Cálculo Diferencial e Integral I: Funciones pares e impares

Por Karen González Cárdenas

Introducción

Ahora veremos cuales son las características que debe cumplir una función para poder decir si es par o impar. Veremos geométricamente que ocurre con estas funciones, de igual manera que ocurre al realizar operaciones entre ellas.

Definición de función par

Definición: Decimos que $f: A \rightarrow B$ una función es par si y sólo si para todo $x \in A$ ocurre que:
$$f(x)=f(-x)$$

Ejemplo

La función $f(x)=x^{2}$ cumple ser par ya que:
$$f(-x)=(-x)^{2}=x^{2}=f(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al eje $y$:

Definición de función impar

Definición: Decimos que $f: A \rightarrow B$ una función es impar si y sólo si para todo $x \in A$ ocurre que:
$$f(x)= – f(x)$$

Ejemplo

La función $g(x)=x$ cumple ser impar ya que:
$$g(-x)=(-x) = – (x) = -g(x)$$
para todo $x \in \r$.
De su gráfica observamos que $f$ se refleja respecto al origen:

Un teorema importante

Teorema: Cualquier función $f: \r \rightarrow \r$ puede expresarse como la suma de una función par e impar, es decir,
$$f(x)= P(x)+ I(x)$$
para toda $x \in \r$, donde $P(x)$ e $I(x)$ son únicas.
Demostración: Consideremos las funciones $P(x)$ par e $I(x)$ impar como sigue:
\begin{align*}
P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
\end{align*}

Vemos que al realizar la suma obtenemos:
\begin{align*}
P(x)+I(x) &= \frac{f(x)+f(-x)}{2} + \frac{f(x)-f(-x)}{2}\\
&= \frac{f(x)+f(-x)+f(x)-f(-x)}{2}\\
&= \frac{2f(x)}{2}\\
&= f(x)
\end{align*}

Ahora nos falta ver que $P(x)$ e $I(x)$ son únicas. Como ya sabemos que $f(x)= P(x)+ I(x)$ tenemos lo siguiente:
\begin{align}
f(x)&=P(x)+I(x)\\
f(-x)&=P(x)-I(x)\\
\end{align}
Así sumando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)+f(-x) &= 2 P(x)\\
P(x) &= \frac{f(x)+f(-x)}{2}
\end{align*}
Ahora restando $(1)$ y $(2)$ obtenemos:
\begin{align*}
f(x)-f(-x) &= 2 I(x)\\
P(x) &= \frac{f(x)-f(-x)}{2}
\end{align*}
Dado que tenemos la igualdad $f(x)= P(x)+ I(x)$ concluimos que $P(x)$ e $I(x)$ son únicas.

$\square$

Ejercicio

Consideremos las funciones $f,g: \r \rightarrow \r$. ¿Cómo es $f+g$, $fg$ y $f \circ g$ si:

  1. $f$ y $g$ son pares.
  2. $f$ y $g$ son impares.
  3. $f$ es par y $g$ es impar.
  4. $f$ es impar y $g$ es par.

es par, impar o no necesariamente alguna de las anteriores?

Para $f+g$:


1. Si $f$ y $g$ son pares $\Rightarrow f+g$ es par.
Demostración:
Vemos que al desarrollar:
\begin{align*}
(f+g)(-x)&= f(-x)+g(-x)\tag{ definición de $f+g$}\\
&= f(x)+g(x)\tag{ por $f$ y $g$ pares}\\
&= (f+g)(x)\tag{ definición de $f+g$}\\
\end{align*}
3. Si $f$ es par y $g$ es impar $\Rightarrow f+g$ no necesariamente es par o impar.
Consideremos $f(x)= x^{2}$ y $g(x)=x$. Luego si $x=1$ entonces:
\begin{align*}
(f+g)(-1)&= f(-1)+g(-1) & (f+g)(1)&= f(1)+g(1)\\
&= 1-1 & &= 1+1\\
&= 0 & &=2
\end{align*}
$\therefore (f+g)(-1) \neq (f+g)(1)$
$\therefore f+g$ no es par.

Además veamos que $-(f+g)(1)=-2$ por lo que:
$$-(f+g)(1) \neq (f+g)(-1)$$
$\therefore f+g$ tampoco es impar.

Para $fg$:


1. Si $f$ y $g$ son pares $\Rightarrow fg$ es par.
Demostración:
Si tomamos $fg(-x)$ observamos lo siguiente:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= f(x)g(x) \tag{por$f$ y $g$ pares}\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par

2. Si $f$ y $g$ son impares $\Rightarrow fg$ es par.
Demostración:
Comenzando con $fg(-x)$ y desarrollando tenemos:
\begin{align*}
(fg)(-x)&= f(-x)g(-x) \tag{definción de $fg$}\\
&= (-f(x))(-g(x)) \tag{por$f$ y $g$ impares}\\
&=f(x)g(x)\\
&= (fg)(x)
\end{align*}
$\therefore fg$ es par

Para $f \circ g$:


3. Si $f$ es par y $g$ es impar $\Rightarrow f \circ g$ es par.
Demostración:
Realizando la composición $(f \circ g)(-x)$:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(-g(x)) \tag{ por $g$ impar}\\
&= f(g(x)) \tag{por $f$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par

4.Si $f$ es impar y $g$ es par $\Rightarrow f \circ g$ es par.
Demostración:
Procediendo análogamente al punto anterior:
\begin{align*}
(f \circ g)(-x)&=f(g(-x)) \tag{definción de $f \circ g$}\\
&= f(g(x)) \tag{ por $g$ par}\\
&=(f \circ g)(x)
\end{align*}
$\therefore f \circ g$ es par

Los puntos faltantes se dejarán cómo ejercicios de Tarea moral, para resolverlos se debe proceder como en los incisos anteriores según sea el caso.

Tarea moral

  • Prueba que las funciones $P(x)$ e $I(x)$ cumplen con ser par e impar respectivamente:
    \begin{align*}
    P(x)&=\frac{f(x)+f(-x)}{2} & I(x)&=\frac{f(x)-f(-x)}{2}
    \end{align*}
  • Demuestra que la función constante cero es la única que cumple ser par e impar.
  • Exprese a las siguientes funciones como suma de una función par y una impar:
    • $f(x)= x^{2}-4x+2$
    • \begin{multline*}h(x)=\frac{1}{1+x^{2}}\end{multline*}
  • Termina los puntos faltantes del ejercicio de $f+g$, $fg$ y $f \circ g$

Más adelante

En la siguiente entrada continuaremos con las funciones crecientes y decrecientes, veremos que características debe cumplir una función para poder decir si crece o decrece en un intervalo. También veremos que significa ser una función acotada y algunas pruebas relacionadas con este concepto.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.