Archivo de la etiqueta: analítica

Geometría Analítica II: Cilindros sobre cónicas

Por Brian Manzano

Introducción

Con esta entrada comenzamos nuestra exploración de los objetos en el espacio de tres dimensiones. Lo primero que haremos es estudiar los cilindros que se construyen sobre cónicas. La mayoría de nosotros tiene una noción bastante buena sobre ellos, o por lo menos los «cilindros usuales», en donde las secciones horizontales son círculos. Sin embargo, si bien entendemos muy bien su forma de manera intuitiva, ¿cómo los podemos representar en el lenguaje matemático?

A continuación definiremos qué entenderemos por un cilindro sobre una cónica. Veremos algunos ejemplos y luego haremos cilindros con objetos que hemos estudiado en el curso de Geometría Analítica I: con cónicas.

Definición de cilindros sobre curvas

Los cilindros que conocemos de manera intuitiva comienzan con una circunferencia y luego esta se extiende sin cambios a lo largo de un eje. Los cilindros con los que nos encontramos cotidianamente se extienden sólo de manera acotada. Pero podemos pensar en qué sucedería si los extendemos indefinidamente. Si hacemos esto, llegamos a la siguiente definición.

Definición. Un cilindro es una superficie en $\mathbb{R}^3$ que se pueda obtener tomando un plano $\Pi$, tomando en él una curva $\mathcal{C}$ y tomando para cada punto $p$ de $\mathcal{C}$ una recta ortogonal a $\Pi$ que pase por $p$. La unión de estas rectas son el cilindro. A cada una de las rectas le llamamos una directriz del cilindro y a la curva $\mathcal{C}$ le llamamos la generatriz del cilindro.

Con esta definición podemos ver un poco de lo que por intuición conocemos viendo a un cilindro como un conjunto de lineas paralelas que se encuentran delimitadas por una curva plana, imaginemos esto como dibujar sobre papel una curva sobre la cual después pegaremos palos perpendiculares a la hoja

Cilindros a partir de cónicas

Para dar algunos ejemplos, podemos tomar una familia de curvas muy conocida: las cónicas. Ya que podemos elegir con libertad la curva plana, pensemos en usar alguna de las cónicas que conocemos. Para simplificar la situación, supondremos que dibujamos la cónica en el plano XY y entonces que las directrices son perpendiculares al plano XY, es decir, paralelas al eje Z.

Ya fijando estas ideas, podemos construir los siguientes cilindros basados en cónicas.

Cilindros elípticos

Se obtienen a partir de una curva dada por ecuaciones del siguiente tipo: $$ \frac{(x-x_{0})^2}{a^2}+\frac{(y-y_{0})^2}{b^2} =1.$$

De tener $a=b$, tendremos un cilindro circular desplazado debido a $x_{0} y y_{0}$ pero paralelo al eje z, tendremos algo muy similar si remplazamos $x,y$ por$ x,z$ o$ y,z4 siendo solo la orientación la que cambia, pues tendremos nuestra curva en un diferente plano.

Cilindros parabólicos

Para estos, necesitamos una curva dada por una ecuación del siguiente tipo: $$ (y-y_{0})^2 = 2p(x-x_{0}).$$

tendremos de igual manera que el eje esta desplazado pero es paralelo al eje $z$, análogamente tendremos para los distintos planos.

Cilindros hiperbólicos

La curva base de un cilindro hiperbólico es una hipérbola. Entonces, tiene una ecuación del estilo $$\frac{(x-x_{0})^2}{a^2}-\frac{(y-y_{0})^2}{b^2} =1.$$

tendremos también desplazado pero paralelo al eje $z$, y podemos ver lo mismo para los otros casos donde la curva este en otro plano.

Problemas ejemplo de cilindros

Veamos algunos ejemplos de cilindros a partir de cónicas.

