Archivo del Autor: Elsa Fernanda Torres Feria

Geometría Analítica I: Producto interior y el ortogonal canónico

Introducción

Continuando la conexión con la geometría Euclidiana con la que empezamos, hay un concepto en la geometría analítica que se conecta con la noción de ángulo, la de distancia y la de norma en la primera geometría mencionada, el producto interior. Dentro del contenido de esta entrada esta su definición en una dimensión de $2$ o mayor, ejemplos y sus propiedades. También, se discute el concepto del vector ortogonal canónico, que en conjunción con el producto interior, sirve como herramienta para detectar ciertas caracterísitcas de rectas y vectores.

Producto interior

Abramos esta entrada con la definición de este nuevo concepto.

Definición. Si tenemos dos vectores $u=(u_1,u_2)$ y $v=(v_1,v_2)$ en $\mathbb{R}^2$, el producto interior (o producto punto) en $\mathbb{R}^2$ de $u$ con $v$, está dado por

$u\cdot v := (u_1,u_2) \cdot (v_1,v_2) = u_1v_1 +u_2 v_2$

Esta definición se puede expresar en dimensiones mayores.

Definición. Si tenemos dos vectores $u=(u_1,u_2, \dots, u_n)$ y $v=(v_1,v_2, \dots, v_n)$ en $\mathbb{R}^n$, el producto interior (o producto punto) en $\mathbb{R}^n$ de $u_1$ con $u_2$, está definido como

\begin{align*}
u\cdot v : &= (u_1,u_2, \dots, u_n) \cdot (v_1,v_2, \dots, v_n) \\
&= u_1v_1 +u_2 v_2+u_3 v_3 + \dots + u_n v_n \\
&= \sum _{j=1} ^{n} u_j v_j
\end{align*}

Es importante notar que el resultado del producto interior (que es una operación vectorial), es un escalar.

Ejemplos:

1. Sean los vectores $(5,3)$ y $(2,-4)$ en $\mathbb{R}^2$, el producto interior de estos es

\begin{align*}
(5,3) \cdot (2,-4)&=5(2)+3(-4)\\
&=10-12\\
&=-2
\end{align*}

2. Sean los vectores $(-3,1,-1)$ y $(-6,2,-3)$ en $\mathbb{R}^3$, el producto interior de estos es

\begin{align*}
(-3,1,-1) \cdot (-6,2,-3)&=-3(-6)+1(2)+(-1)(-3)\\
&=18+2+3\\
&=23
\end{align*}

3. Sean los vectores $(1,0,-5,2,0,1)$ y $(0,-6,0,0,2,0)$ en $\mathbb{R}^6$, el resultado de su producto interior es cero, verifíca.

Ahora que hemos definido una nueva operación, nos gustaría demostrar algunas propiedades asociadas a esta.

Teorema. Para todos los vectores $u,v,w \in \mathbb{R}^n$ y para todo número $t \in \mathbb{R}$ se cumple que

  1. $u \cdot v = v \cdot u$
  2. $u \cdot (tv)=t(u\cdot v)$
  3. $u \cdot (v + w)= u \cdot v + u \cdot w$
  4. $u \cdot u \geq 0$
  5. $u \cdot u =0 \Leftrightarrow u=(0,0)$

La primera propiedad nos dice que el producto interior es conmutativo; la siguiente que la operación saca escalares; la tercera expresa que esta abre sumas; la cuarta que al hacer el producto interior de un vector consigo mismo, el resultado es siempre mayor o igual a cero la última que la igualdad a cero sólo sucede cuando el vector $u$ es el vector cero.

Demostración

Haremos la demostración para vectores en $\mathbb{R}^2$, (el caso para dimensión $n$ es análogo) y usaremos los axiomas de los números reales.

Para empezar definamos los vectores $u=(u_1,u_2)$, $v=(v_1,v_2)$ y $w=(w_1,w_2)$ en $\mathbb{R}^2$

1. P. D. $u \cdot v = v \cdot u$. Comencemos con la definición y desarrollemos a partir de ella

\begin{align*}
u \cdot v &=(u_1,u_2) \cdot (v_1,v_2)\\
&=u_1v_1+u_2v_2 \\
&=v_1u_1+v_2u_2 \\
&=(v_1,v_2) \cdot (u_1,u_2)\\
&=v \cdot u
\end{align*}

$\therefore$ $u\cdot v= v \cdot u$

2. P.D. $u \cdot (tv)=t(u\cdot v)$

\begin{align*}
u \cdot (tv)&=(u_1,u_2) \cdot t(v_1,v_2) \\
&= (u_1,u_2) \cdot (tv_1,tv_2) \\
&= u_1(tv_1)+u_2(tv_2)\\
&= t(u_1v_1+u_2v_2) \\
&=t(u_1,u_2) \cdot (v_1,v_2)\\
&= t (u \cdot v)
\end{align*}

$\therefore u \cdot (tv)=t(u\cdot v)$

3. P.D. $u \cdot (v + w)= u \cdot v + u \cdot w$

\begin{align*}
u \cdot (v + w)&=(u_1,u_2) \cdot ((v_1,v_2) + (w_1,w_2)) \\
&= (u_1,u_2) \cdot (v_1+w_1,v_2+w_2) \\
&=u_1(v_1+w_1)+u_2(v_2+w_2) \\
&=u_1v_1+u_1w_1+u_2v_2+u_2w_2 \\
&=u_1v_1+u_2v_2+u_1w_1+u_2w_2 \\
&=(u_1v_1+u_2v_2)+(u_1w_1+u_2w_2) \\
&=((u_1,u_2)\cdot(v_1,v_2)) + ((u_1,u_2) \cdot (w_1,w_2)) \\
&= u \cdot v + u \cdot w
\end{align*}

$\therefore$ $u \cdot (v + w)= u \cdot v + u \cdot w$

4 y 5. P.D. $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

\begin{align*}
u \cdot u&=(u_1,u_2) \cdot (u_1,u_2) \\
&= u_1u_1+u_2u_2\\
&= u_1^2 + u_2^2 \geq 0
\end{align*}

La última relación se da ya que es una suma de números al cuadrado y cada término por sí sólo es mayor o igual a cero.

Resulta que si $u_1 \neq 0$ ó $u_2 \neq 0$, entonces $u_1^2 + u_2^2 > 0$, por lo que el único caso en el que se da la igualdad a cero es cuando $u=(0,0)$.

$\therefore$ $u \cdot u \geq 0$ y $u \cdot u =0 \Leftrightarrow u=(0,0)$

$\square$

Lo usado en esta demostración se restringe a los axiomas de los reales y la definición del producto interior, por lo que aunque no haya mucha descripción, espero que te sea clara.

El ortogonal canónico

Definición. Sea $v=(x,y)$ un vector en $\mathbb{R}^2$, el vector ortogonal canónico a v es el vector

$v^{\perp}=(-y,x)$

Si te das cuenta, esta definición hace referencia a lo que sucede al aplicar el ortogonal a un vector. Además, esta definición define al ortogonal canónico, pero no significa que sea el único vector perpendicular (ortogonal) a $v$.

Antes de definir o probar más cosas relacionadas al ortogonal, hagámos algunas observaciones.

Observación: Si aplicamos 4 veces el ortogonal a un vector $v$, regresamos al mismo vector:


$v^{\perp}=(x,y)^{\perp}=(-y,x)$

$(-y,x)^{\perp}=(-x,-y)$

$(-x,-y)^{\perp}=(y,-x)$

$(y,-x)^{\perp}=(x,y)$

Observación: Para cualquier $v=(x,y) \in \mathbb{R}^2$, tenemos que

$v \cdot v^{\perp} =(a,b) \cdot (-b,a)=a(-b)+b(a)=-ab+ab=0$

Para continuar, usemos el producto interior para definir y probar ciertas cosas con relación al compadre ortogonal.

Definición. Diremos que dos vectores $u,v \in \mathbb{R}^2$ son perpendiculares (ortogonales) si $u \cdot v=0$.

Proposición. Sea $u \in \mathbb{R}^2$ $\{ 0\}$. Entonces

$\{x \in \mathbb{R}^2 : x \cdot u =0\}=L_{u_{\perp}}:=\{ru^{\perp}: r \in \mathbb{R}\}$

Demostración

Como queremos comprobar una igualdad de conjuntos, hay que probar la doble contención. Comencemos con la contención $\supseteq$.

