Archivo de la etiqueta: coordenadas

Geometría Analítica II: Cilindros sobre cónicas

Por Brian Manzano

Introducción

Con esta entrada comenzamos nuestra exploración de los objetos en el espacio de tres dimensiones. Lo primero que haremos es estudiar los cilindros que se construyen sobre cónicas. La mayoría de nosotros tiene una noción bastante buena sobre ellos, o por lo menos de los «cilindros usuales», en donde las secciones horizontales son círculos. Sin embargo, si bien entendemos muy bien su forma de manera intuitiva, ¿cómo los podemos representar en el lenguaje matemático?

A continuación definiremos qué entenderemos por un cilindro sobre una cónica. Veremos algunos ejemplos y luego haremos cilindros con objetos que hemos estudiado en el curso de Geometría Analítica I: con cónicas.

Definición de cilindros sobre curvas

Los cilindros que conocemos de manera intuitiva comienzan con una circunferencia y luego esta se extiende sin cambios a lo largo de un eje. Los cilindros con los que nos encontramos cotidianamente (por ejemplo, un vaso) se extienden sólo de manera acotada. Pero podemos pensar en qué sucedería si los extendemos indefinidamente. Si hacemos esto, llegamos a la siguiente definición.

Definición. Un cilindro es una superficie en $\mathbb{R}^3$ que se pueda obtener tomando un plano $\Pi$, tomando en él una curva $\mathcal{C}$ y tomando para cada punto $p$ de $\mathcal{C}$ una recta ortogonal a $\Pi$ que pase por $p$. La unión de estas rectas son el cilindro. A cada una de las rectas le llamamos una directriz del cilindro y a la curva $\mathcal{C}$ le llamamos la curva generatriz del cilindro.

Así, un cilindro es un conjunto de lineas paralelas que se encuentran «guiadas» o «dirigidas» de acuerdo a una curva plana. Podemos imaginarlo como sigue: dibujamos la curva sobre un papel, y luego sobre ella pegamos palos perpendiculares a la hoja

Cilindros a partir de cónicas

La definición de cilindro, tal y como está arriba, no restringe el tipo de cónicas que podemos tener. Sin embargo, hay una familia de cónicas que conocemos bien debido a cursos anteriores: las cónicas. Ya que podemos elegir con libertad la curva plana, pensemos en lo que sucede si usamos de las cónicas que conocemos. Para simplificar la situación, supondremos que dibujamos la cónica en el plano XY y entonces que las directrices son perpendiculares al plano $XY$, es decir, paralelas al eje $Z$. Podemos entonces hacer ejemplos de acuerdo a subfamilia de cónicas que usemos.

Cilindros elípticos

Recordemos que una elipse en el plano $XY$ puede pensarse (salvo rotaciones y traslaciones) como el lugar geométrico de los puntos $(x,y)$ que satisfacen una ecuación del estilo $$\frac{x^2}{a^2}+\frac{y^2}{b^2} =1,$$ donde $a$ y $b$ son parámetros que determinan la longitud de los ejes de la elipse.

Si ahora pensamos en todo $\mathbb{R}^3$ y nos preguntamos por el lugar geométrico de los puntos $(x,y,z)$ que satisfacen la ecuación, la respuesta es similar. Los valores de $(x,y)$ están dados por la ecuación y el valor de $z$ no está restringido de ninguna manera por la ecuación, de modo que puede ser lo que sea. ¡Hemos logrado «levantar la cónica» a líneas perpendiculares al plano $XY$!

De tener $a=b$, tendremos un cilindro circular en el origen. Si $a=b=1$, entonces es un cilindro mucho más especial, pues es uno que se obtiene de levantar la circunferencia unitaria canónica.

Por supuesto, pudimos haber comenzado con una elipse en el plano $YZ$, que tendría una ecuación del estilo $$\frac{y^2}{a^2}+\frac{z^2}{b^2} =1.$$ En este caso, el valor de $x$ sería libre, así que puede valer lo que sea. Así, esta ecuación pensada en todo $\mathbb{R}^3$ nos daría un cilindro cuya curva directriz es una elipse, y cuyas generatrices son paralelas al eje $x$.

Cilindros parabólicos

Para crear cilindros parabólicos podemos proceder de la misma manera. Para ellos, comenzamos con una parábola, por ejemplo, en el plano $XY$. Sabemos que una parábola así está dada, salvo rotaciones y traslaciones, por una ecuación del siguiente tipo: $$y^2 = 2px.$$ Una vez más, si en vez de pensar en esto como una ecuación en $\mathbb{R}^2$, la pensamos como una ecuación en $\mathbb{R}^3$, entonces el valor de $z$ es arbitrario y entonces al tomar el lugar geométrico en efecto obtenemos una línea perpendicular al plano $XY$ por cada punto de la parábola.

Cilindros hiperbólicos

La tercer familia sería la de cilindros hiperbólicos. En este caso, la curva generatriz es una hipérbola. Recordemos que salvo rotaciones y traslaciones, una hipérbola es el lugar geométrico de los puntos $(x,y)$ del plano $XY$ tales que satisfacen una ecuación del estilo $$\frac{x^2}{a^2}-\frac{y^2}{b^2} =1.$$ Al pensar a esta ecuación como una restricción para puntos $(x,y,z)$ de $\mathbb{R}^3$, obtenemos entonces un cilindro hiperbólico.

Problemas ejemplo de cilindros

Para aterrizar las ideas anteriores, veamos algunos ejemplos concretos.

Ejemplo. Tomemos el lugar geométrico de los puntos $(x,y,z) \in $ $\mathbb{R} ^3$ que cumplen con la siguiente ecuación: $$\frac{x^2}{4}+\frac{y^2}{25} = 1.$$

Podemos comenzar detectando la ausencia de la variable $z$, con lo que las generatrices serán rectas paralelas al eje $Z$. De hecho, el eje del cilindro precisamente será será el eje $Z$. Esto no siempre ocurre ya que no necesariamente el centro de la curva dada está en el origen del plano $XY$, pero debido a que no tenemos constantes que acompañen los valores $x$ o $y $ su centro no se encontrará desplazado.

