Archivo de la etiqueta: composición

Álgebra Superior I: Funciones invertibles

Por Guillermo Oswaldo Cota Martínez

Introducción

Anteriormente vimos el concepto de composición entre funciones, que nos permiten saltar entre varios conjuntos de manera sencilla, revisamos algunas de sus propiedades y dimos algunos ejemplos. Ahora nos toca profundizar un poco más en la composición de funciones analizando un caso particular de funciones: las invertibles. Que en términos simples nos permiten deshacer los efectos de las operaciones

Revirtiendo las cosas.

Pensemos por un momento en un cubo rubik, hay distintas técnicas para armarlo, pero por ahora nos enfocaremos en sus movimientos. La forma en que se usa el cubo, es moviendo sus caras hasta que todas las caras tengan un solo color. Imagina que tienes un cubo en tus manos, si mueves la cara que está hasta arriba, tienes dos formas de hacerlo, girar en sentido de las manecillas del reloj y girar en sentido contrario a las manecillas del reloj. No pasa nada si no estás seguro de tu movimiento, pues siempre puedes deshacer un movimiento rotando la misma cara que volteaste en sentido contrario. Incluso si mueves varias caras, podrás regresar al estado original si recuerdas exactamente las caras que volteaste y la dirección, pues para deshacer los movimientos, tendrás que empezar por la última cara que volteaste y deberás girarla al sentido contrario al que le diste vuelta. Por ejemplo esta imagen indica dos movimientos a las caras y la forma de «deshacer» los movimientos.

En la imagen también marcamos los movimientos de mover las dos caras como $f$, por ahora imagínate que ese movimiento de girar las dos caras como lo muestra la imagen, se llama el movimiento $f$. Mientras que el movimiento de deshacerlas se llama $f^{-1}$. Entonces si realizamos primero el movimiento $f$, el movimiento $f^{-1}$ revierte lo que hizo la primera, volviendo al estado inicial. Así es como vamos a pensar en la reversibilidad de las funciones, una manera de «volver a armar» el cubo.

Funciones reversibles

Diremos que una función es reversible si existe una función $f^{-1}:Im(f) \rightarrow X$ tal que $f ^{-1}\circ f = Id$ donde $Id$ es la función identidad, es decir, es la única función que asigna a cada elemento a sí mismo, es decir $Id(x)=x$.

Algunas observaciones de las funciones invertibles. Sea $f:X \rightarrow Y$ una función invertible, entonces:

  • $f$ es inyectiva.

Demostración. Supongamos que no es inyectiva, entonces existen $x_1,x_2 \in X$ distintos tales que $f(x_1) = f(x_2)$. Como $f$ es invertible, entonces existe su función inversa $f^{-1}:Im(f) \rightarrow X$, en donde $$x_1 = f^{-1} \circ f(x_1) = f^{-1} \circ f(x_2) = x_2 $$ Siendo esta una contradicción, pues supusimos que eran distintos elementos. Así, la función es inyectiva.

$\square$

  • $f^{-1}$ es inyectiva.

Demostración. De manera similar a la demostración anterior, si $y_1,y_2 \in Dom(f^{-1})$ son tales que $f^{-1}(y_1) = f^{-1}(y_2)$, se tiene que al ser $f$ inyectiva, $$f(f^{-1}(y_1)) = f(f^{-1}(y_2)) \Rightarrow y_1=y_2$$ Llegando a que $f^{-1}$ es inyectiva.

$\square$

Así, te puedes dar una idea de lo que significan las funciones invertibles. Con estas proposiciones hemos probado además que la función $f^{-1}: Im(f) \rightarrow X$ es una biyección. ¿Te imaginas porqué? Pues resulta que la función $f^{-1}$ también es suprayectiva.

  • $f^{-1} \circ f = f \circ f^{-1}$

Demostración. Sabemos que $f^{-1} \circ f = Id$, entonces bastará demostrar que $f \circ f^{-1} = Id$. Para ello consideremos $y \in Dom(f^{-1})=Im(f) \subset Y$. Supongamos que $$f \circ f^{-1}(y)=w$$. Entonces $$f^{-1}(f \circ f^{-1}(y)) = f^{-1}(w). $$ Como la composición es asociativa, entonces: $$f^{-1}(f \circ f^{-1}(y)) = (f^{-1} \circ f) \circ f^{-1}(y) = f^{-1}(y) = f^{-1}(w)$$ Como $f^{-1}$ es inyectiva, entonces $y=w$

$\square$

  • Sea $g:Im(f) \rightarrow Z$ una función invertible, entonces $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Demostración. Basta notar que por la asociatividad de las funciones:

$$ \begin{align*}
(g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ (f \circ (f^{-1} \circ g^{-1})\\
&= g \circ ((f \circ f^{-1}) \circ g^{-1})\\
&= g \circ (Id \circ g^{-1}) \\
&= g \circ g^{-1} = Id
\end{align*}$$

$\square$

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Demuestra que $f^{-1}$ es suprayectiva.
  2. Demuestra que $Dom(f^{-1})=Im(f)$.
  3. Demuestra que $(f \circ (g \circ h))^{-1} = h^{-1} \circ (g^{-1} \circ f^{-1})$.
  4. Da una condición suficiente para que una función no sea invertible.

Más adelante…

Habiendo pasado por las funciones, su composición, sus propiedades y la inversa, utilizaremos estas definiciones para hablar de el tamaño de los conjuntos. Pues esta definición de funciones nos ayudan a decir «Cuántos elementos tiene un conjunto».