$\supseteq$ En esta contención, queremos demostrar que cualquier vector de la forma $ru^{perp}$ es tal que

$(ru^{\perp}) \cdot u=0$

Tomemos un vector de la forma $ru^{\perp}$ con $r \in \mathbb{R}$ y notemos que gracias a la segunda propiedad del producto interior se cumple que

$(ru^{\perp}) \cdot u = r(u^{\perp} \cdot u)= r(0)=0 $

Esto es suficiente para la demostración de la primera contención, pues hemos probado que el producto interior de cualquier vector de la forma $ru^{\perp}$ con $u$ es cero.

$\subseteq$ Para esta contención, queremos demostrar que los vectores $x$ que cumplen $x \cdot u =0$, son de la forma $x=r u^{\perp}$. Para esto, tomemos un vector $x=(r,s)$ que cumpla la primera condición y expresemoa al vector $u$ con sus coordenadas $u=(u_1,u_2)$. Al realizar el producto interior obtenemos

$x \cdot u=(r,s) \cdot (u_1,u_2)=ru_1+su_2=0 $

$\Rightarrow ru_1= -su_2 \cdots (a) $

Dado que $u \neq (0,0)$, al menos una de sus entradas es distinta de cero. Supongamos que $u_1 \neq 0$, entonces podemos despejar $r$

$r=\frac{-su_2}{u_1}$

Podemos sustituir este valor en $x$ y desarrollar para obtener

\begin{align*}
x=(r,s)&=\left( \frac{-su_2}{u_1},s \right)=s\left( \frac{-u_2}{u_1}, 1 \right) \\
&=s \left( \frac{-u_2}{u_1}, \frac{u_1}{u_1} \right) \\
&=\frac{s}{u_1} \left( -u_2, u_1 \right)
\end{align*}

Y ya está el primer caso, pues sabemos que $u^{\perp}=( -u_2, u_1)$.

Así, $x \in \mathbb{R}^2$ tal que $x \cdot u=0$,es de la forma $ru^{\perp}$, con r un escalar.

En el caso en el que $u_2 \neq 0$, tenemos algo análogo. A partir de $(a)$ podemos despejar $s$

$ ru_1= -su_2$

$s=\frac{-ru_1}{u_2}$

Al sustituir en $x$ y desarrollar obtendremos que

$x=\frac{r}{-u_2}(-u_2,u_1)$

$\square$

Aplicaciones del produto punto

Para cerrar esta entrada, usemos el producto interior para describir algunas características de las rectas y vectores.

Definición. Diremos que dos líneas $l_1$ y $l_2$ son perpendiculares si al escribirlas en forma paramétrica

$l_1=\{ p_1+rq_1 : r \in \mathbb{R} \}$

$l_2=\{ p_2+rq_2 : r \in \mathbb{R} \}$

se tiene que $q_1 \cdot q_2 =0$, esto es si sus vectores dirección son ortogonales.

Proposición. Dos vectores $u$ y $v$ son paralelos si y sólo si $u$ y $v^{\perp}$ son ortogonales, es decir si $u \cdot v^{\perp}=0$.

Demostración

Ida ($\Rightarrow$). Si $u$ y $v$ son paralelos, por definición $u=cv$ con $c \in \mathbb{R}$. Como queremos que $u$ y $v^{\perp}$ sean otrogonales, realicemos su producto interior y utilicemos las propiedades de este para desarrollar

\begin{align*}
u \cdot v^{\perp}&=(cv) \cdot v^{\perp} \\
&=c(v \cdot v^{\perp}) \\
&=c(0)=0
\end{align*}

Por lo que $u$ y $v^{\perp}$ son ortogonales.

Regreso ($\Leftarrow$). Si ahora suponemos que $u$ y $v^{\perp}$ son ortogonales, pasa que

$u \cdot v^{\perp}=0$

Pero por lo visto en la proposición de la sección anterior, esto sólo pasa cuando $u=c(v^{\perp})^{\perp}$ para algún $c \in \mathbb{R}$. Si $v=(v_1,v_2)$ esto se desarrolla como

\begin{align*}
u&=c(v^{\perp})^{\perp}=c(-v_2,v_1)^{\perp}\\
&=c(-v_1,-v_2)\\
&= -cv
\end{align*}

$\therefore$ por definición de paralelismo, $u$ y $v$ son paralelos.

$\square$

Tarea moral

  • Completa los pocos pasos que omitimos en cada demostración o ejemplo.
  • Demuestra el teorema de las propiedades del producto interior para $n=3$.
  • Calcula el producto interior de los siguientes vectores:
    • $(4,-1)$ y $(7,2)$
    • $(-2,3,0)$ y $(4,-6,0)$
    • $(-2,3,0)$ y $(-2)(-2,3,0)$
    • $(5,0,-3,0,0)$ y $(0,4,0,-2,1)$
  • Usando la definición del producto interior, demusetra que dado $ u \in \mathbb{R}^2$ se tiene que

$u \cdot x =0$, $\forall x\in \mathbb{R}^2$

si y sólo si $u=(0,0)$.

  • Demuestra que para todos los vectores $ u \text{, }v \in \mathbb{R}^2$ y $\forall t \in \mathbb{R}$, se cumple que
    1. $(u+v)^{\perp}=u^{\perp}+v^{\perp}$
    2. $(tu^{\perp})=t(u^{\perp})$
    3. $u^{\perp} \cdot v^{\perp}=u \cdot v$
    4. $u^{\perp} \cdot v = -(u \cdot v^{\perp})$

Más adelante…

El producto interior fungirá como herramienta para establecer las nociones de distancia y ángulo en las siguientes entradas.

Geometría Analítica I: Intersección de rectas

Introducción

En entradas anteriores hemos definido las rectas en formas distintas y hemos realizado algunos ejercicios. El siguiente paso en nuestro curso es buscar el punto de intersección de dos rectas, pues sabemos (por lo que hemos discutido) que si dos rectas no son paralelas, entonces estas se intersectan en algún punto. Buscamos esto ya que no hay que olvidar nuestro objetivo principal, el mostrar todos lo enunciado por Euclides en su geometría.

El procedimiento de esta entrada será un poco particular pues antes de comenzar con el tema principal, discutiremos el paralelismo, sin embargo interrumpiremos momentáneamente este tema para razonar cómo es que se encuentra la intersección de dos rectas $l_1$ y $l_2$. De manera intuitiva, podemos imaginar que el punto de intersección de dos rectas es aquel que cumple con la ecuación de cada una al mismo tiempo ; esta idea será nuestra guía para desarrollar la teoría. Una vez que hayamos razonado este tema, volveremos para concluir la parte de paralelismo.

Paralelismo

Iniciemos entonces hablando de cuando dos rectas no se intersectan, esto es que sean paralelas.

Definición. Dos rectas $l_1$ y $l_2$ $\in \mathbb{R}^2$ son paralelas, si no se intersectan, esto es que

$L_1 \cap l_2 = \emptyset$

donde $\emptyset$ denota al conjunto vacío. Denotaremos dos rectas paralelas como $l_1 \parallel l_2$.

Pero no sólo dos rectas pueden ser paralelas; seguramente mientras leías estas últimas palabras, pensabas en los planos que es análogo a la definición anterior, sin embargo me refiero a los vectores.

Definición. Dados dos vectores $u,v \in \mathbb{R}^2$ distintos de $0$, decimos que $u$ es paralelo a $v$ si existe un número real $t$ tal que

$u=tv$

Denotaremos el paralelismo entre dos vectores como $u \parallel v$.

A partir de estas dos definiciones podemos enunciar el siguiente lema, pero aún no tenemos la experiencia suficiente para demostrarlo de manera completa. Por ahora, enunciémoslo y demostremos la parte que nos es posible.

Lema. Dos rectas diferentes en forma paramétrica

$l=\{ p+rq : r \in \mathbb{R} \}$ y $m= \{ u+sv : r \in \mathbb{R} \}$

son paralelas si y sólo si los vectores directores $q$ y $v$ son paralelos.

Demostración.

«Regreso»: Comencemos suponiendo que los vectores son paralelos por lo que debemos demostrar que $l\cap m =\emptyset$.