Ejemplo. Tomemos el lugar geométrico de los puntos $(x,y,z) \in $ $\mathbb{R} ^3$ que cumplen con la siguiente ecuación: $$\frac{x^2}{4}+\frac{y^2}{25} = 1.$$

Podemos comenzar detectando la ausencia de la variable $z$, con lo que las generatrices serán rectas paralelas al eje $z$, o de otra forma podemos ver que el eje del cilindro será el eje $z$, (esto no siempre ocurre ya que no necesariamente su centro se encontrara en el origen, pero debido a que no tenemos constantes que acompañen los valores $x$ o $y $ su centro no se encontrará desplazado), extendiendo un poco mas el análisis podemos ver que su ecuación se asemeja a la de un cilindro elíptico.

¿Qué nos dicen los valores $4,25$ que acompañan a sus variables correspondientes ?Con todo en mente veamos su gráfica

Veamos desde otra perspectiva, no solo sobre el plano, sino con una vista incluyendo el otro eje coordenado obtenemos la siguiente gráfica.

Ejemplo. Tomemos el lugar geométrico en $\mathbb{R}^3$ de los puntos $(x,y,z)$ que cumplen la siguiente ecuación: $$y^2=6x.$$

De manera muy similar notamos que la ausencia de la variable $z$ llevara a que su directriz se encuentre en el plano $XY$ de forma que vista desde este plano:

¿Puedes decir a que cónica pertenece esta gráfica?

Agregando la perspectiva con el eje faltante obtenemos:

Nota importante. Como habrás notado al graficar obtenemos estas representaciones que parecen estar cortadas o seccionadas por planos paralelos al $XY$ , en realidad estos cilindros se extienden sin límite.

Ejemplo. Para la siguiente ecuación: $$\frac{z^2}{4}-\frac{y^2}{9} = 1,$$ ¿cuál es el lugar geométrico de los puntos $(x,y,z)$ en $\mathbb{R}^3$ que la cumplen?

Notemos ahora que además de representar otro tipo de cónica tenemos ahora un cambio importante, ya no contamos de manera explicita con la $y$ en la ecuación, ¿Qué cambios conllevara esto? ¿En que plano podremos observar la cónica correspondiente?

Veamos si tu intuición fue correcta

Gráfica de la ecuación en el plano YZ

Desde otra perspectiva donde podremos ver su profundidad, tenemos ahora que las generatrices se extienden desde $- \infty$ hasta $\infty$.

Más adelante…

En esta primer entrada del curso hablamos de los primeros objetos geométricos de tres dimensiones que nos interesan: los cilindros con cierta curva generatriz. En la siguiente entrada veremos otra manera con la cual podemos crear un objeto de tres dimensiones a partir de rectas: las superficies de revolución. Un poco más adelante estudiaremos una versión más general de objetos que podemos obtener de esta manera: los conjuntos cero de ecuaciones de segundo grado en tres variables.

Tarea moral

Estos ejercicios te ayudaran a comprender de mejor forma los conceptos vistos.

  1. Reescribe las ecuaciones de los ejemplos que dimos para que sus directrices se encuentren en diferentes planos.
    Sugerencia: Nota qué pasa con el tercer ejemplo.
  2. Ahora que hemos cambiado los planos donde se encuentran las directrices, grafica estas ecuaciones, ¿Cómo cambian los cilindros? Realiza un cambio de variable para el segundo ejemplo haciendo el reemplazo $x\to x-3$. ¿Qué cambia? ¿pasa lo mismo para el primer ejemplo?
  3. Determina la ecuación para un cilindro parabólico cuya parábola directriz esté contenida en el plano XY y cuyo foco sea el punto $(2, 0)$ de este plano. Hay varias de estas parábolas. Puedes usar la que gustes.
  4. Gráfica los cilindros asociados a cada una de las siguientes ecuaciones:
    1. $x^2-z^2=0$.
    2. $(y-9)^2+(z-4)^2=0$.
    3. $x^2=y$.

Entradas relacionadas

Geometría Analítica I: Teoremas de clasificación de polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Nos hemos estado preparando para enunciar formalmente los resultados de clasificación que nos dirán «cómo son todas las cónicas algebraicamente», o bien que nos dirán «cómo se ven conjuntos de ceros de cualquier polinomio cuadrático en dos variables». En una entrada anterior hablamos de qué es un resultado de clasificación en matemáticas. Después, definimos con toda precisión cuáles son los objetos que clasificaremos: los polinomios cuadráticos en dos variables y las curvas cuadráticas. Finalmente, establecimos las nociones de equivalencia afín y equivalencia isométrica que usaremos para dar nuestra clasificación.

