Archivo de la etiqueta: combinación lineal

Geometría Analítica I: Rectas y planos en el espacio

Introducción

Hasta ahora, describimos la recta de distintas maneras en el espacio $\mathbb{R}^2$. A partir de esto, es posible ampliar esas definiciones de recta al espacio $\mathbb{R}^n$, en especial a $\mathbb{R}^3$. Para este último caso, de manera escrita lo único que tendríamos que hacer sería establecer los puntos que definen a la recta dentro de $\mathbb{R}^3$; en la parte geométrica, estamos agregando una dimensión más al graficar, por lo que tenemos más opciones aún.

En esta entrada ampliaremos esas definiciones de recta al espacio vectorial $\mathbb{R}^3$ y el siguiente paso será definir el plano en este mismo espacio a partir de las definiciones mencionadas al inicio de este párrafo.

Rectas en $\mathbb{R}^3$

Comencemos esta entrada redefiniendo la recta en el espacio $\mathbb{R}^3$ a partir de las dos definiciones que tenemos de este elemento hasta ahora.

Definición. Una recta en forma paramétrica en $\mathbb{R}^3$ consiste de tomar un punto $P \in \mathbb{R}^3$ y otro punto (o vector) dirección $Q \in \mathbb{R}^3$ y considerar el conjunto

$L=\{ P+rQ : r \in \mathbb{R} \}$

Definición. Una recta en forma baricéntrica en $\mathbb{R}^3$ consta de tomar puntos distintos $P$ y $Q$ $\in \mathbb{R}^3$ y considerar al conjunto

$L=\{ rP+sQ : r,s \in \mathbb{R}, r+s=1 \}$

En el siguiente interactivo ponle Play a los delizadores para comprender mejor estas dos definiciones de recta en el espacio. Nota que $C$ es la definición paramétrica de la recta, cuyo parámetro es $a$; mientras que $F$ es la recta en forma baricéntrica que pasa por los puntos $A$ y $E$.

Si bien los deslizadores en este interactivo sólo corren de$-2$ a $2$, recuerda que tanto $a$ como $b$ $\in \mathbb{R}$.

En esta entrada comenzamos generalizando las definiciones de recta al espacio $\mathbb{R}^3. Por lo que (siguiendo esta lógica), el siguiente paso es plantear y trabajar la idea de un plano en el espacio.

Plano en forma paramétrica

Si el considerar un punto en $\mathbb{R}^3$ al cual se le suman multiplos de un punto director (también en $\mathbb{R}^3$) obtenemos una recta en este espacio, ¿entonces qué necesitamos para describir un plano en el espacio?

Definición. Un plano en forma paramétrica en $\mathbb{R}^3$ consiste de tomar un punto $P \in \mathbb{R}^3$ y dos puntos dirección $Q, R \in \mathbb{R}^3$ y considerar el conjunto

$\Pi = \{ P+rQ+sR : r,s \in\mathbb{R} \}$

Para continuar, analicemos esta definición por partes con ayuda de lo que hemos descrito hasta ahora en esta entrada. Al tomar $r$ fijo en la parte de la definición dada por $rQ+sR$, obtenemos una recta que pasa por $rQ$ con dirección $R$; . De manera análoga, al tomar $s$ fijo, obtenemos una recta que para por $sR$ y tiene dirección $Q$.

Tomando a $Q=(-2,5,1)$ y a $R=(3,4,5)$ como ejemplo, usa los deslizadores en el siguiente interactivo para notar qué pasa cuando fusionas las dos ideas que acabamos de discutir, al establecer un punto $C=rQ+sR$ (con $r$ y $s$ en $\mathbb{R}$).

Ojalá hayas notado que al dejar correr ambos deslizadores, el rastro del punto $C$ describe un plano que claro pasa por $Q$ y $R$, pero pasa por otro punto definido más. Dentro del mismo interactivo, utiliza la herramienta Plano por tres puntos para definir el plano del que hablamos; deja correr los deslizadores y confirma con esto que el rastro de $C$ es este plano.

Para continuar con nuestro análisis, agreguemos la parte faltante al conjunto $\Pi$, el punto $P$. Ojalá recuerdes que en la descripción paramétrica de una recta, el punto que no tiene un parámetro multiplicando es el punto por el que pasa la recta, si ese punto no está, significa que la recta pasa por el origen. Esta idea se repite análogamente en el caso del plano.

En el análisis que acabamos de realizar, el plano descrito por $rQ+sR$, es el plano que tiene como dirección a $Q$ y a $R$ y además pasa por el origen. Al agregar $P$ a la expresión, lo que se obtiene es un plano paralelo al descrito anteriormente, pero esta vez pasa por $P$, es decir, a cada punto del plano $rQ+sR$ se le sumará el punto fijo $P$.

Plano en forma baricéntrica

Continuemos con la lógica que hemos seguido hasta ahora, con lo cual el siguiente paso es definir el plano en forma baricéntrica.

Definición. Un plano en forma baricéntrica en $\mathbb{R}^3$ consta de tomar los puntos $P$, $Q$, y $R$ y considerar el conjunto

$\Pi= \{ pP+qQ+rR : p,q,r \in \mathbb{R}$ y $p+q+r=1 \}$

Al definir el plano de esta manera, lo que debes imaginar es algo distinto a la primera definición que establecimos. Piensa a $\Pi$ como un plano que pasa por los puntos $P$, $Q$ y $R$.

El siguiente interactivo sólo es la ilustración de un plano en su forma baricéntrica.

Ahora que ya definimos de maneras distintas el plano en el espacio, lo más natural sería encontrar la equivalencia entre estas dos definiciones así como lo vimos al hablar de la recta, sólo que en este caso lo formalizaremos con una proposición.

Relación entre las expresiones de un plano

Proposición. Todo plano en forma paramétrica puede expresarse en forma baricéntrica y viceversa.

Lo que nos gustaría hacer para la demostración, sería mostrar que siempre se pueden encontrar $P’$, $Q’$ y $R’$ con los cuales se puede definir un plano en forma baricéntrica de tal manera que ese conjunto sea el mismo que el conjunto que define a un plano en forma paramétrica.

Demostración.

Parte 1: Partamos de un plano en su forma paramétrica al tomar $P,Q,R \in \mathbb{R}^3$ tal que

$\Pi=\{ P+rQ+sR :r,s \in \mathbb{R} \}$

En esta parte de la demostración, nuestro objetivo es encontrar tres puntos en $\Pi$ muy específicos con los cuales podemos describir el mismo plano pero en su forma baricéntrica.

Por lo anterior y yendo directo al grano, busquemos dos puntos en el plano. Si bien podemos escoger cualesquiera valores de $r$ y $s$ para determinar ciertos puntos en el plano, facilitaremos el álgebra al escoger casos particulares de valores para $r$ y $s$ y así obtener tres puntos «prácticos» en el plano que nos servirán para la forma baricéntrica de este. Los valores de los parámetros no serán tomados de manera aleatoria. Por lo que discutimos anteriormente, podemos definir ciertos puntos (en nuestra demostración $P$’, $Q$’ y $R$’) como combinaciones lineales puntuales de $P$, $Q$, $R$.

  1. El caso más sencillo es tomar $r=s=0$ y así obtener el punto $P$’$=P \in \Pi$.
  2. Si ahora $r=0$ y $s=1$, tenemos $R$’$=P+R$
  3. Y si $r=1$ y $s=0$, obtenemos $Q$’$=P+Q$

Ya que tenemos estos 3 puntos en $\Pi$, podemos definir el plano en su forma baricéntrica:

$\Pi$’$=\{pP$’$+qQ$’$+rR$’$ : p,q,r \in \mathbb{R}\}$

Para continuar, afirmamos que $\Pi=\Pi$’, y para comprobarlo, tenemos que checar que cada elemento en $\Pi$, está en $\Pi$’. La manera más sencilla de hacerlo, es tomar un elemento genérico de $\Pi$ (i.e. un elemento que «represente» a todos) y mostrar que está en $\Pi$’.

Tomemos un elemento de $\Pi$, es decir un vector de la forma $P+rQ+sR$.

Por Demostrar: Existen $a,b,c \in \mathbb{R}$, tales que $a+b+c=1$ y además

$P+rQ+sR=aP$’$+bQ$’$+cR$’

Encontremos entonces los valores de $a$,$b$, $c$.

Al sustituir los elementos primados, tenemos

\begin{align*}
P+rQ+sR&=aP+b(P+Q)+c(P+R) \\
&=aP+bP+bQ+cP+cR\\
&=(a+b+c)P+bQ+cR
\end{align*}

$\Rightarrow P+rQ+sR= (a+b+c)P+bQ+cR$

La igualdad nos lleva a un sistema de ecuaciones a partir del cual podremos obtener los valores de $a$, $b$, y $c$ para que esta se cumpla

\begin{align*}
a+b+c&=1 \\
b&=r \\
c&=s
\end{align*}

La primera condición ya cumple algo que queríamos y además, podemos despejar a $a=1-b-c$, que gracias a las otras igualdades que tenemos, conocemos su valor en términos de $r$ y $s$

$a=1-r-s$

Por lo que

$P+rQ+sR=(1-r-s)P+r(P+Q)+s(P+R)$

tal que $(1-r-s)+r+s=1$.

Hasta aquí, lo que hemos demostrado es que cualquier elemento en $\Pi$ lo podemos escribir como un elemento en $\Pi$’, esto es que $\Pi \subseteq Pi$’. Lo que sigue es realizar el camino contrario.

Ahora, lo que queremos es demostrar que $\Pi$’$\subseteq Pi$; para lo cual partiremos de un elemento en $\Pi$’ y buscaremos llegar a un elemento en $\Pi$.

Tomemos un elemento en $\Pi’$, esto es que es de la forma

$aP$’$+bQ$’$+cR$’$=aP+b(P+Q)+c(P+R)$

con $a+b+c=1$. Por medio de álgebra, queremos llegar a una expresión que represente un elemento de $\Pi$

\begin{align*}
aP+b(P+Q)+c(P+R) &= \\
&=aP+bP+bQ+cP+Cr \\
&=(a+b+c)P+bQ+cR \\
\end{align*}

Pero por hipótesis, $a+b+c=1$, por lo que

$=P+bQ+cR$

que efectivamente está en $\Pi$, pues es un elemento de la forma $P+rQ+sR$. Por lo que $\Pi$’ $\subseteq \Pi$.

