Archivo de la etiqueta: combinación lineal

Álgebra Superior II: Mínimo Común Múltiplo

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior hablamos del máximo común divisor, para lo cual lo definimos en términos de ideales. Luego vimos que cumplía las propiedades que esperábamos. Es el turno de hacer lo mismo con el mínimo común múltiplo.

Recordando lo que nos enseñaron en la educación básica, el mínimo común múltiplo de dos enteros $a$ y $b$ tenía que ser simultáneamente múltiplo de ambos y, a la vez, tenía que ser lo más pequeño posible. Siendo un poco más precisos, tenía que ser un múltiplo positivo.

Como ejemplo, tomemos $a = 6$, $b = 8$. Una manera muy sencilla de encontrar un múltiplo en común es multiplicando ambos: $6\cdot 8 = 48$. Pero este no es el múltiplo más pequeño. Para poder encontrar aquel que sí sea el más pequeño, podemos enlistar los múltiplos de cada uno de estos números:

  • Múltiplos de $6$: $6,12,18,24,30,36, \ldots$
  • Múltiplos de $8$: $8, 16, 24, 32, 40, \ldots$

Notamos que el número más pequeño que está en ambas listas es el $24$. En educación básica había otras maneras de obtener esto sin hacer las listas anteriores, por ejemplo, mediante la siguiente tabla, en donde «vamos encontrando divisores en común, o bien de cada número».

862
432
232
133
1
El mínimo común múltiplo de 8 y 6 es $2^3\cdot 3 = 24.$

Lo que haremos será un poco distinto. Nuestra definición se basará nuevamente en el concepto de ideales. Veremos cómo hacer esto y cómo regresar al terreno familiar de mínimo común múltiplo que ya conocemos.

Mínimo Común Múltiplo

En la entrada de ideales en $\mathbb{Z}$ demostramos que la intersección de cualesquiera dos ideales es un ideal. También vimos que cualquier ideal era generado por algún entero no negativo. Esto nos lleva a la siguiente definición.

Definición. Sean $a$ y $b$ números enteros. Definimos a su mínimo común múltiplo como al entero no negativo $k$ tal que $a\mathbb{Z} \cap b\mathbb{Z} = k \mathbb{Z}$. En símbolos, nos referimos al mínimo común múltiplo de $a$ y $b$ como $\text{mcm}(a,b)$, o bien simplemente como $[a,b]$.

Ejemplo. Retomemos el ejemplo de la introducción. Si queremos calcular, por definición, al mínimo común múltiplo de los enteros $6$ y $8$, debemos considerar a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$, que respectivamente son:

$$6 \mathbb{Z} = \{\ldots, -12, -6, 0, 6, 12 ,18, 24, \ldots \}$$

$$8 \mathbb{Z}= \{\ldots, -16, -8, 0 ,8, 16, 24, 32, \ldots \}$$

Si hacemos la intersección de ambos ideales, notemos que obtenemos lo siguiente:

$$6 \mathbb{Z} \cap 8 \mathbb{Z} = \{\ldots, -24, 0, 24, 48, 72, \ldots\},$$

que es el ideal generado por el $24$. Así, tenemos, por definición, que el mínimo común múltiplo de $6$ y $8$ es igual a $24$.

$\square$

Propiedad fundamental del Mínimo Común Múltiplo

Lo que nos gustaría hacer ahora es demostrar que el mínimo común múltiplo que obtuvimos de nuestra definición es, en efecto, el número que cumple con las propiedades que esperamos. Escribimos esto en la siguiente proposición.

Proposición. Sean $a$ y $b$ números enteros. Se cumple que:

  • $a\mid [a,b]$ y $b\mid [a,b]$
  • Si $a\mid m$ y $b\mid m$, entonces $[a,b]\mid m$.

Demostración. La primera parte es sencilla. Como $[a,b]$ genera a $a\mathbb{Z} \cap b \mathbb{Z}$, en particular está en este conjunto. Como $[a,b]\in a\mathbb{Z}$, entonces $a|[a,b]$ y como $[a,b]\in b\mathbb{Z}$, entonces $b|[a,b]$.

Para la segunda parte, si $a\mid m$ y $b\mid m$, entonces $m\in a\mathbb{Z}$ y $m\in b\mathbb{Z}$, pero entonces $m\in a\mathbb{Z} \cap b\mathbb{Z} = [a,b]\mathbb{Z}$. De este modo, $[a,b]|m$.

$\square$

Así, el primer punto dice que $[a,b]$ es en efecto un múltiplo en común. El segundo punto es el que dice que «es el mínimo», pues a partir de la divisibilidad ahí escrita se deduce que $|[a,b]|\leq |m|$. Si pedimos que $m$ sea positivo, tenemos entonces que, en efecto, $[a,b]\leq m$. En resumen.

Corolario. Sean $a$ y $b$ enteros y $m$ un entero positivo múltiplo tanto de $a$ como de $b$. Entonces $m\geq [a,b]$.

Otra propiedad del Mínimo Común Múltiplo

Tanto el mínimo común múltiplo, como el máximo común divisor, tienen muchas propiedades que se pueden demostrar. Hay dos caminos que usualmente funcionan: o bien usar la definición a partir de ideales, o bien usar las propiedades fundamentales de cada uno de los conceptos. Veamos algunos ejemplos para el mínimo común múltiplo.

La siguiente propiedad dice que ahora mostraremos que el mínimo común múltiplo «saca constantes» en cierto sentido. Veremos una demostración usando ideales.

Proposición. Sea $k$ un entero positivo, y $b,c$ enteros cualesquiera. Se cumple que $ [kb, kc] = k[b,c]. $

Demostración. Por definición, $[kb,kc]$ es el entero no negativo que genera al ideal $(kb)\mathbb{Z} \cap (kc)\mathbb{Z}$. Nos gustaría ver que dicho entero es $k[b,c]$, en otras palabras, hay que verificar la siguiente igualdad de conjuntos:

$$(kb)\mathbb{Z} \cap (kc)\mathbb{Z} = k[b,c]\mathbb{Z}.$$

Veamos que el lado izquierdo está contenido en el derecho. Tomemos un entero $m$ del lado izquierdo. Como es múltiplo de $kb$, lo podemos escribir como $m=kbr$ para $r \in \mathbb{Z}$. Como es múltiplo de $kc$, lo podemos escribir como $m=kcs$ para $s\in \mathbb{Z}$. Tenemos entonces $kbr=m=kcs$, de donde $br=cs$ (usando $k>0$). Así, $n=br=cs$ es simultánteamente múltiplo de $b$ y $c$, así que debe ser múltiplo de $[b,c]$, digamos $n=t[b,c]$. De este modo, tenemos que $m=kbr=kn=kt[b,c]$. Esto muestra que $m$ está en $k[b,c]\mathbb{Z}$.