¿Qué nos dicen los valores $4,25$ que acompañan a sus variables correspondientes ?Con todo en mente veamos su gráfica

Veamos desde otra perspectiva, no solo sobre el plano, sino con una vista incluyendo el otro eje coordenado obtenemos la siguiente gráfica.

$\square$

Ejemplo. Tomemos el lugar geométrico en $\mathbb{R}^3$ de los puntos $(x,y,z)$ que cumplen la siguiente ecuación: $$y^2=6x.$$

De manera muy similar notamos que la ausencia de la variable $z$ llevara a que su directriz se encuentre en el plano $XY$ de forma que vista desde este plano:

¿Puedes decir a que cónica pertenece esta gráfica?

Agregando la perspectiva con el eje faltante obtenemos:

Nota importante. Como habrás notado al graficar obtenemos estas representaciones que parecen estar cortadas o seccionadas por planos paralelos al $XY$ , en realidad estos cilindros se extienden sin límite.

$\square$

Ejemplo. Para la siguiente ecuación: $$\frac{z^2}{4}-\frac{y^2}{9} = 1,$$ ¿cuál es el lugar geométrico de los puntos $(x,y,z)$ en $\mathbb{R}^3$ que la cumplen?

Notemos ahora que además de representar otro tipo de cónica tenemos ahora un cambio importante, ya no contamos de manera explicita con la $y$ en la ecuación, ¿Qué cambios conllevara esto? ¿En que plano podremos observar la cónica correspondiente?

Veamos si tu intuición fue correcta

Gráfica de la ecuación en el plano YZ

Desde otra perspectiva donde podremos ver su profundidad, tenemos ahora que las generatrices se extienden desde $- \infty$ hasta $\infty$.

$\square$

Más adelante…

En esta primer entrada del curso hablamos de los primeros objetos geométricos de tres dimensiones que nos interesan: los cilindros con cierta curva generatriz. En la siguiente entrada veremos otra manera con la cual podemos crear un objeto de tres dimensiones a partir de rectas: las superficies de revolución. Un poco más adelante estudiaremos una versión más general de objetos que podemos obtener de esta manera: los conjuntos cero de ecuaciones de segundo grado en tres variables.

Tarea moral

Estos ejercicios te ayudaran a comprender de mejor forma los conceptos vistos.

  1. Reescribe las ecuaciones de los ejemplos que dimos para que sus directrices se encuentren en diferentes planos.
    Sugerencia: Nota qué pasa con el tercer ejemplo.
  2. Ahora que hemos cambiado los planos donde se encuentran las directrices, grafica estas ecuaciones, ¿Cómo cambian los cilindros? Realiza un cambio de variable para el segundo ejemplo haciendo el reemplazo $x\to x-3$. ¿Qué cambia? ¿pasa lo mismo para el primer ejemplo?
  3. Determina la ecuación para un cilindro parabólico cuya parábola directriz esté contenida en el plano XY y cuyo foco sea el punto $(2, 0)$ de este plano. Hay varias de estas parábolas. Puedes usar la que gustes.
  4. Gráfica los cilindros asociados a cada una de las siguientes ecuaciones:
    1. $x^2-z^2=0$.
    2. $(y-9)^2+(z-4)^2=0$.
    3. $x^2=y$.

Entradas relacionadas

Geometría Analítica I: Rectas en forma baricéntrica

Por Elsa Fernanda Torres Feria

Introducción

En esta entrada daremos una descripción alternativa de rectas: la forma baricéntrica. Esta manera de pensar nos ayuda a construir de manera muy rápida una recta que pase por dos puntos dados, o bien el segmento que une a dos puntos. Además, a través de ella podemos entender a las rectas desde un punto de vista más físico

Rectas en forma baricéntrica

En la forma paramétrica de una recta por $P$ con dirección $Q$, tenemos que $P$ y $Q$ juegan papeles diferentes. En la forma que exploraremos ahora, se tendrá que juegan papeles iguales. De manera intuitiva, la forma que definiremos a continuación nos ayuda a construir fácilmente rectas que pasen por dos puntos dados.

Definición. Sean $P$ y $Q$ dos puntos distintos en $\mathbb{R}^2$. La recta en forma baricéntrica por $P$ y $Q$ es el conjunto

$ l := \{ rP+sQ : r,s \in \mathbb{R} \text{ y } r+s=1 \}.$

Ahora tenemos dos parámetros $r$ y $s$ que nos ayudan a ubicar un punto en la recta en cualquiera de las dos direcciones. Puedes pensar que la restricción $r+s=1$ es la que hace que nos quedemos en la recta. Además, podemos pensar a $r$ y $s$ como «pesos» que nos dicen qué tan cerca estamos de $P$ y de $Q$. Intuitivamente si $s > r$ , entonces el punto $X$ de la recta se encuentra más cerca del punto $Q$ y viceversa, si $r > s$, entonces el punto $X$ de la recta está más cercano a $P$. Esto es sólo intuitivo pues aún no tenemos una definición formal de distancia, pero más adelante retomaremos esto para formalizarlo.

Utiliza el siguiente interactivo para variar los valores de la coordenada baricéntrica $s$ de la recta (recuerda que r=1-s) y ubicar el punto $X$ en la recta que depende de estos valores.

Interpretación física

Ya que definimos las coordenadas baricéntricas, hablemos un poco de la interpretación física de esta con la cuál la idea de «peso» que le asignamos a estas coordenadas toma más sentido. Pensemos a la recta como una barra rígida sobre la cual está distribuida una masa unitaria (esto es que la masa en total es 1). El punto de equilibrio estará dado por las coordenadas baricéntricas correspondientes a las masas.

Ahora que estamos hablando de masas, resulta que podemos asociarle una fuerza a cada una para comprender mejor esta interpretación física. Retomando lo de hace unos párrafos, si $s> r$, entonces la fuerza asociada a $s$ será mayor a la asociada a $r$ ($F_s > F_r$) y si tenemos una de nuestras coordenadas baricéntricas negativas, podemos pensar entonces en una fuerza que va en sentido contrario a la positiva. Si pensamos en la fuerza gravitacional, un signo menos en nuestras coordenadas se podría visualizar como algo jalando hacia arriba.