$\therefore$ $\Pi \subseteq \Pi$’ y $\Pi$’ $\subseteq Pi$, entonces $\Pi=\Pi$’. Nota que concluimos esto partiendo de un plano en su forma paramétrica y al hacer el caso de la forma baricéntrica, utilizamos los puntos definidos a partir de la primera forma mencionada.

Parte 2. Para la parte 2, sólo te dare algunos consejos para que completes la demostración, pues es bastante parecida a lo que hicimos en la parte 1. Primero, tienes que partir del plano en su forma baricéntrica, es decir

$\Pi=\{ pP+qQ+rR : p+q+r=1 \text{ con }p,q,r \in \mathbb{R} \}$

Y buscar los puntos $P$’, $Q$’ y $R$’ tales que al tomar $P$’ como punto base y $Q$’ y $R$’ como direcciones, obtengas que $\Pi=\Pi’$.

Si realizas el procedimiento de la manera correcta, llegarás a que los puntos son :

\begin{align*}
P&=P’ \\
Q’&=Q-P \\
R’&=R-P
\end{align*}

Al completar esta segunda parte, entonces la demostración estará completa.

$\square$

Dimensiones mayores a 3

Para cerrar esta entrada, enunciaremos algunas definiciones que nos ayudarán en un futuro a definir cosas más complejas.

Definición. Sean $u_1$, $u_2$, $\dots$, $u_k$ puntos en $\mathbb{R}^n$. Sean $s_1$, $s_2$, $\dots$, $s_k$ números reales. A una expresión de la forma

$s_1u_2+s_2u_2+\dots+s_ku_k$

le llamamos una combinación lineal de $u_1$, $u_2$, $\dots$ $u_k$.

Ejemplo: Sea el espacio $\mathbb{R}^5$, una combinaión lineal en este es

$-5(3,1,0,-2,7)+2(-3,6,8,1,9)+(-3)(3,9,0,-1,-2)$

Definición. A una combinación lineal en donde los coeficientes suman $1$, le llamamos una combinación afín. Esto es que

$s_1+s_2+\dots+s_k=1$

Ejemplo: La combinación del ejemplo anterior no es afín, pues

$-5+2+(-3)=-5+2-3=-8+2=-6 \neq 1$

Sin embargo, podemos obtener una combinación afín con los mismos vectores.

$-4(3,1,0,-2,7)+2(-3,6,8,1,9)+3(3,9,0,-1,-2)$

Es una combinación afín, pues

$-4+2+3=-4+5=1$

Definición. Al conjunto de todas las combinaciones lineales de ciertos vectores dados $u_1$, $u_2$, $\dots$ $u_k$ $\in \mathbb{R}^n$ se le conoce como el subespacio generado por $u_1$, $u_2$, $\dots$ $u_k$ y lo denotamos como

$\braket{u_1, u_2, \dots, u_k}$

esto es

$\braket{u_1, u_2, \dots, u_k}=\{ s_1u_2+s_2u_2+\dots+s_ku_k : s_1, \dots, s_k \in \mathbb{R} \}$

Veamos dos ejemplos de esta definición.

Ejemplo 1: Sea $v_1 \in \mathbb{R}^2$, $v_1 \neq 0$, el espacio generado por este vector es

$\braket{v_1}=\{ s_1v_1 : s_1 \in \mathbb{R} \}$

Ejemplo 2: Sea $v_1, v_2 \in \mathbb{R}^2$, $v_1 \neq 0$ y $v_2 \neq 0$, el espacio generado es

$\braket{v_1,v_2} = \{s_1v_1+s_2v_2 : s_1, s_2 \in \mathbb{R}\}$

Cerremos esta entrada con una última definición y su respectivo ejemplo.

Definición. Si $A$ es un subconjunto de $\mathbb{R}^n$y $p$ es un vector en $\mathbb{R}^n$, entonces el traslado de $A$ por el vector $p$ es el conjunto

$A+p=p+A= \{ x+p : x \in A \}$

Esta última definición nos es de utilidad para pasar de una recta o un plano que pasa por el orígen a otro que pasa por cualquier punto $p$.

Ejemplo: Sea $\Pi=\{r(5,3,2)+s(-1,7,0): s,r \in mathbb{R}$ el plano que pasa por el origen y que tiene como vectores directores a $(5,3,2$ y $(-1,7,0)$. Entonces el traslado de $\Pi$ por $p=(-2,3,9)$ es el conjunto

\begin{align*}
p+\Pi&=\Pi+p=\Pi+(-2,3,9) \\
&=\{r(5,3,2)+s(-1,7,0)+(-2,3,9): s,r \in \mathbb{R}\}
\end{align*}

Tarea moral

  • En el párrafo siguiente a la definición de un plano en el espacio:
    • ¿Cuál es el parámetro de la recta descrita al tomar $r$ fijo?
    • ¿Cuál es el parámetro de la recta descrita al tomar $s$ fijo?
  • Completa el interactivo de la sección Plano en el espacio al dibujar el plano definido por los puntos $Q$ y $R$ del interactivo y $P=(-3,2-6)$. Estarás en lo correcto si el plano que obtienes es paralelo al definido por $Q$, $R$ y el origen.
  • Completa la demostración de la proposición que trata la equivalencia entre las definiciones de plano en el espacio.
  • ¿Qué espacio geométrico define el primer ejemplo de subespacio generado? ¿y el ejemplo 2?
  • Da una expresión paramétrica para el plano que pasa por los puntos $P=(1,2,0)$, $Q=(1,0,1)$ y $R=(-1,0-2)$.

Más adelante

Con lo desarrollado en esta entrada seremos capaces de definir ciertos lugares geométricos ya no sólo en el plano, si no también eln el espacio. Además, desarrollamos una intuición lógica para continuar construyendo lo que resta del curso.

Álgebra Lineal I: Combinaciones lineales

Introducción

En esta entrada presentamos el concepto de combinaciones lineales en espacios vectoriales que será fundamental para nuestro estudio. De cierta manera (que se verá más claramente cuando hablemos de bases en espacios vectoriales arbitrarios) captura un aspecto de la base canónica de $F^n$: Todo vector lo podemos escribir como $x_1 e_1+\dots+x_n e_n$, lo que con nuestro lenguaje será una combinación lineal de los vectores $e_i$.

También hablamos del concepto de espacio generado. De manera intuitiva, el espacio generado por un conjunto de vectores es el mínimo subespacio que los tiene (y que a la vez tiene a todas las combinaciones lineales de ellos). Geometricamente, los espacios generados describen muchos de los objetos conocidos como rectas y planos. De manera algebraica, este concepto nos servirá mucho en lo que sigue del curso.

Definición de combinaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$, y sean $v_1, \dots, v_n$ vectores en $V$. Por definición, $V$ contiene a todos los vectores de la forma $c_1 v_1+\dots +c_n v_n$ con $c_1, \dots, c_n \in F$. La colección de los vectores de este estilo es importante y le damos una definición formal:

Definición. Sean $v_1, \dots, v_n$ vectores en un espacio vectorial $V$ sobre $F$.

  1. Un vector $v$ es una combinación lineal de los vectores $v_1, \dots, v_n$ si existen escalares $c_1,\dots, c_n\in F$ tales que
    \begin{align*}
    v= c_1 v_1 +c_2 v_2+\dots +c_n v_n.
    \end{align*}
  2. El espacio generado (que a veces abreviaremos como el generado) por $v_1, \dots, v_n$ es el subconjunto de $V$ de todas las combinaciones lineales de $v_1,\dots, v_n$, y lo denotamos por $\text{span}(v_1, \dots, v_n)$.

Ejemplo.

  1. La matriz $A=\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ es una combinación lineal de las matrices $B= \begin{pmatrix} 10 & 0 \\ 5 & 0\end{pmatrix}$ y $C=\begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{2}\end{pmatrix}$ pues $A=\frac{1}{5} B + 2 C$. Así, $A$ está en el generado por $B$ y $C$.
  2. El generado $\text{span}(v)$ de un único vector en $\mathbb{R}^n$ consta de puras copias re-escaladas de $v$ (también nos referimos a estos vectores como múltiplos escalares de $v$). Usando la interpretación geométrica de vectores en $\mathbb{R}^2$ o $\mathbb{R}^3$, si $v\neq 0$ entonces $\text{span}(v)$ representa una recta por el origen en la dirección de $v$.
  3. Si $e_1=(1,0,0)$ y $e_2=(0,1,0)$, entonces
    \begin{align*}
    x e_1+ y e_2=(x,y,0).
    \end{align*}
    Como $x$ y $y$ fueron arbitrarios, podemos concluir que $\text{span}(e_1,e_2)$ consta de todos los vectores en $\mathbb{R}^3$ cuya tercer entrada es cero. Esto es el plano $xy$. En general, si $v_1, v_2$ son dos vectores no colineales en $\mathbb{R}^3$ entonces su espacio generado es el único plano por el origen que los contiene.
  4. El polinomio $3x^{10}+7$ del espacio vectorial $\mathbb{R}_{10}[x]$ no puede ser escrito como combinación lineal de los polinomios $x^{10}+x^2+1$, $x^7+3x+1$, $7x^3$. Para demostrar esto, debemos probar que no existen reales $a,b,c$ tales que $$3x^{10}+1=a(x^{10}+x^2+1)+b(x^7+3x+1)+7cx^3.$$
    Desarrollando el producto de la derecha y observando el coeficiente de $x^{10}$, necesitamos que $a$ sea igual a $3$. Pero entonces a la derecha va a quedar un término $3x^2$ que no se puede cancelar con ninguno otro de los sumandos, sin importar el valor de $b$ o $c$.

$\square$

Problemas prácticos de combinaciones lineales

La definición de que un vector sea combinación de otros es existencial. Para mostrar que sí es combinación lineal, basta encontrar algunos coeficientes. Para mostrar que no es combinación lineal, hay que argumental por qué ninguna de las combinaciones lineales de los vectores es igual al vector buscado.