Si $q$ y $v$ son paralelos, entonces existe un $t \in \mathbb{R}$ tal que

$q=tv$

Si suponemos que la intersección es no vacía (dem. por contradiccióon), entonces tendríamos un punto perteneciente a las dos rectas, esto es

$u+sv=p+rq$

Para algún $s$ y algún $r$. Recordemos que por hipótesis $q=tv$, por lo que al sustituir este valor en la igualdad anterior tenemos

$u+sv=p+r(tv)$

Utilizando los axiomas de los reales podemos acomodar esta igualdad a nuestra conveniencia

$u-p=rtv-sv$

Al despejar $p$ tenemos que

\begin{align*}
p&=u-rtv+sv \\
&=u-v(rt-s)
\end{align*}

Al sustituir $p$ y $q$ en la definición de la recta $l$ obtenemos que

\begin{align*}
l&=\{ ((u-v(rt-s))+r(tv) : r,s,t \in \mathbb{R} \} \\
&=\{ u-rtv+sv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv-rtv+rtv : r,s,t \in \mathbb{R} \} \\
&= \{ u+sv : s \in \mathbb{R} \}
\end{align*}

$\Rightarrow l=m$

Pero esto es una contradicción ya que claramente al inicio de este lema se menciona que $l \neq m$.

$\therefore$ si $q$ y $v$ son paralelos, entonces $l \parallel m$ pues al suponer que $l \cap m \neq \emptyset$, llegamos a una contradicción.

«Ida»: Aunque parece extraño, aquí es cuando debemos de cortar con el tema de paralelismo e indagar un poco sobre la intersección de rectas pues es necesario lo que trataremos a continuación para poder concluir nuestra demostración.

$\dots$

Intersección de rectas

De manera intuitiva sabemos que dos rectas no paralelas se intersectan en un punto. En esta parte de la entrada, queremos encontrar ese punto.

Antes de estudiar el procedimiento general, realicemos un ejemplo para obtener una visión de lo que nos espera.

Ejemplo:

Tomemos dos rectas en su forma paramétrica dadas por

$l_1=\{ (2,-8)+r(7,-3) : r \in \mathbb{R} \}, \text{ } l_2={ (7,-4)+s(1,2) : s \in \mathbb{R} }$

Nuestro objetivo en este ejemplo es encontrar el punto $p$ en el cual $l_1$ y $l_2$ se intersectan, esto es el punto que cumpla ambas ecuaciones

\begin{align*}
(2,-8)+r(7,-3)&=p=(7,-4)+s(1,2) \\
\Rightarrow 2,-8)+r(7,-3)&=(7,-4)+s(1,2)
\end{align*}

Al juntar los terminos que contienen un parámetro de un lado del igual y aquellos que son puntos definidos del otro y desarrollar obtenemos

\begin{align*}
(2,-8)-(7,-4)&=s(1,2)-r(7,-3) \\
\Leftrightarrow (2-7,-8+4)&=(s-7r,2s+3r) \\
\Leftrightarrow (-5,-4)&=(s-7r,2s+3r)
\end{align*}

Dado que son vectores que queremos sean iguales, entonces deben ser iguales entrada a entrada; por lo que tenemos un sistema de ecuaciones

\begin{cases}
-5=s-7r \dots (a)\\
-4=2s+3r \dots (b)
\end{cases}

Afortunadamente, ya sabemos como resolver sistemas de ecuaciones. En este caso en especial, podemos multiplicar la ecuación $a$ por $-2$ para obtener $10=-2s+14r$ y sumar este resultado a la ecuación $b$:

\begin{align*}
10&=-2s+14r\\
-4&=2s+3r \\
\hline
6&=17r
\end{align*}

$\Rightarrow r=\frac{6}{17}$

Ya que obtuvimos el valor de $r$, podemos sustituirlo en alguna de las ecuaciones principales para obtener $s$ y obtenemos su valor

$s=\frac{-43}{17}$

Usando cualquiera de los dos valores, encontramos que el punto de intersección es

$(2,-8+\frac{6}{17}(7,-3)\approx (4.4705,-9.0588)\approx (7,-4)+\frac{-43}{17}(1,2)$

Procedimiento general

Usemos como base el ejemplo pasado para establecer un procedimiento general para enconrar el punto de intersección de dos rectas.

Comencemos con las rectas

$l_1={ (p_1,p_2)+r(q_1,q_2) : r \in \mathbb{R} }, \text{ } l_2={ (u_1,u_2)+s(v_1,v_2) : s \in \mathbb{R} }$

Con base en el ejemplo, el siguietne paso es establecer un punto digamos $w$ que cumpla ambas ecuaciones

\begin{align*}
(p_1,p_2)+r(q_1,q_2)&=w=(u_1,u_2)+s(v_1,v_2) \\
(p_1,p_2)+r(q_1,q_2)&=(u_1,u_2)+s(v_1,v_2)
\end{align*}

Colocamos de un lado del igual los elementos que se multiplican por un parámetro y lo demás del otro lado y desarrollamos

\begin{align*}
r(q_1,q_2)-s(v_1,v_2)&=(u_1,u_2)-(p_1,p_2) \\
(rq_1-sv_1,rq_2-sv_2)&=(u_1-p_1,u_2-p_2)
\end{align*}

Como tenemos la igualdad de dos vectores, deben ser iguales entrada a entrada, esto es

\begin{cases}
rq_1-sv_1= u_1-p_1 \dots (a)\\
rq_2-sv_2= u_2-p_2 \dots (b)
\end{cases}

En este punto, debemos solucionar el sistema de ecuaciones de manera general, para lo cual multiplicaremos $(a)$ por $q_2$ y $(b)$ opr $q_1$ y restaremos las expresiones resultantes

\begin{align*}
rq_1q_2-sv_1q_2&=u_1q_2-p_1q_2 \\
rq_2q_1-sv_2q_1&=u_2q_1-p_2q_1\\
\hline
sv_2q_1-sv_1q_2&=u_1q_2-p_1q_2-u_2q_1+p_2q_1
\end{align*}
A partir de esta última expresión podemos despejar el parámetro $s$ para obtener

$s=\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}$

Notemos que $s$ se puede indefinir si $v_2q_1-v_1q_2=0$, esto es que

$v_2q_1=v_1q_2$

pero la única manera de que esto suceda es si $l_1 \parallel l_2$, que no es el caso que estamos tratando. Por lo tanto, el sistema siempre tiene solución. Así, el punto de intersección $w$ está dado por

\begin{align*}
w&=(u_1,u_2)+s(v_1,v_2) \\
&=(u_1,u_2)+\frac{u_1q_2-p_1q_2-u_2q_1+p_2q_1}{v_2q_1-v_1q_2}(v_1,v_2)
\end{align*}

Es posible encontrar el punto $w$ al encontrar el valor del parámetro $r$ y es de manera análoga a lo que cabamos de realizar.

Recapitulemos ligeramente lo que acaba de pasar, pues acabamos de demostrar la parte faltante del lema enunciado en la sección de paralelismo. Por lo descrito arriba, resulta que si las rectas son paralelas, entonces no hay un punto de intersección, esto es que el sistema de ecuaciones no tiene solución, pero esto pasa solamente si los vectores son paralelos.

$\square$

Podemos enunciar esto último como una proposición.

Proposición. Si los vectores directores de dos rectas en su forma paramétrica no son paralelos, entonces las rectas se intersectan.

Continuación paralelismo

Concluyamos esta entrada con la teoría faltante de paralelismo.

Teorema. Dada una recta $l \in \mathbb{R}^2$ y un punto $p$ fuera de ella, siempre existe una recta $m$ que pasa por $p$ y es paralela a $l$.

Demostración.

Sea la recta $l$ en su forma paramétrica

$l=\{ u+rv : r \in \mathbb{R} \}$

Proponemos a la recta

$m=\{ p+rv : r \in \mathbb{R} \}$

como una recta que pasa por $p$ y es paralela a $l$. Por como $m$ está definida, esta recta cumple que pasa por $p$. Además, sabemos que $1\dot v=v$, por lo que (por definición de vectores paralelos) $v$ es paralelo a $v$ y esto implica que $m$ es paralela a $l$ (por el lema).

$\therefore$ Existe una recta que pasa por $p$ y es paralela a $l$.

El siguiente corolario es lo última de esta entrada y la demostración se deja como tarea moral ya que hemos desarrolado las herramientas suficientas para probarlo.

Corolario. Dada una recta $l$ y $p$ un punto fuera de ella, la recta que pasa por $p$ y es paralela a $l$ es única.