Entradas relacionadas

Álgebra Superior I: Composición de funciones

Por Guillermo Oswaldo Cota Martínez

Introducción

Siguiendo la conversación de las funciones, esta vez hablaremos de la composición de funciones. Este es el concepto que nos permitirá combinar más de una función para crear nuevas funciones siempre que ciertas condiciones se cumplan.

Composiciones en relaciones

Anteriormente ya hemos mencionado que sobre tres conjuntos $X,Y,Z$ se puede definir una relación composición entre dos relaciones $R$ de $x$ en $Y$ y $T$ de $Y$ en $Z$. De manera que la relación $T \circ R$ es aquella que está compuesta de elementos de la forma $(x,z) \in X \times Z$ siempre y cuando exista alguna $y$ de manera que $(x,y) \in R$ y $(y,z) in T$. Así, la relación composición está formada de elementos que pueden ir de $X$ a $Y$ mediante la relación $R$ y de ahí pueden llegar a $Z$ mediante la relación $T$. Veremos a continuación cómo podemos traducir esto a las funciones.

Composiciones en funciones

La composición de funciones será una composición de relaciones, no cambiará la definición, pues las funciones siguen siendo relaciones y hemos establecido toda una base sobre lo que son las relaciones para llegar a hablar de las funciones de forma gradual.

Piensa en el siguiente ejemplo. Supongamos tenemos una máquina $f$ que transforma las horas en minutos y otra máquina $g$ que transforma los minutos en segundos. Cuando a la máquina $f$ le pasamos de entrada «$1$ hora», nos regresará «$60$ minutos». Mientras que cuando le pasamos la entrada «$1$ minuto» a la máquina $g$ esta nos devuelve «60 segundos». Ahora nos preguntamos ¿Hay una forma de convertir las horas en segundos? O dicho de otra forma, ¿Cómo podemos construir una máquina $h$ que convierta las horas en los segundos? Nota que no tenemos directamente la máquina que nos toma las horas y las convierte en segundos, pero sí tenemos una máquina que convierte las horas en minutos y después los minutos en segundos.

Supongamos que tenemos la entrada «1 hora» entonces con la máquina $f$ podemos saber que una hora equivale a $60$ minutos. Enseguida podemos usar la máquina $G$ para saber que que los $60$ minutos equivalen a $3600$ segundos, de manera que esa es la duración de una hora. A esta máquina $h$ le llamamos la composición de $f$ con $g$.

Pensemos a estas máquinas como funciones, si consideramos $H$ como al conjunto de número de horas a considerar ($H=\{1 hr, 2 hrs, 3 hrs, \dots\}$) a $M$ como el conjunto de los minutos ($M =\{1 min, 2 mins, 3 mins, \dots\}$) y a $S$ como el conjunto de los segundos a considerar ($S=\{1 seg, 2 segs, 3 segs, \dots\}$) entonces $f:H \rightarrow M$ y $g: M \rightarrow S$ son funciones que convierten una unidad de tiempo en otra. La función $h : H \rightarrow S$ buscada es justamente la composición de las funciones $g \circ f: H \rightarrow S$.

Nota que si queremos convertir un número de horas $n \in H$ a segundos entonces bastará con notar que $n$ horas son $f(n)$ minutos, y estos a su vez son $g(f(n))$ segundos. Veamos el primer ejemplo. Nota que $f(1 hr)=60 mins$. Entonces $g(f(1hr))=g(60min)=3600segs$. Por lo cual la función que convierte las horas a segundos es componer $f$ con $g$.

Composición de funciones

Gráficamente lo que significa la composición de funciones es la siguiente imagen:

||||

Aquí podemos visualizar la función $g \circ f$ que es la función que va de $X$ a $Z$. En ella, vemos cómo es que la función $f$ va de X a Y, siendo que el dominio de $f$ queda dentro de $Y$, pues por definición, si la función $f$ va de $X$ a $Y$, entonces para cada elemento $x \in X$ sucede que existe $y \in Y$ tal que $f(x)=y$, significando que siempre $Im(f) \subset Y$ , y en nuestro caso en particular, $Y= Dom(g)$, siendo $g$ una función que va de $X$ a $Z$. Quizá lo que no es inmediato es la siguiente contención: $Im(g \circ f) \subset Im(g) \subset Z$.

Proposición. Si $f:X \rightarrow Y $ y $g: Y \rightarrow Z$ entonces $Im(g \circ f) \subset Im(g) \subset Z$

Demostración. Para esta demostración, consideremos $w \in Im(g \circ f) $ y veamos que $w \in Im(g)$. Para ello, notemos que por definición de la composición de funciones, si $w \in. Im(g \circ f)$ entonces existe $x \in X$ tal que $g \circ f(x) = w$. Es decir, $g(f(x))=w$ a su vez, como $f(x) \in Dom(g)$ entonces existe $y$ tal que $f(x)=y$ y $g(y)=w$. Ahora notemos que $y \in Dom(g)$ entonces $g(y) \in Im(g)$, es decir, $w=g(y) \in Dom(g)$. Por otro lado, por definición de función, la imagen de $g$ está contenida en $Z$. De esta manera, se tiene la contención buscada.

$\square$

Vamos a hacer algunas observaciones de esta composición de funciones.