Problema. Muestra que el vector $(1,1,1)$ de $\mathbb{R}^3$ no se puede expresar como combinación lineal de los vectores

\begin{align*}
v_1= (1,0,0), \hspace{2mm} v_2=(0,1,0)\text{ y } v_3=(1,1,0).
\end{align*}

Solución: Una combinación lineal arbitraria de $v_1, v_2, v_3$ es de la forma

\begin{align*}
x_1 v_1 +x_2 v_2 + x_3 v_3 = (x_1 + x_3, x_2 + x_3, 0)
\end{align*}

para $x_1,x_2,x_3$ reales. Así, las combinaciones lineales de $v_1,v_2,v_2$ siempre tienen a $0$ como tercera coordenada. De esta forma, ninguna de ellas puede ser igual a $(1,1,1)$.

$\square$

Más generalmente, consideramos el siguiente problema práctico: dada una familia de vectores $v_1, v_2, \dots, v_k$ en $F^n$ y un vector $v\in F^n$, decide si $v$ es una combinación lineal de $v_1, \dots, v_k$. En otras palabras, si $v\in \text{span}(v_1, \dots, v_k)$.

Para resolver este problema, consideramos la matriz de tamaño $n\times k$ cuyas columnas son $v_1, \dots, v_k$. Decir que $v\in \text{span}(v_1, \dots, v_k)$ es lo mismo que encontrar escalares $x_1, \dots, x_k\in F$ tales que $v= x_1 v_1 +\dots +x_k v_k$. De manera equivalente, si tomamos $X=(x_1,\ldots,x_k)$, queremos la existencia de una solución al sistema $AX=v$.

Esto es muy útil. Como tenemos una manera práctica de decidir si este sistema es consistente (por reducción gaussiana de la matriz aumentada $(A\vert v)$), tenemos una manera práctica de resolver el problema de si un vector es combinación lineal de otros. Por supuesto, esto también nos da una solución concreta al problema, es decir, no sólo decide la existencia de la combinación lineal, sino que además da una cuando existe.

Problema. Sean $v_1=(1,0,1,2), v_2=(3,4,2,1)$ y $v_3=(5,8,3,0)$ vectores en el espacio vectorial $\mathbb{R}^4$. ¿Está el vector $v=(1,0,0,0)$ en el generado de $v_1,v_2$ y $v_3$? ¿El vector $w=(4,4,3,3)$?

Solución: Aplicamos el método que describimos en el párrafo anterior. Es decir, tomemos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 3 & 5\\ 0 & 4 & 8\\ 1 & 2 & 3\\ 2 & 1 & 0\end{pmatrix}.
\end{align*}

Queremos ver si el sistema $AX=v$ es consistente. Haciendo reducción gaussiana a mano, o bien usando una calculadora de forma escalonada reducia (por ejemplo, la de eMathHelp), obtenemos que la forma escalonada reducida de la matriz aumentada $(A\vert v)$ es

\begin{align*}
(A\vert v)\sim \begin{pmatrix} 1 & 0 & -1 & 0\\ 0 & 1 &2 & 0\\ 0 & 0 & 0 &1 \\ 0 & 0 & 0 &0\end{pmatrix}.
\end{align*}

Viendo el tercer renglón, notamos que tiene pivote en la última columna. Deducimos que el sistema no es consistente, así que $v\notin \text{span}(v_1, v_2, v_3)$.

Procedemos de manera similar para el vector $w$. Esta vez tenemos

\begin{align*}
(A\vert w)\sim \begin{pmatrix} 1 & 0 & -1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &0\end{pmatrix},
\end{align*}

lo que muestra que el sistema es consistente (pues ninguna fila tiene su pivote en la última columna), por lo tanto $w\in \text{span}(v_1, v_2, v_3)$. Si queremos encontrar una combinación lineal explícita tenemos que resolver el sistema

\begin{align*}
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2\\ 0 & 0 &0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\\ 0 \\ 0\end{pmatrix}.
\end{align*}

Tenemos que ninguna fila tiene su pivote en la columna $3$, así que $x_3$ es variable libre. Las variables $x_1$ y $x_2$ son pivote. Esto nos da como solución $x_1= x_3+1$ y $x_2=1-2x_3$. Entonces podemos escribir

\begin{align*}
w= (1+x_3) v_1 + (1-2x_3) v_2+ x_3v_3
\end{align*}

y esto es válido para cualquier elección de $x_3$. Podemos, por ejemplo, escoger $x_3=0$ y obtener $w=v_1 + v_2$.

$\square$

Por supuesto, en el problema anterior pudimos haber encontrado la expresión $w=v_1+v_2$ explorando el problema o por casualidad. Esto sería suficiente para mostrar qeu $w$ es combinación lineal. Pero la ventaja del método sistemático que mostramos es que no se corre el riesgo de no encontrar la solución a simple vista. De me manera definitiva nos dice si hay o no hay solución, y cuando sí hay, encuentra una.

Una caracterización del espacio generado

Probamos el siguiente resultado, que explica la importancia del concepto de espacio generado. En particular, la proposición muestra que el espacio generado es un subespacio. Si te parece un poco confusa la demostración, puede ser de ayuda leer antes la observación que le sigue.

Proposición. Sea $V$ un espacio vectorial sobre un campo $F$ y $v_1, v_2, \dots, v_n \in V$. Entonces

  1. $\text{span}(v_1, v_2, \dots, v_n)$ es la intersección de todos los subespacios vectoriales de $V$ que contienen a todos los vectores $v_1, \dots, v_n$.
  2. $\text{span}(v_1, v_2, \dots, v_n)$ es el subespacio más chico (en contención) de $V$ que contiene a $v_1,\dots, v_n$.

Demostración: Como la intersección arbitraria de subespacios es un subespacio, la parte $1$ implica la parte $2$. Probemos entonces la parte $1$.

Primero demostremos que $\text{span}(v_1, v_2,\dots, v_n)$ está contenido en todo subespacio $W$ de $V$ que tiene a $v_1, \dots, v_n$. En otras palabras, tenemos que ver que cualquier subespacio $W$ que tenga a $v_1,\ldots,v_n$ tiene a todas las combinaciones lineales de ellos. Esto se sigue de que $W$, por ser subespacio, es cerrado bajo productos por escalar y bajo sumas. Así, si tomamos escalares $\alpha_1,\ldots,\alpha_n$ tenemos que cada uno de $\alpha_1 v_1, \ldots, \alpha_n v_n$ está en $W$ y por lo tanto la combinación lineal (que es la suma de todos estos), también está en $W$.

La afirmación anterior implica que $\text{span}(v_1, \dots, v_n)$ está contenido en la intersección de todos los espacios que tienen a $v_1,\ldots, v_n$, pues está contenido en cada uno de ellos.

Ahora, queremos ver ‘la otra contención’, es decir, que $\text{span}(v_1,\ldots,v_n)$ contiene a la intersección de todos los espacios que tienen a $v_1,\ldots,v_n$. Para esto veremos primero que $\text{span}(v_1, \dots, v_n)$ es un subespacio vectorial. Sean $x,y\in \text{span}(v_1, \dots, v_n)$ y $c\in F$ un escalar. Como $x$ y $y$ son, por definición, combinaciones lineales de $v_1, \dots, v_n$, podemos escribir $x=a_1 v_1+\dots +a_n v_n$ para algunos escalares $a_i$ y $y=b_1 v_1+\dots + b_n v_n$ para unos escalares $b_i$. Así

\begin{align*}
x+cy= (a_1+cb_1) v_1 + \dots + (a_n +c b_n) v_n
\end{align*}

también es una combinación lineal de $v_1, \dots, v_n$ y por tanto un elemento del espacio generado. Se sigue que $\text{span}(v_1,\dots, v_n)$ es uno de los subespacios que tienen a $v_1, \dots, v_n$. Así, este generado «aparece» en la intersección que hacemos de subespacios que tienen a estos vectores, y como la intersección de una familia de conjuntos está contenida en cada uno de esos conjuntos, concluimos que $\text{span}(v_1, \dots, v_n)$ contiene a dicha interesección.

Argumentemos ahora la segunda parte de la proposición. Se usa el mismo argumento que arriba. Si $W$ es cualquier subespacio que contiene a $v_1, \dots, v_n$, entonces «aparece» en la intersección y por tanto $\text{span}(v_1, \dots, v_n)$ está contenido en $W$. Es decir, es más chico (en contención) que cualquier otro subespacio que contenga a estos vectores.

$\square$

Observación. Ya que la demostración previa puede resultar un poco confusa, presentamos una versión un poco más relajada de la idea que se usó. Sea $\lbrace W_i\mid i\in I\rbrace$ la familia de todos los subespacios de $V$ que contienen a $v_1, \dots, v_n$.

En el primer párrafo, probamos que

\begin{align*}
\text{span}(v_1,\dots, v_n)\subseteq W_i
\end{align*}

para todo $i\in I$. Luego $\text{span}(v_1, \dots, v_n)\subseteq \bigcap_{i\in I} W_i$.

En el segundo párrafo, probamos que $Span(v_1,\dots, v_n)$ es un subespacio que contiene a $v_1, \dots, v_n$. Es decir, entra en nuestra familia $\lbrace W_i\mid i\in I\rbrace$, es uno de los $W_i$, digamos $W_j$. Entonces

\begin{align*}
\text{span}(v_1, \dots, v_n)= W_j \supseteq \bigcap_{i\in I} W_i.
\end{align*}

En ese momento ya tenemos la primer igualdad: $\text{span}(v_1,\ldots,v_n)=\bigcap_{i\in I} W_i.$

Ahora, la segunda conclusión de la proposición se sigue de esto con una observación más: Si $W’$ es un subespacio que contiene a $v_1, \dots, v_n$ entonces también entra en nuestra familia de los $W_i$’s, es decir es $W_{p}$ para algún $p\in I$. Ahora usando el inciso $1$, tenemos que

\begin{align*}
\text{span}(v_1, \dots, v_n)= \bigcap_{i\in I} W_i \subseteq W_p=W’.
\end{align*}

Esto concluye la demostración.