En esta entrada finalmente enunciaremos con toda precisión los teoremas de clasificación que nos interesan. La demostración de estos teoremas no es directa, así que nos tomará algunas entradas más preparar la teoría necesaria para poder hacerlo.

Teoremas de clasificación isométrica

Los primeros teoremas que demostraremos serán bajo la equivalencia dada por las isometrías. Daremos teoremas para clasificar tanto polinomios cuadráticos en dos variables, como curvas cuadráticas.

El resultado para PCDVs es un poco más abstracto. La clasificación es un poco aparatosa, pues habrá muchos posibles parámetros involucrados. Pero tiene la ventaja de que es el que podremos demostrar a partir de las técnicas de matrices que ya conocemos y de algunas más que desarrollaremos sobre la marcha.

El resultado para curvas cuadráticas es muy intuitivo, pues lo podemos pensar en términos puramente geométricos: nos dirá que cualquier curva cuadrática se puede llevar, sin alterar su métrica, a una curva cuadrática mucho más fácil de describir, que viene de una «lista corta» de posibilidades. Como las transformaciones permitidas son las isometrías, esto es lo que más se parece a nuestro entendimiento de «ser la misma figura».

Veamos qué dice cada resultado. El primer teorema clasifica PCDVs a través de isometrías.

Teorema. Cualquier polinomio cuadrático en dos variables es isométricamente equivalente a exactamente alguno de los siguientes polinomios:

  1. A algún polinomio de la forma $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1$ para $a\geq b$ reales distintos de cero
  2. A algún polinomio de la forma $\frac{x^2}{a^2}-\frac{y^2}{b^2}-1$ para $a\geq b$ reales distintos de cero
  3. A algún polinomio de la forma $y^2-cx$ para $c$ real distinto de cero
  4. A algún polinomio de la forma $c^2x^2-y^2$ para $c$ real distinto de cero
  5. A algún polinomio de la forma $c^2x^2-1$ para $c$ real disinto de cero
  6. Al polinomio $x^2$
  7. A algún polinomio de la forma $c^2x^2+y^2$ para $c$ real distinto de cero
  8. A algún polinomio de la forma $\frac{x^2}{a^2}+\frac{x^2}{b^2}+1$ para $a,b$ reales distintos de cero
  9. A algún polinomio de la forma $c^2x^2+1$ para $c$ real distinto de cero

El segundo teorema clasifica curvas cuadráticas bajo isometrías, y será un corolario del teorema anterior.

Teorema. Cualquier curva cuadrática del plano es isométricamente equivalente a exactamente una de las siguientes:

  1. A alguna elipse canónica con centro en $(0,0)$ y focos en el eje $x$
  2. A alguna hipérbola canónica con centro en $(0,0)$ y focos en el eje $x$
  3. A alguna parábola canónica de vértice $(c,0)$ y directriz $y=-c$
  4. A dos rectas que se intersectan en el origen
  5. A dos rectas paralelas de la forma $x=c$ y $x=-c$
  6. A la recta $x=0$
  7. Al origen $(0,0)$
  8. Al conjunto vacío

Teoremas de clasificación afín

Después de realizar la clasificación isométrica, agrandaremos un poco el conjunto de transformaciones que usaremos: permitiremos utilizar cualquier transformación afín. Al hacer esto, tenemos más transformaciones y por lo tanto deberíamos esperar que nuestra clasificación tenga menos posibilidades. En efecto este es el caso.

De hecho, la razón por la cual hacemos esto es que al permitir a todas las transformaciones afines nuestros polinomios cuadráticos en dos variables (o curvas cuadráticas) quedan clasificadas en muy muy pocos tipos: una cantidad finita. A continuación enunciamos los resultados concretos.

El primer teorema es para polinomios cuadráticos en dos variables.