Apoyate del interactivo anterior para comprender mejor esta idea y analiza el siguiente ejemplo:

Ejemplo: Sea $s=0.3$ y $r=0.7$, nota que el punto está más cercano de $P$.

Relación entre rectas paramétricas y rectas baricéntricas

En nuestro modelo ya definimos dos «tipos» de rectas: las rectas paramétricas y las rectas baricéntricas. Sería muy mala noticia que hayamos definido objetos geométricos diferentes, es decir, que hubiera algún objeto geométrico que sí fuera recta paramétrica pero que no fuera recta baricéntrica. O viceversa. Afortunadamente esto no es así. Todas las rectas paramétricas se pueden expresar de manera baricéntrica y todas las rectas baricéntricas se pueden expresar de manera paramétrica.

Demostrar esto formalmente nos lleva a argumentos de teoría de conjuntos. Veamos un ejemplo.

Proposición. Toda recta en forma paramétrica se puede expresar en forma baricéntrica.

Demostración. Tomemos la recta con forma paramétrica por $P$ y dirección $Q$:

$$\ell=\{P+rQ:r\in\mathbb{R}\}.$$

Tenemos que encontrar una manera de expresarla en forma baricéntrica. Recordemos que la intuición de la forma baricéntrica es que pasa por dos puntos que le demos, así que nos conviene proponer dos puntos en $\ell$. Uno de ellos es $P$ (con $r=0$) y otro es $P+Q$ (con $r=1$). Ya tenemos entonces nuestra línea baricéntrica candidata:

$$m=\{rP+s(P+Q): r,s \in \mathbb{R} \text{ y } r+s=1\}.$$

Debemos demostrar que $\ell=m$. Esta es una afirmación de igualdad de dos conjuntos, así que hay que hacer una doble contención.

Un punto en $\ell$ es de la forma $P+rQ$, que se puede reescribir como $(1-r)P+r(P+Q)$. Aquí tanto $1-r$ como $r$ son reales y suman $1$, así que este punto está en $m$. Esto muestra que $l\subseteq m$.

Ahora tomemos un punto en $m$. Es de la forma $rP+s(P+Q)$ en donde $r,s$ son reales de suma $1$. De esta manera, $s=1-r$, de modo que podemos reescribir:

$$ rP+s(P+Q) =rP+(1-r)(P+Q)=P+(1-r)Q.$$

Esto es justo una de las expresiones que está en $\ell$. Concluimos que $m\subseteq \ell$ y por lo tanto que $\ell=m$.

$\square$

Una demostración similar muestra que toda recta en forma baricéntrica se puede expresar en forma paramétrica.

Segmentos y rayos

Hay algunas cosas que es más cómodo trabajar usando una forma de las rectas u otra. Por ejemplo, la definición de segmentos es muy fácil de dar pensando en forma baricéntrica.

Definición. El segmento entre dos puntos $P$ y $Q$ del plano es el conjunto:

$$ \overline{PQ} := \{ rP+sQ : r\geq 0, s\geq 0 \text{ y } r+s=1 \}.$$

La definición es prácticamente igual a la de recta en forma baricéntrica, pero limitando los valores de $r$ y $s$ a números no negativos.

Por otro lado, la definición de rayo es más fácil darla pensando en forma paramétrica.

Definición. El rayo desde un punto $P$ en dirección $Q$ es el conjunto:

$$ \overrightarrow{PQ}:=\{P+rQ: r\geq 0\}.$$

En este caso tenemos prácticamente la definición de recta en forma paramétrica, pero limitando el parámetro $r$ a números no negativos.

Postulados 1 y 3 de Euclides

Si recuerdas, en entradas anteriores se habló de que con esta «nueva» construcción de la geometría (la forma analítica), los postulados de Euclides podían ser demostrados. Ha llegado el momento en el que demostraremos una proposición que fusiona a los postulados 1 y 3.

Proposición. Para cualesquiera dos puntos $P$ y $Q$, se puede trazar el segmento de recta que los une y este segmento se puede prolongar indefinidamente a una recta.

Demostración. Ya dimos una definición de segmento. Notemos que en esta definición tenemos que sus extremos se dan precisamente con $r=0, s=1$, que corresponde al punto $Q$ y con $r=1,s=0$, que corresponde al punto $P$. Además, dicho segmento se queda contenido en la recta baricéntrica por $P$ y $Q$, pues en ella se permiten $r$ y $s$ arbitrarios de suma $1$, mientras que en el segmento sólo se permiten los no negativos.

De esta manera, la recta baricéntrica por $P$ y $Q$ es justo la prolongación del segmento que buscamos. Se prolonga indefinidamente al tomar valores de $r>1$ y valores de $r<0$ tan lejanos como queramos (y la $s$ correspondiente para que sume $1$). Al igual que en el caso paramétrico, se puede mostrar que todos estos puntos son distintos para valores distintos de $r$.

$\square$

Más adelante…

Hasta ahora hemos avanzado lo suficiente para hablar en entradas próximas de algo que se asomaba desde los postulados de Euclides, la intersección de rectas y las rectas paralelas.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • A partir de la forma baricéntrica de una recta, muestra cómo proponer su forma paramétrica $l= \{ Q+r(P-Q): r \in \mathbb{R} \}$. Haz una demostración por doble contención de que esas rectas son iguales.
  • Considera la siguiente recta en forma paramétrica: $L= \{ (5,3)+r(-7,2) : r \in \mathbb{R} \}$. Da una forma baricéntrica para $L$.
  • Para asegurarte que entendiste la interpretación física, realiza los siguientes ejercicios:
    • Imagina que tienes una barra rígida de 2 metros de longitud sobre la cuál tienes colgadas dos masas (una en cada extremo), una de 40 kg y otra de 10 gk. ¿cuáles son las coordenadas baricéntricas del punto de apoyo o de equilibrio de esta barra?
    • Si ahora sabes que el punto de apoyo se encuentra en uno de los extremos de la barra rígida y quieres levantar los 40 kg con la fuerza de otra masa de 10 kg, ¿dónde debes colocar la masa para que esto sea posible? Realiza un dibujo.
  • Dado dos puntos $X$ y $Y$ se define su punto medio como el punto $\frac{X+Y}{2}$. Considera los puntos $A=(-2,9)$, $B=(7,-1)$ y $C=(3,5)$. Encuentra el punto medio $L$ de $B$ y $C$. Encuentra el punto medio $M$ de $C$ y $A$. Encuentra el punto medio $N$ de $A$ y $B$. Da expresiones paramétricas y baricéntricas para las rectas $AL$, $BM$ y $CN$.
  • Para los puntos del problema anterior encuentra ecuaciones para todos los segmentos y rayos que puedas definir.