Tarea moral

  • ¿Se puede expresar al vector $(1,3,0,5)$ como combinación lineal de $(0,1,0,3)$, $(0,-1,2,0)$ y $(2, 0,-1,-6)$? Si sí, encuentra una o más combinaciones lineales que den el vector $(1,3,0,5)$
  • ¿Se puede expresar al polinomio $1+x^2 +3x^3 -x^4 +x^5$ como combinación lineal de los siguientes polinomios
    \begin{align*}
    x^2-3x^4,\\
    1+x^2-x^5,\\
    2x+x^4,\\
    2+x^2,\\
    5x+5x^2-x^5?
    \end{align*}
  • Sea $P$ un plano en $\mathbb{R}^3$ por el origen y $L$ una recta de $\mathbb{R}^3$ por el origen y con dirección dada por un vector $v\neq 0$. Demuestra que la intersección de $L$ con $P$ es una recta si y sólo si existen dos vectores en $P$ tal que su suma sea $v$.
  • Encuentra el conjunto generado por los vectores del espacio vectorial indicado
    • Las matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}$ y $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$ del espacio $M_{2}$.
    • Los vectores $(1,-1,0)$ y $(1,0,-1)$ del espacio $\mathbb{R}^3$.
    • Los polinomios $1$, $x$, $x^2$ y $x^3$ del espacio $\mathbb{R}[x]$.
  • Sea $V$ un espacio vectorial. Si $v_1, \dots, v_n, x$ son vectores en un espacio vectorial $V$, ¿será cierto siempre que $\text{span}(v_1, \dots, v_n)\subseteq \text{span}(v_1, \dots, v_n, x)$? De ser así, ¿esta contención siempre es estricta? Demuestra tu respuesta o da un contraejemplo.
  • Sean $v_1,\ldots, v_n$ y $x$ vectores en un espacio vectorial $V$. Supongamos que $v_n$ está en $\text{span}(v_1,\ldots,v_{n-1},x)$. Muestra que $$\text{span}(v_1,\ldots,v_{n-1},x)=\text{span}(v_1,\ldots,v_{n-1},v_n).$$

Más adelante…

El concepto de combinación lineal es la piedra angular para definir varios otros conceptos importantes en espacios vectoriales. Es un primer paso para definir a los conjuntos de vectores generadores y a los conjuntos de vectores linealmente independientes. Una vez que hayamos desarrollado ambos conceptos, podremos hablar de bases de un espacio vectorial, y con ello hablar de la dimensión de un espacio vectorial.

Entradas relacionadas

Álgebra Lineal I: Bases y dimensión de espacios vectoriales

Introducción

Ya hablamos de conjuntos generadores y de independencia lineal. Además, ya platicamos también del lema de intercambio de Steinitz. Con estas herramientas, tenemos todo a nuestra disposición para desarrollar la teoría de dimensión de espacios vectoriales.

Para espacios vectoriales en general, esto puede no resultar tan sencillo. Por esta razón, para este tema nos enfocaremos en el caso en el que la dimensión es finita. Sin embargo, también veremos ejemplos de espacios que no son así, y hablaremos un poco de cómo son.

Espacios de dimensión finita

Definición. Se dice que un espacio vectorial es de dimensión finita si tiene un conjunto generador con una cantidad finita de elementos.

Otra forma de interpretar la definición anterior es la siguiente:
$V$ es un espacio vectorial de dimensión finita si existe una familia finita de vectores $v_1, v_2, \dots , v_n \in V$ tal que todos los vectores en $V$ se pueden expresar como combinación lineal de dicha familia. Por ejemplo, los espacios $F^n, \hspace{2mm} M_{m,n}(F), \hspace{2mm}$ y $\hspace{2mm} \mathbb{R}_n[x]$ son de dimensión finita. Sin embargo, no todos los espacios vectoriales son de dimensión finita, de hecho la mayoría no lo son.

Problema. Demuestra que el espacio vectorial $V$ de todos los polinomios con coeficientes reales no es un espacio vectorial sobre $\mathbb{R}$ de dimensión finita.

Demostración. Supongamos que $V$ tiene un conjunto generador finito, entonces existen polinomios $p_1,p_2,\dots,p_n\in V$ tales que $V=\text{span}(p_1,p_2,\dots,p_n)$. Sea $d=\max\{deg(p_1), \dots, deg(p_n)\}$. Como todos los $p_i$ tienen grado a lo más $d$, entonces cualquier combinación lineal de $p_1,p_2,\dots,p_n$ también tiene grado a lo más $d$. Se sigue que todo vector en $V$ tiene grado a lo más $d$, pero eso es imposible, pues $deg(x^{d+1})=d+1>d$. Por lo tanto $V$ no es de dimensión finita.

$\square$

Nos gustaría definir la dimensión de un espacio vectorial. Para ilustrar esto es bueno pensar primero en $\mathbb{R}^n$ para distintos valores de $n$. Una linea (digamos $\mathbb{R}$) debería tener dimensión $1$, un plano (digamos $\mathbb{R}^2$) debería tener dimensión 2, y en general $\mathbb{R}^n$ debería tener dimensión $n$.

Antes de profundizar más en esto, es conveniente mencionar algunas definiciones y problemas prácticos para generar una mejor intuición sobre el rumbo que estamos a punto de tomar.

Definición. Una base de un espacio vectorial $V$ es un subconjunto $B$ de $V$ tal que $B$ es linealmente independiente y generador.

Ejemplos.

  • El conjunto $B=\{e_1,\ldots,e_n\}$ de vectores canónicos en $\mathbb{F}^n$ es una base. Esto se puede verificar con lo que hicimos al inicio del curso, cuando mostramos que cualquier vector $v$ en $\mathbb{F}^n$ se puede escribir de manera única como $v=x_1e_1+\ldots+x_ne_n$ con $x_1,\ldots,x_n$ escalares. Como existe al menos una forma, entonces $\text{span}(B)=F^n$. Como es única, en particular la única forma de escribir al vector $0$ es si $x_1=\ldots=x_n=0$. Esto muestra que $B$ es generador y linealmente independiente.
  • El conjunto $B=\{E_{ij}\}$ de matrices canónicas en $M_{m,n}(F)$ es una base.
  • El conjunto $1,x,\ldots,x^n$ es una base de $\mathbb{R}_n[x]$.

Encontrar bases de subespacios

Como los subespacios de espacios vectoriales también son espacios vectoriales, entonces también tiene sentido hablar de si un conjunto de vectores es base para un subespacio. Veamos ahora varios problemas para entender mejor esto.

Problema. Dada la matriz $A\in M_2(\mathbb{R})$
\begin{align*}
A=\begin{pmatrix}
2 & 0\\
0 & 3
\end{pmatrix}
\end{align*}
encuentra una base para el subespacio $U$ de $M_2(\mathbb{R})$ definido por
\begin{align*}
U=\{X\in M_2(\mathbb{R}): XA=AX\}.
\end{align*}

Solución. Considera la matriz $X=\begin{pmatrix}
a_1 & a_2\\
a_3 & a_4\end{pmatrix}$. Entonces $X\in U$ si y sólo si $XA=AX$, lo anterior lo escribimos como
\begin{align*}
\begin{pmatrix}
2a_1 & 3 a_2\\
2a_3 & 3a_4
\end{pmatrix} = \begin{pmatrix}
2a_1 & 2 a_2\\
3a_3 & 3a_4
\end{pmatrix}.
\end{align*}
De la igualdad anterior obtenemos que $a_2=a_3=0$. Por lo tanto
\begin{align*}
U=\left\{\begin{pmatrix}
a_1 & 0\\
0 & a_4\end{pmatrix}:a_1,a_4\in \mathbb{R}\right\}.
\end{align*}

Este es un primer paso, pues nos permite poner al subespacio $U$ en una forma en la que es más fácil de entender. Ahora es más fácil encontrar una base para $U$. Proponemos al siguiente conjunto de dos matrices:
\begin{align*}
B=\left\{ \begin{pmatrix}
1 & 0\\
0 & 0\end{pmatrix} , \begin{pmatrix}
0&0\\
0 & 1\end{pmatrix}\right\}.
\end{align*}

Por un lado, este es un conjunto generador para $U$, pues cualquier elemento de $U$ se puede escribir como combinación lineal de elementos en $B$ como sigue: $$\begin{pmatrix} a_1 & 0 \\ 0 & a_4 \end{pmatrix}=a_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Por otro lado, $B$ es un conjunto linealmente independiente pues si $a$ y $b$ son escalares que tan una combinación lineal igual a cero entonces tendríamos $$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

Igualando la primera y última matriz entrada a entrada, tenemos que $a=b=0$.

$\square$

Es importante que revises el problema anterior con profundidad, pues da una idea de cómo encontrar una base $B$ de un subespacio $U$ de un espacio vectorial $V$. Una receta que funciona en algunos casos es la siguiente:

  • Entender bien el subespacio $U$ del que hay que dar una base.
  • Expresar a $U$ en términos simples.
  • Ver cómo son los vectores de $U$, y de ahí proponer una base $B$. Para esta parte hay que jugar un poco con conjuntos de vectores, para ver si son suficientes para generar y no son demasiados como para ya no ser linealmente independientes.
  • Mostrar que $B$ genera a $U$.
  • Mostrar que $B$ es linealmente independiente en $V$.

Veamos más ejemplos.

Problema. Determina una base para el subespacio $U$ de $\mathbb{R}^4$ dado por
\begin{align*}
U=\{(a,b,c,d)\in \mathbb{R}^4:a+b=0, c=2d\}.
\end{align*}

Solución. Como $b=-a$ y $c=2d$, entonces
\begin{align*}
U=\{(a,-a,2d,d)\in \mathbb{R}^4:a,d\in \mathbb{R}\}=\{av_1+dv_2|a,d\in \mathbb{R}\},
\end{align*}
donde $v_1=(1,-1,0,0)$ y $v_2=(0,0,2,1)$. Por lo tanto $v_1,v_2$ generan a $U$. También son linealmente independientes, pues la relación $av_1+dv_2=0$ es equivalente a $(a,-a,2d,d)=(0,0,0,0)$ e implica $a=d=0$.Se sigue que $\{v_1,v_2\}$ es una base para $U$.

$\square$

Problema. Considera los subespacios $U,V$ de $\mathbb{R}^4$ definidos por
\begin{align*}
U=\{(x,y,z,w)\in\mathbb{R}^4:y+z+w=0\}
\end{align*}
y
\begin{align*}
V=\{(x,y,z,w)\in\mathbb{R}^4:x=-y, \hspace{2mm}z=2w\}.
\end{align*}
Encuentra una base para cada uno de los subespacios $U,V$ y $U\cap V$ de $\mathbb{R}^4$.