  1. Para componer funciones, la imagen de una función debe estar contenida en el dominio de la otra. Esto significa que si queremos componer $f$ con $g$, debemos saber que todo elemento convertido por $f$ puede ser pasado a $g$. Dicho de otra manera, si queremos convertir horas a segundos, la máquina $f$ convierte las horas a minutos, y la $g$ minutos a segundos, entonces siempre tiene que pasar que $f$ devuelva minutos para poder componerse con $g$, pues acepta nada más minutos como entrada, si $f$ convirtiera horas a días, $g$ lo rechazaría, pues un día no está expresado en términos de minutos.
  2. La composición de funciones es asociativa, es decir, $(g\circ f) \circ h = g \circ (f \circ h)$.

Demostración. Consideremos $f : X \rightarrow Y$, $g : Y \rightarrow Z$ y $h : W \rightarrow X$. Para demostrar que la función es asociativa, deberíamos demostrar que apra algún $x$ arbitrario en el dominio de la composición $(W)$, se cumple que

$$ (g\circ f) \circ h(x) = g \circ (f \circ h)(x) $$

Para ello, llamemos $f \circ h = F$, $g \circ f = G$,$h(x)=y$ y $f(y)=z$. Ahora, nota por un lado que $$ g \ circ (f \circ h)(x) = g \circ F(x) = g(F(x)) = g(z)$$

Por otro lado, $(g \circ f) \circ h(x) = G \circ h(x) = G(y) = g \circ f(y) = g(z)$

Llegando a los mismos resultados, lo que debe significar que las funciones son iguales para $x$, pudiéndose generalizar para cada elemento del dominio de la composición.

$\square$

Tarea moral

Los siguientes ejercicios te ayudarán a repasar los conceptos vistos en esta entrada.

  1. Demuestra que si $f$ es suprayectiva, entonces $Im(g \circ f) = Im(g)$.
  2. Sea $f: \mathbb{R} \ rightarrow \mathbb{R}$ dada por $f(x)=\frac{3x+1}{2}$:
    1. Encuentra $g: \mathbb{R} \ rightarrow \mathbb{R}$ tal que $g \circ f (x)= x$
    2. Demuestra que $g \circ f = f \circ g$
  3. Da condiciones suficientes y necesarias para que $g \circ f$ sea biyectiva.

Más adelante…

Habiendo visto la composición de funciones, estamos listos para dar el siguiente paso y encontrar una clase muy particular de funciones: funciones invertibles, que serán aquellas funciones que podemos «deshacer».

Entradas relacionadas

Teoría de los Conjuntos I: Composición de relaciones

Por Gabriela Hernández Aguilar

Introducción

En esta sección retomaremos el tema de relaciones que vimos en la entrada anterior. Esta vez definiremos una nueva relación a partir de dos relaciones con ciertas características y una operación a la que llamaremos composición. Veremos si la operación composición tiene propiedades como la conmutatividad o la asociatividad.

Definamos la composición

Definición: Sean $r_1$ y $r_2$ relaciones de $A$ en $B$ y de $B$ en $C$ respectivamente. Definimos a la composición de $r_1$ con $r_2$ como el siguiente conjunto:

$r_2\circ r_1=\set{(a,c): \exists b\in B\ tal\ que\ (a,b)\in r_1\ y\ (b,c)\in r_2}$.

Notemos que $r_1$ debe satisfacer que $Im(r_1)\subseteq B$ y $r_2$ es tal que $Dom(r_2)\subseteq B$, debido a que la definición nos pide que exista un puente entre los elementos de $A$ y $C$. El puente que necesitamos que exista para hablar de la composición de relaciones nos lo da el conjunto $B$ ya que algunos de los elementos de $A$ estarán relacionados con elementos de $B$ y los elementos de $B$ están relacionados con algunos de los elementos de $C$.

Aquellos elementos $a$ que satisfagan estar relacionados con algún elemento de $B$, digamos $b$, esto es $ar_1b$ y a su vez $b$ este relacionado con $c$, $br_2c$, serán aquellos que conformen a los elementos de $r_2\circ r_1$ y serán de la forma $a\ r_2\circ r_1\ c$.

Ejemplo:

Sean $X=\set{0,1}$ y $Y=\set{1,2}$ y $Z=\set{1,2,3,4}$ conjuntos. Sean $r_1$ y $r_2$ relaciones de $X$ en $Y$ y de $Y$ en $Z$ definidas como sigue:

$r_1=\set{(0,1), (0,2)}\ y\ r_2=\set{(1,3), (1,4)}$.

Representaremos ambas relaciones de las siguiente formas:

Luego, la composición de $r_2\circ r_1$ resulta ser el siguiente conjunto:

$r_2\circ r_1=\set{(0, 3), (0,4)}$.

Además de notarlo en la imagen anterior, verificamos esto pues para la pareja $(0,3)\in r_2\circ r_1$ existe $1\in Y$ tal que $(0,1)\in r_1$ y $(1,3)\in r_2$. Por su parte, para la pareja $(0,4)\in r_2\circ r_1$ existe $1\in B$ tal que $(0,1)\in r_1$ y $(1,4)\in r_2$.

$\square$

Algunos resultados

A continuación hablaremos acerca de algunos resultados acerca de la composición, la relación inversa y la relación identidad:

Proposición: Si $R$ es una relación en $A$, entonces $R\circ Id_{A}=R$.

Demostración:

Sea $R$ una relación en $A$. Veamos que $R\circ Id_{A}=R$.

$\subseteq$] Sea $(x,z)\in R\circ Id_{A}$, entonces existe $y\in A$ tal que $(x,y)\in Id_{A}$ y $(y,z)\in R$.
Luego, como $(x,y)\in Id_{A}$ se sigue que $x=y$ y así $(y,z)=(x,z)\in R$.