Álgebra Superior II: Problemas de ecuaciones lineales y cambios de coordenadas en los complejos

Por Claudia Silva

Introducción

En las entradas anteriores platicamos de cómo resolver sistemas de ecuaciones lineales complejos, y de como pasar de coordenadas polares a rectangulares y viceversa. Ahora veremos un método más para resolver problemas de ecuaciones lineales en los complejos en tres variables. Además, haremos problemas de práctica de estos temas.

La regla de Kramer para tres variables

Cuando platicamos de resolver problemas de ecuaciones lineales complejas en dos variables, vimos que si el determinante no era $0$, entonces podíamos dar la solución de manera explícita. A esto se le conoce como la regla de Kramer. Veremos ahora cuál es la versión de esta regla para tres variables. A continuación enunciamos el método, y más abajo, en el video, se explica un poco más a detalle.

Proposición. Consideremos el siguiente sistema lineal de ecuaciones complejas en variables $x$, $y$ y $z$.
\begin{align*}
ax+by+cz&=j\\
dx+ey+fz&=k\\
gx+hy+iz&=l.
\end{align*}

Supongamos que el determinante $\Delta=\begin{vmatrix} a & b & c\\ d & e & f\\ g & h & i \end{vmatrix}$ no es $0$. Entonces, el sistema tiene una única solución, dada por
\begin{align*}
x&=\frac{\begin{vmatrix} j & b & c\\ k & e & f\\ l & h & i \end{vmatrix}}{\Delta},\\
y&=\frac{\begin{vmatrix} a & j & c\\ d & k & f\\ g & l & i \end{vmatrix}}{\Delta},\\
z&=\frac{\begin{vmatrix} a & b & j\\ d & e & k\\ g & h & l \end{vmatrix}}{\Delta}.
\end{align*}

No veremos la demostración de esta técnica, pues es uno de los temas que estudiarás en álgebra lineal con más generalidad. Sin embargo, veremos algunos ejemplos de cómo se aplica.

Problemas de ecuaciones lineales

Para comenzar, resolveremos un sistema de ecuaciones de dos variables.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones:
\begin{align*}
iz+2w&=3+4i\\
2z-iw&=6-3i.
\end{align*}

Pasemos ahora a un ejemplo con tres variables. El el ejemplo 328 del libro Álgebra Superior de Bravo, Rincón, Rincón.

Problema. Resuelve en $\mathbb{C}$ el siguiente sistema de ecuaciones.
\begin{align*}
z_1+z_2+z_3&=6+4i\\
iz_1+(1+i)z_2+(1-i)z_3&=7+4i\\
z_i+iz_2-z_3&=2i.
\end{align*}

El problema está resuelto en los siguientes dos videos.

Problemas de cambio de coordenadas

Finalmente, veremos algunos problemas de cambio entre coordenadas polares y coordenadas rectangulares. Recordemos que la figura clave para cambiar entre coordenadas es la siguiente:

Cambios entre coordenadas polares y rectangulares
Cambio entre coordenadas polares y rectangulares

Problema. Calcula las coordenadas rectangulares del complejo cuyas coordenadas polares son $r=\sqrt{2}$ y $s=45^\circ$, y del complejo cuyas coordenadas polares son $r=3$ y $s=90^\circ$.

Problema. Expresa $7+7i$ y $4+2i$ en coordenadas polares.

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Forma polar y cambios de coordenadas de un complejo

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores comenzamos a hablar acerca de cómo resolver algunas ecuaciones en $\mathbb{C}$. Platicamos de ecuaciones cuadráticas y la fórmula general. Luego, vimos sistemas de ecuaciones lineales y varios métodos para resolverlos. Lo siguiente que haremos será resolver ecuaciones de la forma $z^n=w$, en donde $w$ en $\mathbb{C}$ y $n$ en $\mathbb{N}$ están dados y $z$ es la variable a determinar. Antes de resolver esta ecuación, necesitamos entender mejor la multiplicación en $\mathbb{C}$, y para ello vamos a estudiar la forma polar de un complejo.

En esta entrada comenzaremos recordando las coordenadas rectangulares de un número complejo, además definiremos sus coordenadas polares. Veremos cómo pasar de coordenadas rectangulares a polares de manera biyectiva, con lo cual podremos definir qué es la forma polar.

Más adelante, la forma polar nos ayudará a entender mejor la geometría de la multiplicación y exponenciación en $\mathbb{C}$. Esto será muy útil cuando queramos «sacar raíces $n$-ésimas», lo cual necesitaremos para resolver ecuaciones del estilo $z^n=w$.

De coordenadas rectangulares a coordenadas polares

Tomemos un número complejo $z=x+yi$ y pensémoslo como un punto del plano complejo, es decir, como el punto $(x,y)$ . Diremos que $(x,y)$ son las coordenadas rectangulares de $z$. Es recomendable recordar la siguiente figura, y regresar a ella frecuentemente.

Complejo en forma rectangular y polar
Complejo en forma rectangular y polar

El número complejo $z$ tiene norma $r=\sqrt{x^2+y^2}$. Además, si $z\neq 0$, tenemos que $z$ define un ángulo $\theta$ con el eje real positivo, medido en el sentido contrario al avance de las manecillas del reloj a partir del eje real positivo, al cual le llamaremos el argumento de $z$ y lo denotaremos por $\text{arg}(z)$. Todos los ángulos que manejamos están en radianes.