Ahora veamos que el lado derecho está contenido en el izquierdo. Un entero $m$ en $k[b,c]\mathbb{Z}$ es de la forma $m=k[b,c]t$ para $t$ un entero. Como $[b,c]$ es múltiplo de $b$ y $c$, podemos escribir $[b,c]=rb$ y $[b,c]=sc$ para algunos enteros $r$ y $s$. Tenemos entonces que

$$m=k[b,c]t=krbt=(kb)(rt),$$

lo cual muestra que $m$ está en $(kb)\mathbb{Z}$ y que

$$m=k[b,c]t=ksct=(kc)(st),$$

lo cual muestra que $m$ está en $(kc)\mathbb{Z}$. Esto muestra que $m$ está en la intersección buscada.

$\square$

Mínimo común múltiplo y primos relativos

Cuando dos números positivos son primos relativos, es sencillo encontrar su mínimo común múltiplo: simplemente se multiplican. De hecho, esto es una caracterización para los números primos relativos.

Proposición. Sean $a$ y $b$ dos números enteros positivos. Se tiene que $(a,b)=1$ si y sólo si $[a,b]=ab$.

Demostración. Supongamos primero que $(a,b)=1$. Tenemos que $a|[a,b]$ y que $b|[a,b]$ Por una propiedad de primos relativos de la entrada anterior, podemos deducir que $ab|[a,b]$. A la vez, sabemos que $[a,b]$ divide a cualquier múltiplo en común de $a$ y $b$, en particular, a $ab$, así, $[a,b]|ab$. Por cómo interactúa la divisibilidad con los valores absolutos, obtenemos entonces que $[a,b]=|[a,b]|=ab$, como queríamos.

Ahora supongamos que $[a,b]=ab$. Tomemos un número $d$ que divida tanto a $a$ como a $b$. Veremos que ese número debe ser $1$ ó $-1$. Escribamos $a=dr$ y $b=ds$. Tomemos el número $n=drs$. Notemos que $n=as=br$, así que $n$ es un múltiplo común de $a$ y $b$. Por ello, debe ser múltiplo del mínimo común múltiplo de ambos, que estamos suponiendo que es $ab$. Así, existe un entero $k$ con $drs=kab$ y por lo tanto $$drs=kab=kdrds.$$ De aquí deducimos que $1=kd$, por lo que $d$ debe de dividir a $1$ y por lo tanto es $1$ ó $-1$, como queríamos.

$\square$

En realidad esta proposición tiene una versión más general. Siempre se cumple, para cualesquiera dos enteros $a$ y $b$, que $|ab|=[a,b]\cdot (a,b)$. Este es un problema clásico que estudiaremos más adelante.

Más adelante…

El mínimo común múltiplo y el máximo común divisor son dos conceptos que se utilizan mucho en la teoría de números enteros. En estas últimas dos entradas hemos platicado un poco acerca de ellos. Más adelante veremos que estas mismas nociones se pueden generalizar para otras estructuras algebraicas, como la de los polinomios.

Por ahora continuaremos estudiando teoría de la divisibiliad dentro de los números enteros. Es el momento de introducir otro de los conceptos estelares: el de números primos.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra el mínimo común múltiplo de los números $24$ y $36$. Luego, encuentra su máximo común divisor.
  2. Demuestra que, para $a,b\in \mathbb{Z}$ se cumple: $[a,b] = [-a,b] = [a,-b] = [-a, -b].$
  3. Sean $a$ y $b$ enteros positivos. Muestra que $[a^2,b^2]=[a,b]^2$ y que, en general, para un entero $k\geq 1$ se cumple que $[a^n,b^n]=[a,b]^n$.
  4. ¿Cómo definirías el mínimo común múltiplo de tres números? ¿Y el máximo común divisor de tres números?
  5. Sean $a$, $b$, $c$ enteros. ¿Cómo están relacionados entre sí $[a,c]$, $[b,c]$ y $[a+b,c]$? ¿Será alguno de ellos la suma de los otros dos? Demuéstralo o da un contraejemplo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Máximo Común Divisor

Por Ana Ofelia Negrete Fernández

Introducción

La entrada anterior fue un poco técnica y habló acerca de ideales en los números enteros. Podemos apoyarnos de los ideales para construir otras nociones conocidas de la teoría de números enteros. En esta entrada hablaremos de una de ellas: la de máximo común divisor.

Quizás recuerdes la idea general del máximo común divisor a partir de lo que aprendiste en la educación básica. Por ejemplo, si tenemos a los números $14$ y $35$,y queremos encontrar su máximo común divisor, lo que se hacía es escribir los divisores de ambos:

  • Divisores de $14$: $1,2,7,14$.
  • Divisores de $35$: $1,5,7,35$.

Ya teniendo ambas listas, se elige número más grande que estén en ambas: el $7$.

Con lo que platicaremos en esta entrada vamos a recuperar esta misma noción, sin embargo lo haremos desde un punto de vista un poco más teórico, el cual nos permitirá entender más aspectos de divisibilidad de los máximos comunes divisores.

Definición de máximo común divisor

Recordemos, que en la entrada pasada vimos cómo encontrar al «ideal más pequeño» que tuviera a dos números $a$ y $b$ enteros dados.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb:r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

Como $M$ es el ideal más pequeño que tiene a $a$ y a $b$, le llamamos el ideal generado por $a$ y $b$, y lo escribimos como $\langle a,b\rangle$.

Además, en la entrada anterior también vimos que cualquier ideal de $\mathbb{Z}$ forzosamente es de la forma $k\mathbb{Z}$ para algún entero no negativo $k$, es decir, que consiste justo de los múltiplos de algún entero no negativo $k$. Esto nos permite plantear la siguiente definición.

Definición. Si $a$ y $b$ son enteros, definimos a su máximo común divisor como el entero no negativo $k$ tal que $$k\mathbb{Z}=\langle a,b\rangle.$$ A este número $k$ a veces se le denota por $\text{MCD}(a,b)$, o bien simplemente $(a,b)$.