Solución. Expresando a $w$ en términos de $y$ y $z$, obtenemos
\begin{align*}
U&=\{(x,y,z,-y-z)|y,z\in\mathbb{R}\}\\
&=\{xu_1+yu_2+zu_3|x,y,z \in \mathbb{R}\},
\end{align*}
donde $u_1=(1,0,0,0), u_2=(0,1,0,-1)$ y $u_3=(0,0,1,-1)$.

Veamos si $u_1,u_2,u_3$ son linealmente independientes. La igualdad $xu_1+yu_2+zu_3=0$ es equivalente a $(x,y,z,-y-z)=(0,0,0,0)$ e implica $x=y=z=0$. Por lo tanto, los vectores $u_1,u_2,u_3$ son linealmente independientes y forman una base de $U$.

Ahora, para $V$. Es fácil ver que
\begin{align*}
V&=\{(-y,y,2w,w)| y,w\in\mathbb{R}\}\\
&=\{yv_1+wv_2| y,w\in \mathbb{R}\},
\end{align*}
donde $v_1=(-1,1,0,0) \hspace{2mm}$ y $v_2=(0,0,2,1)$.

Nuevamente, $v_1, v_2$ son linealmente independientes, pues la relación $yv_1+wv_2=0$ es equivalente a $(-y,y,2w,w)=(0,0,0,0)$ e implica $y=w=0$. Por lo tanto $v_1,v_2$ forman una base de $V$.

Finalmente, el vector $(x,y,z,w)\in\mathbb{R}^4$ pertenece a $U\cap V$ si y sólo si
\begin{align*}
x=-y, \hspace{3mm} z=2w, \hspace{3mm} y+z+w=0.
\end{align*}
Se sigue que $x=3w, \hspace{2mm} z=2w \hspace{2mm}$ y $y=-3w$, o bien
\begin{align*}
(x,y,z,w)=(3w,-3w,2w,w)=w(3,-3,2,1).
\end{align*}
Por lo tanto $\{(3,-3,2,1)\}$ es una base de $U \cap V$.

$\square$

Problema. Sea $V$ el espacio de funciones $f:\mathbb{R}\longrightarrow \mathbb{R}$ generado por las funciones en $B=\{1,x\mapsto \sin (2x), x\mapsto \cos(2x)\}$.

a) Demuestra que $B$ es una base de $V$.
b) Demuestra que $x\mapsto \sin ^2 (x)$ es una función en $V$ y exprésala como combinación lineal de los elementos de $B$.

Solución. a) . Como $V$ es el generado de $B$, por definición $B$ es generador. Así, basta demostrar que los vectores en $B$ son linealmente independientes. En otras palabras, queremos ver que si $a,b,c$ son números reales tales que
\begin{align*}
a+b\sin (2x) + c\cos (2x)=0
\end{align*}
para todo $x\in \mathbb{R}$, entonces $a=b=c=0$.

Tomando $x=0$ se obtiene que $a+c=0$. Si tomamos $x=\frac{\pi}{2}$ obtenemos $a-c=0$. Por lo tanto $a=c=0$. Finalmente, si tomamos $x=\frac{\pi}{4}$ obtenemos $b=0$.

b) Para cada $x\in\mathbb{R}$ se tiene
\begin{align*}
\cos (2x)&=2\cos^2(x)-1\\
&=2(1-\sin^2(x))-1\\
&=1-2\sin^2(x),
\end{align*}
por lo tanto
\begin{align*}
\sin^2(x)=\frac{1-\cos (2x)}{2}.
\end{align*}
Por lo tanto $x\mapsto \sin^2(x)$ pertence a $V$ y lo expresamos como combinación lineal de los elementos de $B$ de la siguiente manera:
\begin{align*}
\sin^2(x)=\frac{1}{2}\cdot 1 + 0\cdot \sin(2x) – \frac{1}{2} \cos (2x).
\end{align*}

$\square$

Dimensión finita y bases

Ahora veamos un teorema muy importante en la teoría de la dimensión de espacios vectoriales.

Teorema. Sea $V$ un espacio vectorial de dimensión finita. Entonces
a) $V$ contiene una base con una cantidad finita de elementos.
b) Cualesquiera dos bases de $V$ tienen el mismo número de elementos (en particular, cualquier base tiene una cantidad finita de elementos).

Demostración. a) Como $V$ es de dimensión finita, entonces tiene al menos un conjunto generador finito. Sea $B$ un conjunto generador de $V$ con el menor número posible de elementos. Vamos a demostrar que $B$ es una base para $V$. $B$ ya es conjunto generador porque así lo escogimos, sólo falta probar que es linealmente independiente.

Supongamos por el contrario que $B$ no es linealmente independiente, entonces existe $v\in B$ tal que $v\in \text{span}(B\backslash \{v\})$. Por lo tanto $$\text{span}(B\setminus\{v\})=\text{span}(B)=V.$$

Pero eso es imposible pues $B$ se tomó de tamaño mínimo. Por lo tanto $B$ es linealmente independiente. Se sigue el resultado deseado.

b) Sea $B$ una base con una cantidad finita de elementos, digamos $n$. Sea $B’$ otra base de $V$. Por definición de base, $B’$ es linealmente independiente y $B$ es un conjunto generador con $n$ elementos.

Por el lema de Steinitz, $B’$ es finito y tiene a lo más $n$ elementos. Lo anterior nos muestra que cualquier base tiene a lo más $n$ elementos. De hecho, si $B’$ tiene $d$ elementos, el lema de Steinitz garantiza que $n\leq d$.

Ahora volvemos a aplicar el mismo argumento que antes, pero pensando a $B$ como linealmente independiente y a $B’$ como generador. Concluimos que $k\leq d$. De este modo, $k=d$ y por lo tanto toda base de $V$ tiene la misma cantidad de elementos.

$\square$

El resultado anterior justifica que la siguiente definición esté bien hecha.

Definición. Sea $V$ un espacio vectorial de dimensión finita. Definimos la dimensión $dim V$ de $V$ como el número de elementos de una base de $V$.

Ejemplos y problemas de dimensión

Ejemplo. Considera el espacio vectorial $\mathbb{R}^n$ y su base canónica $B=\{e_1,e_2,\dots , e_n\}$. Como $B$ es base y tiene $n$ elementos, entonces $dim(\mathbb{R}^n)=n$.

$\square$

Ejemplo. Considera el espacio vectorial $\mathbb{R}_n[x]$ de polinomios con coeficientes reales y grado a lo más $n$. Una base para $\mathbb{R}_n[x]$ es $\{1,x,\dots, x^n\}$, por lo tanto $dim(\mathbb{R}_n[x])=n+1$.

$\square$

Ejemplo. Considera el espacio vectorial $M_{m,n}(\mathbb{R})$. Sea $E_{ij}\in M_{m,n}(\mathbb{R})$ la matriz cuya entrada $(i,j)$ es $1$ y el resto de sus entradas son $0$. Entonces $B=\{E_{ij}| 1\leq i \leq m, 1\leq j \leq n \}$ es una base para $M_{m,n}(\mathbb{R})$. Así, $\dim(M_{m,n}(\mathbb{R}))=mn$.

$\square$

Problema. Encuentra una base y la dimensión del subespacio
\begin{align*}
V=\{(a,2a)|a\in \mathbb{R}\}\subset \mathbb{R}^2.
\end{align*}

Solución. Notemos que $V=\text{span}((1,2))$, pues $(a,2a)=a(1,2)$. Como $(1,2)\neq (0,0)$, entonces $B=\{(1,2)\}$ es una base de $V$. Por lo tanto $\dim(V)=1$.

$\square$

Un lema útil para demostrar que algo es base

Para finalizar esta entrada demostraremos otro teorema muy importante en la teoría de la dimensión de espacios vectoriales. En este resultado usamos de nuevo de manera repetida el lema de intercambio de Steinitz.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$. Entonces
a) Cualquier conjunto linealmente independiente de vectores de $V$ tiene a lo más $n$ elementos.
b) Cualquier conjunto generador de $V$ tiene al menos $n$ elementos.
c) Si $S$ es un subconjunto de $V$ con $n$ elementos, entonces las siguientes afirmaciones son equivalentes:

  1. $S$ es linealmente independiente.
  2. $ S $ es un conjunto generador.
  3. $S$ es una base de $V$.

Demostración. Sea $V$ una base de $B$. Por definición $B$ tiene $n$ elementos.

a) Como $B$ es un conjunto generador con $n$ elementos, por el lema de intercambio se tiene que cualquier conjunto linealmente independiente tiene a lo más $n$ elementos.

b) Sea $S$ un conjunto generador de $V$ y supongamos que $S$ tiene $d<n$ elementos. Como $B$ es linealmente independiente, entonces por el lema de intercambio se tiene que $n \leq d$, lo cual sería una contradicción.

c) Es claro que (3) implica (1) y (2), por lo que solamente probaremos que (1) implica (3) y que (2) implica (3).

Supongamos que $S$ es linealmente independiente, entonces por el lema de intercambio de Steintz podemos agregar $n-n=0$ vectores a $S$ de manera que el nuevo conjunto es generador. Claramente el nuevo conjunto es $S$ mismo, pues no le agregamos nada. Por lo tanto $S$ es un conjunto generador y como estamos bajo el supuesto de que $S$ es linealmente independiente, entonces $S$ es una base de $V$.

Ahora supongamos que $S$ es un conjunto generador que no es linealmente independiente. Entonces existe $v\in S$ tal que $v\in \text{span}(S\setminus \{v\})$. Se sigue que $S\setminus \{v\}$ es un conjunto generador de $n-1$ elementos (al generar a $v$, genera todo lo que generaba $S$). Pero esto contradice el inciso b). Por lo tanto $S$ es linealmente independiente y por lo tanto es una base de $V$.