Sin embargo, este ángulo no es único. El complejo $z$ define al ángulo $\theta$ pero, por ejemplo, también define al ángulo $\theta+2\pi$, pues la suma de $2\pi$ corresponde a dar una vuelta completa alrededor del origen. Por ello, pensaremos que el argumento de $z$ toma todos los valores $$\{\theta+2k\pi:k\in \mathbb{Z}\}.$$ Así, $\text{arg}(z)$ es una multifunción, algo así como una función, pero que toma varios valores. Cuando digamos que un complejo tiene argumento $\theta$, nos referiremos a $\theta$ o cualquier otro ángulo que difiera un múltiplo entero de $2\pi$ Más adelante hablaremos de esto con detalle.

Aunque haya varios ángulos que le correspondan a $z$, hay uno único en el intervalo $[0,2\pi)$.

Definición. Definimos las coordenadas polares de un número complejo $z=x+yi$ como sigue:

  • Si $z=0$, sus coordenadas polares son $(0,0)$.
  • Si $z\neq 0$, entonces tomamos $r=\Vert z \Vert = \sqrt{x^2+y^2}$ y $\theta$ el único ángulo en $[0,2\pi)$ que hace $z$ con el eje real positivo. Las coordenadas polares de $z$ son $(r,\theta)$.

Observa que $r$ siempre es no negativo y es cero si y sólo si $z=0$. Además por trigonometría para el ángulo $\theta$ se cumple que \begin{align*}\sin \theta &= \frac{y}{r}\\ \cos \theta &= \frac{x}{r},\end{align*} lo cual nos da la siguiente forma práctica para encontrar $\theta$:

  • Calculamos $\frac{y}{r}$ o $\frac{x}{r}$ (el que parezca más sencillo).
  • Aplicamos una función trigonométrica inversa para reducir el problema a dos opciones.
  • Elegimos la opción correcta de acuerdo al signo de $x$ o $y$.

Ejemplo. Tomemos al complejo $z=3-3\sqrt{3}i$. Vamos a pasarlo a forma polar. Su norma es $\sqrt{9+27}=\sqrt{36}=6$. Para determinar el ángulo $\theta$ que define con el eje real, podemos notar que $$\cos{\theta}=\frac{3}{6}=\frac{1}{2},$$ así que $\theta = \frac{\pi}{3}$ ó $\theta= 2\pi-\frac{\pi}{3}=\frac{5\pi}{3}$, pues son los únicos ángulos en $[0,2\pi)$ con ese coseno. Como la parte imaginaria es negativa, se da el segundo caso. Por lo tanto, las coordenadas polares de $z$ son $\left(6,\frac{5\pi}{3}\right)$.

$\triangle$

De coordenadas polares a coordenadas rectangulares

También hay una forma de pasar de coordenadas polares a coordenadas rectangulares. En efecto, tomemos un real no negativo $r$ y consideremos la pregunta ¿quienes son los números complejos de norma $r$?

Por un lado, si $r=0$, necesitamos que $x^2+y^2=0^2=0$, de donde $x=y=0$, así que las coordenadas rectangulares deben ser $(0,0)$. Por otro lado, si $r>0$, se necesita que $$x^2+y^2=r^2,$$ lo cual, por el teorema de Pitágoras, define una circunferencia de radio $r$ con centro en el origen.

Circunferencia de complejos de norma r.
Circunferencia de complejos de norma $r$

Si además elegimos un ángulo, $\theta$ en $[0,2\pi)$, que el complejo haga con el eje real, entonces queda determinado de manera única. Supongamos que este complejo es $z=x+yi$

Por trigonometría, tenemos que
\begin{align*}x&=r\cos \theta\\ y &= r\sin \theta.\end{align*}

Problema. Determina en la forma $x+yi$ al número complejo cuyas coordenadas polares son $\left(7,\frac{3\pi}{4}\right)$.

Solución. Usamos las fórmulas obtenidas arriba. Tenemos que

\begin{align*}\\
x&=7\cos \frac{3\pi}{4}=7\cdot \left(-\frac{1}{\sqrt{2}}\right)=-\frac{7}{\sqrt{2}}\\
y &= 7\sin \frac{3\pi}{4}= 7\cdot \frac{1}{\sqrt{2}}=\frac{7}{\sqrt{2}}.
\end{align*}

De este modo, el complejo buscado es el $$-\frac{7}{\sqrt{2}}+\frac{7}{\sqrt{2}}.$$

$\square$

Los cambios de coordenadas son inversos entre sí

La primer sección explica cómo de coordenadas rectangulares podemos pasar a coordenadas polares. La anterior dice cómo pasar de coordenadas polares a rectangulares. Resulta que estas operaciones son inversas la una de la otra como veremos en la siguiente:

Proposición. Si tomamos coordenadas polares $(r,\theta)$ de un complejo, las pasamos a coordenadas rectangulares $(x,y)$ y luego éstas las pasamos a coordenadas polares $(r’,\theta’)$ de nuevo, tenemos que $$(r,\theta)=(r’,\theta’).$$

Demostración. En el caso $r=0$, sólo definimos coordenadas polares con $\theta=0$. Al ir a coordenadas rectangulares vamos al punto $(0,0)$, que de nuevo regresa a polares $(0,0)$. Podemos suponer entonces que $r>0$.

Como mencionamos en la segunda sección, las coordenadas rectangulares correspondientes a $(r,\theta)$ son exactamente $$(x,y)=(r\cos \theta,r\sin \theta).$$ Pasemos este complejo a coordenadas polares $(r’,\theta’)$. Usando la identidad pitagórica $\cos ^2\theta + \sin^2 \theta = 1$, la norma de este complejo es
\begin{align*}
\sqrt{r^2\cos^2\theta+r^2\sin^2 \theta} &= r\sqrt{\cos ^2\theta +\sin^2 \theta}\\
&=r\sqrt{1}\\
&=r,
\end{align*}

lo que prueba $r=r’$. Además, como discutimos en la primer sección, tenemos que
\begin{align*}
\sin \theta’ = \frac{r\sin \theta}{r} = \sin \theta\\
\cos \theta’ = \frac{r\cos \theta}{r}=\cos \theta.
\end{align*}

De esta forma, $\theta$ y $\theta’$ son ángulos en $[0,2\pi)$ con el mismo seno y coseno, lo cual implica $\theta=\theta’$.