$\supseteq$] Sea $(a,c)\in R$. Como $a,c\in A$, se sigue que $(a,a)\in Id_{A}$. Por lo que existe $a\in A$ tal que $(a,a)\in Id_{A}$ y $(a,c)\in R$. Por lo tanto, $(a,c)\in R\circ Id_{A}$.

Por lo tanto, $R\circ Id_{A}=R$.

$\square$

Proposición: Sea $R$ una relación de $A$ en $B$. Demuestra que $Id_{Im\ R}\subseteq R\circ R^{-1}$.

Demostración:

Sea $(x,y)\in Id_{Im\ R}$, entonces $x,y\in Im\ R$ y son tales que $x=y$. Luego, como $y\in Im\ R$ existe $a\in A$ tal que $(a,y)\in R$, y por definición de relación inversa tenemos que $(y,a)\in R^{-1}$.

Por lo tanto, existe $a\in A$ tal que $(y,a)\in R^{-1}$ y $(a,y)\in R$, esto es $(y,y)\in R\circ R^{-1}$. Así, $Id_{Im\ R}\subseteq R\circ R^{-1}$.

$\square$

Propiedades de la composición

Hemos dicho hasta ahora que la composición es una operación entre dos conjuntos que son relaciones. Por lo que podemos preguntarnos que pasa con la conmutatividad y la asociatividad de la operación. A continuación veremos dos proposiciones que nos dan respuestas a dichas preguntas.

Proposición: Sean $r_1$ y $r_2$ relaciones de $X$ en $Y$ y de $Y$ en $Z$ respectivamente. Muestra que no siempre es posible que $r_1\circ r_2=r_2\circ r_1$.

Demostración:

Consideremos $X=\set{1,2}$, $Y=\set{1,2,3}$ y $Z=\set{1,2,3}$. Sean $r_1=\set{(1,1), (1,2)}$ y $r_2=\set{(1,2),(2,1)}$ relaciones de $X$ en $Y$ y de $Y$ en $Z$ respectivamente.

Por un lado tenemos que

$r_1\circ r_2=\set{(2,1), (2,2)}$

y por otro lado

$r_2\circ r_1=\set{(1,2),(1,1)}$

De modo que $r_1\circ r_2\not=r_2\circ r_1$.

Proposición: Sean $r_1$, $r_2$ y $r_3$ relaciones de $X$ en $Y$, de $Y$ en $W$ y de $W$ en $Z$ respectivamente. Muestra que $(r_3\circ r_2)\circ r_1=r_3\circ (r_2\circ r_1)$.

Demostración:

Sean $r_1$, $r_2$ y $r_3$ relaciones de $X$ en $Y$, de $Y$ en $W$ y de $W$ en $Z$ respectivamente. Tenemos que

$(x,z)\in (r_3\circ r_2)\circ r_1$ si y sólo si

existe $y\in Y$ tal que $(x,y)\in r_1$ y $(y,z)\in r_3\circ r_2 si y sólo si

$(x,y)\in r_1$ y existe $w\in W$ tal que $(y,w)\in r_2$ y $(w,z)\in r_3$ para algún $y\in Y$ si y sólo si

existe $w\in W$ tal que $(x,w)\in r_2\circ r_1$ y $(w,z)\in r_3$ si sólo si
$(x,z)\in r_3\circ(r_2\circ r_1)$.

Por lo tanto, $(r_3\circ r_2)\circ r_1=r_3\circ (r_2\circ r_1)$.

$\square$

Hemos probado que la composición de relaciones es asociativa y a su vez concluimos que en general no conmuta.

Tarea moral

  1. Demuestra que si $R$ es una relación arbitraria, $R\circ \emptyset=\emptyset=\emptyset\circ R$.
  2. Prueba que si $R$ es una relación en $A$, entonces $R=Id_{A}\circ R$.
  3. Sea $R$ una relación de $A$ en $B$. Demuestra que $Id_{Dom\ R}\subseteq R^{-1}\circ R$.
  4. Sean $A= \set{1,2,3}$, $B=\set{1,2}$ y $C=\set{1,2,3,4}$. Sean $r_1=\set{(1,2), (3,1)}$ y $r_2=\set{(1,4), (2,1), (2,3)}$ relaciones de $A$ en $B$ y de $B$ en $C$ respectivamente. Calcula $r_2\circ r_1$.

Más adelante

Estudiaremos un tipo especial de relaciones, llamadas relaciones de equivalencia, las cuales nos permitirán estudiar con mayor facilidad a un nuevo conjunto pues lo dividiremos en partes que cumplan ciertas características.

Enlaces

En el siguiente enlace podrás encontrar más información referente al tema de composición de funciones:

Geometría Analítica I: Grupos de transformaciones

Por Paola Berenice García Ramírez

Introducción

En la primera entrada de esta unidad [1a entrada] indicamos que serán muy importantes tanto las propiedades de los vectores como los lugares geométricos vistos en las primeras dos unidades, pues serán de vital apoyo para comprender los tipos de transformaciones que estaremos viendo.

En la entrada anterior [2a entrada] contemplamos los conceptos necesarios de las funciones que nos ayudaron a definir formalmente a una transformación. En ésta entrada vamos a comenzar por dos conjuntos: $\Delta_{2}$ y $\Delta_{3}$, las propiedades que cumplen y que nos ayudarán a comprender la definición de un grupo. Ambos conjuntos son los ejemplos más representativos de los grupos de transformaciones: los grupos simétricos de orden n. Pretendemos dar a conocer el tema en éste primer curso de Geometría Analítica de forma introductoria; pero puede profundizarse en asignaturas más avanzadas de la carrera universitaria, una de ellas es Álgebra Moderna en la Teoría de Grupos.