$\square$

El resultado anterior nos permite pensar a las bases de un espacio vectorial como los conjuntos linealmente independientes «más grandes», o bien como los conjuntos generadores «más chicos». En la siguiente entrada veremos ejemplos prácticos del uso del teorema anterior.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • En todos los problemas en donde se hable de subespacios, verifica que en efecto los conjuntos dados son subespacios del espacio vectorial mencionado.
  • En todos los ejemplos y problemas en los que se menciona que algo es base, verifica que en efecto se tiene un conjunto que es generador y linealmente independiente.
  • Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y de dimensión $n$. Demuestra que si ves a $V$ como un espacio vectorial sobre $\mathbb{R}$, entonces $\dim(V)=2n$.
  • Sea $V$ un espacio vectorial de dimensión finita y $W$ un subespacio de $V$. Demuestra que $W$ es de dimensión finita, que $\dim(W)\leq \dim(V)$ y que la igualdad se da si y sólo si $W=V$.
  • Sean $W_1,W_2$ subespacios de un espacio vectorial $V$ con dimensiones $m$ y $n$, respectivamente, con $m\geq n$.
    a) Demuestra que $\dim(W_1\cap W_2)\leq n$.
    b) Demuestra que $\dim(W_1 + W_2)\leq m+n$.
  • Encuentra la dimensión del subespacio de matrices en $M_n(\mathbb{R})$ que son simétricas.

Más adelante…

A partir de la definición de dimensión, más adelante construiremos la noción de rango, que nos permite decir «qué tanta información guarda una matriz». La dimensión ayuda también a comprender cuándo hay cierto tipo de transformaciones lineales entre espacios vectoriales. Una aplicación más de la dimensión es que en muchos casos queremos probar afirmaciones para todos los espacios vectoriales de dimensión finita. Como la dimensión nos permite asociar a cada uno de estos un entero, muchas de estas demostraciones se pueden hacer por inducción.

Entradas relacionadas

Álgebra Lineal I: Introducción al curso, vectores y matrices

Introducción

Esta es la primer entrada correspondiente a las notas del curso Álgebra Lineal I. En esta serie de entradas, cubriremos todo el temario correspondiente al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Las notas están basadas fuertemente en el libro Essential Lineal Algebra with Applications de Titu Andreescu.

El curso se trata, muy a grandes rasgos, de definir espacios vectoriales y estudiar muchas de sus propiedades. Un espacio vectorial con el que tal vez estés familiarizado es $\mathbb{R}^n$, donde sus elementos son vectores con $n$ entradas. En él se pueden hacer sumas entrada a entrada, por ejemplo, si $n=3$ una suma sería

\begin{align*}
(5,-1,2)+(1,4,9)=(6,3,11).
\end{align*}

También se puede multiplicar un vector por un número real, haciéndolo entrada a entrada, por ejemplo,

\begin{align*}
3(1,5,-2,6)=(3,15,-6,18).
\end{align*}

El álgebra lineal estudia espacios vectoriales más generales que simplemente $\mathbb{R}^n$. Como veremos más adelante, hay muchos objetos matemáticos en los que se puede definir una suma y un producto escalar. Algunos ejemplos son los polinomios, ciertas familias de funciones y sucesiones. La ventaja de estudiar estos espacios desde el punto de vista del álgebra lineal es que todas las propiedades que probemos «en general», se valdran para todos y cada uno de estos ejemplos.

Lo que haremos en la primer unidad del curso es entender muy a profundidad a $F^n$, una generalización de $\mathbb{R}^n$ en la que usamos un campo arbitrario $F$. También, entenderemos a las matrices en $M_{m,n}(F)$, que son arreglos rectangulares con entradas en $F$. La unidad culmina con estudiar sistemas de ecuaciones lineales y el método de reducción Gaussiana.

Más adelante veremos que estudiar estos conceptos primero es muy buena idea pues los espacios vectoriales más generales tienen muchas de las propiedades de $F^n$, y podemos entender a ciertas transformaciones entre ellos al entender a $M_{m,n}(F)$.

Breve comentario sobre campos

En este curso no nos enfocaremos en estudiar a profundidad las propiedades que tienen los campos como estructuras algebraicas. De manera pragmática, pensaremos que un campo $F$ consiste de elementos que se pueden sumar y multiplicar bajo propiedades bonitas:

  • La suma y el producto son asociativas, conmutativas, tienen neutro (que llamaremos $0$ y $1$ respectivamente y tienen inversos (i.e. se vale «restar» y «dividir»)
  • La suma y producto satisfacen la regla distributiva

De hecho, de manera muy práctica, únicamente usaremos a los campos $\mathbb{Q}$ de racionales, $\mathbb{R}$ de reales, $\mathbb{C}$ de complejos y $\mathbb{F}_2$, el campo de dos elementos $0$ y $1$. Este último sólo lo usaremos para observar que hay algunas sutilezas cuando usamos campos con una cantidad finita de elementos.

Para todos estos campos, supondremos que sabes cómo se suman y multiplican elementos. Si necesitas dar un repaso a estos temas, puedes echarle un ojo a las entradas del curso Álgebra Superior II, que también están aquí en el blog.

Nociones iniciales de álgebra lineal: escalares, vectores y matrices

Quizás te has encontrado con vectores y matrices en otros cursos. Por ejemplo, en geometría analítica es usual identificar a un vector $(x,y)$ con un punto en el plano cartesiano, o bien con una «flecha» que va del origen a ese punto. En álgebra lineal nos olvidaremos de esta interpretación por mucho tiempo. Será hasta unidades posterioresque tocaremos el tema de geometría de espacios vectoriales. Por el momento, sólo nos importan los vectores desde el punto de vista algebraico.

Tomemos un campo $F$. A los elementos de $F$ les llamaremos escalares. Para un entero positivo $n$, un vector $X$ en $F^n$ consiste de un arreglo de $n$ entradas $a_1,a_2,\ldots,a_n$ que pueden estar dispuestas en un vector fila $$X=(a_1, a_2,\ldots, a_n),$$ o bien un vector columna $$X=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}.$$

Para $i=1,\ldots,n$, a $a_i$ le llamamos la $i$-ésima coordenada o $i$-ésima entrada de $X$.

Como vectores, puedes pensar que el vector fila y el vector columna correspondientes son el mismo. Abajo veremos en qué sentido tenemos que pensarlos como diferentes. Aunque como vectores sean los mismos, los vectores columna tienen varias ventajas conceptuales en álgebra lineal.

Ejemplo. El vector $$X=\left(\frac{1}{2}, -1, \frac{2}{3}, 4\right).$$ tiene cuatro entradas, y todas ellas son números racionales. Por lo tanto, es un vector en $\mathbb{Q}^4$. Su primer entrada es $\frac{1}{2}$. Está escrito como vector fila, pero podríamos escribirlo también como vector columna: $$\begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{2}{3} \\ 4 \end{pmatrix}.$$

El vector $$Y=\left(\pi, \frac{3}{4}, 5, 6, \sqrt{2}\right)$$ es un vector fila en $\mathbb{R}^5$, pero no en $\mathbb{Q}^5$, pues no todas sus entradas son racionales. A $Y$ también lo podemos pensar como un vector en $\mathbb{C}$.

$\square$

Una matriz en $M_{m,n}(F)$ es un arreglo rectangular de elementos en $F$ dispuestos en $m$ filas y $n$ columnas como sigue:

$$A=\begin{pmatrix}
a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\
a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\
$\vdots & & \ddots & \vdots \\
a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}
\end{pmatrix}.$$

Al escalar $a_{ij}$ le llamamos la entrada $(i,j)$ de $A$.

Para cada $i=1,\ldots,m$, definimos a la $i$-ésima fila de $A$ como el vector fila $$L_i=(a_{i1},a_{i2},\ldots,a_{in}),$$ y para cada $j=1,2,\ldots,n$ definimos a la $j$-ésima columna de $A$ como el vector columna $$C_j=\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}\end{pmatrix}.$$

Veamos algunas aclaraciones de notación. Cuando $m=n$, las matrices en $M_{m,n}(F)$ tienen la misma cantidad de filas que de columnas. En este caso simplemente usamos la notación $M_{n}(F)$ para ahorrarnos una letra, y si una matriz está en $M_{n}(F)$, le llamamos una matriz cuadrada. También, ocasiones expresamos a una matriz en forma compacta diciendo cuántas filas y columnas tiene y usando la notación $A=[a_{ij}]$.

Ejemplo. Consideremos la matriz $A$ en $M_3(\mathbb{R})$ dada por $A=[a_{ij}]=[i+2j]$. Si queremos poner a $A$ de manera explícita, simplemente usamos la fórmula en cada una de sus entradas:

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}\\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2 & 1+2\cdot 3\\
2+2\cdot 1 & 2+2\cdot 2 & 2+2\cdot 3\\
3+2\cdot 1 & 3+2\cdot 2 & 3+2\cdot 3\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 & 7\\
4 & 6 & 8\\
5 & 7 & 9\\
\end{pmatrix}
\end{align*}

Esta es una matriz cuadrada. Sin embargo, la matriz $B$ en $M_{3,2}(\mathbb{R})$ con la misma regla $B=[b_{ij}]=[i+2j]$ no es una matriz cuadrada pues es

\begin{align*}
B=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
\end{pmatrix}&=\begin{pmatrix}
1+2\cdot 1 & 1+2\cdot 2\\
2+2\cdot 1 & 2+2\cdot 2\\
3+2\cdot 1 & 3+2\cdot 2\\
\end{pmatrix}\\
&=\begin{pmatrix}
3 & 5 \\
4 & 6 \\
5 & 7 \\
\end{pmatrix},
\end{align*}

la cual es una matriz con $3$ filas y $2$ columnas.

$\square$

Cualquier vector fila en $F^n$ lo podemos pensar como una matriz en $M_{1n}(F)$ y cualquier vector columna en $F^n$ lo podemos pensar como una matriz en $M_{n1}(F)$. En este sentido estos dos vectores sí serían distintos. Usualmente será claro si se necesita o no hacer la distinción.

Para que dos vectores o dos matrices sean iguales, tienen que serlo coordenada a coordenada.

Vectores y matrices especiales

Al vector en $F^n$ con todas sus entradas iguales al cero del campo $F$ le llamamos el vector cero y lo denotamos con $0$. El contexto nos ayuda a decidir si estamos hablando del escalar cero (el neutro aditivo del campo $F$) o del vector cero.

De manera similar, a la matriz en $M_{m,n}$ con todas sus entradas iguales al cero del campo $F$ le llamamos la matriz cero y la denotamos con $O_{m,n}$. Si $m=n$, la llamamos simplemente $O_n$.