$\square$

Corolario. El cambio de coordenadas rectangulares a polares , visto como una función de $$\mathbb{R}\times \mathbb{R}$$ a $$(\mathbb{R}^+\times [0,2\pi))\cup \{(0,0)\}$$ es biyectivo.

La forma polar de un número complejo

En las secciones anteriores pensamos a los complejos como parejas ordenadas. Podemos regresar los resultados obtenidos a la forma $x+yi$ de los complejos para justificar la siguiente definición.

Definición. La forma polar de un número complejo $z=x+yi$ es $z=r(\cos \theta + i\sin \theta)$, donde $(r,\theta)$ son las coordenadas polares de $(x,y)$.

Por costumbre, en la forma polar se pone $i$ antes de $\sin \theta$, a diferencia de la forma rectangular, en donde se pone $i$ después de $y$. A veces en expresiones como las de la forma polar aparecen ángulos $\theta$ fuera del rango $[0,2\pi)$. Podemos hacer las cuentas que necesitemos fuera de este rango sin problema. Al final podemos sumar o restar un múltiplo entero de $2\pi$ para caer en el rango $[0,2\pi)$. Esto no cambia el seno ni coseno del ángulo, por lo que no cambia al número complejo.

Como la expresión $ \cos \theta + i\sin \theta$ se usa mucho, usualmente se abrevia.

Definición. Para un ángulo $\theta$ definimos $\text{cis}(\theta) = \cos \theta + i \sin \theta$.

Problema. Determina la forma polar de los complejos $1$, $-1$, $i$ y $-i$.

Solución. Todos estos números tienen norma $1$. Además, hacen ángulos $0, \pi, \frac{\pi}{2}, \frac{3\pi}{2}$ con el eje real positivo, respectivamente. De esta forma, sus coordenadas polares son
\begin{align*}
(1,0)\quad (1,\pi)\quad\left(1,\frac{\pi}{2}\right)\quad \left(1,\frac{3\pi}{2}\right),
\end{align*}

respectivamente.

De esta forma, la forma polar de cada uno es:
\begin{align*}
1&=\cos 0+i \sin 0=\text{cis} (0)\\
-1&=\cos \pi + i \sin \pi = \text{cis} (\pi) \\
i&=\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} = \text{cis} \left(\frac{\pi}{2}\right)\\
-i&= \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = \text{cis} \left( \frac{3\pi}{2}\right).
\end{align*}

$\triangle$

Una aclaración muy importante es que la forma polar de $z=x+yi$ no es $r+\theta i$. La forma polar es exactamente el mismo número complejo que el original, simplemente escrito de manera diferente.

Si la forma polar de un complejo es exactamente el mismo número que el original, ¿de qué nos sirve tenerlo en coordenadas polares? Resulta que la multiplicación compleja se entiende mucho mejor en términos de la forma polar. En la siguiente entrada veremos esto y cómo lo podemos usar para encontrar potencias de números complejos fácilmente.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina la forma polar de los siguientes complejos: $7-7i$ y $-2+2\sqrt{3}i$.
  2. Determina la forma rectangular de los complejos con coordenadas polares $\left(2,\frac{\pi}{3}\right)$ y $\left(1, \frac{11\pi}{6}\right)$.
  3. Si la forma polar del complejo $z$ es $r\text{cis} \theta$, ¿quién es la forma polar del conjugado?
  4. ¿Cuáles son aquellos números complejos que se obtienen al variar $\theta$ en la forma polar $3\text{cis}(\theta)$?
  5. ¿Qué figura en el plano definen aquellos números complejos que se obtienen al variar $r$ en la forma polar $r\text{cis}(\pi)$?

Puedes practicar más estos temas viendo los videos y haciendo los ejercicios de la página de Khan Academy, de su sección de números complejos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Matrices de cambio de base

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente platicamos de cómo al elegir una base ordenada $B$ de un espacio vectorial $V$ de dimensión finita $n$, podemos expresar a cada uno de sus vectores en términos de «coordenadas», que vienen de los coeficientes de la combinación lineal de elementos de $B$ que da el vector. Así mismo, vimos cómo podemos comenzar con una transformación lineal $T:V\to W$ entre espacios vectoriales $V$ y $W$ y de ahí obtener una «matriz que la represente». Para ello, necesitamos elegir bases ordenadas $B_V$ y $B_W$ de $V$ y $W$ respectivamente. Tanto las coordenadas, como las matrices que representan a transformaciones lineales, dependen fuertemente de las bases ordenadas elegidas. En esta entrada hablaremos de las matrices de cambio de base, pues nos ayudarán a pasar de unas coordenadas a otras.

Siento más concretos, es posible que en algunas aplicaciones de álgebra lineal tengamos una transformación $T:V\to W$, y que los vectores de $V$ o los de $W$ los tengamos que entender en más de una base. Así, los dos siguientes problemas aparecen frecuentemente:

  • Supongamos que tenemos dos bases (ordenadas) $B_1$ y $B_2$ de un espacio vectorial $V$ y que tomamos un vector $v$ en $V$. Si ya sabemos la combinación lineal de elementos de $B_1$ que da $v$, ¿cómo podemos saber la combinación lineal de elementos de $B_2$ que da $v$? En otras palabras, ¿cómo podemos pasar a $v$ de su expresión en base $B_1$ a su expresión en base $B_2$?
  • Supongamos que tenemos una transformación lineal $T:V\to W$ entre dos espacios vectoriales $V$ y $W$, dos bases (ordenadas) $B_1$ y $B_2$ de $V$ y dos bases (ordenadas) $C_1$ y $C_2$ de $W$. Si ya sabemos qué le hace $T$ a los elementos de $V$ en términos de las bases $B_1$ y $C_1$, ¿cómo podemos saber qué hace $T$ en términos de las bases $B_2$ y $C_2$?