Teorema. Cualquier polinomio cuadrático en dos variables es afínmente equivalente a exactamente uno de los siguientes polinomios:

  1. $x^2+y^2-1$
  2. $x^2-y^2-1$
  3. $y^2-x$
  4. $x^2-y^2$
  5. $x^2+1$
  6. $x^2$
  7. $x^2+y^2$
  8. $x^2+y^2+1$
  9. $x^2+1$

¡Este resultado es fantástico! Existen muchísimas expresiones de la forma $Ax^2+Bxy+Cy^2+Dx+Ey+F$ y el teorema anterior nos dice que, en realidad, podemos «resumirlas» únicamente en nueve posibilidades muy fáciles de enunciar.

Como corolario, obtendremos el segundo resultado para clasificación mediante transformaciones afines: el correspondiente a las curvas cuadráticas.

Teorema. Cualquier curva cuadrática del plano es afínmente equivalente a exactamente una de las siguientes posibilidades:

  1. La circunferencia unitaria
  2. La hipérbola unitaria
  3. La parábola unitaria
  4. Las rectas $y=x$ y $y=-x$
  5. Las rectas $x=1$ y $x=-1$
  6. La recta $x=0$
  7. El origen
  8. El conjunto vacío

Una vez más, es increible que existiendo tantísimas curvas cuadráticas en el plano, sea posible resumirlas a tan solo ocho posibilidades.

Y, ¿por qué sirve esta clasificación?

En el transcurso de las siguientes entradas nos encontraremos con muchas situaciones concretas en las que clasificar una cónica será de utilidad. Mientras tanto discutimos esto de manera un poco informal. Imagina que comenzamos con el siguiente polinomio cuadrático en dos variables: $$P((x,y))=x^2-5xy-y^2+2x-y+5.$$

Tras hacer una figura en el plano usando alguna herramienta computacional, obtenemos que la curva cuadrática definida por $P$ se ve como en la siguiente figura.

Parece ser que esta es una hipérbola. Una de las ventajas del teorema de clasificación isométrica de curvas cuadráticas es que nos dirá que, en efecto, esto es una hipérbola. De hecho, tendremos una manera práctica de encontrar de manera explícita la transformación $T$ que manda el polinomio $P$ que define esta hipérbola $\mathcal{H}$ a un polinomio isométricamente equivalente $P’$ de una hipérbola canónica $\mathcal{H}’$.

¿Cuáles son los focos de $\mathcal{H}$? ¿Cuál es el centro de $\mathcal{H}$? ¿Cuál es la longitud de sus ejes? Esto no se aprecia claramente a partir del polinomio $P$. Sin embargo, la hipérbola $\mathcal{H}’$ tiene ecuación canónica, así que en $P’$ podemos leer fácilmente los focos, ejes y centro de $\mathcal{H’}$. Y luego usando precisamente la transformación $T$ podemos transferir esta información que sabemos de $\mathcal{H}’$ a $\mathcal{H}$. Por ejemplo, usando que $T$ es isometría obtenemos que $\mathcal{H}$ y $\mathcal{H}’$ tienen la misma longitud de ejes.

Más adelante…

En las siguientes entradas nos enfocaremos en demostrar los teoremas de clasificación aquí enunciados. Antes de hacer esto, debemos desarrollar un poco más de teoría. Por un lado, necesitamos comprender cómo las traslaciones nos pueden ayudar a «eliminar los términos lineales» de algunos polinomios cuadráticos. Luego, necesitamos comprender cómo las rotaciones nos pueden ayudar a «eliminar el término cruzado $xy$».

Las traslaciones las podremos entender fácilmente. Sin embargo, las rotaciones que «eliminan el término cruzado» requierirán que entendamos un nuevo procedimiento para matrices simétricas: el de diagonalizarlas. Esto nos llevará a discutir los eigenvalores, eigenvectores y el polinomio característico de la matriz.