Otra matriz especial que nos encontraremos frecuentemente es la matriz identidad. Para cada $n$, es la matriz $I_n$ en $M_n(F)$ tal que cada entrada de la forma $a_{ii}$ es igual a uno (el neutro multiplicativo de $F$) y el resto de sus entradas son iguales a $0$.

Cuando estamos trabajando en $M_n(F)$, es decir, con matrices cuadradas, hay otras familias de matrices que nos encontraremos frecuentemente. Una matriz $A=[a_{ij}]$ en $M_{n}(F)$:

  • Es diagonal si cuando $i\neq j$, entonces $a_{ij}=0$.
  • Es triangular superior si cuando $i>j$, entonces $a_{ij}=0$.
  • Y es triangular inferior si cuando $i<j$ entonces $a_{ij}=0$.

A las entradas de la forma $a_{ii}$ se les conoce como las entradas de la diagonal principal de la matriz. En otras palabras, $A$ es diagonal cuando sus únicas entradas no cero están en la diagonal principal. Es triangular superior cuando sus entradas por debajo de la diagonal principal son iguales a cero. Y de manera similar, es triangular inferior cuando sus entradas por encima de la diagonal principal son iguales a cero.

Ejemplo. La matriz $O_{3,2}$ de $M_{3,2}(\mathbb{Q})$ es la siguiente

$$O_{3,2}=\begin{pmatrix}
0 & 0 \\ 0& 0 \\ 0 & 0 \\
\end{pmatrix}$$

La matriz $I_4$ de $M_{4}(F)$ es la siguiente

$$I_4=\begin{pmatrix}
1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

Esta matriz identidad es diagonal, triangular superior y triangular inferior. Una matriz diagonal distinta a la identidad podría ser la siguiente matriz en $M_3(\mathbb{Q})$:

$$\begin{pmatrix}
1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\
\end{pmatrix}.$$

Una matriz que es triangular superior, pero que no es diagonal (ni triangular inferior), podría ser la siguiente matriz en $M_4(\mathbb{R})$:

$$\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 0\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

$\square$

Operaciones de vectores y matrices

Si tenemos dos matrices $A=[a_{ij}]$ y $B=[b_{ij}]$ en $M_{m,n}(F)$, entonces podemos definir a la matriz suma $A+B$ como la matriz cuyas entradas son $[a_{ij}+b_{ij}]$, es decir, se realiza la suma (del campo $F$) entrada por entrada.

Ejemplo. Si queremos sumar a las matrices $A$ y $B$ en $M_{4}(\mathbb{R})$ dadas por $$A=\begin{pmatrix}
1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 2\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1
\end{pmatrix}.$$

y $$B=\begin{pmatrix}
1 & 1 & -1 & -3\\ 0 & 1 & 1 & -2\\ 0& 0 & 1 & 1\\ 0 & 0 & 0 & 1
\end{pmatrix},$$

entonces hacemos la suma entrada por entrada para obtener:

$$A+B=\begin{pmatrix}
2 & 1+\sqrt{2} & 1 & -3+\sqrt{5}\\ 0 & 2 & 1+\sqrt{3} & 0\\ 0 & 0 & 2 & 1+\sqrt{2}\\ 0 & 0 & 0 & 2
\end{pmatrix}.$$

$\square$

Es muy importante que las dos matrices tengan la misma cantidad de filas y renglones. Insistiendo: si no coinciden la cantidad de filas o de columnas, entonces las matrices no se pueden sumar.

Si tenemos una matriz $A=[a_{ij}]$ en $M_{m,n}(F)$ y un escalar $c$ en $F$, podemos definir el producto escalar de $A$ por $c$ como la matriz $cA=[ca_{ij}]$, es decir, aquella que se obtiene al multiplicar cada una de las entradas de $A$ por el escalar $c$ (usando la multiplicación del campo $F$).

Ejemplo. Al tomar la siguiente matriz en $M_{2}(\mathbb{C})$ $$A=\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$ y el escalar $i$ en $\mathbb{C}$, se tiene que $$iA=\begin{pmatrix} i\cdot 1 &i\cdot i \\ i\cdot (-i) & i\cdot 1\end{pmatrix} = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}.$$

$\square$

Dada una matriz $A$, a la matriz $(-1)A$ le llamamos simplemente $-A$, y definimos $A-B:=A+(-B)$.

Como todo vector en $F^n$ se puede pensar como una matriz, estas operaciones también se pueden definir para vectores para obtener la suma de vectores y la producto escalar en vectores.

En álgebra lineal frecuentemente hablaremos de escalares, vectores y matrices simultáneamente. Cada que veas una una variable es importante que te preguntes de cuál de estos tipos de objeto es. También, cada que veas una operación (por ejemplo, una suma), es importante preguntarte si es una suma de escalares, vectores o matrices.

Muchas de las buenas propiedades de las operaciones de suma y producto en el campo $F$ también se cumplen para estas definiciones de suma y producto escalar de vectores y matrices.

Teorema. Sean $A,B,C$ matrices en $M_{m,n}(F)$ y $\alpha,\beta,\gamma$ escalares en $F$. Entonces la suma de matrices:

  • Es asociativa: $(A+B)+C = A+(B+C)$
  • Es conmutativa: $A+B=B+A$
  • Tiene neutro: $A+O_{m,n}=A=O_{m,n}+A$
  • Tiene inversos: $A+(-A)=O_{m,n}=(-A)+A$

Además,

  • La suma de escalares y el producto escalar se distribuyen: $(\alpha+\beta)A=\alpha A + \beta A$
  • La suma de matrices y el producto escalar se distribuyen: $\alpha(A+B)=\alpha A + \alpha B$
  • El producto escalar es homogéneo: $\alpha(\beta A) = (\alpha \beta) A$
  • El $1$ es neutral para el producto escalar: $1A = A$

Un teorema análogo se vale al cambiar matrices por vectores. La demostración de este teorema se sigue directamente de las propiedades del campo $F$. La notación de entradas nos ayuda mucha a escribir una demostración sin tener que escribir demasiadas entradas una por una. Veamos, como ejemplo, la demostración de la primera propiedad.

Demostración. Tomemos matrices $A=[a_{ij}]$, $B=[b_{ij}]$ y $C=[c_{ij}]$ en $M_{m,n}(F)$. Para mostrar que $$(A+B)+C=A+(B+C),$$ tenemos que mostrar que la entrada $(i,j)$ del lado izquierdo es igual a la entrada $(i,j)$ del lado derecho para cada $i=1,\ldots,m$ y $j=1,\ldots,n$.

Por definición de suma, $A+B=[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]$. Por ello, y de nuevo por definicón de suma, $$(A+B)+C=[(a_{ij}+b_{ij})+c_{ij}].$$ De manera similar, $$A+(B+C)=[a_{ij}+(b_{ij}+c_{ij})].$$

Pero en $F$ la suma es asociativa, de modo que $$(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij}).$$

Con esto hemos demostrado que $(A+B)+C$ y $A+(B+C)$ son iguales entrada a entrada, y por lo tanto son iguales como matrices.

$\square$

La receta para demostrar el resto de las propiedades es la misma:

  1. Usar la definición de suma o producto por escalares para saber cómo es la entrada $(i,j)$ del lado izquierdo y del lado derecho.
  2. Usar las propiedades del campo $F$ para concluir que las entradas son iguales.
  3. Concluir que las matrices son iguales.

Para practicar las definiciones y esta técnica, la demostración del resto de las propiedades queda como tarea moral. A partir de ahora usaremos todas estas propiedades frecuentemente, así que es importante que las tengas en cuenta.

Base canónica de vectores y matrices

Cuando estamos trabajando en $F^n$, al vector $e_i$ tal que su $i$-ésima entrada es $1$ y el resto son $0$ lo llamamos el $i$-ésimo vector de la base canónica. Al conjunto de vectores $\{e_1,\ldots,e_n\}$ le llamamos la base canónica de $F^n$.

De manera similar, cuando estamos trabajando en $M_{m,n}(F)$, para cada $i=1,\ldots,m$ y $j=1,\ldots,n$, la matriz $E_{ij}$ tal que su entrada $(i,j)$ es $1$ y todas las otras entradas son cero se le conoce como la matriz $(i,j)$ de la base canónica. Al conjunto de todas estas matrices $E_{ij}$ le llamamos la base canónica de $M_{m,n}(F)$.

Ejemplo. El vector $e_2$ de $F^3$ es $(0,1,0)$. Ten cuidado, pues este es distinto al vector $e_2$ de $F^5$, que es $(0,1,0,0,0)$.

La matriz $E_{12}$ de $M_{2,3}(\mathbb{R})$ es $$\begin{pmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

$\square$

Más adelante veremos el concepto de base en general, cuando hablemos de espacios vectoriales. Por el momento, la intuición para álgebra lineal es que una base es un conjunto que nos ayuda a generar elementos que nos interesan mediante sumas y productos escalares. Los siguientes resultados dan una intuición inicial de este fenómeno.

Teorema. Todo vector $X$ en $F^n$ se puede escribir de manera única de la forma $$X=x_1e_1+x_2e_2+\ldots+x_ne_n,$$ en donde $x_1,\ldots,x_n$ son escalares en $F$ y $\{e_1,\ldots,e_n\}$ es la base canónica.

Demostración. Si $X$ es un vector en $F^n$, entonces es de la forma $X=(x_1,x_2,\ldots,x_n)$. Afirmamos que las coordenadas de $X$ son los $x_i$ buscados.

En efecto, tomemos una $i=1,\ldots,n$. Como $e_i$ tiene $1$ en la $i$-ésima entrada y $0$ en el resto, entonces $x_ie_i$ es el vector con $x_i$ en la $i$-ésima entrada y $0$ en el resto. De esta forma, sumando entrada a entrada, tenemos

\begin{align*}
x_1e_1+x_2e_2+\ldots+x_ne_n&=\begin{pmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0\\ 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}\\
&=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X.
\end{align*}

Esto muestra la existencia.

Para demostrar la unicidad, un argumento análogo muestra que si tenemos otros escalares $y_1,\ldots,y_n$ que cumplan, entonces:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X=y_1e_1+\ldots+y_ne_n=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix},$$

de modo que $x_i=y_i$ para todo $i=1,\ldots,n$.

$\square$

Tenemos un resultado análogo para matrices.

