, sobreyectiva o biyectiva. De igual manera veremos el concepto de función inversa donde haremos uso de la composición de funciones y algunas condiciones.

Entradas relacionadas