Tarea moral

  • En el desarrollo general para encontrar la intersección de dos rectas, existe un caso en el que el sistema de ecuaciones no tiene solución, esto es cuando $v_2q_1=v_1q_2$. Justifica porqué este caso no es posible si dos rectas se intersectan.
  • Encuentra el parámetro $r$ en esta la sección antes mencionada, para encontrar a $w$ en términos de la otra recta.
  • Demuestra el corolario.
  • Encuentra las intersecciones de las rectas
    • $l_1=\{ (3,2)+t(2,0) : t \in \mathbb{R} \}$
    • $l_2=\{ (5,1)+s(-4,3) : s \in \mathbb{R} \}$
    • $l_3=\{ (-6,-1)+r(0,-7) : r \in \mathbb{R} \}$
  • Prueba que las rectas $l=\{(-1,5)+t(4,-2) : t \in \mathbb{R}\}$ y $m=\{ (0,2)+s(-20,10) : s \in \mathbb{R} \}$

Más adelante…

En esta entrada tratamos la intersección de rectas en su forma paramétrica, conforme avancemos en el curso, hablaremos de la recta en otras formas a partir de las cuales también nos será posible encontrar la intersección entre rectas.

Geometría Analítica I: Rectas y planos en el espacio

Introducción

Hasta ahora, describimos la recta de distintas maneras en el espacio $\mathbb{R}^2$. A partir de esto, es posible ampliar esas definiciones de recta al espacio $\mathbb{R}^n$, en especial a $\mathbb{R}^3$. Para este último caso, de manera escrita lo único que tendríamos que hacer sería establecer los puntos que definen a la recta dentro de $\mathbb{R}^3$; en la parte geométrica, estamos agregando una dimensión más al graficar, por lo que tenemos más opciones aún.

En esta entrada ampliaremos esas definiciones de recta al espacio vectorial $\mathbb{R}^3$ y el siguiente paso será definir el plano en este mismo espacio a partir de las definiciones mencionadas al inicio de este párrafo.

Rectas en $\mathbb{R}^3$

Comencemos esta entrada redefiniendo la recta en el espacio $\mathbb{R}^3$ a partir de las dos definiciones que tenemos de este elemento hasta ahora.

Definición. Una recta en forma paramétrica en $\mathbb{R}^3$ consiste de tomar un punto $P \in \mathbb{R}^3$ y otro punto (o vector) dirección $Q \in \mathbb{R}^3$ y considerar el conjunto

$L=\{ P+rQ : r \in \mathbb{R} \}$

Definición. Una recta en forma baricéntrica en $\mathbb{R}^3$ consta de tomar puntos distintos $P$ y $Q$ $\in \mathbb{R}^3$ y considerar al conjunto

$L=\{ rP+sQ : r,s \in \mathbb{R}, r+s=1 \}$

En el siguiente interactivo ponle Play a los delizadores para comprender mejor estas dos definiciones de recta en el espacio. Nota que $C$ es la definición paramétrica de la recta, cuyo parámetro es $a$; mientras que $F$ es la recta en forma baricéntrica que pasa por los puntos $A$ y $E$.

Si bien los deslizadores en este interactivo sólo corren de$-2$ a $2$, recuerda que tanto $a$ como $b$ $\in \mathbb{R}$.

En esta entrada comenzamos generalizando las definiciones de recta al espacio $\mathbb{R}^3. Por lo que (siguiendo esta lógica), el siguiente paso es plantear y trabajar la idea de un plano en el espacio.

Plano en forma paramétrica

Si el considerar un punto en $\mathbb{R}^3$ al cual se le suman multiplos de un punto director (también en $\mathbb{R}^3$) obtenemos una recta en este espacio, ¿entonces qué necesitamos para describir un plano en el espacio?

Definición. Un plano en forma paramétrica en $\mathbb{R}^3$ consiste de tomar un punto $P \in \mathbb{R}^3$ y dos puntos dirección $Q, R \in \mathbb{R}^3$ y considerar el conjunto

$\Pi = \{ P+rQ+sR : r,s \in\mathbb{R} \}$

Para continuar, analicemos esta definición por partes con ayuda de lo que hemos descrito hasta ahora en esta entrada. Al tomar $r$ fijo en la parte de la definición dada por $rQ+sR$, obtenemos una recta que pasa por $rQ$ con dirección $R$; . De manera análoga, al tomar $s$ fijo, obtenemos una recta que para por $sR$ y tiene dirección $Q$.

Tomando a $Q=(-2,5,1)$ y a $R=(3,4,5)$ como ejemplo, usa los deslizadores en el siguiente interactivo para notar qué pasa cuando fusionas las dos ideas que acabamos de discutir, al establecer un punto $C=rQ+sR$ (con $r$ y $s$ en $\mathbb{R}$).

Ojalá hayas notado que al dejar correr ambos deslizadores, el rastro del punto $C$ describe un plano que claro pasa por $Q$ y $R$, pero pasa por otro punto definido más. Dentro del mismo interactivo, utiliza la herramienta Plano por tres puntos para definir el plano del que hablamos; deja correr los deslizadores y confirma con esto que el rastro de $C$ es este plano.

Para continuar con nuestro análisis, agreguemos la parte faltante al conjunto $\Pi$, el punto $P$. Ojalá recuerdes que en la descripción paramétrica de una recta, el punto que no tiene un parámetro multiplicando es el punto por el que pasa la recta, si ese punto no está, significa que la recta pasa por el origen. Esta idea se repite análogamente en el caso del plano.

En el análisis que acabamos de realizar, el plano descrito por $rQ+sR$, es el plano que tiene como dirección a $Q$ y a $R$ y además pasa por el origen. Al agregar $P$ a la expresión, lo que se obtiene es un plano paralelo al descrito anteriormente, pero esta vez pasa por $P$, es decir, a cada punto del plano $rQ+sR$ se le sumará el punto fijo $P$.

Plano en forma baricéntrica

Continuemos con la lógica que hemos seguido hasta ahora, con lo cual el siguiente paso es definir el plano en forma baricéntrica.

Definición. Un plano en forma baricéntrica en $\mathbb{R}^3$ consta de tomar los puntos $P$, $Q$, y $R$ y considerar el conjunto

$\Pi= \{ pP+qQ+rR : p,q,r \in \mathbb{R}$ y $p+q+r=1 \}$

Al definir el plano de esta manera, lo que debes imaginar es algo distinto a la primera definición que establecimos. Piensa a $\Pi$ como un plano que pasa por los puntos $P$, $Q$ y $R$.

El siguiente interactivo sólo es la ilustración de un plano en su forma baricéntrica.

Ahora que ya definimos de maneras distintas el plano en el espacio, lo más natural sería encontrar la equivalencia entre estas dos definiciones así como lo vimos al hablar de la recta, sólo que en este caso lo formalizaremos con una proposición.

Relación entre las expresiones de un plano

Proposición. Todo plano en forma paramétrica puede expresarse en forma baricéntrica y viceversa.

Lo que nos gustaría hacer para la demostración, sería mostrar que siempre se pueden encontrar $P’$, $Q’$ y $R’$ con los cuales se puede definir un plano en forma baricéntrica de tal manera que ese conjunto sea el mismo que el conjunto que define a un plano en forma paramétrica.

Demostración.

Parte 1: Partamos de un plano en su forma paramétrica al tomar $P,Q,R \in \mathbb{R}^3$ tal que

$\Pi=\{ P+rQ+sR :r,s \in \mathbb{R} \}$

En esta parte de la demostración, nuestro objetivo es encontrar tres puntos en $\Pi$ muy específicos con los cuales podemos describir el mismo plano pero en su forma baricéntrica.

Por lo anterior y yendo directo al grano, busquemos dos puntos en el plano. Si bien podemos escoger cualesquiera valores de $r$ y $s$ para determinar ciertos puntos en el plano, facilitaremos el álgebra al escoger casos particulares de valores para $r$ y $s$ y así obtener tres puntos «prácticos» en el plano que nos servirán para la forma baricéntrica de este. Los valores de los parámetros no serán tomados de manera aleatoria. Por lo que discutimos anteriormente, podemos definir ciertos puntos (en nuestra demostración $P$’, $Q$’ y $R$’) como combinaciones lineales puntuales de $P$, $Q$, $R$.