Teorema. Toda matriz $A$ en $M_{m,n}(F)$ se puede escribir de manera única de la forma $$A=\sum_{i=1}^m \sum_{j=1}^n x_{ij} E_{ij},$$ en donde para $i=1,\ldots,m$ y $j=1,\ldots,n$, se tiene que $x_{ij}$ son escalares en $F$ y $E_{ij}$ son las matrices de la base canónica.

La demostración es muy similar a la del teorema anterior y como práctica queda como tarea moral.

Ejemplo. La matriz $$A=\begin{pmatrix} 2 & 0\\ 0 & -1 \\ 3 & 5 \end{pmatrix}$$ en $M_{3,2}(\mathbb{C})$ se expresa de manera única en términos de la base canónica como $$A=2E_{11}-1E_{22}+3E_{31}+5E_{32}.$$

$\square$

Tarea moral

  • Explica por qué no puedes sumar la matriz $I_5$ con la matriz $O_4$
  • Muestra que la suma de dos matrices diagonales es diagonal. Haz lo mismo para matrices triangulares superiores y para matrices triangulares inferiores.
  • Termina de demostrar el teorema de propiedades de las operaciones de suma y producto escalar.
  • Explica por qué si una matriz es simultáneamente triangular superior y triangular inferior, entonces es diagonal.
  • Expresa a la siguiente matriz como combinación lineal de matrices de la base canónica:
    $$\begin{pmatrix}
    2 & \frac{1}{2} & 0 & 1\\
    3 & -3 & 3 & -3\\
    7 & -8 & -1 & 0
    \end{pmatrix}.$$
  • Demuestra el teorema de representación de matrices en términos de la base canónica.

Más adelante…

En esta entrada dimos una breve introducción al álgebra lineal. Ya definimos la suma y el producto escalar para vectores y matrices. En la siguiente entrada hablaremos de otro producto que sucede en álgebra lineal: la de una matriz en $M_{m,n}(F)$ por un vector en $F^n$. Veremos que esta multiplicación nos permite pensar a una matriz $A$ como una función $\varphi_A:F^n\to F^m$ con ciertas propiedades especiales.

Entradas relacionadas

Álgebra Lineal I: Cambio de base de transformaciones lineales

Introducción

En la entrada anterior definimos las matrices de cambio de base. Vimos algunas de sus propiedades básicas y mostramos cómo nos pueden ayudar para resolver el primero de los siguientes dos problemas.

  • Supongamos que tenemos dos bases $B_1$ y $B_2$ de un espacio vectorial $V$ y que tomamos un vector $v$ en $V$. Si ya sabemos la combinación lineal de elementos de $B_1$ que da $v$, ¿cómo podemos saber la combinación lineal de elementos de $B_2$ que da $v$? En otras palabras, ¿cómo podemos pasar a $v$ de su expresión en base $B_1$ a su expresión en base $B_2$?
  • Supongamos que tenemos una transformación lineal $T:V\to W$ entre dos espacios vectoriales $V$ y $W$, dos bases $B_1$ y $B_2$ de $V$ y dos bases $C_1$ y $C_2$ de $W$. Si ya sabemos qué le hace $T$ a los elementos de $V$ en términos de las bases $B_1$ y $C_1$, ¿cómo podemos saber qué hace $T$ en términos de las bases $B_2$ y $C_2$?

El objetivo de esta entrada es ver cómo con las matrices de cambio de base también podemos resolver el segundo problema. Después de hacer esto, hablaremos de una noción fundamental en álgebra lineal: la de matrices similares.

Matrices de cambio de base y transformaciones lineales

Las matrices de cambios de base nos ayudan a entender a las matrices de transformaciones lineales en bases diferentes.

Teorema. Sea $T:V\to W$ una transformación lineal entre espacios de dimensión finita $V$ y $W$. Sean $B_1$ y $B_2$ bases de $V$, y $C_1$ y $C_2$ bases de $W$. Entonces $$\Mat_{C_2,B_2}(T) = \Mat_{C_2}(C_1)\Mat_{C_1,B_1}(T)\Mat_{B_1}(B_2).$$

Observa cómo la elección de orden en la notación está rindiendo fruto. En el lado derecho «van apareciendo las bases» en el «orden natural» $C_2$, $C_1$, $B_1$, $B_2$.

Demostración. Sean $P=\Mat_{C_1}(C_2)$ y $Q=\Mat_{B_1}(B_2)$. Por un resultado de la entrada anterior, $P$ es la matriz que representa a la transformación identidad en $W$ con respecto a las bases $C_1$ y $C_2$, es decir, $P=\Mat_{C_1,C_2}(\text{id}_W)$.

Por cómo son las matrices de composiciones de transformaciones lineales, y usando que $\text{id}_W\circ T=T$, tenemos que $$\Mat_{C_1,C_2}(\text{id}_W)\Mat_{C_2,B_2}(T)=\Mat_{C_1,B_2}(T).$$

De manera análoga, $Q$ es la matriz que representa a la transformación identidad en $V$ con respecto a las bases $B_1$ y $B_2$, de donde tenemos que $$\Mat_{C_1,B_1}(T)\Mat_{B_1,B_2}(\text{id}_V)=\Mat_{C_1,B_2}(T).$$

De esta forma, $$P\Mat_{C_2,B_2}(T) = \Mat_{C_1,B_2}(T) = \Mat_{C_1,B_1}(T) Q.$$ El resultado se obtiene multiplicando por la izquierda ambos lados de esta ecuación por $P^{-1}=\Mat_{C_2}(C_1)$.

$\square$

En la siguiente entrada se verán varios ejemplos que involucran crear matrices para transformaciones lineales, matrices de cambios de base y multiplicarlas para entender una transformación lineal en distintas bases.

Por el momento, dejamos únicamente un corolario del teorema anterior, para el caso en el que tenemos una transformación lineal de un espacio vectorial a sí mismo expresado en términos de dos bases.

Corolario. Sea $T:V\to V$ una transformación lineal de un espacio vectorial $V$ de dimensión finita a sí mismo. Sean $B$ y $B’$ bases de $V$ y $P$ la matriz de cambio de base de $B$ a $B’$. Entonces $$\Mat_{B’}(T)=P^{-1}\Mat_{B}(T)P.$$

Matrices similares

Definición. Decimos que dos matrices $A$ y $B$ en $M_{n}(F)$ son similares o conjugadas si existe una matriz invertible $P$ en $M_n(F)$ tal que $B=P^{-1}AP$.

En otras palabras, $A$ y $B$ son matrices similares si representan a una misma transformación lineal en diferentes bases.

Proposición. La relación «ser similares» es una relación de equivalencia en $M_n(F)$.

Demostración. Toda matriz es similar a sí misma usando $P=I_n$, la identidad. Si $A$ y $B$ son similares con matriz invertible $P$, entonces $B$ y $A$ son similares con matriz invertible $P^{-1}$. Si $A$ y $B$ son similares con matriz invertible $P$ y $B$ y $C$ son similares con matriz invertible $Q$, notemos que $A=P^{-1}BP=P^{-1}(Q^{-1}CQ)P=(QP)^{-1}C(QP)$, de modo que $A$ y $C$ son similares con matriz invertible $QP$.

$\square$

¿Por qué es importante saber si dos matrices son similares? Resulta que dos matrices similares comparten muchas propiedades, como su traza, su determinante, su rango, etc. Para algunas matrices es más sencillo calcular estas propiedades. Así que una buena estrategia en álgebra lineal es tomar una matriz $A$ «complicada» y de ahí encontrar una matriz similar $B$ «más simple», y usar $B$ para encontrar propiedades de $A$.

Veamos un ejemplo de esto. Mediante un sencillo argumento inductivo se puede mostrar lo siguiente.

Proposición. Si $A$ y $B$ son matrices similares con $A=P^{-1}BP$, entonces $A^n=P^{-1}B^nP$.

Si $B$ fuera una matriz diagonal, entonces es fácil encontrar $B^n$: basta con elevar cada una de las entradas de su diagonal a la $n$ (lo cual es mucho más fácil que hacer productos de matrices). Así, esto da una forma muy fácil de encontrar $A^n$: basta con encontrar $B^n$, y luego hacer dos multiplicaciones de matrices más, por $P^{-1}$ a la izquierda y por $P$ a la derecha.

Tarea moral

  • Deduce el corolario del teorema principal de esta entrada.
  • Considera $\mathbb{R}[x]_2$ de polinomios con coeficientes reales y grado a lo más dos. Sea $T: \mathbb{R}[x]_2$ la transformación tal qur $T(p)=p’$, el polinomio derivado. Encuentra la matriz que representa a la transformación en la base $\{1+x+x^2,1+2x,1\}$ y la matriz que representa a la transformación en la base $\{1,x,x^2\}$. Encuentra también la matriz de cambio de base de la primera a la segunda. Verifica que se cumple la conclusión del corolario.
  • Sean $A$ y $B$ matrices similares. Muestra que $A$ es invertible si y sólo si $B$ lo es.
  • Sean $A$ y $B$ matrices similares. Muestra que $A$ y $B$ tienen la misma traza.
  • Completa el argumento inductivo para demostrar la última proposición.
  • Considera la matriz con entradas complejas $A=\begin{pmatrix}1 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -1 \end{pmatrix}$. Encuentra $A^{105}$.

Más adelante…

En estas últimas dos entradas aprendimos a hacer «cambios de base», tanto para coordenadas, como para formas matriciales. También, introdujimos el concepto de similitud de matrices. Cuando $A$ es una matriz similar a una matriz diagonal, decimos que $A$ es diagonalizable. Que una matriz sea diagonalizable trae muchas ventajas. Como ya mencionamos, una de ellas es poder elevar la matriz a potencias de manera sencilla. Otra ventaja es que en las matrices diagonalizables es sencillo calcular rangos, determinantes y otras invariantes de álgebra lineal.

Una parte importante de lo que resta del curso consistirá en entender por qué las matrices simétricas con entradas reales son diagonalizables. El teorema principal del curso (el teorema espectral), consistirá en mostrar que toda matriz simétrica con entradas reales es diagonalizable mediante matrices ortogonales. Para poder demostrarlo, necesitaremos primero estudiar teoría geométrica de espacios vectoriales y teoría de determinantes.

Entradas relacionadas