El conjunto $\Delta_{2}$

Antes que nada nos pondremos de acuerdo en la notación que vamos a usar: $x \mapsto y$ nos indicará que al elemento $x$ le corresponde el elemento $y$ bajo la función correspondiente.

El primero conjunto que conoceremos tiene dos elementos $\{ 0,1 \}$, a quien identificaremos por $\Delta_{2}$ y se lee «delta-dos». ¿Cuáles son las funciones de $\Delta_{2}$ en sí mismas? Primero tenemos a

\begin{align*}
0 & \xmapsto{id} 0\\
1 & \mapsto 1\\
\end{align*}

a quien llamaremos por $id$ (identidad de $\Delta_{2}$); porque al elemento $0$ le corresponde él mismo y al elemento $1$ le corresponde él mismo. La siguiente función es

\begin{align*}
0 & \xmapsto{\rho} 1\\
1 & \mapsto 0\\
\end{align*}

que denotamos por $\rho$. ¿Qué ocurre si recurrimos a la función composición $\rho \circ \rho$? Si comenzamos con $0$ sabemos bajo $\rho$ que $\rho (0) = 1$, por ello

\begin{align*}
(\rho \circ \rho)(0) &= \rho [\rho (0)]\\
& = \rho (1) = 0.\\
\end{align*}

Y si comenzamos con $\rho (1)$, en forma análoga obtendremos $(\rho \circ \rho)(1) = 1$. Podemos darnos cuenta que $\rho$ es su propio inverso, pues $(\rho \circ \rho = id)$.

Otra forma en que podemos trabajar la composición de funciones es siguiendo los elementos mediante una tablita. Vamos a ver que $\rho \circ \rho = id$ como sigue:

\begin{align*}
0 & \xmapsto{p} 1 \xmapsto{p} 0\\
1 & \mapsto 0 \mapsto 1\\
\end{align*}

donde colocamos la función correspondiente sobre cada flecha entre los elementos y nos damos cuenta que los elementos iniciales coinciden con las imágenes finales bajo la composición. Entonces concluimos que se cumple $\rho \circ \rho = id$.

Tenemos otras dos funciones:

\begin{align*}
0 & \xmapsto{C_{0}} 0 \hspace{0.2cm} & 0 \xmapsto{C_{1}} 1\\
1 & \mapsto 0 \hspace{0.18cm} &1 \mapsto 1\\
\end{align*}

e independientemente del elemento inicial, bajo $C_{0}$ corresponde el elemento $0$ y bajo $C_{1}$ corresponde el elemento $1$. Tanto $C_{0}$ como $C_{1}$ se consideran funciones constantes; mientras que las únicas transformaciones que contemplaremos de $\Delta_{2}$ son $ id $ y $ \rho $.

El conjunto $\Delta_{3}$

Ahora consideremos al conjunto $\Delta_{3} := \{ 0,1,2 \}$ e indicaremos las funciones de $\Delta_{3}$ en sí mismo bajo la notación

\begin{align*}
0 & \mapsto x\\
1 & \mapsto y\\
2 & \mapsto z
\end{align*}

donde $x, y, z \in \Delta_{3}$. Como $x, y, z \in \Delta_{3}$ son imágenes arbitrarias, habrán $3^3 = 27$ funciones, pero sólo 6 serán transformaciones. Vamos a explicar porqué sólo 6 transformaciones: puesto que queremos biyectividad, al elegir a $0$ y corresponderle su imagen, entonces al $1$ le podrán corresponder sólo $2$ opciones y a su vez, cuando llegamos al $2$, ya sólo le podrá corresponder $1$ opción. En resumen, en la primera posición hay $3$ opciones, en la segunda hay $2$ opciones y en la tercera sólo $1$ y el número de transformaciones será de $3 \times 2 \times 1 = 6$.

Las primeras 3 transformaciones que veremos son:

\begin{align*}
&0 \xmapsto{id} 0 &0 \xmapsto{\rho_{1}} 1& \hspace{0.2cm} &0 \xmapsto{\rho_{2}} 2\\
&1 \mapsto 1 &1 \mapsto 2 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 2 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 1
\end{align*}

De hecho a las 6 transformaciones las visualizaremos como las «simetrías» de un triángulo equilátero. Las primeras 3 corresponden a rotaciones (la identidad es quien rota $0$ grados). Diremos que $\rho_{1}$ y $\rho_{2}$ son inversas, pues $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$ (vamos a dejar esta relación como ejercicio de la tarea moral, para practicar). Es decir, con cualquier elemento inicial, la imagen de la composición será el mismo elemento inicial. Esto quiere decir que una rotación rotará $120°$ en una dirección y al aplicar la segunda rotación rota $120°$ pero en dirección contraria. Los triángulos correspondientes son:

También se cumple que $\rho_{1} \circ \rho_{1} = \rho_{2}$, pues

\begin{align*}
0 & \xmapsto{\rho_{1}} 1 \xmapsto{\rho_{1}} 2\\
1 & \mapsto 2 \mapsto 0 \\
2 & \mapsto 0 \mapsto 1
\end{align*}

Entonces decimos que cumple la siguiente definición:

Definición. Sea $f$ cualquier transformación, decimos que

\begin{equation*}
f^{n} = f \circ f \circ \cdots \circ f,
\end{equation*}

es decir, $f^{n}$ es $f$ compuesta consigo misma n veces.