  1. El caso más sencillo es tomar $r=s=0$ y así obtener el punto $P$’$=P \in \Pi$.
  2. Si ahora $r=0$ y $s=1$, tenemos $R$’$=P+R$
  3. Y si $r=1$ y $s=0$, obtenemos $Q$’$=P+Q$

Ya que tenemos estos 3 puntos en $\Pi$, podemos definir el plano en su forma baricéntrica:

$\Pi$’$=\{pP$’$+qQ$’$+rR$’$ : p,q,r \in \mathbb{R}\}$

Para continuar, afirmamos que $\Pi=\Pi$’, y para comprobarlo, tenemos que checar que cada elemento en $\Pi$, está en $\Pi$’. La manera más sencilla de hacerlo, es tomar un elemento genérico de $\Pi$ (i.e. un elemento que «represente» a todos) y mostrar que está en $\Pi$’.

Tomemos un elemento de $\Pi$, es decir un vector de la forma $P+rQ+sR$.

Por Demostrar: Existen $a,b,c \in \mathbb{R}$, tales que $a+b+c=1$ y además

$P+rQ+sR=aP$’$+bQ$’$+cR$’

Encontremos entonces los valores de $a$,$b$, $c$.

Al sustituir los elementos primados, tenemos

\begin{align*}
P+rQ+sR&=aP+b(P+Q)+c(P+R) \\
&=aP+bP+bQ+cP+cR\\
&=(a+b+c)P+bQ+cR
\end{align*}

$\Rightarrow P+rQ+sR= (a+b+c)P+bQ+cR$

La igualdad nos lleva a un sistema de ecuaciones a partir del cual podremos obtener los valores de $a$, $b$, y $c$ para que esta se cumpla

\begin{align*}
a+b+c&=1 \\
b&=r \\
c&=s
\end{align*}

La primera condición ya cumple algo que queríamos y además, podemos despejar a $a=1-b-c$, que gracias a las otras igualdades que tenemos, conocemos su valor en términos de $r$ y $s$

$a=1-r-s$

Por lo que

$P+rQ+sR=(1-r-s)P+r(P+Q)+s(P+R)$

tal que $(1-r-s)+r+s=1$.

Hasta aquí, lo que hemos demostrado es que cualquier elemento en $\Pi$ lo podemos escribir como un elemento en $\Pi$’, esto es que $\Pi \subseteq Pi$’. Lo que sigue es realizar el camino contrario.

Ahora, lo que queremos es demostrar que $\Pi$’$\subseteq Pi$; para lo cual partiremos de un elemento en $\Pi$’ y buscaremos llegar a un elemento en $\Pi$.

Tomemos un elemento en $\Pi’$, esto es que es de la forma

$aP$’$+bQ$’$+cR$’$=aP+b(P+Q)+c(P+R)$

con $a+b+c=1$. Por medio de álgebra, queremos llegar a una expresión que represente un elemento de $\Pi$

\begin{align*}
aP+b(P+Q)+c(P+R) &= \\
&=aP+bP+bQ+cP+Cr \\
&=(a+b+c)P+bQ+cR \\
\end{align*}

Pero por hipótesis, $a+b+c=1$, por lo que

$=P+bQ+cR$

que efectivamente está en $\Pi$, pues es un elemento de la forma $P+rQ+sR$. Por lo que $\Pi$’ $\subseteq \Pi$.

$\therefore$ $\Pi \subseteq \Pi$’ y $\Pi$’ $\subseteq Pi$, entonces $\Pi=\Pi$’. Nota que concluimos esto partiendo de un plano en su forma paramétrica y al hacer el caso de la forma baricéntrica, utilizamos los puntos definidos a partir de la primera forma mencionada.

Parte 2. Para la parte 2, sólo te dare algunos consejos para que completes la demostración, pues es bastante parecida a lo que hicimos en la parte 1. Primero, tienes que partir del plano en su forma baricéntrica, es decir

$\Pi=\{ pP+qQ+rR : p+q+r=1 \text{ con }p,q,r \in \mathbb{R} \}$

Y buscar los puntos $P$’, $Q$’ y $R$’ tales que al tomar $P$’ como punto base y $Q$’ y $R$’ como direcciones, obtengas que $\Pi=\Pi’$.

Si realizas el procedimiento de la manera correcta, llegarás a que los puntos son :

\begin{align*}
P&=P’ \\
Q’&=Q-P \\
R’&=R-P
\end{align*}

Al completar esta segunda parte, entonces la demostración estará completa.

$\square$

Dimensiones mayores a 3

Para cerrar esta entrada, enunciaremos algunas definiciones que nos ayudarán en un futuro a definir cosas más complejas.

Definición. Sean $u_1$, $u_2$, $\dots$, $u_k$ puntos en $\mathbb{R}^n$. Sean $s_1$, $s_2$, $\dots$, $s_k$ números reales. A una expresión de la forma

$s_1u_2+s_2u_2+\dots+s_ku_k$

le llamamos una combinación lineal de $u_1$, $u_2$, $\dots$ $u_k$.

Ejemplo: Sea el espacio $\mathbb{R}^5$, una combinaión lineal en este es

$-5(3,1,0,-2,7)+2(-3,6,8,1,9)+(-3)(3,9,0,-1,-2)$

Definición. A una combinación lineal en donde los coeficientes suman $1$, le llamamos una combinación afín. Esto es que

$s_1+s_2+\dots+s_k=1$

Ejemplo: La combinación del ejemplo anterior no es afín, pues

$-5+2+(-3)=-5+2-3=-8+2=-6 \neq 1$

Sin embargo, podemos obtener una combinación afín con los mismos vectores.

$-4(3,1,0,-2,7)+2(-3,6,8,1,9)+3(3,9,0,-1,-2)$

Es una combinación afín, pues

$-4+2+3=-4+5=1$

Definición. Al conjunto de todas las combinaciones lineales de ciertos vectores dados $u_1$, $u_2$, $\dots$ $u_k$ $\in \mathbb{R}^n$ se le conoce como el subespacio generado por $u_1$, $u_2$, $\dots$ $u_k$ y lo denotamos como

$\braket{u_1, u_2, \dots, u_k}$

esto es

$\braket{u_1, u_2, \dots, u_k}=\{ s_1u_2+s_2u_2+\dots+s_ku_k : s_1, \dots, s_k \in \mathbb{R} \}$

Veamos dos ejemplos de esta definición.

Ejemplo 1: Sea $v_1 \in \mathbb{R}^2$, $v_1 \neq 0$, el espacio generado por este vector es

$\braket{v_1}=\{ s_1v_1 : s_1 \in \mathbb{R} \}$

Ejemplo 2: Sea $v_1, v_2 \in \mathbb{R}^2$, $v_1 \neq 0$ y $v_2 \neq 0$, el espacio generado es

$\braket{v_1,v_2} = \{s_1v_1+s_2v_2 : s_1, s_2 \in \mathbb{R}\}$

Cerremos esta entrada con una última definición y su respectivo ejemplo.

Definición. Si $A$ es un subconjunto de $\mathbb{R}^n$y $p$ es un vector en $\mathbb{R}^n$, entonces el traslado de $A$ por el vector $p$ es el conjunto

$A+p=p+A= \{ x+p : x \in A \}$

Esta última definición nos es de utilidad para pasar de una recta o un plano que pasa por el orígen a otro que pasa por cualquier punto $p$.

Ejemplo: Sea $\Pi=\{r(5,3,2)+s(-1,7,0): s,r \in mathbb{R}$ el plano que pasa por el origen y que tiene como vectores directores a $(5,3,2$ y $(-1,7,0)$. Entonces el traslado de $\Pi$ por $p=(-2,3,9)$ es el conjunto

\begin{align*}
p+\Pi&=\Pi+p=\Pi+(-2,3,9) \\
&=\{r(5,3,2)+s(-1,7,0)+(-2,3,9): s,r \in \mathbb{R}\}
\end{align*}

Tarea moral

  • En el párrafo siguiente a la definición de un plano en el espacio:
    • ¿Cuál es el parámetro de la recta descrita al tomar $r$ fijo?
    • ¿Cuál es el parámetro de la recta descrita al tomar $s$ fijo?
  • Completa el interactivo de la sección Plano en el espacio al dibujar el plano definido por los puntos $Q$ y $R$ del interactivo y $P=(-3,2-6)$. Estarás en lo correcto si el plano que obtienes es paralelo al definido por $Q$, $R$ y el origen.
  • Completa la demostración de la proposición que trata la equivalencia entre las definiciones de plano en el espacio.
  • ¿Qué espacio geométrico define el primer ejemplo de subespacio generado? ¿y el ejemplo 2?
  • Da una expresión paramétrica para el plano que pasa por los puntos $P=(1,2,0)$, $Q=(1,0,1)$ y $R=(-1,0-2)$.