Esta es una definición muy distinta de la que nos dan en la educación básica, sin embargo, pronto recuperaremos las propiedades familiares: veremos que en efecto es un divisor de $a$, es un divisor de $b$, y que de entre los divisores en común, es el más grande de ellos. Antes de pasar a las propiedades, veamos un ejemplo.

Ejemplo. Tomemos a los enteros $6$ y $14$. ¿Qué ideal $I$ generan? Es decir, ¿quién es $\langle 6,8\rangle$? Bueno, dicho ideal $I$ debe tener a $6$ y $14$, así que por cerradura de la resta tiene también a $14-6-8$, y similarmente debe tener a $8-6=2$. Pero recordemos que los ideales también son cerrados bajo producto por cualquier entero, así que al estar $2$ en $I$, debe pasar que todos los números pares están en $I$. Y en efecto, los números pares son un ideal de $\mathbb{Z}$ que tienen a $6$ y $14$. Con esto acabamos de demostrar que $\langle 6,14 \rangle = 2\mathbb{Z}$. De este modo, por definición, el máximo común divisor de $6$ y $14$ es igual a $2$.

$\square$

Propiedades del máximo común divisor

En esta sección veremos dos propiedades muy importantes del máximo común divisor. Por un lado, veremos que siempre se puede escribir «como combinación» de los números originales, en un sentido muy específico. Por otro lado, recuperaremos las «propiedades usuales» que queremos que se cumplan por lo que aprendimos en educación básica.

Proposición. Sean $a$ y $b$ números enteros. Entonces, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

Demostración. Por definición, $(a,b)$ es el entero tal que $\langle a,b \rangle =(a,b)\mathbb{Z}$, en particular, $(a,b)$ está en $\langle a,b\rangle$. Pero también ya sabemos que $$\langle a,b \rangle = \{ra+sb:r,s\in \mathbb{Z}\}.$$ Como $(a,b)$ está en $\langle a,b \rangle$, entonces se puede escribir de la forma de los elementos del conjunto de la derecha también, es decir, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

$\square$

Como estamos poniendo a $(a,b)$ de la forma $ra+sb$, en donde los coeficientes de $a$ y $b$ son los números enteros $r$ y $s$, decimos que $(a,b)$ se puede escribir como una combinación lineal entera de $a$ y $b$. La proposición anterior nos demuestra la existencia de dicha combinación lineal, sin embargo no nos dice exactamente cómo encontrarla. Más adelante veremos el algoritmo de Euclides, el cual nos da una forma práctica de encontrar al máximo común divisor de dos números como combinación lineal de ellos.

Veamos ahora el resultado que nos dice que, en efecto, el máximo común divisor divide a cada número, y que es «el más grande» que hace esto.

Proposición. Sean $a$ y $b$ números enteros. Entonces, se cumple lo siguiente:

  • $(a,b)|a$ y $(a,b)|b$.
  • Si $d$ es algún otro número tal que $d|a$ y $d|b$, entonces $d|(a,b)$.

Demostración. Notemos que $a\in \langle a, b\rangle$, y que por definición $\langle a,b \rangle = (a,b) \mathbb{Z}$. De este modo, $a$ es múltiplo de $(a,b)$. Análogamente, $b$ es múltiplo de $(a,b)$. Esto muestra el primer inciso.

Ahora supongamos que $d$ es otro número tal que $d|a$ y $d|b$. Por la proposición anterior, existen enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Como $d|a$, entonces $d|ra$. Como $d|b$, entonces $d|sb$. Así, $d|ra+sb=(a,b)$, como queríamos.

$\square$

La proposición anterior sí dice que el máximo común divisor divide a ambos, sin embargo no es totalmente directo por qué es el «máximo» en tamaño. La segunda parte habla más bien de una divisibilidad. Pero esto se traduce rápidamente a una desigualdad con la ayuda de las propiedades de la divisibilidad. Observa que si $d$ es un número tal que $d|a$ y $d|b$, entonces $d|(a,b)$. Tenemos entonces que $|d|\leq |(a,b)|$. Pero $(a,b)$ siempre es no negativo por definición, así que $|d|\leq (a,b)$. En resumen, tenemos el siguiente resultado.

Corolario. Si $a$ y $b$ son enteros y $d$ es un entero tal que $d|a$ y $d|b$, entonces $|d|\leq (a,b)$.

Números primos relativos (de máximo común divisor igual a uno)

Una situación muy especial en la teoría de los números ocurre cuando el máximo común divisor de dos números es igual a $1$.

Definición. Decimos que dos números enteros $a$ y $b$ son primos relativos si su máximo común divisor es igual a $1$. En símbolos, son primos relativos si $(m,n)=1$.

Por lo que hemos discutido hasta ahora, algunas de las consecuencias de que dos números $a$ y $b$ sean primos relativos son las siguientes:

  • Si $d$ es un número que divide a $a$ y a $b$, entonces $|d|\leq (a,b)=1$, es decir, $d=1$ o $d=-1$. De este modo, los únicos divisores que tienen en común son el $1$ y el $-1$.
  • El ideal generado por $a$ y $b$ es $1\cdot \mathbb{Z} = \mathbb{Z}$, es decir, consiste de todos los enteros.
  • Por esa misma razón, se tiene que $\{ra+sb: r,s \in \mathbb{Z}\}=\mathbb{Z}$, en otras palabras, cualquier entero es combinación lineal entera de $a$ y de $b$.
  • En particular, el $1$ es combinación lineal entera de $a$ y de $b$, es decir, existen enteros $r,s$ tales que $ra+sb=1$.

Estas consecuencias son prácticamente inmediatas de la definición, y es recomendable que intentes deducirlas por tu cuenta.

Veamos algunas otras propiedades que relacionan a los números primos relativos, con divisibilidad de algunas expresiones.

Proposición. Sean $a,b,c$ números enteros . Si $a\mid bc$ y $(a,b) = 1$, entonces $a\mid c.$

Demostración. Como $a$ divide a $bc$, existe $x \in \mathbb{Z}$ tal que $ax = bc$. Como $a$ y $b$ son primos relativos, sabemos que existen enteros $r$ y $s$ tales que $1 = ra+sb$. Multipliquemos esta última igualdad por $c$. Tenemos entonces que:
$$ c = rac + sbc = rac+ sax = a (rc+sx).$$

De aquí obtenemos la divisibilidad $a\mid c$ que buscábamos.