En nuestro ejemplo, escribiremos que se cumple entonces la relación $\rho_{1}^{2} = \rho_{2}$. Por otro lado, para $\Delta_{3}$ tenemos otras 3 transformaciones llamadas transposiciones que geométricamente las visualizamos como reflexiones y son:

\begin{align*}
&0 \xmapsto{\alpha} 0 & 0 \xmapsto{\beta} 2 & \hspace{0.2cm} & 0 \xmapsto{\gamma} 1\\
&1 \mapsto 2 &1 \mapsto 1 & \hspace{0.2cm} &1 \mapsto 0\\
&2 \mapsto 1 &2 \mapsto 0 & \hspace{0.2cm} &2 \mapsto 2
\end{align*}

El triángulo que representa a estas transformaciones es:

Las direcciones de la flecha dependerán de cada transformación. Ahora vamos a probar una relación que cumple $ \alpha, $ la cual es:

Demostrar que se cumple $\alpha^{2} = id$.

Demostración. En efecto, recordemos que $ \alpha^{2} = \alpha \circ \alpha$, así que desarrollaremos el seguimiento de elementos a través de la composición $\alpha \circ \alpha$ como sigue:

\begin{align*}
0 & \xmapsto{\alpha} 0 \xmapsto{\alpha} 0\\
1 & \mapsto 2 \mapsto 1 \\
2 & \mapsto 1 \mapsto 2
\end{align*}

y observemos que al final de la composición obtuvimos $\alpha^2 (0)=0$, $\alpha^2 (1)=1$, $\alpha^2 (2)=2$ y con ello vemos que $\alpha^{2}=id.$

$\square$

En la sección de tarea moral dejaremos unos ejercicios de práctica sobre más relaciones que cumplen $\alpha$, $\beta$ y $\gamma$; como son $\alpha^2 = \beta^2 = \gamma^2 = id$, $\alpha \circ \beta = \rho_{1}$ y que $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.

A continuación vamos a definir a un conjunto de transformaciones que cumplen ciertas propiedades interesantes y para ejemplificar a dicho conjunto retomaremos uno de los conjuntos vistos en esta entrada.

Grupos de transformaciones

Definición. A un conjunto $G$ de transformaciones de un conjunto $A$ le llamaremos un grupo de transformaciones de $A$ si cumple:

  1. $id_{A} \in G$
  2. $f,g \in G \longrightarrow g \circ f \in G$
  3. $f \in G \longrightarrow f^{-1} \in G$

Como ejemplos, tomemos a $A$ como $A = \Delta_{3}$. Sabemos que tiene 6 elementos, pero un grupo de transformaciones es el de las rotaciones ya que contiene a la identidad $(1)$, es cerrado bajo la composición $(2)$ y es cerrado bajo inversas $(3)$.

Otro grupo de transformaciones de $A=\Delta_{3}$ es el de las transposiciones (o reflexiones) junto con la identidad.

Definición. Dado un conjunto cualquiera de transformaciones de $A$, el grupo que genera es el grupo de transformaciones obtenido de todas las posibles composiciones con elementos de él o sus inversos.

Como ejemplo de un grupo que genera tenemos a $\alpha$ y $\beta$ ya que generan todas las transformaciones de $\Delta_{3}$.

También $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$ ( porque $\rho^{3} = id$, $\rho_{1}$ y $\rho^{2} = \rho_{2}$).

Para terminar con esta entrada daremos un concepto adicional. Si te llamaron la atención los conjuntos $\Delta_{2}$ y $\Delta_{3}$ y quieres saber más de ellos o si hay más conjuntos similares, la respuesta es sí. Pertenecen a un conjunto de transformaciones, el cual definiremos a continuación:

Definición. Al conjunto de todas las transformaciones de un conjunto con $n$ elementos $\Delta_{n} := \{ 0, 1, \cdots, n-1 \}$ se le llama grupo simétrico de orden $n$ y se le denota $S_{n}$. Dicho grupo tiene $n! = n \times (n-1) \times (n-2 ) \cdots \times 2 \times 1$ ($n$ factorial) elementos a los cuales se le llaman permutaciones.

Tarea moral

  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\rho_{1}$ y $\rho_{2}$ que vimos en esta entrada, demostrar que $\rho_{1}$ y $\rho_{2}$ son inversas, es decir:
    1. $\rho_{1} \circ \rho_{2} = \rho_{2} \circ \rho_{1} = id$
  • Considerando el conjunto $\Delta_{3}$ y sus transformaciones $id$, $\alpha$, $\beta$ y $\gamma$ que vimos en esta entrada, demostrar que se cumplen las relaciones siguientes:
    1. $\alpha^2 = \beta^2 = \gamma^2 = id$. [Sugerencia: Hacer cada composición por separado].
    2. $\alpha \circ \beta = \rho_{1}$
    3. $\alpha \circ \beta \circ \alpha = \beta \circ \alpha \circ \beta = \gamma$.
  • Demuestren que $\rho_{1}$ genera el grupo de rotaciones de $\Delta_{3}$. [Sugerencia: Demuestren que se cumplen las relaciones $\rho^{3} = id$, y $\rho^{2} = \rho_{2}$), porque $\rho_{1}$ es un elemento de dicho grupo de rotaciones].