Más adelante

Con lo desarrollado en esta entrada seremos capaces de definir ciertos lugares geométricos ya no sólo en el plano, si no también eln el espacio. Además, desarrollamos una intuición lógica para continuar construyendo lo que resta del curso.

Geometría Analítica I: Rectas en forma baricéntrica

Introducción

Abriremos esta entrada con la demostración de una preposición que nos puede ser útil más adelante y con la cuál reforzaremos una vez más lo visto hasta ahora. Después comenzaremos con el tema principal de la entrada al describir las rectas en su forma baricéntrica y analizaremos desde un punto de vista más físico su significado. Cerraremos la entrada con la demostración de que las medianas de un triángulo concurren, haciendo uso en esta, todo el conocimiento generado hasta ahora.

Preposición de rectas en su forma paramétrica

Preposición. Las rectas pasan a lo más una vez por cada punto.

Esta proposición hace referencia a la recta en su forma paramétrica y expresa que conforme el parámetro $r \in \mathbb{R}$ avanza recorre todos los puntos de la recta y además sólo pasa una vez por cada punto.

Demostración. Sea $l$ la recta dada por

$L=\{ P+rQ : r \in \mathbb{R} y P,Q \in \mathbb{R}^2\}$

Haremos la demostración por contradicción para lo cual supondremos que la preposición no se cumple, esto es que existen dos números reales $r_1, r_2 \in \mathbb{R}$ tales que

$P+r_1Q=P+r_2Q$

Si esto fuera cierto, entonces existirían dos números reales que nos llevan al mismo punto en la recta, por lo que queremos llegar a que $r_1=r_2$, es decir sólo hay un número real que nos lleva a ese punto en la recta.

Ya que explicamos un poco nuestro objetivo y el camino que vamos a seguir, comencemos.

Suponemos como cierto que

$P+r_1Q=P+r_2Q$

Si restamos $P$ de ambos lados tenemos:

$-P+P+r_1Q=-P+P+r_2Q$

Usando la asociatividad se tiene que

$(-P+P)+r_1Q=(-P+P)+r_2Q$

Y como $-P+P=0$ y el $0$ es el neutro aditivo tenemos que

$r_1Q=r_2Q$

Sumemos ahora $-rQ_2$ de ambos lados
\begin{align*}
r_1Q-r_2Q=r_2Q-r_2Q
r_1Q-r_2Q=0
\end{align*}

Si factorizamos a $Q$ tenemos

$(r_1-r_2)Q=0$

Aquí es importante realizar dos observaciones, la primera que el cero a la derecha de la igualdad corresponde al vector cero, la segunda es que sabemos el vector $Q$ no puede ser el vector cero, por lo cuál al menos una de sus entradas es distinta de cero. Si $Q=(x,y)$, la igualdad anterior se puede reescribir como

\begin{align*}
(r_1-r_2)(x,y)=0
((r_1-r_2)x,(r_1-r_2)y)=0
\end{align*}

Si ahora retomamos la segunda observación hecha, y suponemos que la entrada $x \neq 0$ tenemos entonces

\begin{align*}
r_1-r_2=0
\Rightarrow r_1=r_2
\end{align*}

Que es a lo que queríamos llegar. Para tener una demostración completa también debe considerarse el caso en el que al menos $y \neq 0$ (este es análogo al que acabamos de desarrollar) y el caso en el que tanto $x \neq 0$ como $y \neq 0 $ (que es la conjunción de los dos casos anteriores).

$\square$

Así hemos demostrado que para cada $r$ existe un único punto en la recta mencionada.

Rectas en forma baricéntrica

Comencemos con el tema central de esta entrada.

Si lo recuerdas de la entrada anterior, en la forma paramétrica de la recta $P$ funge como punto y $Q$ como vector director. En la forma que exploraremos en esta entrada lo que queremos es que no exista diferencia entre $P$ y $Q$. Así que empecemos con la definición de una recta en su forma baricéntrica.

Definición. Sean $P$ y $Q$ dos puntos distintos en $\mathbb{R}^2$, la recta por $P$ y $Q$ en forma baricéntrica es el conjunto

$ l := \{ rP+sQ : r,s \in \mathbb{R}$ y $r+s=1 \}$

Resulta que en esta forma de la recta ya no existe distinción entre el «punto de inicio» y el vector director, ahora se usan simultáneamente los parámetros $s$ y $t$ para ubicar un punto en la recta en cualquiera de las dos direcciones. Podemos pensar en estas coordenadas como «pesos» en la recta que pasa por $P$ y $Q$; esto es que sí $s > r$ , entonces el punto $X$ de la recta se encuentra más cerca del punto $Q$ y viceversa, si $r > s$, entonces el punto $X$ de la recta está más cercano a $P$.

Utiliza el siguiente interactivo para variar los valores de la coordenada baricéntrica $s$ de la recta (recuerda que r=1-s) y ubicar el punto $X$ en la recta que depende de estos valores.

Interpretación física

Ya que definimos las coordenadas baricéntricas, hablemos un poco de la interpretación física de esta con la cuál la idea de «peso» que le asignamos a estas coordenadas toma más sentido. Pensemos a la recta como una barra rígida sobre la cual está distribuida una masa unitaria (esto es que la masa en total es 1), el punto de equilibrio estará dado por las coordenadas baricéntricas correspondientes a las masas.

Ahora que estamos hablando de masas, resulta que podemos asociarle una fuerza a cada una para comprender mejor esta interpretación física. Retomando lo de hace unos párrafos, si $s> r$, entonces la fuerza asociada a $s$ será mayor a la asociada a $r$ ($F_s > F_r$) y si tenemos una de nuestras coordenadas baricéntricas negativas, podemos pensar entonces en una fuerza que va en sentido contrario a la positiva. Si pensamos en la fuerza gravitacional, un signo menos en nuestras coordenadas se podría visualizar como algo jalando hacia arriba.

Apoyate del interactivo anterior para comprender mejor esta idea y analiza el siguiente ejemplo:

Ejemplo: Sea $s=0.3$ y $r=0.7$, nota que el punto está más cercano de $P$.

Relación con la forma paramétrica de una recta

Si bien esta definición es otra forma de expresar algebráicamente una recta, siempre podemos llegar de esta forma a la paramétrica y viceversa. Desarrollemos un poco el primer caso partiendo de la recta en su forma baricéntrica:

$ l := { rP+sQ : r,s \in \mathbb{R} y r+s=1 }$

A la expresión de la recta podemos sumarle un cero conveniente $P-P$ y reacomodar los términos para acercarnos a la forma paramétrica:

\begin{align*}
l &= \{ rP+sQ : r,s \in \mathbb{R} y r+s=1 \} \\
&= \{ rP+sQ+P-P : r,s \in \mathbb{R} y r+s=1 \} \\
&= \{ P+sQ+rP-P : r,s \in \mathbb{R} y r+s=1 \} \\
&= \{ P+sQ+P(r-1): r,s \in \mathbb{R} y r+s=1 \} \\
&= \{ P+sQ-P(1-r): r,s \in \mathbb{R} y r+s=1 \} \\
\end{align*}

De la condición $r+s=1$ al despejar $s$ tenemos $s=1-r$ que podemos sustituir en la última igualdad obteniendo

$l= \{ P+sQ-sP: r,s \in \mathbb{R} y r+s=1 \}$

Y al factorizar se tiene que

$l= \{ P+s(Q-P): r,s \in \mathbb{R} y r+s=1 \}$

Y si te fijas, $r$ ya no aparece explícitamente en nuestra expresión por lo que las restricciónes a ese parámetro ya no tienen sentido. Con esto en mente es posible escribir lo siguiente

$l= \{ P+s(Q-P): s \in \mathbb{R} \}$

De manera análoga se puede llegar a que $l= \{ Q+r(P-Q): r \in \mathbb{R} \}$.

Es así que podemos llegar de la forma baricéntrica de la recta a su forma paramétrica.

Antes de pasar al teorema con el que cerraremos la entrada, definamos algo necesario.

Definición. Una mediana de un triángulo es un segmento de recta que va de un vértice al punto medio del lado opuesto.