Tarea moral

  1. Demuestra que cualesquiera dos segmentos del plano son afínmente equivalentes.
  2. Demuestra que cualesquiera dos rectángulos del plano son afínmente equivalentes.
  3. Resuelve los siguientes incisos:
    1. Prueba que dos cuadrados del plano son isométricamente equivalentes si y sólo si tienen la misma longitud de lado.
    2. Demuestra que cualquier cuadrado es isométricamente equivalente a algún cuadrado de vértices $(0,0)$, $(c,0)$, $(0,c)$ y $(c,c)$ para $c>0$.
    3. Demuestra que el cuadrado de vértices $(0,0)$, $(c,0)$, $(0,c)$ y $(c,c)$ tiene diagonal de longitud $\sqrt{2}c$.
    4. Usa todo lo anterior para demostrar que en cualquier cuadrado de lado $c$ se tiene que la diagonal mide $\sqrt{2}c$.
  4. En el teorema de clasificación afín de PCDV tenemos que cualquier PCDV es afínmente equivalente a exactamente una de las posibilidades enunciadas. En particular, esto implica que de esos nueve polinomios, no hay dos de ellos que sean afínmente equivalentes entre sí. Demuestra esto.
  5. Enuncia y demuestra un teorema de clasificación isométrico y un teorema de clasificación afín para triángulos en el plano.

Entradas relacionadas

Geometría Analítica I: Polinomios cuadráticos y curvas cuadráticas

Por Leonardo Ignacio Martínez Sandoval

Introducción

Lo primero que queremos determinar en un problema de clasificación es cuáles son los objetos que clasificaremos. En esta entrada los definimos con toda precisión: serán los polinomios cuadráticos en dos variables y las curvas cuadráticas.

Los primeros son expresiones algebraicas que mezclan a dos variables $x$ y $y$ mediante sumas y productos, pero teniendo grado dos. Las segundas son aquellos conjuntos del plano en donde se anula un polinomio cuadrático.

Polinomios cuadráticos en dos variables

Comencemos con una definición algebraica.

Definición. Un polinomio cuadrático en dos variables $P$ es una función $P:\mathbb{R}^2\to \mathbb{R}$ de la forma $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F,$$ para algunos reales $A,B,C,D,E,F$, en donde alguno de $A$, $B$ ó $C$ es distinto de cero.

En ocasiones, para abreviar «polinomio cuadrático en dos variables» simplemente usaremos las siglas «PCDV».

Ejemplo. Todas las expresiones que aparecen en las cónicas canónicas que hemos estudiado son PCDVs. Por ejemplo, la ecuación canónica de la elipse $$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$$ puede reescribirse como $$b^2x^2+a^2y^2-a^2b^2=0.$$ Del lado izquierdo de esta igualdad tenemos un PCDV. De manera similar, la ecuación canónica de la parábola $y^2=4px$ puede reescribirse como $y^2-4px=0$. Una vez más al lado izquierdo nos aparece un PCDV.

$\square$

Ejemplo. Si consideramos las dos rectas $3x+5y+1=0$ y $2x-2y+1=0$ y «multiplicamos» sus ecuaciones, entonces obtenemos de nuevo un PCDV pues el producto es:

\begin{align*}
(3x+5y+1)(2x-2y+1)&=6x^2-6xy+3x+10xy-10y^2+5y+2x-2y+1\\
&=6x^2+4xy-10y^2+5x+3y+1.
\end{align*}

$\square$

Curvas cuadráticas

Cuando tenemos una expresión algebraica que depende de dos variables $x$ y $y$, entonces podemos preguntarnos por cómo es la figura geométrica que se obtiene al considerar los puntos $(x,y)$ del plano que hacen que la expresión algebraica sea igual a cero. Un ejemplo de esto es cuando consideramos las expresiones del estilo $Ax+By+C$. Las parejas $(x,y)$ que hacen que esta expresión sea igual a cero forman una recta en el plano. En efecto, forman la recta en forma normal dada por la ecuación $(A,B)\cdot (x,y)=-C$, como puedes verificar.

Esta idea es mucho más general. A partir de los polinomios cuadráticos en dos variables también podemos hacernos la misma pregunta: ¿cómo se ven las parejas $(x,y)$ que anulan un polinomio cuadrático? La respuesta será importante, así que las figuras que se construyen así les damos su propio nombre.