$\square$

En la proposición anterior es crucial la hipótesis de que $a$ y $b$ sean primos relativos. Por ejemplo, $7|28=14\cdot 2$, pero no pasa que $7|2$. Es decir, usualmente si dividimos a un producto, no se cumple que dividamos a cualquiera de sus factores.

A continuación tenemos otro resultado con un estilo similar.

Proposición. Sean $a,b,c \in \mathbb{Z}.$ Si $a\mid c$, $b\mid c$ y $(a,b) =1,$ entonces $ab \mid c$.

Demostración. Ya que $a,b$ son primos relativos, existen $m,n \in \mathbb{Z}$ tales que $1=am + bn $. Multipliquemos dicha ecuación por $c$: $$c=cam + cbn.$$

Como $a\mid c$ y $b\mid c$, existen $q,r \in \mathbb{Z}$ tales que $aq = c$ y $br = c$. Sustituyendo esto en la ecuación anterior, obtenemos que: $$c=cam + cbn = bram + aqbn = ab(rm+qn).$$

Esta igualdad justo nos dice que $ab\mid c$, como queríamos.

$\square$

Intenta encontrar un contraejemplo cuando no se cumple la hipótesis de que $a$ y $b$ son números primos relativos.

Más adelante…

Dejaremos el estudio del máximo común divisor hasta aquí por el momento. En la siguiente entrada hablaremos de un concepto muy cercano: el de mínimo común múltiplo. Así como en el caso de esta entrada, introduciremos la noción a partir de un contexto de ideales, para luego ver ejemplos y algunas propiedades clave.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra todas las consecuencias de ser primos relativos de la lista enunciada en la entrada.
  2. Prueba que dos enteros consecutivos siempre son primos relativos. Usa esto para demostrar que siempre que se eligen $51$ números distintos entre $1$ y $100$, forzosamente debes tener dos de ellos que sean primos relativos.
  3. Sea $m$ un entero positivo. Demuestra que $(a,b)=1$ si y sólo si $(a^m, b^m) =1.$
  4. De acuerdo a la entrada, al tomar dos números $a$ y $b$ podemos encontrar enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Demuestra que siempre sucede que $(r,s)=1$.
  5. Encuentra el máximo común divisor de $91$ y $70$ e intenta escribirlo como combinación lineal entera de ellos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

1.6. SUBESPACIO GENERADO POR UN CONJUNTO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. Diremos que el subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Si $W$ es un subespacio de $V$, se dice que $S$ genera a $W$, o que $S$ es un conjunto generador de $W$, si $\langle S\rangle =W$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

1.5. COMBINACIÓN LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

Tenemos nuestros ingredientes: los vectores y los escalares.
Tenemos nuestras parejas: resultado del producto un vector por un escalar.
Tenemos nuestros equipos: resultado de la suma de parejas.

La combinación lineal es el «equipo» que formamos por medio de nuestras «parejas» (puede ser una pareja solita). Por medio de este concepto, entrelazamos todo lo que hemos visto: campos y espacios vectoriales (con sus operaciones y propiedades).

COMBINACIÓN LINEAL

Definición: Sea $V$ un $K$ – espacio vectorial. Consideremos $m\in \mathbb{N}^{+}$ y $v_1,…,v_m\in V$. Una combinación lineal de $v_1,…,v_m$ es una expresión de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $\lambda_1,…,\lambda_m\in K$.

Nota: De modo más general, si $S$ es un subconjunto de $V$, entonces una combinación lineal de vectores de $S$ es un vector de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $v_1,…,v_m\in S$ y $\lambda_1,…,\lambda_m\in K$.

Ejemplos:

  • Sea $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$;
    $-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$;
    $0(1,0,0)+(1,-1,0)+0(1,1,-1)=(1,-1,0)$
    son combinaciones lineales de vectores de $S$.
  • Sea $S=\{(\frac{1}{n},\frac{1}{n})|n\in\mathbb{N}^{+}\}$.
    $2(\frac{1}{2},\frac{1}{2})+3(\frac{1}{6},\frac{1}{6})-4(\frac{1}{12},\frac{1}{12})=(\frac{7}{6},\frac{7}{6})$
    es una combinación lineal de vectores de $S$.
  • Sea $S=\mathcal{P}_2(\mathbb{R})=\{a+bx+cx^2|a,b,c\in\mathbb{R}\}$.
    $\frac{1}{2}x+(1-2x+5x^2)-(8+3x)+3(4-2x+x^2)=5-\frac{21}{2}x+8x^2$
    es una combinación lineal de vectores de $S$.

Nota: Aun cuando el conjunto $S$ sea infinito, sólo consideraremos combinaciones lineales en las que se use una cantidad finita de vectores de $S$.

Observación: A menudo, uno o más vectores en un conjunto dado pueden expresarse como combinaciones lineales de otros vectores en el conjunto.

Proposición: Sean $V$ un $K$ – espacio vectorial, $S\not=\emptyset$ un subconjunto de $V$. El conjunto de todas las combinaciones lineales de vectores de $S$ cumple lo siguiente:

i) es un subespacio de $V$.

ii) contiene a $S.$

iii) está contenido en cualquier subespacio de $V$ que contenga a $S$.

Demostración: Sea $V$ un $K$ – espacio vectorial, $S\subseteq V$, $S\not=\emptyset$.
Denotemos por $\mathcal{C}(S)$ al conjunto de todas las combinaciones lineales de vectores de $S$.

i) P.D. $\mathcal{C}(S)\leqslant V$

  • Primero, como $S\not=\emptyset$, podemos tomar $v\in S$.
    $\therefore\theta_V=0v\in \mathcal{C}(S)$.
  • Luego, sean $v,w\in\mathcal{C}(S)$.
    Es decir, existen $n,m\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n, \mu_1,…,\mu_m\in K$, $v_1,…,v_n,\omega_1,…,\omega_m\in S$ tales que:
    $v=\lambda_1v_1+…+\lambda_nv_n$
    $w=\mu_1\omega_1+…+\mu_m\omega_m$
    Veamos que $v+w\in\mathcal{C}(S)$.
    $v+w=(\lambda_1v_1+…+\lambda_nv_n)+(\mu_1\omega_1+…+\mu_m\omega_m)\in \mathcal{C}(S).$.
  • Por último, sean $v\in\mathcal{C}(S)$, $\lambda\in K$.
    Es decir, existen $n\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n\in K$ tales que
    $v=\lambda_1v_1+…+\lambda_nv_n$
    Veamos que $\lambda v\in K$.
    $\begin{align*} \lambda v & =\lambda(\lambda_1v_1+…+\lambda_nv_n) \\ & =\lambda(\lambda_1v_1)+…+\lambda(\lambda_nv_n) \\ & =(\lambda\lambda_1)v_1+…+(\lambda\lambda_n)v_n\in\mathcal{C}(S) \end{align*}.$

ii) P.D. $S\subseteq\mathcal{C}(S)$

Sea $v\in S$.
Tenemos que $v=1v\in\mathcal{C}(S).$

iii) P.D. Si $W \leq V$ es tal que $S\subseteq W$, entonces $\mathcal{C}(S)\subseteq W$.

Sea $W \leq V$ tal que $S\subseteq W$.
Tomaremos $v$ un elemento arbitrario de $\mathcal{C}(S)$:
Sean $v_n \in\mathcal{C}(S)$, existen $n\in\mathbb{N}^{+}$ y $v_1,\dots, v_n \in\mathcal{C}(S)$ de manera que
$v=\lambda_1v_1+…+\lambda_nv_n$
donde $\lambda_1,…,\lambda_n\in K$ y $v_1,…,v_n\in S$.
Tenemos que $\forall i$ $(v_i\in S\subseteq W)$
$\therefore v_i\in W$ para toda $i.$
Gracias a que $W$ es un subespacio y a que el producto por escalar y la suma son cerrados en los subespacios, se cumple que $\lambda_iv_i\in W$ para toda $i$ y por ende, $v=\lambda_1v_1+…+\lambda_nv_n\in W.$

Tarea Moral

  1. Describe (en lenguaje natural o algebraico) los elementos que se pueden obtener mediante combinaciones lineales de $S=\{(1,-1,0),(2,-2,0),(3,-3,0),…\}$.
  2. Obtén $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ como combinación lineal de $\begin{pmatrix} 2i & 6i \\ 4 & 2-2i \end{pmatrix}$ y $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ de 5 maneras distintas.
  3. ¿Existe algún conjunto $S$ infinito donde al menos un elemento no se pueda escribir como combinación lineal de otros elementos del conjunto? Puedes construirlo pensando en el ejercicio 1 – agregando un elemento -.

Más adelante…

Ahora que podemos tomar un subconjunto finito de vectores y obtener, por medio de combinaciones lineales, tanto conjuntos finitos como infinitos, analizaremos una propiedad muy peculiar del conjunto que resulta a partir de ello y el nombre que recibe.

Entradas relacionadas

Álgebra Lineal I: Algunas aclaraciones sobre las formas lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Uno de los momentos del curso de Álgebra Lineal I en el que se da un brinco de abstracción es cuando se introduce el espacio dual. En ese momento, empiezan a aparecer objetos que tratamos simultáneamente como funciones y como vectores: las formas lineales. De repente puede volverse muy difícil trasladar incluso conceptos muy sencillos (como el de suma vectorial, o el de indepencia lineal) a este contexto. En esta entrada intentaremos dejar esto mucho más claro.

Igualdad de funciones

Para hablar del dual de un espacio vectorial $V$ sobre un campo $F$, necesitamos hablar de las funciones $l:V\to F$. Antes de cualquier cosa, debemos de ponernos de acuerdo en algo crucial. ¿Cuándo dos funciones son iguales?

Definición. Dos funciones $f:A\to B$ y $g:C\to D$ son iguales si y sólo si pasan las siguientes tres cosas:

  • $A=C$, es decir, tienen el mismo dominio.
  • $B=D$, es decir, tienen el mismo codominio
  • $f(a)=g(a)$ para todo $a\in A$, es decir, tienen la misma regla de asignación.

Los dos primeros puntos son importantes. El tercer punto es crucial, y justo es lo que nos permitirá trabajar y decir cosas acerca de las funciones. Implica dos cosas:

  • Que si queremos demostrar la igualdad de dos funciones, en parte necesitamos demostrar que se da la igualdad de las evaluaciones para todos los elementos del conjunto.
  • Que si ya nos dan la igualdad de las funciones, entonces nos están dando muchísima información, pues nos están diciendo la igualdad de todas las evaluaciones posibles.

Veamos algunos ejemplos.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las reglas de asignación $f(x,y)=2x+3y$ y $g(x,y)=6x-y$. ¿Son iguales? Los primeros dos puntos en la definición de igualdad se cumplen, pues tienen el mismo dominio y codominio. Entonces, debemos estudiar si tienen la misma regla de asignación.

Al evaluar en $(1,1)$ obtenemos que $f(1,1)=2+3=5$ y que $g(1,1)=6-1=5$. Al evaluar en $(2,2)$ obtenemos que $f(2,2)=4+6=10$ y que $g(2,2)=12-2=10$. Hasta aquí parecería que todo va bien, pero dos ejemplos no son suficientes para garantizar que $f=g$. Necesitaríamos la igualdad en todos los valores del dominio, es decir, en todas las parejas $(x,y)$.

Al evaluar en $(2,0)$ obtenemos que $f(2,0)=4+0=4$ y que $g(2,0)=12-0=12$. Los valores de las funciones fueron distintos, así que las funciones son distintas.

$\square$

Ejemplo. Imagina que $A$ y $B$ son dos números tales que las dos funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las siguientes reglas de asignación son iguales:

\begin{align*}
f(x,y)&=2x-5y+A\\
g(x,y)&=Bx-5y+3.
\end{align*}

¿Cuáles tendrían que ser los valores de $A$ y $B$? Por supuesto, una exploración «a simple vista» sugiere que tendríamos que poner $B=2$ y $A=3$. Pero, ¿cómo vemos formalmente esto? ¿Cómo nos aseguramos de que sea la única posibilidad? Lo que tenemos que hacer es usar nuestra definición de igualdad de funciones. Para ello, podemos utilizar los valores $(x,y)$ que nosotros queremos pues la igualdad de funciones garantiza la igualdad en todas las evaluaciones. Así, podemos ponernos creativos y proponer $(3,5)$ para obtener que:

\begin{align*}
f(3,5)&=6-25+A=-19+A\\
g(3,5)&=3B-25+3=3B-22.
\end{align*}

Como las funciones son iguales, debe pasar que $f(3,5)=g(3,5)$, por lo que $-19+A=3B-22$. ¿Esto es suficiente para saber quién es $A$ y $B$? Todavía no, aún hay muchas posibiliades. Propongamos entonces otro valor de $(x,y)$ para evaluar. Veamos qué sucede con $(-2,1)$. Obtenemos:

\begin{align*}
f(-2,1)&=-4-5+A=-9+A\\
g(-2,1)&=-2B-5+3=-2B-2.
\end{align*}

Ahora tenemos más información de $A$ y $B$. Sabemos que $-9+A=-2B-2$. Reordenando ambas cosas que hemos obtenido hasta ahora, tenemos el siguiente sistema de ecuaciones:

\begin{align*}
A-3B=-3\\
A+2B=7.
\end{align*}

Restando la primera de la segunda obtenemos $5B=10$, de donde $B=2$. Sustituyendo en la segunda obtenemos $A+4=7$, de donde $A=3$, justo como queríamos.

$\square$

En el ejemplo anterior pudimos haber sido más astutos y evitarnos el sistema de ecuaciones. Recordemos que la igualdad $f(x,y)=g(x,y)$ se tiene para todas todas las parejas $(x,y)$, así que nos conviene usar parejas que 1) Sean sencillas de usar y 2) Nos den suficiente información.

Ejemplo. En el ejemplo anterior hicimos un par de sustituciones que finalmente sí nos llevaron a los valores que queríamos. Pero hay «mejores» sustituciones. Si hubiéramos usado la pareja $(0,0)$ obtendríamos inmediatemente $A$ pues: $$A=0-0+A=f(0,0)=g(0,0)=0-0+3=3,$$ de donde $A=3$. Ya sabiendo $A$, pudimos usar la pareja $(1,0)$ para obtener $$B+3=B-0+3=g(1,0)=2-0+3=5.$$ De aquí se obtene nuevamente $B=2$.

$\square$

Veamos un último ejemplo, en el que es imposible encontrar un valor fijo que haga que dos funciones que nos dan sean iguales.

Ejemplo. Veamos que es imposible encontrar un número real $A$ para el cual las dos funciones $f:\mathbb{R}^2\to\mathbb{R}$ y $g:\mathbb{R}^2\to \mathbb{R}$ con las siguientes reglas de asignación sean iguales:

\begin{align*}
f(x,y)&=x^2+Ay^2\\
g(x,y)&=Axy.
\end{align*}

Imaginemos, de momento, que esto sí es posible. Entonces, tendríamos la igualdad de funciones y por lo tanto tendríamos la igualdad para todas las evaluaciones. Evaluando en $(1,0)$ obtendríamos que $$0=A\cdot 1 \cdot 0 = g(1,0)=f(1,0)=1^2+A\cdot 0^2=1.$$ Esto nos lleva a la contradicción $0=1$, lo cual muestra que ningún valor de $A$ podría funcionar.

$\square$

La forma lineal cero

Otra noción básica, pero que es importante de entender, es la noción de la forma lineal cero.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $0$ el neutro aditivo del campo $F$. La forma lineal cero es la función $L_0:V\to F$ que manda a cualquier vector $v$ de $V$ a $0$, es decir, cuya regla de asignación es $L_0(v)=0$ para todo $v$ en $V$.

En álgebra lineal rápidamente nos queremos deshacer de notación estorbosa, pues muchas cosas son claras a partir del contexto. Pero esto tiene el problema de introducir amgüedades que pueden ser confusas para alguien que apenas está comenzando a estudiar la materia. Lo que prácticamente siempre se hace es que a la forma lineal cero le llamamos simplemente $0$, y dejamos que el contexto nos diga si nos estamos refiriendo al neutro aditivo de $F$, o a la forma lineal cero $L_0$.

En esta entrada intentaremos apegarnos a llamar a la forma lineal cero siempre como $L_0$, pero toma en cuenta que muy probablemente más adelante te la encuentres simplemente como un $0$. Combinemos esta noción con la de igualdad.

Ejemplo. ¿Cómo tienen que ser los valores de $A$, $B$ y $C$ para que la función $l:\mathbb{R}^3\to \mathbb{R}$ con la siguiente regla de asignación sea igual a la forma lineal cero $L_0$? $$f(x,y,z)=(A+1)x+(B+C)y+(A-C)z$$

Debemos aprovechar la definición de igualdad de funciones: sabemos que la igualdad se da para las ternas que nosotros queramos. Evaluando en $(1,0,0)$ obtenemos $$A+1 = f(1,0,0)=L_0(1,0,0)=0.$$

Aquí a la derecha estamos usando que la forma lineal cero siempre es igual a cero. De manera similar, evaluendo en $(0,1,0)$ y $(0,0,1)$ respectivamente obtenemos que \begin{align*}B+C&=f(0,1,0)=L_0(0,0,0)=0\\A-C&=f(0,0,1)=L_0(0,0,0)=0.\end{align*}

Ya tenemos información suficiente para encontrar $A$, $B$ y $C$. De la primer ecuación que obtuvimos, se tiene $A=-1$. De la tercera se tiene $C=A=-1$ y de la segunda se tiene $B=-C=1$.

Pero, ¡momento! Estos valores de $A$, $B$, $C$ funcionan para las tres ternas que dimos. ¿Funcionarán para cualquier otra terna? Si elebimos $A=-1$, $B=1$ y $C=-1$ entonces tendríamos $$f(x,y,z)=0\cdot x + 0\cdot y + 0\cdot z.$$ En efecto, sin importar qué valores de $(x,y,z)$ pongamos, la expresión anterior dará cero. Así, se daría la igualdad de reglas de correspondencia entre $f$ y $L_0$ y como tienen el mismo dominio y codominio concluiríamos que $f=L_0$.

$\square$

Suma y producto escalar de formas lineales

Otro aspecto que puede causar confusión es la suma de funciones y el producto escalar. En la duda, siempre hay que regresar a la definición. Enunciaremos los conceptos para formas lineales. Pero en realidad podemos definir la suma de funciones de manera similar siempre que el codominio sea un lugar en donde «se puede sumar». Similarmente, podríamos definir el producto escalar de un elemento con una función siempre que sepamos cómo multiplicar a ese elemento con cada elemento del codominio.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sean $l:V\to F$ y $m:V\to F$ formas lineales. Definimos la suma de $l$ con $m$, a la cual denotaremos por $l+m$, como la función $l+m:V\to F$ con la siguiente regla de asignación:$$(l+m)(v)=l(v)+m(v),$$ para cualquier $v$ en $V$.

De nuevo nos estamos enfrentando a un posible problema de ambigüedad de símbolos: por un lado estamos usando $+$ para referirnos a la suma en el campo $F$ y por otro lado para referirnos a la suma de funciones que acabamos de definir.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $l:V\to F$ una forma lineal y sea $r$ un elemento de $F$. Definimos el producto escalar de $r$ con $F$, al cual denotaremos por $r\cdot l$ como la función $r\cdot l:V\to F$ con la siguiente regla de asignación:$$(r\cdot l)(v)=r\cdot (l(v))$$ para cualquier $v$ en $V$.

Así, estamos usando tanto la suma en $F$ como el producto en $F$ para definir una nueva suma de funciones y un nuevo producto entre un real y una función. En el caso del producto escaler, como con muchos otros productos, usualmente quitamos el punto central y ponemos $rl$ en vez de $r\cdot l$.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3\to \mathbb{R}$ con las siguientes reglas de asignación:

\begin{align*}
f(x,y,z)&=2x-y+z\\
g(x,y,z)&=3x+y-5z.
\end{align*}

Mostraremos que la función $3f+(-2)g$ es igual a la función $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z)=-5y+13z$. Lo haremos con todo el detalle posible. Primero, notamos que las dos funciones tienen dominio $\mathbb{R}^3$ y codominio $\mathbb{R}$ así que nos podemos enfocar en la regla de asignación. Debemos ver que ambas coinciden para todas las ternas $(x,y,z)$ en $\mathbb{R}^3$. Tomemos entonces una de estas ternas $(x,y,z)$.

Por definición de producto escalar de funciones, tenemos que $$(3f)(x,y,z)=3(f(x,y,z))=3(2x-y+z)=6x-3y+3z.$$. Aquí estamos usando la distributividad en los reales. Por definición de producto escalar de funciones, tenemos que $$ ((-2)g)(x,y,z)=(-2)(g(x,y,z))=(-2)(3x+y-5z)=-6x-2y+10z.$$ Una vez más estamos usando distributividad. Luego, por definición de suma de funciones obtenemos que

\begin{align*}
(3f+(-2)g)(x,y,z)&=(3f)(x,y,z)+(-2g)(x,y,z)\\
&= (6x-3y+3z)+(-6x-2y+10z)\\
& = -5y+13z\\
&= h(x,y,z).
\end{align*}

$\square$

Usualmente tomamos atajos para seguir simplificando la notación. Por ello, típicamente a veces vemos escrito todo lo anterior simplemente como: $$3(2x-y+z)-2(2x+y-5z)=-5y+13z.$$ De hecho esto es muy práctico, pues se puede mostrar que las funciones «sí podemos operarlas como si fueran expresiones en $x$, $y$, $z$ y usáramos las reglas usuales». Así, podemos «trabajar simbólicamente» y concluir rápidamente que $$(x+y)+(3x+2z)-3(x+y-z)$$ en verdad tiene la misma regla de asignación que $-2y+5z$.

Ahora sí, ¿quién es el espacio dual?

Si tenemos un espacio vectorial $V$ sobre un campo $F$ podemos construirnos otro espacio vectorial con otro conjunto base y otras operaciones que no son las del espacio original. Una forma de hacer esto es construir el espacio dual, al que llamaremos $V^\ast$. Los elementos de $V^\ast$ son las formas lineales de $V$, es decir, funciones lineales con dominio $V$ y codominio $F$. Debemos acostumbrarnos a pensar simultáneamente a un elemento de $V^\ast$ tanto como un vector (de $V^\ast$) como una función (de $V$ a $F$).

Para verdaderamente pensar a $V^\ast$ como un espacio vectorial, debemos establecer algunas cosas especiales:

  • La suma vectorial de $V^\ast$ será la suma de funciones que platicamos en la sección anterior.
  • El producto escalar vectorial de $V^\ast$ será el producto escalar que platicamos en la sección anterior.
  • El neutro aditivo vectorial de $V^\ast$ será la forma lineal $L_0$, y se puede verificar que en efecto $l+L_0=l$ para cualquier forma lineal $l$.

Por supuesto, típicamente a la suma vectorial le llamaremos simplemente «suma» y al producto escalar vectorial simplemente «producto escalar». Aquí estamos haciendo énfasis en lo de «vectorial» sólo para darnos cuenta de que nuestras operaciones de funciones se transformaron en operaciones para el espacio vectorial que estamos definiendo.

El espacio dual cumple muchas propiedades bonitas, pero ahorita no nos enfocaremos en enunciarlas y demostrarlas. Esto se puede encontrar en la página del curso de Álgebra Lineal I en el blog. Lo que sí haremos es irnos a los básicos y entender cómo se verían algunas definiciones básicas de álgebra lineal en términos de lo que hemos discutido hasta ahora.

Combinaciones lineales de formas lineales

Para hablar de las nociones de álgebra lineal para formas lineales, hay que pensarlas como vectores y como funciones. ¿Qué sería una combinación lineal de las formas lineales $l_1,\ldots,l_r$ del espacio vectorial, digamos, $\mathbb{R}^n$. Debemos tomar elementos $\alpha_1,\ldots,\alpha_r$ en $\mathbb{R}$ y construir la función $\ell=\alpha_1l_1+\ldots+\alpha_rl_r$. Aquí estamos usando la suma vectorial y el producto escalar vectorial que quedamos que serían la suma como funciones y el producto escalar como funciones. Así, obtenemos un elemento $\ell$ que por un lado es un vector del espacio dual, y por otro es una función $\ell:\mathbb{R}^n\to \mathbb{R}$. ¿Cuál es la regla de asignación? Es precisamente la dada por las definiciones de suma y producto escalar para funciones. Para ser muy precisos, se puede mostrar inductivamente que su regla de asignación es:

\begin{align*}
(\alpha_1l_1+&\ldots+\alpha_rl_r)(x_1,\ldots,x_n)=\\
&\alpha_1(l_1(x_1,\ldots,x_n))+\ldots+\alpha_r(l_r(x_1,\ldots,x_n)).
\end{align*}

Entendiendo esto, ahora sí podemos preguntarnos si una forma lineal es combinación lineal de otras.

Ejemplo. La forma lineal $h:\mathbb{R}^2\to\mathbb{R}$ con regla de asignación $h(x,y)=2x-y$ es combinación lineal de las formas lineales $f(x,y):\mathbb{R}^2\to\mathbb{R}$ y $g(x,y):\mathbb{R}^2\to\mathbb{R}$ con reglas de asignación

\begin{align*}
f(x,y)&=x+y\\
g(x,y)&=x-y.
\end{align*}

En efecto, tenemos que es igual a la combinación lineal $\frac{1}{2}f + \frac{3}{2} g$, pues su regla de asignación es:

$$\left(\frac{1}{2}f + \frac{3}{2} g\right)(x,y)=\left(\frac{x+y}{2}\right)+\left(\frac{3x-3y}{2}\right)=2x-y,$$

que es justo la regla de asignación de $h$. Así, $h=\frac{1}{2}f+\frac{3}{2}g$.

$\square$

Independencia lineal de formas lineales

Veamos un ejemplo más de cómo entender nociones de álgebra lineal cuando hablamos de formas lineales (o funciones en general). ¿Cómo sería el concepto de independencia lineal para formas lineales $l_1,\ldots,l_r$? A partir de una combinación lineal de ellas igualada a la forma lineal cero $L_0$, debemos mostrar que todos los coeficientes son iguales a cero. Es decir, a partir de $$\alpha_1l_1+\ldots+\alpha_rl_r=L_0,$$ debemos mostrar que $\alpha_1=\ldots=\alpha_r=0.$$ Usualmente el truco en estas situaciones es que ya nos están dando una igualdad de funciones. Entonces, podemos evaluar en los valores que nosotros queramos de ambos lados de la igualdad pues funciones iguales tienen todas sus evaluaciones iguales. Esto se parece a los ejemplos de la sección de igualdad de funciones.

Ejemplo. Vamos a demostrar que las formas lineales de $\mathbb{R}^4$ dadas por $f(w,x,y,z)=4w+2x+z$, $g(w,x,y,z)=4w+2z+y$, $h(w,x,y,z)=4w+2y+x$, $k(w,x,y,z)=w+x+y+z$ son linealmente independientes. Tomemos una combinación lineal de ellas igualda a cero (¡recordemos que en este espacio vectorial el cero es la forma lineal $L_0$!):

$$Af+Bg+Ch+Dk=L_0.$$

Debemos demostrar que $A=B=C=D=0$. ¿Cómo hacemos esto? Lo que haremos es evaluar: pondremos valores convenientes de $(w,x,y,z)$ en la igualdad anterior para obtener información de $A$, $B$, $C$, $D$. Poniendo $(1,0,0,0)$ obtenemos que:

\begin{align*}
0&=L_0(1,0,0,0)\\
&= (Af+Bg+Ch+Dk)\\
&=Af(1,0,0,0)+ Bg(1,0,0,0) +Ch(1,0,0,0) +Dk(1,0,0,0) \\
&=4A + 4B + 4C + D.
\end{align*}

Así, $4A+4B+4C+D=0$. Usando esta ecuación y las evaluaciones $(0,1,0,0)$, $(0,0,1,0)$ y $(0,0,0,1)$, obtenemos todo lo siguiente:

\begin{align*}
4A+4B+4C+D&=0\\
2A+C+D&=0\\
B+2C+D&=0\\
A+2B+D&=0.
\end{align*}

De aquí se puede mostrar (como puedes verificar como ejercicio) que la única solución posible es $A=B=C=D=0$. De este modo, las formas lineales $f,g,h,k$ son linealmente independientes.

$\square$

Más adelante

Esta es más una entrada auxiliar que una entrada que forma parte del flujo de la teoría principal. Sin embargo, espero que te haya servido para dejar más claros los conceptos de cuándo tenemos formas lineales iguales, cómo se operan, cuándo varias formas lineales son linealmente independientes, etc.

Tarea moral…

  1. Verifica que para cualquier forma lineal $l:\mathbb{R}^n\to \mathbb{R}$ y la forma lineal cero $L_0:\mathbb{R}^n\to\mathbb{R}$ en efecto se tiene que $l+L_0=l$. Usa las definiciones de la forma lineal cero, de la igualdad de funciones y de la suma de funciones.
  2. Verifica que $V^\ast$ con las operaciones de suma, producto escalar y el neutro aditivo que dimos en efecto es un espacio vectorial. ¿Cómo tendrían que ser los inversos aditivos?
  3. Considera las formas lineales $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3 \to \mathbb{R}$ dadas por $f(x,y,z)=x+3y+z$ y $g(x,y,z)=-x+5y-z$.
    1. Demuestra que es imposible encontrar reales $A$ y $B$ ambos distintos de cero tales que $Af+Bg$ sea la forma lineal cero.
    2. Encuentra reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z) = -x + 21 – z$.
    3. Demuestra que es imposible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $j:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $j(x,y,z)= -2x + 4y -3z$.
    4. ¿Será posible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $k:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $k(x,y,z)=5x+5y+5z$?
  4. Para cada uno de los siguientes casos, determina si las formas lineales son linealmente independientes:
    1. $f(x,y)=5x+3y$, $g(x,y)=x-3y$.
    2. $f(x,y,z)=5x+2y-z$, $g(x,y,z)=z$, $h(x,y,z)=x-y-z$.
    3. $f(w,x,y,z)=w+y$, $g(w,x,y,z)=3x-2z$, $h(w,x,y,z)=x+y+z$, $k=(w,x,y,z)=w+2x-3z$.
  5. Considera el espacio vectorial de polinomios con coeficientes reales $\mathbb{R}[x]$. Considera la función $\text{ev}_k:\mathbb{R}[x]\to \mathbb{R}$ que a cada polinomio lo manda a su evaluación en $k$, es decir, con regla de asignación $\text{ev}_k(p)=p(k)$.
    1. Demuestra que cualquier $\text{ev}_k$ es una forma lineal.
    2. Sean $k_1,\ldots,k_r$ reales distintos. Muestra que $\text{ev}_{k_1},\ldots,\text{ev}_{k_r}$ son formas lineales linealmente independientes.

Entradas relacionadas