Teorema a cerca de las medianas de un triángulo

Cerremos la entrada con la enunciación y la demostración del siguiente teorema.

Teorema. Dado un triángulo PQR, sus tres medianas concurren en un punto que divide al segmento dentro del triángulo (de cada mediana) en proporción 1:2.

Demostración.

Para empezar la demostración, construimos un triángulo PQR.

Para construir las medianas, primero localizamos los puntos medios de cada segmento (A, B, C) cuyas coordenadas baricéntricas están dadas por

\begin{align*}
A&=\frac{1}{2}P + \frac{1}{2}Q \\
B&=\frac{1}{2}Q + \frac{1}{2}R \\
C&=\frac{1}{2}R + \frac{1}{2}P \\
\end{align*}

Ya que queremos que se encuentren justo en el punto medio de cada segmento.

Al trazar la mediana del segmento $PQ$ tenemos lo siguiente

La manera en la que procederemos a partir de ahora, es que localizaremos el punto en el segmento de cada mediana que lo divide en proporción 1:2 esperando llegar a que los tres puntos son el mismo.

Comencemos con el punto $G$ que divide al segmento $AR$ en proporción 1:2, esto es que $G$ sea:

$G=\frac{1}{3}R+\frac{2}{3}A $

AL sustituir el valor de $A$, tenemos como resultado
\begin{align*}
G&=\frac{1}{3}R+\frac{2}{3}\left( \frac{1}{2}P + \frac{1}{2}Q \right) \\
&= \frac{1}{3}R+\frac{1}{3}P+\frac{1}{3}Q \\
\end{align*}

Lo que puede ser replicado para cada segmento. Para el $BP$ se tiene

\begin{align*}
G’ &=\frac{1}{3}P+\frac{2}{3}B \\
&=\frac{1}{3}P+\frac{2}{3} \left( \frac{1}{2}Q + \frac{1}{2}R \right) \\
&= \frac{1}{3}P+\frac{1}{3}Q+\frac{1}{3}R \\
&= \frac{1}{3}R+\frac{1}{3}P+\frac{1}{3}Q \\
\end{align*}

Y para el $CQ$

\begin{align*}
G»&=\frac{1}{3}Q+\frac{2}{3}C \\
&=\frac{1}{3}Q+\frac{2}{3} \left( \frac{1}{2}R + \frac{1}{2}P \right) \\
&= \frac{1}{3}Q+\frac{1}{3}R+\frac{1}{3}P \\
&= \frac{1}{3}R+\frac{1}{3}P+\frac{1}{3}Q \\
\end{align*}

$\therefore$ $G=G’=G»$

Acabamos de demostrar que los puntos que dividen a cada mediana en una proporción 1:2 son el mismo para cada una, por lo que las tres medianas concurren en este punto.

$\square$

A este punto $G$ se le conoce como el baricentro del triángulo, y podrás imaginar después de que discutimos la idea física de estas coordenadas, que $G$ corresponde al centro de masa o punto de equilibrio del triángulo.

Utiliza el siguiente interactivo para asegurarte de que esto es válido con cualquier triángulo, puedes mover los puntos P,Q y R y aún existirá el punto $G$ de intersección de las 3 medianas. Si te da curiosidad, puedes usar la herramienta de distancia de geogebra para medir la longitud de cada segmento de la mediana y verificar que efectivamente, está en una relación 1:2 con respecto al punto $G$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Concluye la preposición con la que se inició está entrada, es decir, desarrolla los casos para cuando $y \neq 0$ y cuando $x \neq0$ y $y\neq0$.
  • A partir de la forma baricéntrica de la recta, llega a la forma paramétrica $l= \{ Q+r(P-Q): r \in \mathbb{R} \}$
  • Sea $L= \{ (5,3)+r(-7,2) : r \in \mathbb{R} \}$ una recta en su forma paramétrica, llega a su forma baricéntrica.
  • Para asegurarte que entendiste la interpretación física, realiza los siguientes ejercicios:
    • Imagina que tienes una barra rígida de 2 metros de longitud sobre la cuál tienes colgadas dos masas (una en cada extremo), una de 40 kg y otra de 10 gk. ¿cuáles son las coordenadas baricéntricas del punto de apoyo o de quilibrio de esta barra?
    • Si ahora sabes que el punto de apoyo se encuentra en uno de los extremos de la barra rígida y quieres levantar los 40 kg con la fuerza de otra masa de 10 kg, ¿dónde debes colocar la masa para que esto sea posible? Realiza un dibujo.
  • Encuentra el baricentro del triángulo cuyos vértices se encuentran en los puntos $A=(-2,9)$, $B=(7,-1)$ y $C=(3,5)$. Dibújalo a mano o con ayuda de GeoGebra.
  • ¿por qué demostramos aquí el último teorema? ¿Se podrá demostrar en un espacio de 3 dimensiones?

Más adelante…

Hasta ahora hemos avanzado lo suficiente para hablar en entradas próximas de algo que se asomaba desde los postulados de Euclides, la intersección de rectas y las rectas paralelas.

Geometría Analítica I: Rectas en forma paramétrica

Introducción

Anteriormente definimos las operaciones de suma y de producto escalar en $\mathbb{R}^2$. Después de eso, enunciamos varias de sus propiedades y demostramos algunas de ellas. Lo que haremos ahora es utilizar lo que hemos construido hasta ahora para dar una definición clave de nuestro modelo: la de recta.

Mediante varios interactivos veremos que las propiedades algebraicas que estamos pidiendo en efecto satisfacen lo que queremos de las rectas a partir de nuestra intuición geométrica. Además de esto, demostraremos una proposición que unifica los postulados $1$ y $3$ de Euclides, lo cual será señal de que vamos en buen camino para obtener dichos postulados a partir de nuestro enfoque algebraico. Cerraremos con algunos ejemplos de rectas en su forma paramétrica.

Rectas en forma paramétrica

Iniciemos formalmente con la definición de la recta.

Definición. Dados un punto $P$ y un vector $Q \neq 0 $, la recta que pasa por $P$ con dirección $Q$ es el conjunto

$L=\{ P+rQ : r \in \mathbb{R} \}$

En la definición anterior se piensan a $P$ y $Q$ fijos y a $r$ como un parámetro variable. Con esto en mente, tiene sentido que esta expresión sea conocida como la forma paramétrica de la recta.

Como lo mencionamos al inicio, conocemos todo lo necesario para comprender esta forma paramétrica y es pertinente analizar un poco sus partes para poder realizar la representación gráfica.

El conjunto $L$ está representado por la suma de un punto fijo $P$ en el espacio y por un término de la forma $rQ$ que, si recuerdas, representa un producto escalar y que sabemos cómo se ve en el espacio. Si $r$ es fijo, tenemos un re-escalamiento del vector $Q$ y en el caso en el que $r<0$ un cambio de dirección. Para la forma paramétrica de la recta, resulta que $r$ no es fijo, y aunque esta es la primera vez que vemos algo así, es posible pensarlo como la unión de los casos cuando $r$ es fijo, una unión de tantos elementos como $\mathbb{R}$. Así $rQ$ representa una recta formada por todos los re-escalamientos posibles de el vector $Q$: la recta que pasa por el origen y por $Q$.

¿Cómo se verá entonces el total $P+rQ$? Si de nuevo pensamos en un $r$ específico, tenemos que $rQ$ es un re-escalamiento. Por el método del paralelogramo sabemos que $P+rQ$ es avanzar desde el origen hasta el punto $P$ y tomando ahora este «como origen», avanzar hasta $rQ$; de cierta manera estamos trasladando $rQ$ para que empiece en $P$. Volviendo al caso general, $P+rQ$ se ve como la recta $rQ$, pero trasladada paralelamente para que pase por el punto $P$.

Ejemplo. Sean $P=(-3,5)$ y $Q=(2,7)$. Tenemos que la recta $L$ desde el punto $P$ y en dirección $Q$ es el conjunto

\begin{align*}
L&=\{ (-3,5)+r(2,7) : r \in \mathbb{R} \}\\
&=\{ (-3+2r,5+7r) : r \in \mathbb{R} \}
\end{align*}

En el siguiente interactivo el punto $P$ se encuentra de color rojo, el vector $Q$ y la recta $rQ$ de color verde. La recta paralela a $rQ$ que pasa por $P$ se encuentra de color azul y por último, de color morado se encuentra $P+rQ$ para un $r$ fijo cuyo valor puedes controlar con el deslizador a tu izquierda. El punto $P+rQ$ está diseñado para que al cambiar el valor de $r$ (con el deslizador), puedas ver su rastro, es decir que deje marca por donde pasa. Nota cómo al mover el deslizador, todos los puntos $P+rQ$ se encuentran sobre la recta paralela a la recta definida por la expresión $rQ$ que pasa por el punto $P$.