La herramienta que necesitamos para responder ambos problemas se le conoce como matrices de cambio de base. El objetivo de esta entrada es definir estas matrices, ver algunas propiedades básicas que cumplen y ver cómo nos ayudan a resolver el primero de los problemas de aquí arriba. En una segunda entrada veremos cómo también sirven para resolver el segundo.

Matrices de cambio de base

Definición. Sea $V$ un espacio vectorial de dimensión $n$ sobre el campo $F$. Sean $B=(v_1,\ldots,v_n)$ y $B’=(v_1′, \ldots, v_n’)$ dos bases ordenadas de $V$. La matriz de cambio de base de $B$ a $B’$ es la matriz $P=[p_{ij}]$ en $M_{n}(F)$ cuya columna $j$ tiene como entradas a las coordenadas de $v_j’$ escrito en términos de la base $B$. En otras palabras, las entradas $p_{1j},\ldots,p_{nj}$ de la $j$-ésima columna de $P$ son los únicos elementos de $F$ para los cuales $$v_j’=p_{1j}v_1+\ldots +p_{nj} v_n,$$ para toda $j=1,2,\ldots,n$.

Ejemplo. Considera la base ordenada $B=(1,x,x^2)$ de $\mathbb{R}_2[x]$, el espacio vectorial de polinomios de coeficientes reales grado a lo más $2$. Veremos que $B’=(3x^2,2x,1)$ es también una base de $\mathbb{R}_2[x]$. Encontraremos la matriz de cambio de base de $B$ a $B’$ y la matriz de cambio de base de $B’$ a $B$.

La dimensión de $\mathbb{R}_2[x]$ es $3$ y $B’$ tiene $3$ elementos, así que basta ver que los elementos de $B’$ son linealmente independientes para ver que $B’$ es base. Una combinación lineal $a(3x^2)+b(2x)+c(1)=0$ es equivalente a que $3ax^2+2bx+c=0$, lo cual sucede si y sólo si $a=b=c=0$. Esto muestra que $B’$ es base.

Para encontrar a la matriz de cambio de base de $B$ a $B’$ lo que tenemos que hacer es escribir a los elementos de $B’$ como combinación lineal de los elementos de $B$. Esto lo hacemos de la siguiente manera (recuerda que el orden es importante):

\begin{align*}
3x^2 &= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2\\
2x &= 0\cdot 1+ 2\cdot x + 0 \cdot x^2\\
1 & = 1\cdot 1 + 0 \cdot x + 0 \cdot x^2.
\end{align*}

Como los coeficientes de $3x^2$ en la base ordenada $B$ son $0$, $0$ y $3$, entonces la primer columna de la matriz de cambio de base será $\begin{pmatrix} 0 \\ 0 \\ 3\end{pmatrix}$. Argumentando de manera similar para $2x$ y $1$, tenemos que la matriz de cambio de base de $B$ a $B’$ es $$\begin{pmatrix}
0 & 0 & 1\\
0 & 2 & 0 \\
3 & 0 & 0
\end{pmatrix}.$$

Para encontrar a la matriz de cambio de base de $B’$ a $B$, expresamos a los elementos de $B$ en términos de la base $B’$ como sigue:

\begin{align*}
1 &= 0 \cdot (3x^2) + 0 \cdot (2x) + 1 \cdot 1\\
x &= 0\cdot (3x^2)+ \frac{1}{2} \cdot (2x) + 0 \cdot 1\\
x^2 & = \frac{1}{3} \cdot (3x^2) + 0 \cdot (2x) + 0 \cdot 1.
\end{align*}

En este caso fue sencillo hacerlo, pero en otros problemas frecuentemente esto se hace resolviendo un sistema de ecuaciones.

De esta manera, tenemos que la matriz de cambio de base de $B’$ a $B$ es $$\begin{pmatrix}
0 & 0 & \frac{1}{3}\\
0 & \frac{1}{2} & 0 \\
1 & 0 & 0
\end{pmatrix}.$$

$\triangle$

Cambio de coordenadas usando matrices de cambio de base

Las matrices de cambio de base nos ayudan a responder la primer pregunta que planteamos al inicio de esta entrada. Si conocemos las coordenadas de un vector en una base, podemos usar la matriz de cambio de base para encontrar las coordenadas del vector en otra base.

Proposición. Sea $V$ un espacio vectorial de dimensión $n$, $B=(v_1,\ldots,v_n)$, $B’=(v_1′,\ldots,v_n’)$ bases ordenadas de $V$ y $P$ la matriz de cambio de base de $B$ a $B’$. Supongamos que el vector $v$ de $V$ se escribe en base $B$ como $$v=c_1v_1+c_2v_2+\ldots+c_nv_n$$ y en base $B’$ como $$v=c_1’v_1’+c_2’v_2’+\ldots+c_n’v_n’.$$ Entonces: $$
P
\begin{pmatrix}
c_1′ \\
\vdots \\
c_n’
\end{pmatrix}=\begin{pmatrix}
c_1 \\
\vdots \\
c_n
\end{pmatrix} .$$

En otras palabras, la matriz $P$ de cambio de base de $B$ a $B’$ manda las coordenadas de un vector en base $B’$ a coordenadas en base $B$ al multiplicar por la izquierda. Ojo: para construir $P$ expresamos a $B’$ en términos de $B$, pero lo que hace $P$ es expresar a alguien de coordenadas en $B’$ a coordenadas en $B$.

Demostración. El vector de coordenadas de $v_j’$ escrito en base $B’$ es el vector canónico $e_j$ de $F^n$. Además, $Pe_j$ es la $j$-ésima columna de $P$, que por construcción es el vector de coordenadas de $v_j’$ en la base $B$. Así, el resultado es cierto para los vectores $v_j’$ de la base $B’$. Para cualquier otro vector $v$, basta expresarlo en términos de la base $B’$ y usar la linealidad de asignar el vector de coordenadas y la linealidad de $P$.

$\square$

Problema. Escribe a los vectores $v_1=(4,3,5,2)$, $v_2=(2,2,2,2)$ y $v_3(0,0,0,1)$ de $\mathbb{R}^4$ como combinación lineal de los elementos de la base $B$ de $\mathbb{R}^4$ conformada por los vectores $(1,0,0,0)$, $(1,1,0,0)$, $(1,1,1,0)$ y $(1,1,1,1)$.