Definición. Una curva cuadrática es el conjunto de puntos $(x,y)$ del plano que anulan a un polinomio cuadrático en dos variables $P$. En otras palabras, es un conjunto de la forma $$\mathcal{C}:=\{(x,y)\in \mathbb{R}^2: Ax^2+Bxy+Cy^2+Dx+Ey+F = 0\}.$$

A $P$ le llamamos el polinomio asociado a $\mathcal{C}$. A $\mathcal{C}$ le llamamos la curva descrita (o dada) por $P$. Quizás usaremos terminología un poco distinta, pero que siga dejando evidente que $P$ y $\mathcal{C}$ están relacionados.

Ejemplo. Ya hemos estudiado anteriormente algunas curvas cuadráticas: las cónicas canónicas. Por ejemplo, si tomamos el PCDV $P((x,y))=4x^2-9y^2-36$ y nos preguntamos para cuáles parejas $(x,y)$ esto es igual a cero, como respuesta tenemos que son aquellas parejas $(x,y)$ tales que $ 4x^2-9y^2-36=0$, lo cual podemos reescribir como $$\frac{x^2}{9}-\frac{y^2}{4}=1.$$ Esta es la hipérbola canónica de semieje mayor $3$ y semieje menor $2$. Podemos verla en la siguiente figura.

$\square$

Ejemplo. ¿Qué sucede si nos fijamos en la curva descrita por el polinomio cuadrático en dos variables $$ 6x^2+4xy-10y^2+5x+3y+1$$ que construimos en un ejemplo anterior? Si recuerdas, obtuvimos este polinomio cuadrático en dos variables a partir de multiplicar dos expresiones. De esta forma, tenemos que $$ 6x^2+4xy-10y^2+5x+3y+1=0$$ si y sólo si $$ (3x+5y+1)(2x-2y+1) =0.$$ Pero el producto de dos cosas es igual a cero si y sólo si alguna es igual a cero. Así, alguna de las expresiones $3x+5y+1$ y $2x-2y+1$ debe ser igual a cero. Si la primera es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_1$ de ecuación $(3,5)\cdot (x,y) = -1$. Si la segunda es cero, entonces $(x,y)$ es un punto en la recta normal $\ell_2$ de ecuación $(2,-2)\cdot(x,y) = -1$. Así, la curva cuadrática descrita por el PCDV es la unión de $\ell_1$ con $\ell_2$. Podemos verla en la siguiente figura.

$\square$

Forma matricial de polinomios cuadráticos en dos variables

Cuando trabajamos con rectas, nos convenía tener varias formas de expresarlas: la forma paramétrica ayudaba a determinar fácilmente el paralelismo, la forma baricéntrica nos daba fórmulas sencillas para los puntos medios, la forma normal nos permitía encontrar distancias, etc. Así mismo, cuando trabajamos con polinomios cuadráticos en dos variables es de ayuda tener más de una expresión.

Podemos reescribir un polinomio cuadrático en dos variables $$P((x,y))=Ax^2+Bxy+Cy^2+Dx+Ey+F$$ de una manera más compacta usando multiplicación matricial. Para ello, definimos $$M=\begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix}, k=\begin{pmatrix} D \\ E \end{pmatrix}, v=\begin{pmatrix} x \\ y \end{pmatrix}.$$ Con esta notación, e interpretando a las matrices de $1\times 1$ como reales, tenemos que $P$ se puede reescribir de la siguiente manera: $$P(v)=v.$$

En efecto, al realizar las operaciones en el lado derecho obtenemos:

\begin{align*}
v^t M v + k^t v + F &=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} A & \frac{B}{2} \\ \frac{B}{2} & C \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} D & E \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + F\\
&=\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} Ax + \frac{B}{2} y \\ \frac{B}{2} x + C y \end{pmatrix} + Dx + Ey + F\\
&=Ax^2 + Bxy + Cy^2+Dx+Ey+F.
\end{align*}

Observa que cuando pasamos un polinomio cuadrático en dos variables a forma matricial entonces siempre obtenemos una matriz $M$ simétrica.