Más adelante

En esta entrada vimos que en el conjunto $\Delta_{3}$ hay dos posibles grupos de transformaciones: el de las rotaciones y el de las transposiciones junto con la identidad. Mediante triángulos pudimos visualizar el comportamiento que hay en los elementos iniciales y sus imágenes; con ello se comprende porque están en cada grupo.

En la siguiente entrada continuaremos con un primer grupo de transformaciones en los \mathbb{R}, que es de las transformaciones afines, que tiene una muy buena relación con un lugar geométrico que ya hemos visto: las rectas. La entrada [Rectas en forma paramétrica] de la Unidad 1 nos podrá ayudar como repaso si lo requerimos.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso:

Geometría Analítica I: Recordatorio de funciones

Por Paola Berenice García Ramírez

Introducción

En la entrada anterior [Enlace entrada anterior] se introdujo la esencia del concepto de transformaciones y que estaremos viendo diversos tipos de transformaciones, pero para que no trabajemos en un espacio desconocido, en ésta entrada hablaremos de nociones básicas de funciones que debemos tener presentes para luego definir formalmente el concepto de qué es una transformación.

Funciones

Sean $E$ y $F$ dos conjuntos no vacíos, denominaremos función de un conjunto $E$ en un conjunto $F$ (o función definida en $E$ con valores en $F$) a una regla o ley $f$ que a todo elemento $x \in E$ le pone en correspondencia un determinado elemento $f(x) \in F$.

Al conjunto de los elementos $x \in E$ les llamamos dominio o argumento de la función $f$ y normalmente su notación es $Dom(f)$. Al conjunto de los elementos $f(x) \in F$ le llamamos rango o imagen y se denota por $Im(f)$. Además se encuentra el conjunto $F$ del contradominio, el cual contiene al rango.

A una función la designamos por lo general con la letra $f$ o con el símbolo $f: E \longrightarrow F$, que nos señala que $f$ aplica el conjunto $E$ en $F$. También podemos emplear la notación $x \mapsto f(x)$ para indicarnos que al elemento $x$ le corresponde el elemento $f(x)$. Cabe mencionar que en la mayoría de los casos las funciones se definen mediante igualdades, las cuales describen la ley de correspondencia.

Ejemplo 1. Podemos decir que la función $f$ está definida mediante la igualdad $f(x) = \sqrt{ x^2 + 1}$, $x \in [a,b]$. Si $y$ es la notación general de los elementos del conjunto $F$, o sea $F = \{y\}$, la aplicación $f: E \longrightarrow F$ se escribe en forma de la igualdad $y = f(x)$, y decimos entonces que la función se encuentra dada en su forma explícita.

Ejemplo 2. Mediante la siguiente imagen vamos a obtener $Domf$, $Imf$ y el $Codf$.

Podemos ver que $Domf$ es el conjunto formado por $\{1, -2, 2, -3, 3, 4\} $. La $Imf$ es $\{2, -4, 4, -6, 6, 8\}$ y el $Codf$ es $\{-2,2,-4,4,-6,6,8,-8\}$. Podemos darnos cuenta que no necesariamente la $Imf$ debe coincidir siempre con el $Codf$.

Ejemplo 3. Sea la función definida por la ecuación $y = \sqrt{3 – 9x}$. Debido a que la función es una raíz cuadrada, $y$ es función de $x$ sólo para $3-9x \geq 0$; pues para cualquier $x$ que satisfaga esta desigualdad, se determina un valor único de $y$. Procedemos a resolver la desigualdad:

\begin{align*}
3-9x & \geq 0,\\
3 & \geq 9x,\\
\dfrac{3}{9} & \geq x,\\
\dfrac{1}{3} & \geq x.
\end{align*}

Sin embargo si $x > \dfrac{1}{3}$, obtenemos la raíz cuadrada de un número negativo y en consecuencia no existe un número real $y$. Por tanto $x$ debe estar restringida a $\dfrac{1}{3} \geq x $. Concluimos que el $Domf$ es el intervalo $\left(- \infty, \dfrac{1}{3}\right]$ y la $Imf$ es $[0, + \infty).$

Gráfica de $f(x) = \sqrt{3-9x}$

Función inyectiva, sobreyectiva y biyectiva

Definición. Una función $f: E \longrightarrow F$ se denomina:

  • Inyectiva si $f(x) = f(x’)$ implica que $x = x’$. Otra forma de expresarlo es que no existen dos elementos de $E$ con una misma imagen ($x \neq x $ implica que $f(x) \neq f(x’)$).
  • Suprayectiva o sobreyectiva si $\forall y \in F$ existe $x \in E$ tal que $f(x)=y$. Es decir que todos los elementos del conjunto $F$ son imagen de algún elemento de $E$.
  • Biyectiva si la función cumple ser inyectiva y suprayectiva.

Problema 1. Consideren la función $f: \mathbb{R} \longrightarrow \mathbb{R} $ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio y si es biyectiva.