Solución. Conocemos las coordenadas de $v_1,v_2,v_3$ en la base canónica $(1,0,0,0)$, $(0,1,0,0)$, $(0,0,1,0)$, $(0,0,0,1)$. De hecho, el vector de coordenadas de $v_1$ es exactamente $v_1$ (esto es algo que sucede pues estamos trabajando en $\mathbb{R}^4$). Lo que nos estan pidiendo son las coordenadas de $v_1,v_2,v_3$ en la base $B$. Nos gustaría usar la proposición anterior. Para ello, necesitamos encontrar la matriz de cambio de base de $B$ a la base canónica. Escribamos entonces a la base canónica en términos de los vectores de $B$:

\begin{align*}
(1,0,0,0)&=1\cdot (1,0,0,0)+0\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,1,0,0)&= -1\cdot (1,0,0,0)+1\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,1,0)&= 0\cdot (1,0,0,0)-1\cdot (1,1,0,0)+1\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\
(0,0,0,1)&= 0\cdot (1,0,0,0)+0\cdot (1,1,0,0)-1\cdot (1,1,1,0)+1\cdot (1,1,1,1)\\
\end{align*}

A estas coordenadas las ponemos como columnas para encontrar la matriz de cambio de base de $B$ a la base canónica:
$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Para encontrar las coordenadas de $v_1, v_2, v_3$ en términos de la base $B$, basta con multiplicar esta matriz a la izquierda para cada uno de ellos:

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
4 \\
3 \\
5 \\
2
\end{pmatrix} = \begin{pmatrix}
1 \\
-2 \\
3\\
2
\end{pmatrix},$$

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
2 \\2 \\ 2 \\ 2
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ 0\\ 2
\end{pmatrix} $$ y

$$\begin{pmatrix}
1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\0 \\ 0 \\ 1
\end{pmatrix} = \begin{pmatrix}
0 \\0 \\ -1\\ 1
\end{pmatrix}. $$

En efecto, se puede verificar que estos nuevos vectores dan las combinaciones lineales de la base $B$ que hacen a $v_1$, $v_2$ y $v_3$, por ejemplo, para $v_1$ tenemos: $$(4,5,3,2)=(1,0,0,0)-2(1,1,0,0)+3(1,1,1,0)+2(1,1,1,1).$$

$\triangle$

Matrices de cambio de base como la forma matricial de una transformación lineal

A la matriz de cambio de base de $B$ a $B’$ la denotamos por $\text{Mat}_B(B’)$.

Una observación crucial es que podemos pensar a las matrices de cambio de base en un espacio vectorial $V$ justo como formas matriciales correspondientes a una transformación lineal específica. De hecho, la transformación lineal que le corresponde es muy bonita: es la identidad $\text{id}_V$ que manda a cada vector de $V$ a sí mismo.

De manera más concreta, si $B$ y $B’$ son bases de $V$ y $\text{Mat}_B(B’)$ es la matriz de cambio de base de $B$ a $B’$, entonces $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$ A estas alturas tienes todas las herramientas necesarias para demostrar esto.

¿Qué sucede si ahora tenemos tres bases $B$, $B’$ y $B»$ de $V$ y componemos a la identidad consigo misma? Utilizando los argumentos de la entrada anterior, la matriz correspondiente a la composición es el producto de las matrices de cada transformación. Juntando esto con la observación anterior, tenemos la siguiente propiedad para matrices de cambio de base:

$$\text{Mat}_B(B»)=\text{Mat}_{B}(B’)\cdot \text{Mat}_{B’}(B»).$$

Finalmente, ¿qué sucede si en la igualdad anterior ponemos $B»=B$? Al lado izquierdo tenemos la matriz de cambio de base de $B$ a sí misma, que puedes verificar que es la identidad. Al lado derecho tenemos al producto de la matriz de cambio de base de $B$ a $B’$ con la matriz de cambio de $B’$ a $B$. Esto muestra que las matrices de cambio de base son invertibles.

Resumimos todas estas observaciones en la siguiente proposición:

Proposición. Sean $B$, $B’$ y $B»$ bases del espacio vectorial de dimensión finita $V$.

  • La matriz de cambio de base de $B$ a $B’$ corresponde a la matriz de la transformación identidad de $V$ a $V$, en donde el primer $V$ lo pensamos con la base $B’$ y al segundo con la base $B$.
  • El producto de matrices de cambio de base de $B$ a $B’$ y de $B’$ a $B»$ es la matriz de cambio de base de $B$ a $B»$.
  • La matriz de cambio de base de $B$ a $B’$ es invertible, y su inversa es la de cambio de base de $B’$ a $B$.

En la próxima entrada veremos cómo las matrices de cambio de base también nos ayudan a entender transformaciones lineales bajo distintas bases.

Más adelante…

En esta entrada ya vimos cómo cambian las coordenadas de un vector cuando cambiamos de base. Lo que haremos en la siguiente entrada es estudiar cómo cambia la forma matricial de una transformación lineal cuando cambiamos las bases de su espacio vectorial origen y su espacio vectorial destino.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede en el primer ejemplo si multiplicas ambas matrices de cambio de base que encontramos?
  • En el segundo ejemplo, encuentra la matriz de cambio de base de la base canónica a la matriz $B$
  • Considera las cuatro matrices de $2\times 2$ que puedes formar colocando tres unos y un cero. Muestra que estas cuatro matrices forman una base $B$ de $M_{2,2}(\mathbb{R})$. Determina la matriz de cambio de base de $B$ a la base canónica de $M_{2,2}(\mathbb{R})$. Ojo: Una cosa son los elementos del espacio vectorial y otra cosa van a ser las matrices de cambio de base. Como $M_{2,2}(\mathbb{R})$ es de dimensión $4$, la matriz de cambio de base que tienes que determinar en realidad es de $4\times 4$.
  • Da una demostración de que, en efecto $$\text{Mat}_B(B’)=\text{Mat}_{B,B’}(\text{id}_V).$$
  • Verifica que la matriz de cambio de base $B$ a sí misma es la identidad.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»