Ejemplo. La forma matricial del PCDV que encontramos anteriormente $$6x^2+4xy-10y^2+5x+3y+1$$ es

$$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 6 & 2 \\ 2 & 10 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 5 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 1.$$

nota que el coeficiente de $xy$ se tuvo que dividir entre $2$ para llegar a las entradas de la matriz. Es importante recordar esto al pasar de la forma en coordenadas a la forma matricial.

$\square$

En caso de ser necesario, también podemos pasar fácilmente de la forma matricial de un polinomio cuadrático en dos variables a su forma en coordenadas.

Ejemplo. Si comenzamos con el polinomio cuadrático en dos variables con forma matricial $$ \begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} – 1, $$

entonces su forma en coordenadas es $$2x^2-2xy+3y^2 – 3y -1.$$

Observa que las entradas $-1$ fuera de la diagonal principal de la matriz al salir se duplican para conformar el coeficiente de $xy$. Es importante recordar esto al pasar de forma matricial a forma en coordenadas.

$\square$

Más adelante…

En esta entrada definimos qué son los polinomios cuadráticos en dos variables y qué son las curvas cuadráticas.

Por un lado, mencionamos que todas las ecuaciones de cónicas canónicas que hemos visto tienen polinomios cuadráticos en dos variables. ¿Será que todas las ecuaciones de cónicas también tienen polinomios cuadráticos en dos variables? Por otro lado, vimos que algunas curvas cuadráticas son cónicas. Pero nos pasó algo un poco raro: en un ejemplo salieron dos rectas que se intersectan, que quizás estrictamente no pensamos como una cónica usual (elipse, hipérbola, parábola).

¿Cómo serán todas las curvas cuadráticas? ¿Serán sólo las cónicas usuales y algunas excepciones o podrán tener formas muy extrañas? Eso lo estudiaremos después.

También en esta entrada vimos la forma matricial de un polinomio cuadrático en dos variables. De momento, no hemos hablado de la utilidad que tiene pensar a un PCDV así. Sin embargo, en la siguiente entrada veremos que esta expresión es fundamental para ver qué sucede cuando «combinamos» un polinomio cuadrático con una transformación afín.

Tarea moral

  1. Usa alguna herramienta tecnológica (como GeoGebra) para trazar las curvas cuadráticas descritas por los siguientes polinomios cuadráticos en dos variables:
    • $x^2-2xy+3y^2+x-5y+7$
    • $3y^2+5y+x$
    • $x^2+y^2-5x-5y+3$
    • $xy-x-y+7$
    • $-x^2+2xy-3y^2-x+5y-7$
  2. Sea $P:\mathbb{R}^2\to \mathbb{R}$ dada por $P((x,y))=(Ax+By+C)(Dx+Ey+F)$. Demuestra que $P$ es un polinomio cuadrático en dos variables. Luego, demuestra que:
    1. Si $AE-BD\neq 0$, entonces la curva cuadrática dada por $P$ es la unión de dos rectas que se intersectan.
    2. Si $AE-BD=0$, entones la curva cuadrática dada por $P$ es la unión de dos rectas paralelas (no necesariamente distintas).
  3. Demuestra que la intersección de una recta con una curva cuadrática sólo puede ser:
    1. Vacía,
    2. Un punto,
    3. Dos puntos, o
    4. Una infinidad de puntos.
  4. Demuestra que cualquier curva cuadrática $\mathcal{C}$ puede ser descrita a través de una infinidad de polinomios cuadráticos en dos variables.
  5. Considera la gráfica de la función $f(x)=\sin(x)$. ¿Será que esta gráfica es una curva cuadrática? Intenta demostrar por qué sí o por qué no.

Entradas relacionadas

Elegir notación efectiva

Por Leonardo Ignacio Martínez Sandoval

HeuristicasPara que las matemáticas realmente simplifiquen las cosas y no las compliquen más, una de las cosas que se necesita es tener una notación adecuada.

En esta serie de videos veremos algunos ejemplos en los cuales elegir variables adecuadas o una representación adecuada del problema puede ayudar en la solución del problema o bien simplifica algunas cuentas.

Ir a los videos…