Así, podemos concluir que $P+rQ$ es precisamente la recta $rQ$ trasladada paralelamente para que pase por el punto $P$.

$\square$

Para cerrar un poco la definición de la forma paramétrica, planteemos algunos casos especiales del parámetro $r$:

  • Cuando $r=0$ tenemos al punto $P$.
  • Cuando $r=1$, el punto en la recta corresponde a $P+Q$
  • ¿Qué pasa entonces cuando $0<r<1$ ? Resulta que en tal caso nos encontramos en el segmento comprendido entre $P$ y $P+Q$ pues $rQ$ será una fracción de $Q$ y al sumárselo a $P$ obtenemos un vector que parte de $P$ ($0<r$) y llega hasta $P+rQ$, que «queda antes» de $P+Q$, pues $r<1$.

Función asociada a la recta

Hagamos un pequeño paréntesis para hablar de la relación que tiene esta expresión de la recta con los números reales.

Como acabamos de ver, la forma paramétrica de la recta está definida con base en un parámetro $r \in \mathbb{R}$. Al decir «parámetro» queremos expresar que es una variable que nos ayuda a definir nuestro objeto, en este caso una recta. Como $r$ corre en todos los reales, puede fungir como la variable de una función asociada a la recta. $\mathbb{R}$ es nuestro dominio, y como la recta es una suma de vectores, el co-dominio debe ser $\mathbb{R}^2$ (y de hecho, esto funciona en general al tomar puntos en $\mathbb{R}^n$). Así, definimos $\phi: \mathbb{R} \rightarrow \mathbb{R}^2$ como

$\phi (r)=P+rQ$

Resulta que esta función define una biyección entre $\mathbb{R}$ y la recta $L$. En otras palabras, a cada valor de $r$ le corresponde uno y sólo un valor en $L$ (es función suprayectiva) y cada valor de $L$ se obtiene de un único $r$ (es inyectiva).

Ver que es suprayectiva es muy simple, pues la recta $L$ está definida precisamente mediante el parámetro $r$ y no hay manera de que en $L$ haya puntos que tengan otra expresión. Veamos ahora que es inyectiva. Para esto supongamos que existen $r,s \in \mathbb{R}$ tales que $\phi(r)=\phi(s)$. Para probar la inyectividad debemos concluir que $r=s$.

Si $\phi(r)=\phi(s)$, por definición de la función se tiene

$P+rQ=P+sQ$

Sumando $-(P+sQ)$ de ambos lados obtenemos, $P+rQ-(P+sQ)=0$ y desarrollando el lado izquierdo con las propiedades de suma y producto escalar obtenemos que

\begin{align*}
0&=P+rQ-(P+sQ)\\
&=P+rQ-P-sQ\\
&=P-P+rQ-sQ\\
&=0+rQ-sQ\\
&=rQ-sQ\\
&=Q(r-s).
\end{align*}

Es importante que en este punto te cuestiones qué propiedades de la suma y producto escalar se están usando en cada una de las igualdades anteriores.

En resumen, obtenemos que $Q(r-s)=0$. Pero en la definición de la recta se establece que $Q \neq 0$. De este modo, concluimos que $r-s=0$, que en otras palabras es la igualdad $r=s$ que buscábamos. Concluimos que existe una biyección entre cualquier recta y los reales.

$\square$

Postulados 1 y 3 de Euclides

Si recuerdas, en entradas anteriores se hablo que con esta «nueva» construcción de la geometría (la forma analítica), los postulados de Euclides podían ser demostrados. Ha llegado el momento en el que demostraremos una proposición que fusiona a los postulados 1 y 3.

Proposición. Para cualesquiera dos puntos, se puede trazar el segmento de recta que los une y este segmento se puede prolongar indefinidamente.

Aunque en este momento la demostración puede parecer trivial, no lo es. Si notas, la recta que definimos con $P$ y $Q$ sólo tiene la garantía de pasar por $P$, pero podemos solucionar esto eficientemente.

Demostración. Sean $P$ y $Q$ puntos en el plano. Consideremos la recta que pasa por $P$ y con dirección $Q-P$

$L=\{ P+r(Q-P) : r \in \mathbb{R} \}$

Esta recta pasa por $P$ y $Q$ pues si tomamos $r=0$, obtenemos $P$ y si $r=1$, entonces se obtiene el punto $P+(Q-P)=Q$.

Ahora, por cómo definimos $L$, esta es la recta que pasa por $P$ y $Q$ y que se extiende indefinidamente pues $r$ recorre todos los reales. La pregunta que nos falta responder es ¿cómo obtenemos sólo los puntos en el segmento que une a $P$ y $Q$? Así como en la discusión que tuvimos arriba, cuando el parámetro $r$ está entre $0$ y $1$ obtendremos los puntos entre $P$ y $(Q-P)+P=Q$. Con esto en mente, el segmento de recta que une a los puntos $P$ y $Q$ es el conjunto

$l:=\{ P+r(Q-P) : 0 \leq r \leq 1 \}$

$\square$

Ejercicios

Para cerrar esta entrada plantearemos algunos ejercicios de rectas en su forma paramétrica e incluiremos sus interactivos.

Problema. Dibuja las siguientes rectas

  1. $L_1=\{ (2,3)+ t(1,1) : t \in \mathbb{R} \}$

Solución.

En este ejercicio el punto es $P=(2,3)$ y el vector director $Q=(1,1)$. Para construir la recta que definen, «dibujamos» primero la recta $t(1,1)$ (en azul) y después trazamos su paralela que pase por $(2,3)$ (en verde). Si hicimos bien el procedimiento, cuando muevas el deslizador de $t$, el rastro de $(2,3)+t(1,1)$ debe estar sobre la recta verde. Así, la recta $(2,3)+t(1,1) t \in \mathbb{R}$ es la recta verde.

$\square$

  1. $L_2= \{ (r-1,-2r) : r \in \mathbb{R} \}$

Solución.

En este ejercicio tenemos a $P$ y a $rQ$ ya sumados, por lo que tenemos que separarlos (con ayuda de la definición de suma vectorial) para saber cuáles son individualmente. El vector $rQ$ es aquel cuyas entradas tienen a $r$, $P$ es lo que queda. Así,

$rQ=(r,-2r)$ y $P=(-1,0)$

Por lo que

$Q=(1,-2)$

Siguiendo el mismo procedimiento del ejercicio anterior, localizamos la recta $rQ=r(1,-2)$ (verde) y trazamos su paralela que pase por $(-1,0)$ (rojo). Si el procedimiento es correcto, entonces cuando muevas el deslizador de $r$ El rastro de $(-10)+r(1,-2)$ se debe posicionar sobre la recta roja. Así la recta roja es $(r-1,-2r) : r \in \mathbb{R}$.

$\square$

Tarea moral

  • Justifica cada paso de cada procedimiento con ayuda de los axiomas de los reales y las propiedades que se probaron en la entrada anterior.
  • Escribe la ecuación que representa a una partícula que pasa por el orígen en un $t=0$ («su punto de partida») y tiene dirección $(-5,-3)$. La ecuación tendrá la forma paramétrica de una recta.
  • Escribe el punto anterior ahora suponiendo que la partícula pasa por el punto $(2,3)$ en $t=0$.
  • Dibuja las siguientes dos rectas (si te es posible con ayuda de GeoGebra):
    • $L_a=\{ (0,-2)+(-r,2r) : r \in \mathbb{R} \}$
    • $L_b=\{ (2s-1,s) : s \in \mathbb{R} \}$
  • Escribe la representación paramétrica de cada una de las rectas que se pueden formar al tomar dos de los puntos $(5,-3)$, $(-7,2)$ y $(13,9)$. Obtendrás tres rectas, cada una de ellas en forma paramétrica.

Más adelante…

Con lo que aquí se desarrolló, en la siguiente entrada será posible construir las rectas en su forma baricéntrica y seremos capaces de darle a esta una interpretación física. Más adelante trataremos la intersección de rectas y definiremos la forma normal de una recta.