Solución. Veamos el dominio de la función, para que la función racional $f(x) = \dfrac{3x-1}{x+3}$ no se indetermine debe cumplirse que:

\begin{align*}
x+3 & \neq 0,\\
x & \neq -3,\\
\therefore Domf & = \mathbb{R} – \{-3 \}.\\
\end{align*}

Ahora veamos si $f$ es biyectiva. Sean $a,b \in \mathbb{R} – \{ -3 \}$, para que $f$ sea inyectiva debe cumplir que $f(x) = f(x’)$ implica que $x = x’$, por ello:

\begin{equation*}
f(a) = f(b) \hspace{0.5cm} \Longrightarrow \hspace{0.5cm} \dfrac{3a-1}{a+3} = \dfrac{3b-1}{b+3}.\\
\end{equation*}

Resolviendo:

\begin{align*}
(3a-1)(b+3) &= (3b-1)(a+3),\\
3ab + 9a – b -3 &= 3ab +9b -a -3,\\
10a &= 10b,\\
a &= b.
\end{align*}

Por tanto $f$ es inyectiva. Ahora veamos si $f$ es suprayectiva, sean $x, y \in E$ entonces:

\begin{align*}
f(x) = f(y) \hspace{0.5cm} &\Longrightarrow \hspace{0.5cm} y = \dfrac{3x-1}{x+3},\\
\end{align*}

Resolviendo

\begin{align*}
y(x+3) &= 3x-1,\\
yx +3y &= 3x-1,\\
yx-3x &= -3y-1,\\
x(y-3) &= -3y-1,
\end{align*}

y despejando a $x$

\begin{align*}
x &= \dfrac{-3y-1}{y-3},\\
x &= \dfrac{3y+1}{3-y},
\end{align*}

y como $3-y \neq 0$, entonces $y \neq 3$. En consecuencia $y \in \mathbb{R} – \{3 \}$. Pero al estar definida $f$ por $f: \mathbb{R} \longrightarrow \mathbb{R}$, tenemos que $f$ no es suprayectiva.

\begin{align*}
\therefore f \text{ no es biyectiva}.
\end{align*}

Composición de funciones y funciones inversas.

Definición. Dadas las funciones $f: A \longrightarrow B$ y $g: B \longrightarrow C$ , donde la imagen de $f$ está contenida en el dominio de $g$, se define la función composición $(g \circ f): A \longrightarrow C$ como $(g \circ f)(x) = g(f(x)),$ para todos los elementos $x$ de $A$.

La composición de funciones se realiza aplicando dichas funciones en orden de derecha a izquierda, de manera que en $(g \circ f)(x)$ primero actúa la función $f$ y luego la $g$ sobre $f(x)$.

Ejemplo 4. Sean las funciones $f$ y $g$ tales que $f(x)=x+1$ y $g(x) = x^2 +2$, calcularemos las funciones composición $(g \circ f)(x)$ y $(f \circ g)(x)$. Tenemos para $(g \circ f)(x)$

\begin{align*}
(g \circ f)(x) = g[f(x)] &= g(x+1),\\
&= (x+1)^2 + 2,\\
&= x^2 +2x +1 +2,\\
&= x^2 + 2x +3.
\end{align*}

Y para $(f \circ g)(x)$

\begin{align*}
(f \circ g)(x) = f[g(x)] &= f(x^2+2),\\
&= (x^2 + 2) + 1,\\
&= x^2 + 3.\\
\end{align*}

Observemos que la composición no es conmutativa pues las funciones $(f \circ g)$ y $(g \circ f)$ no son iguales.

Definición. Llamaremos función inversa de $f$ a otra función $f^{-1}$ que cumple que si $f(x)=y$, entonces $f^{-1}(y)=x$.

Sólo es posible determinar la función inversa $f^{-1}: B \longrightarrow A$ si y sólo si $f: A \longrightarrow B$ es biyectiva.

Notemos que la función inversa $f^{-1}: B \longrightarrow A$ también es biyectiva y cumple:

\begin{align*}
f^{-1}(f(x)) &= x, \hspace{0.2cm} \forall x \in A,\\
f(f^{-1}(y)) &= y, \hspace{0.2cm} \forall y \in B.
\end{align*}

Dicho de otro modo,

\begin{align*}
f^{-1} \circ f &= id_{A},\\
f \circ f^{-1} &= id_{B},
\end{align*}

donde $id_{A}$ e $id_{B}$ son las funciones identidad de $A$ y $B$ respectivamente. Es decir, son las funciones $id_{A}: A \longrightarrow A$ definida por $id_{A}(x) = x$ e $id_{B}: B \longrightarrow B$ definida por $id_{B}(y) = y$.

Concepto formal de transformación

Ahora hemos llegado a la definición de nuestro interés.

Definición. Una transformación en un plano A es una función biyectiva $f: A \longrightarrow A$ del plano en sí mismo.

Llamaremos transformación en el plano, a toda función que hace corresponder a cada punto del plano, otro punto del mismo.

Tarea moral

Vamos a realizar unos par de ejercicios para repasar y practicar los conceptos que vimos en esta entrada.

Ejercicio 1. Consideren la siguiente función $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = \dfrac{3x-1}{x+3}$ y determinen su dominio, si ella es inyectiva, suprayectiva y la inversa de $f$.

Ejercicio 2. Sean $f: X \longrightarrow Y$ y $g: Y \longrightarrow Z$ funciones, demuestren que

(1) Si $f$ y $g$ son inyectivas, entonces $g \circ f$ es inyectiva.

(2) Si $g \circ f$ es suprayectiva, entonces $g$ es suprayectiva.

Más adelante

En esta entrada vimos las nociones básicas de funciones que nos llevaron a definir formalmente el concepto de una transformación. Dicho concepto nos permitirá comenzar a trabajar en la siguiente entrada con unos primeros conjuntos cuyas propiedades hacen que tengan un nombre especial: los grupos de transformaciones.

Enlaces

  • Página principal del curso:
  • Entrada anterior del curso:
  • Siguiente entrada del curso: