Archivo de la etiqueta: combinación lineal

Definición y ejemplos de SUBESPACIO GENERADO por un conjunto

Introducción

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. El subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Se dice que $S$ genera a $V$, o que $S$ es un conjunto generador de $V$, si $\langle S\rangle =V$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

Definición y ejemplos de COMBINACIÓN LINEAL

INTRODUCCIÓN

Tenemos nuestros ingredientes: los vectores y los escalares.
Tenemos nuestras parejas: resultado del producto un vector por un escalar.
Tenemos nuestros equipos: resultado de la suma de parejas.

La combinación lineal es el «equipo» que formamos por medio de nuestras «parejas» (puede ser una pareja solita). Por medio de este concepto, entrelazamos todo lo que hemos visto: campos y espacios vectoriales (con sus operaciones y propiedades).

COMBINACIÓN LINEAL

Definición: Sea $V$ un $K$ – espacio vectorial. Consideremos $m\in \mathbb{N}^{+}$ y $v_1,…,v_m\in V$. Una combinación lineal de $v_1,…,v_m$ es una expresión de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $\lambda_1,…,\lambda_m\in K$.

Nota: De modo más general, si $S$ es un subconjunto de $V$, entonces una combinación lineal de vectores de $S$ es un vector de la forma
$\lambda_1v_1+…+\lambda_mv_m$ con $v_1,…,v_m\in S$ y $\lambda_1,…,\lambda_m\in K$.

Ejemplos:

  • Sea $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $2(1,0,0)-(1,-1,0)+5(1,1,-1)=(6,6,-5)$;
    $-3(1,0,0)+0(1,-1,0)+(1,1,-1)=(-2,1,-1)$;
    $0(1,0,0)+(1,-1,0)+0(1,1,-1)=(1,-1,0)$
    son combinaciones lineales de vectores de $S$.
  • Sea $S=\{(\frac{1}{n},\frac{1}{n})|n\in\mathbb{N}^{+}\}$.
    $2(\frac{1}{2},\frac{1}{2})+3(\frac{1}{6},\frac{1}{6})-4(\frac{1}{12},\frac{1}{12})=(\frac{7}{6},\frac{7}{6})$
    es una combinación lineal de vectores de $S$.
  • Sea $S=\mathcal{P}_2(\mathbb{R})=\{a+bx+cx^2|a,b,c\in\mathbb{R}\}$.
    $\frac{1}{2}x+(1-2x+5x^2)-(8+3x)+3(4-2x+x^2)=5-\frac{21}{2}x+8x^2$
    es una combinación lineal de vectores de $S$.

Nota: Aun cuando el conjunto $S$ sea infinito, sólo consideraremos combinaciones lineales en las que se use una cantidad finita de vectores de $S$.

Observación: A menudo, uno o más vectores en un conjunto dado pueden expresarse como combinaciones lineales de otros vectores en el conjunto.

Proposición: Sean $V$ un $K$ – espacio vectorial, $S\not=\emptyset$ un subconjunto de $V$. El conjunto de todas las combinaciones lineales de vectores de $S$ cumple lo siguiente:

i) es un subespacio de $V$.

ii) contiene a $S.$

iii) está contenido en cualquier subespacio de $V$ que contenga a $S$.

Demostración: Sea $V$ un $K$ – espacio vectorial, $S\subseteq V$, $S\not=\emptyset$.
Denotemos por $\mathcal{C}(S)$ al conjunto de todas las combinaciones lineales de vectores de $S$.

i) P.D. $\mathcal{C}(S)\leqslant V$

  • Primero, como $S\not=\emptyset$, podemos tomar $v\in S$.
    $\therefore\theta_V=0v\in \mathcal{C}(S)$.
  • Luego, sean $v,w\in\mathcal{C}(S)$.
    Es decir, existen $n,m\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n, \mu_1,…,\mu_m\in K$, $v_1,…,v_n,\omega_1,…,\omega_m\in S$ tales que:
    $v=\lambda_1v_1+…+\lambda_nv_n$
    $w=\mu_1\omega_1+…+\mu_m\omega_m$
    Veamos que $v+w\in\mathcal{C}(S)$.
    $v+w=(\lambda_1v_1+…+\lambda_nv_n)+(\mu_1\omega_1+…+\mu_m\omega_m)\in \mathcal{C}(S).$.
  • Por último, sean $v\in\mathcal{C}(S)$, $\lambda\in K$.
    Es decir, existen $n\in \mathbb{N}^{+}$, $\lambda_1,…,\lambda_n\in K$ tales que
    $v=\lambda_1v_1+…+\lambda_nv_n$
    Veamos que $\lambda v\in K$.
    $\begin{align*} \lambda v & =\lambda(\lambda_1v_1+…+\lambda_nv_n) \\ & =\lambda(\lambda_1v_1)+…+\lambda(\lambda_nv_n) \\ & =(\lambda\lambda_1)v_1+…+(\lambda\lambda_n)v_n\in\mathcal{C}(S) \end{align*}.$

ii) P.D. $S\subseteq\mathcal{C}(S)$

Sea $v\in S$.
Tenemos que $v=1v\in\mathcal{C}(S).$

iii) P.D. Si $W \leq V$ es tal que $S\subseteq W$, entonces $\mathcal{C}(S)\subseteq W$.

Sea $W \leq V$ tal que $S\subseteq W$.
Tomaremos $v$ un elemento arbitrario de $\mathcal{C}(S)$:
Sean $v_n \in\mathcal{C}(S)$, existen $n\in\mathbb{N}^{+}$ y $v_1,\dots, v_n \in\mathcal{C}(S)$ de manera que
$v=\lambda_1v_1+…+\lambda_nv_n$
donde $\lambda_1,…,\lambda_n\in K$ y $v_1,…,v_n\in S$.
Tenemos que $\forall i$ $(v_i\in S\subseteq W)$
$\therefore v_i\in W$ para toda $i.$
Gracias a que $W$ es un subespacio y a que el producto por escalar y la suma son cerrados en los subespacios, se cumple que $\lambda_iv_i\in W$ para toda $i$ y por ende, $v=\lambda_1v_1+…+\lambda_nv_n\in W.$

Tarea Moral

  1. Describe (en lenguaje natural o algebraico) los elementos que se pueden obtener mediante combinaciones lineales de $S=\{(1,-1,0),(2,-2,0),(3,-3,0),…\}$.
  2. Obtén $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ como combinación lineal de $\begin{pmatrix} 2i & 6i \\ 4 & 2-2i \end{pmatrix}$ y $\begin{pmatrix} i & 3i \\ 2 & 1-i \end{pmatrix}$ de 5 maneras distintas.
  3. ¿Existe algún conjunto $S$ infinito donde al menos un elemento no se pueda escribir como combinación lineal de otros elementos del conjunto? Puedes construirlo pensando en el ejercicio 1 – agregando un elemento -.

Más adelante…

Ahora que podemos tomar un subconjunto finito de vectores y obtener, por medio de combinaciones lineales, tanto conjuntos finitos como infinitos, analizaremos una propiedad muy peculiar del conjunto que resulta a partir de ello y el nombre que recibe.

Entradas relacionadas

Álgebra Lineal I: Algunas aclaraciones sobre las formas lineales

Introducción

Uno de los momentos del curso de Álgebra Lineal I en el que se da un brinco de abstracción es cuando se introduce el espacio dual. En ese momento, empiezan a aparecer objetos que tratamos simultáneamente como funciones y como vectores: las formas lineales. De reprente puede volverse muy difícil trasladar incluso conceptos muy (como el de suma vectorial, o el de indepencia lineal) a este contexto. En esta entrada intentaremos dejar esto mucho más claro.

Igualdad de funciones

Para hablar del dual de un espacio vectorial $V$ sobre un campo $F$, necesitamos hablar de las funciones $l:V\to F$. Antes de cualquier cosa, debemos de ponernos de acuerdo en algo crucial. ¿Cuándo dos funciones son iguales?

Definición. Dos funciones $f:A\to B$ y $g:C\to D$ son iguales si y sólo si pasan las siguientes tres cosas:

  • $A=C$, es decir, tienen el mismo dominio.
  • $B=D$, es decir, tienen el mismo codominio
  • $f(a)=g(a)$ para todo $a\in A$, es decir, tienen la misma regla de asignación.

Los dos primeros puntos son importantes. El tercer punto es crucial, y justo es lo que nos permitirá trabajar y decir cosas acerca de las funciones. Implica dos cosas:

  • Que si queremos demostrar la igualdad de dos funciones, en parte necesitamos demostrar que se da la igualdad de las evaluaciones para todos los elementos del conjunto.
  • Que si ya nos dan la igualdad de las funciones, entonces nos están dando muchísima información, pues nos están diciendo la igualdad de todas las evaluaciones posibles.

Veamos algunos ejemplos.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las reglas de asignación $f(x,y)=2x+3y$ y $g(x,y)=6x-y$. ¿Son iguales? Los primeros dos puntos en la definición de igualdad se cumplen, pues tienen el mismo dominio y codominio. Entonces, debemos estudiar si tienen la misma regla de asignación.

Al evaluar en $(1,1)$ obtenemos que $f(1,1)=2+3=5$ y que $g(1,1)=6-1=5$. Al evaluar en $(2,2)$ obtenemos que $f(2,2)=4+6=10$ y que $g(2,2)=12-2=10$. Hasta aquí parecería que todo va bien, pero dos ejemplos no son suficientes para garantizar que $f=g$. Necesitaríamos la igualdad en todos los valores del dominio, es decir, en todas las parejas $(x,y)$.

Al evaluar en $(2,0)$ obtenemos que $f(2,0)=4+0=4$ y que $g(2,0)=12-0=12$. Los valores de las funciones fueron distintos, así que las funciones son distintas.

$\square$

Ejemplo. Imagina que $A$ y $B$ son dos números tales que las dos funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las siguientes reglas de asignación son iguales:

\begin{align*}
f(x,y)&=2x-5y+A\\
g(x,y)&=Bx-5y+3.
\end{align*}

¿Cuáles tendrían que ser los valores de $A$ y $B$? Por supuesto, una exploración «a simple vista» sugiere que tendríamos que poner $B=2$ y $A=3$. Pero, ¿cómo vemos formalmente esto? ¿Cómo nos aseguramos de que sea la única posibilidad? Lo que tenemos que hacer es usar nuestra definición de igualdad de funciones. Para ello, podemos utilizar los valores $(x,y)$ que nosotros queremos pues la igualdad de funciones garantiza la igualdad en todas las evaluaciones. Así, podemos ponernos creativos y proponer $(3,5)$ para obtener que:

\begin{align*}
f(3,5)&=6-25+A=-19+A\\
g(3,5)&=3B-25+3=3B-22.
\end{align*}

Como las funciones son iguales, debe pasar que $f(3,5)=g(3,5)$, por lo que $-19+A=3B-22$. ¿Esto es suficiente para saber quién es $A$ y $B$? Todavía no, aún hay muchas posibiliades. Propongamos entonces otro valor de $(x,y)$ para evaluar. Veamos qué sucede con $(-2,1)$. Obtenemos:

\begin{align*}
f(-2,1)&=-4-5+A=-9+A\\
g(-2,1)&=-2B-5+3=-2B-2.
\end{align*}

Ahora tenemos más información de $A$ y $B$. Sabemos que $-9+A=-2B-2$. Reordenando ambas cosas que hemos obtenido hasta ahora, tenemos el siguiente sistema de ecuaciones:

\begin{align*}
A-3B=-3\\
A+2B=7.
\end{align*}

Restando la primera de la segunda obtenemos $5B=10$, de donde $B=2$. Sustituyendo en la segunda obtenemos $A+4=7$, de donde $A=3$, justo como queríamos.

$\square$

En el ejemplo anterior pudimos haber sido más astutos y evitarnos el sistema de ecuaciones. Recordemos que la igualdad $f(x,y)=g(x,y)$ se tiene para todas todas las parejas $(x,y)$, así que nos conviene usar parejas que 1) Sean sencillas de usar y 2) Nos den suficiente información.

Ejemplo. En el ejemplo anterior hicimos un par de sustituciones que finalmente sí nos llevaron a los valores que queríamos. Pero hay «mejores» sustituciones. Si hubiéramos usado la pareja $(0,0)$ obtendríamos inmediatemente $A$ pues: $$A=0-0+A=f(0,0)=g(0,0)=0-0+3=3,$$ de donde $A=3$. Ya sabiendo $A$, pudimos usar la pareja $(1,0)$ para obtener $$B+3=B-0+3=g(1,0)=2-0+3=5.$$ De aquí se obtene nuevamente $B=2$.

$\square$

Veamos un último ejemplo, en el que es imposible encontrar un valor fijo que haga que dos funciones que nos dan sean iguales.

Ejemplo. Veamos que es imposible encontrar un número real $A$ para el cual las dos funciones $f:\mathbb{R}^2\to\mathbb{R}$ y $g:\mathbb{R}^2\to \mathbb{R}$ con las siguientes reglas de asignación sean iguales:

\begin{align*}
f(x,y)&=x^2+Ay^2\\
g(x,y)&=Axy.
\end{align*}

Imaginemos, de momento, que esto sí es posible. Entonces, tendríamos la igualdad de funciones y por lo tanto tendríamos la igualdad para todas las evaluaciones. Evaluando en $(1,0)$ obtendríamos que $$0=A\cdot 1 \cdot 0 = g(1,0)=f(1,0)=1^2+A\cdot 0^2=1.$$ Esto nos lleva a la contradicción $0=1$, lo cual muestra que ningún valor de $A$ podría funcionar.

$\square$

La forma lineal cero

Otra noción básica, pero que es importante de entender, es la noción de la forma lineal cero.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $0$ el neutro aditivo del campo $F$. La forma lineal cero es la función $L_0:V\to F$ que manda a cualquier vector $v$ de $V$ a $0$, es decir, cuya regla de asignación es $L_0(v)=0$ para todo $v$ en $V$.

En álgebra lineal rápidamente nos queremos deshacer de notación estorbosa, pues muchas cosas son claras a partir del contexto. Pero esto tiene el problema de introducir amgüedades que pueden ser confusas para alguien que apenas está comenzando a estudiar la materia. Lo que prácticamente siempre se hace es que a la forma lineal cero le llamamos simplemente $0$, y dejamos que el contexto nos diga si nos estamos refiriendo al neutro aditivo de $F$, o a la forma lineal cero $L_0$.

En esta entrada intentaremos apegarnos a llamar a la forma lineal cero siempre como $L_0$, pero toma en cuenta que muy probablemente más adelante te la encuentres simplemente como un $0$. Combinemos esta noción con la de igualdad.

Ejemplo. ¿Cómo tienen que ser los valores de $A$, $B$ y $C$ para que la función $l:\mathbb{R}^3\to \mathbb{R}$ con la siguiente regla de asignación sea igual a la forma lineal cero $L_0$? $$f(x,y,z)=(A+1)x+(B+C)y+(A-C)z$$

Debemos aprovechar la definición de igualdad de funciones: sabemos que la igualdad se da para las ternas que nosotros queramos. Evaluando en $(1,0,0)$ obtenemos $$A+1 = f(1,0,0)=L_0(1,0,0)=0.$$

Aquí a la derecha estamos usando que la forma lineal cero siempre es igual a cero. De manera similar, evaluendo en $(0,1,0)$ y $(0,0,1)$ respectivamente obtenemos que \begin{align*}B+C&=f(0,1,0)=L_0(0,0,0)=0\\A-C&=f(0,0,1)=L_0(0,0,0)=0.\end{align*}

Ya tenemos información suficiente para encontrar $A$, $B$ y $C$. De la primer ecuación que obtuvimos, se tiene $A=-1$. De la tercera se tiene $C=A=-1$ y de la segunda se tiene $B=-C=1$.

Pero, ¡momento! Estos valores de $A$, $B$, $C$ funcionan para las tres ternas que dimos. ¿Funcionarán para cualquier otra terna? Si elebimos $A=-1$, $B=1$ y $C=-1$ entonces tendríamos $$f(x,y,z)=0\cdot x + 0\cdot y + 0\cdot z.$$ En efecto, sin importar qué valores de $(x,y,z)$ pongamos, la expresión anterior dará cero. Así, se daría la igualdad de reglas de correspondencia entre $f$ y $L_0$ y como tienen el mismo dominio y codominio concluiríamos que $f=L_0$.

$\square$

Suma y producto escalar de formas lineales

Otro aspecto que puede causar confusión es la suma de funciones y el producto escalar. En la duda, siempre hay que regresar a la definición. Enunciaremos los conceptos para formas lineales. Pero en realidad podemos definir la suma de funciones de manera similar siempre que el codominio sea un lugar en donde «se puede sumar». Similarmente, podríamos definir el producto escalar de un elemento con una función siempre que sepamos cómo multiplicar a ese elemento con cada elemento del codominio.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sean $l:V\to F$ y $m:V\to F$ formas lineales. Definimos la suma de $l$ con $m$, a la cual denotaremos por $l+m$, como la función $l+m:V\to F$ con la siguiente regla de asignación:$$(l+m)(v)=l(v)+m(v),$$ para cualquier $v$ en $V$.

De nuevo nos estamos enfrentando a un posible problema de ambigüedad de símbolos: por un lado estamos usando $+$ para referirnos a la suma en el campo $F$ y por otro lado para referirnos a la suma de funciones que acabamos de definir.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $l:V\to F$ una forma lineal y sea $r$ un elemento de $F$. Definimos el producto escalar de $r$ con $F$, al cual denotaremos por $r\cdot l$ como la función $r\cdot l:V\to F$ con la siguiente regla de asignación:$$(r\cdot l)(v)=r\cdot (l(v))$$ para cualquier $v$ en $V$.

Así, estamos usando tanto la suma en $F$ como el producto en $F$ para definir una nueva suma de funciones y un nuevo producto entre un real y una función. En el caso del producto escaler, como con muchos otros productos, usualmente quitamos el punto central y ponemos $rl$ en vez de $r\cdot l$.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3\to \mathbb{R}$ con las siguientes reglas de asignación:

\begin{align*}
f(x,y,z)&=2x-y+z\\
g(x,y,z)&=3x+y-5z.
\end{align*}

Mostraremos que la función $3f+(-2)g$ es igual a la función $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z)=-5y+13z$. Lo haremos con todo el detalle posible. Primero, notamos que las dos funciones tienen dominio $\mathbb{R}^3$ y codominio $\mathbb{R}$ así que nos podemos enfocar en la regla de asignación. Debemos ver que ambas coinciden para todas las ternas $(x,y,z)$ en $\mathbb{R}^3$. Tomemos entonces una de estas ternas $(x,y,z)$.

Por definición de producto escalar de funciones, tenemos que $$(3f)(x,y,z)=3(f(x,y,z))=3(2x-y+z)=6x-3y+3z.$$. Aquí estamos usando la distributividad en los reales. Por definición de producto escalar de funciones, tenemos que $$ ((-2)g)(x,y,z)=(-2)(g(x,y,z))=(-2)(3x+y-5z)=-6x-2y+10z.$$ Una vez más estamos usando distributividad. Luego, por definición de suma de funciones obtenemos que

\begin{align*}
(3f+(-2)g)(x,y,z)&=(3f)(x,y,z)+(-2g)(x,y,z)\\
&= (6x-3y+3z)+(-6x-2y+10z)\\
& = -5y+13z\\
&= h(x,y,z).
\end{align*}

$\square$

Usualmente tomamos atajos para seguir simplificando la notación. Por ello, típicamente a veces vemos escrito todo lo anterior simplemente como: $$3(2x-y+z)-2(2x+y-5z)=-5y+13z.$$ De hecho esto es muy práctico, pues se puede mostrar que las funciones «sí podemos operarlas como si fueran expresiones en $x$, $y$, $z$ y usáramos las reglas usuales». Así, podemos «trabajar simbólicamente» y concluir rápidamente que $$(x+y)+(3x+2z)-3(x+y-z)$$ en verdad tiene la misma regla de asignación que $-2y+5z$.

Ahora sí, ¿quién es el espacio dual?

Si tenemos un espacio vectorial $V$ sobre un campo $F$ podemos construirnos otro espacio vectorial con otro conjunto base y otras operaciones que no son las del espacio original. Una forma de hacer esto es construir el espacio dual, al que llamaremos $V^\ast$. Los elementos de $V^\ast$ son las formas lineales de $V$, es decir, funciones lineales con dominio $V$ y codominio $F$. Debemos acostumbrarnos a pensar simultáneamente a un elemento de $V^\ast$ tanto como un vector (de $V^\ast$) como una función (de $V$ a $F$).

Para verdaderamente pensar a $V^\ast$ como un espacio vectorial, debemos establecer algunas cosas especiales:

  • La suma vectorial de $V^\ast$ será la suma de funciones que platicamos en la sección anterior.
  • El producto escalar vectorial de $V^\ast$ será el producto escalar que platicamos en la sección anterior.
  • El neutro aditivo vectorial de $V^\ast$ será la forma lineal $L_0$, y se puede verificar que en efecto $l+L_0=l$ para cualquier forma lineal $l$.

Por supuesto, típicamente a la suma vectorial le llamaremos simplemente «suma» y al producto escalar vectorial simplemente «producto escalar». Aquí estamos haciendo énfasis en lo de «vectorial» sólo para darnos cuenta de que nuestras operaciones de funciones se transformaron en operaciones para el espacio vectorial que estamos definiendo.

El espacio dual cumple muchas propiedades bonitas, pero ahorita no nos enfocaremos en enunciarlas y demostrarlas. Esto se puede encontrar en la página del curso de Álgebra Lineal I en el blog. Lo que sí haremos es irnos a los básicos y entender cómo se verían algunas definiciones básicas de álgebra lineal en términos de lo que hemos discutido hasta ahora.

Combinaciones lineales de formas lineales

Para hablar de las nociones de álgebra lineal para formas lineales, hay que pensarlas como vectores y como funciones. ¿Qué sería una combinación lineal de las formas lineales $l_1,\ldots,l_r$ del espacio vectorial, digamos, $\mathbb{R}^n$. Debemos tomar elementos $\alpha_1,\ldots,\alpha_r$ en $\mathbb{R}$ y construir la función $\ell=\alpha_1l_1+\ldots+\alpha_rl_r$. Aquí estamos usando la suma vectorial y el producto escalar vectorial que quedamos que serían la suma como funciones y el producto escalar como funciones. Así, obtenemos un elemento $\ell$ que por un lado es un vector del espacio dual, y por otro es una función $\ell:\mathbb{R}^n\to \mathbb{R}$. ¿Cuál es la regla de asignación? Es precisamente la dada por las definiciones de suma y producto escalar para funciones. Para ser muy precisos, se puede mostrar inductivamente que su regla de asignación es:

\begin{align*}
(\alpha_1l_1+&\ldots+\alpha_rl_r)(x_1,\ldots,x_n)=\\
&\alpha_1(l_1(x_1,\ldots,x_n))+\ldots+\alpha_r(l_r(x_1,\ldots,x_n)).
\end{align*}

Entendiendo esto, ahora sí podemos preguntarnos si una forma lineal es combinación lineal de otras.

Ejemplo. La forma lineal $h:\mathbb{R}^2\to\mathbb{R}$ con regla de asignación $h(x,y)=2x-y$ es combinación lineal de las formas lineales $f(x,y):\mathbb{R}^2\to\mathbb{R}$ y $g(x,y):\mathbb{R}^2\to\mathbb{R}$ con reglas de asignación

\begin{align*}
f(x,y)&=x+y\\
g(x,y)&=x-y.
\end{align*}

En efecto, tenemos que es igual a la combinación lineal $\frac{1}{2}f + \frac{3}{2} g$, pues su regla de asignación es:

$$\left(\frac{1}{2}f + \frac{3}{2} g\right)(x,y)=\left(\frac{x+y}{2}\right)+\left(\frac{3x-3y}{2}\right)=2x-y,$$

que es justo la regla de asignación de $h$. Así, $h=\frac{1}{2}f+\frac{3}{2}g$.

$\square$

Independencia lineal de formas lineales

Veamos un ejemplo más de cómo entender nociones de álgebra lineal cuando hablamos de formas lineales (o funciones en general). ¿Cómo sería el concepto de independencia lineal para formas lineales $l_1,\ldots,l_r$? A partir de una combinación lineal de ellas igualada a la forma lineal cero $L_0$, debemos mostrar que todos los coeficientes son iguales a cero. Es decir, a partir de $$\alpha_1l_1+\ldots+\alpha_rl_r=L_0,$$ debemos mostrar que $\alpha_1=\ldots=\alpha_r=0.$$ Usualmente el truco en estas situaciones es que ya nos están dando una igualdad de funciones. Entonces, podemos evaluar en los valores que nosotros queramos de ambos lados de la igualdad pues funciones iguales tienen todas sus evaluaciones iguales. Esto se parece a los ejemplos de la sección de igualdad de funciones.

Ejemplo. Vamos a demostrar que las formas lineales de $\mathbb{R}^4$ dadas por $f(w,x,y,z)=4w+2x+z$, $g(w,x,y,z)=4w+2z+y$, $h(w,x,y,z)=4w+2y+x$, $k(w,x,y,z)=w+x+y+z$ son linealmente independientes. Tomemos una combinación lineal de ellas igualda a cero (¡recordemos que en este espacio vectorial el cero es la forma lineal $L_0$!):

$$Af+Bg+Ch+Dk=L_0.$$

Debemos demostrar que $A=B=C=D=0$. ¿Cómo hacemos esto? Lo que haremos es evaluar: pondremos valores convenientes de $(w,x,y,z)$ en la igualdad anterior para obtener información de $A$, $B$, $C$, $D$. Poniendo $(1,0,0,0)$ obtenemos que:

\begin{align*}
0&=L_0(1,0,0,0)\\
&= (Af+Bg+Ch+Dk)\\
&=Af(1,0,0,0)+ Bg(1,0,0,0) +Ch(1,0,0,0) +Dk(1,0,0,0) \\
&=4A + 4B + 4C + D.
\end{align*}

Así, $4A+4B+4C+D=0$. Usando esta ecuación y las evaluaciones $(0,1,0,0)$, $(0,0,1,0)$ y $(0,0,0,1)$, obtenemos todo lo siguiente:

\begin{align*}
4A+4B+4C+D&=0\\
2A+C+D&=0\\
B+2C+D&=0\\
A+2B+D&=0.
\end{align*}

De aquí se puede mostrar (como puedes verificar como ejercicio) que la única solución posible es $A=B=C=D=0$. De este modo, las formas lineales $f,g,h,k$ son linealmente independientes.

$\square$

Más adelante

Esta es más una entrada auxiliar que una entrada que forma parte del flujo de la teoría principal. Sin embargo, espero que te haya servido para dejar más claros los conceptos de cuándo tenemos formas lineales iguales, cómo se operan, cuándo varias formas lineales son linealmente independientes, etc.

Tarea moral…

  1. Verifica que para cualquier forma lineal $l:\mathbb{R}^n\to \mathbb{R}$ y la forma lineal cero $L_0:\mathbb{R}^n\to\mathbb{R}$ en efecto se tiene que $l+L_0=l$. Usa las definiciones de la forma lineal cero, de la igualdad de funciones y de la suma de funciones.
  2. Verifica que $V^\ast$ con las operaciones de suma, producto escalar y el neutro aditivo que dimos en efecto es un espacio vectorial. ¿Cómo tendrían que ser los inversos aditivos?
  3. Considera las formas lineales $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3 \to \mathbb{R}$ dadas por $f(x,y,z)=x+3y+z$ y $g(x,y,z)=-x+5y-z$.
    1. Demuestra que es imposible encontrar reales $A$ y $B$ ambos distintos de cero tales que $Af+Bg$ sea la forma lineal cero.
    2. Encuentra reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z) = -x + 21 – z$.
    3. Demuestra que es imposible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $j:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $j(x,y,z)= -2x + 4y -3z$.
    4. ¿Será posible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $k:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $k(x,y,z)=5x+5y+5z$?
  4. Para cada uno de los siguientes casos, determina si las formas lineales son linealmente independientes:
    1. $f(x,y)=5x+3y$, $g(x,y)=x-3y$.
    2. $f(x,y,z)=5x+2y-z$, $g(x,y,z)=z$, $h(x,y,z)=x-y-z$.
    3. $f(w,x,y,z)=w+y$, $g(w,x,y,z)=3x-2z$, $h(w,x,y,z)=x+y+z$, $k=(w,x,y,z)=w+2x-3z$.
  5. Considera el espacio vectorial de polinomios con coeficientes reales $\mathbb{R}[x]$. Considera la función $\text{ev}_k:\mathbb{R}[x]\to \mathbb{R}$ que a cada polinomio lo manda a su evaluación en $k$, es decir, con regla de asignación $\text{ev}_k(p)=p(k)$.
    1. Demuestra que cualquier $\text{ev}_k$ es una forma lineal.
    2. Sean $k_1,\ldots,k_r$ reales distintos. Muestra que $\text{ev}_{k_1},\ldots,\text{ev}_{k_r}$ son formas lineales linealmente independientes.

Entradas relacionadas

Ecuaciones Diferenciales I: Soluciones a sistemas de ecuaciones diferenciales

Los errores y dificultades no resueltos en el pasado de las matemáticas
siempre han sido las oportunidades de su futuro.
– E. T. Bell

Introducción

En la entrada anterior vimos lo que es un sistema de ecuaciones diferenciales, en particular un sistema lineal de primer orden. Vimos también lo que es un problema de valores iniciales y establecimos la notación matricial.

Así mismo, vimos cómo es que una ecuación diferencial lineal de orden $n$ se puede transformar en un sistema lineal de primer orden, esto tiene bastante ventaja ya que, una vez que veamos cómo resolver sistemas de ecuaciones diferenciales, muchas veces será más sencillo resolver el sistema que resolver la ecuación de orden $n$ aplicando los métodos que ya conocemos.

En esta entrada estudiaremos las propiedades de las soluciones de los sistemas lineales de primer orden.

Cabe mencionar que mucho de lo que desarrollaremos en esta entrada es bastante similar a la teoría vista con las ecuaciones diferenciales de orden $n$, comenzando por la validez del principio de superposición.

A partir de ahora sólo usaremos la notación matricial y toda la teoría básica del álgebra lineal que éstas conllevan.

Soluciones de sistemas lineales de primer orden

Comencemos por estudiar el caso homogéneo. El sistema lineal de primer orden homogéneo es

$$\begin{pmatrix}
y_{1}^{\prime} \\ y_{2}^{\prime} \\ \vdots \\ y_{n}^{\prime}
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1} \\ y_{2} \\ \vdots \\ y_{n}
\end{pmatrix} \label{1} \tag{1}$$

O bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} \label{2} \tag{2}$$

En la entrada anterior definimos la solución de un sistema de ecuaciones diferenciales en el intervalo $\delta$ como el conjunto de $n$ funciones

$$S_{0} = \{y_{1}(t), y_{2}(t), \cdots, y_{n}(t)\} \label{3} \tag{3}$$

definidas en $\delta$ y diferenciables en el mismo intervalo, tales que satisfacen simultáneamente las $n$ ecuaciones diferenciables de un sistema lineal.

Las soluciones pueden ser escritas como el vector

$$\mathbf{Y} = \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} \label{4} \tag{4}$$

cuyos elementos son funciones derivables que satisfacen un sistema lineal en el intervalo $\delta$.

En las siguientes definiciones y teoremas se supondrá que los coeficientes $a_{ij}(t)$, $i, j \in \{1, 2, 3, \cdots, n\}$ y ,para el caso no homogéneo, las funciones $g_{i}(t)$, son continuas en algún intervalo común $\delta$.

Comencemos por mostrar que el principio de superposición también es valido para sistemas lineales.

Demostración: Consideremos la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}$$

con

$$\mathbf{Y}_{i} = \begin{pmatrix}
y_{1i} \\ y_{2i} \\ \vdots \\ y_{ni}
\end{pmatrix}$$

para $i = 1, 2, \cdots, m$. La derivada de $\mathbf{Y}_{i}$ esta dada por

$$\mathbf{Y}_{i}^{\prime} = \begin{pmatrix}
y_{1i}^{\prime} \\ y_{2i}^{\prime} \\ \vdots \\ y_{ni}^{\prime}
\end{pmatrix}$$

Entonces la derivada de la combinación lineal es

\begin{align*}
\mathbf{Y}^{\prime} &= \begin{pmatrix}
c_{1}y_{11}^{\prime} + c_{2}y_{12}^{\prime} + \cdots + c_{m}y_{1m}^{\prime} \\
c_{1}y_{21}^{\prime} + c_{2}y_{22}^{\prime} + \cdots + c_{m}y_{2m}^{\prime} \\
\vdots \\
c_{1}y_{n1}^{\prime} + c_{2}y_{n2}^{\prime} + \cdots + c_{m}y_{nm}^{\prime}
\end{pmatrix} \\
&= c_{1} \begin{pmatrix}
y_{11}^{\prime} \\ y_{21}^{\prime} \\ \vdots \\ y_{n1}^{\prime}
\end{pmatrix} + c_{2} \begin{pmatrix}
y_{12}^{\prime} \\ y_{22}^{\prime} \\ \vdots \\ y_{n2}^{\prime}
\end{pmatrix} + \cdots + c_{m} \begin{pmatrix}
y_{1m}^{\prime} \\ y_{2m}^{\prime} \\ \vdots \\ y_{nm}^{\prime}
\end{pmatrix} \\
&= c_{1} \mathbf{Y}_{1}^{\prime} + c_{2} \mathbf{Y}_{2}^{\prime} + \cdots + c_{m} \mathbf{Y}_{m}^{\prime}
\end{align*}

Como cada $\mathbf{Y}_{i}$, $i = 1, 2, \cdots, m$, es solución del sistema homogéneo (\ref{2}) en $\delta$, entonces

$$\mathbf{Y}_{i}^{\prime} = \mathbf{A} \mathbf{Y}_{i}$$

así

\begin{align*}
\mathbf{Y}^{\prime} &= c_{1} (\mathbf{AY}_{1}) + c_{2} (\mathbf{AY}_{2}) + \cdots + c_{m} (\mathbf{AY}_{m}) \\
&= \mathbf{A}(c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}) \\
&= \mathbf{AY}
\end{align*}

En donde se ha hecho uso de la propiedad distributiva de la matriz $\mathbf{A}$ y de la hipótesis (\ref{5}). Por lo tanto, la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{m} \mathbf{Y}_{m}$$

también es solución y los es en el mismo intervalo común $\delta$ ya que esta compuesta de soluciones definidas en dicho intervalo.

$\square$

Intenta hacer la demostración.

Realicemos un ejemplo.

Ejemplo: Probar que la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + c_{3} \mathbf{Y}_{3} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

es solución del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

Solución: Probemos que cada uno de los vectores de la combinación lineal es solución y usemos el principio de superposición.

Los vectores son

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

Por un lado, derivemos estos vectores.

$$\mathbf{Y}^{\prime}_{1} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}^{\prime}_{2} = \begin{pmatrix}
2e^{2t} \\ 2e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}^{\prime}_{3} = \begin{pmatrix}
0 \\ 0 \\ 3e^{3t}
\end{pmatrix}$$

Por otro lado, sustituyamos cada uno de los vectores en el sistema lineal y usemos los resultados anteriores.

$$\mathbf{AY}_{1} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} = \begin{pmatrix}
1 -1 \\ 1 -1 \\ 0
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0
\end{pmatrix} = \mathbf{Y}^{\prime}_{1}$$

$$\mathbf{AY}_{2} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} = \begin{pmatrix}
e^{2t} + e^{2t} \\ e^{2t} + e^{2t} \\ 0
\end{pmatrix} = \begin{pmatrix}
2e^{2t} \\ 2e^{2t} \\ 0
\end{pmatrix} = \mathbf{Y}^{\prime}_{2}$$

y

$$\mathbf{AY}_{3} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 3e^{3t}
\end{pmatrix} = \mathbf{Y}^{\prime}_{3}$$

De esta manera queda mostrado que los tres vectores son solución, ya que satisfacen el sistema. Por el principio de superposición concluimos que la combinación lineal

$$\mathbf{Y} = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + c_{3} \mathbf{Y}_{3} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

también es solución del sistema lineal.

$\square$

El principio de superposición nos indica que un sistema lineal puede tener más de una solución, sin embargo, similar al caso de ecuaciones diferenciales de orden $n$, buscamos soluciones que sean linealmente independientes entre sí. A continuación definimos la dependencia e independencia lineal de las soluciones en este contexto.

En la unidad anterior definimos una herramienta muy útil que, además de ayudarnos a resolver ecuaciones diferenciales de orden superior en algunos métodos, nos ayuda a determinar si un conjunto de soluciones es linealmente independiente, dicha herramienta es el Wronskiano, la definición en el caso de los sistemas lineales de primer orden, es la siguiente.

Se puede demostrar que si el Wronskiano es distinto de cero, entonces las soluciones son linealmente independientes, igual que antes, esto es conocido como el criterio para soluciones linealmente independientes. Para demostrar este hecho es conveniente recordar algunos resultados de álgebra que podremos usar en la demostración.

Recordemos que un sistema lineal de $n$ ecuaciones con $n$ incógnitas es un conjunto de ecuaciones

$$\begin{matrix}
b_{11}u_{1} + b_{12}u_{2} + \cdots + b_{1n}u_{n} = d_{1} \\
b_{21}u_{1} + b_{22}u_{2} + \cdots + b_{2n}u_{n} = d_{2}\\
\vdots\\
b_{n1}u_{1} + b_{n2}u_{2} + \cdots + b_{nn}u_{n} = d_{n}
\end{matrix} \label{9} \tag{9}$$

Con $b_{i, j}$ y $d_{i}$, $i, j \in \{1,2, 3, \cdots, n\}$ números reales dados y $u_{i}$, $i = 1, 2, \cdots, n$ las incógnitas. Usando la notación matricial podemos escribir el sistema (\ref{9}) como

$$\mathbf{BU} = \mathbf{D} \label{10} \tag{10}$$

con

$$\mathbf{B} = \begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & & & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{nn}
\end{pmatrix}, \hspace{1cm} \mathbf{U} = \begin{pmatrix}
u_{1} \\ u_{2} \\ \vdots \\ u_{n}
\end{pmatrix}, \hspace{1cm} \mathbf{D} = \begin{pmatrix}
d_{1} \\ d_{2} \\ \vdots \\ d_{n}
\end{pmatrix}$$

Los resultados que nos interesan son los siguientes.

Si $\mathbf{D} = \mathbf{0}$, el sistema (\ref{10}) también recibe el nombre de sistema homogéneo.

Con estos resultados podemos demostrar el criterio para soluciones linealmente independientes que se enuncia a continuación.

Demostración:

$\Rightarrow$) Por demostrar: $W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$.

Sea $t_{0} \in \delta$ en el que $W(t_{0}) = 0$, en donde $W(t_{0})$ denota al Wronskiano con cada vector solución evaluado en el punto $t_{0}$.

$$W(t_{0}) = W(\mathbf{Y}_{1}(t_{0}), \mathbf{Y}_{2}(t_{0}), \cdots, \mathbf{Y}_{n}(t_{0})) $$

En una combinación de ambos teoremas de los resultados de álgebra podemos deducir que existen constantes $c_{1}, c_{2}, \cdots, c_{n}$, no todos cero, tal que

$$\mathbf{Y}(t_{0}) = c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = 0 \label{11} \tag{11}$$

Lo que tenemos es un sistema lineal de $n$ ecuaciones homogéneo con $n$ incógnitas (sistema lineal en el contexto algebraico (\ref{10}) con $\mathbf{D} = \mathbf{0}$, no sistema lineal de ecuaciones diferenciales), dichas incógnitas son las constantes $c_{i}$, $i = 1, 2, \cdots, n$. La relación (\ref{11}) se cumple debido a que si el Wronskiano es igual a cero, entonces es posible que el sistema no tenga solución trivial y mucho menos una solución única, esto lo deducimos de los teoremas de álgebra que establecimos.

Por otro lado, sabemos por hipótesis que los vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son solución del sistema homogéneo (\ref{2}) en el intervalo $\delta$, por el principio de superposición sabemos también que la combinación lineal

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n}$$

es solución de (\ref{2}) en $\delta$. Del resultado (\ref{11}) y de la unicidad de la solución se deduce que $\mathbf{Y}(t) = 0$ para algún punto $t = t_{0} \in \delta$, es decir,

$$c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} = 0$$

Pero por hipótesis los vectores $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes en $\delta$, lo que implica que

$$c_{1} = c_{2} = \cdots = c_{n} = 0$$

lo cual es una contradicción con lo que establecimos en (\ref{11}). Por lo tanto, el Wronskiano tiene que ser distinto de cero, es decir

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$$

$\Leftarrow$) Por demostrar: $S$ es linealmente independiente.

Este caso también lo demostraremos por contradicción. Supongamos que los vectores solución $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente dependientes en $\delta$, esto implica que existen constantes $c_{1}, c_{2}, \cdots, c_{n}$ no todos cero, tal que

$$c_{1} \mathbf{Y}_{1} + c_{2} \mathbf{Y}_{2} + \cdots + c_{n} \mathbf{Y}_{n} = 0$$

Este sistema lo podemos escribir en la forma (\ref{9}) como

$$\begin{matrix}
c_{1}y_{11} + c_{2}y_{12} + \cdots + c_{n}y_{1n} = 0 \\
c_{1}y_{21} + c_{2}y_{22} + \cdots + c_{n}y_{2n} = 0 \\
\vdots\\
c_{1}y_{n1} + c_{2}y_{n2} + \cdots + c_{n}y_{nn} = 0
\end{matrix}$$

En donde las funciones $y_{ij}$, $i, j \in \{1, 2, 3, \cdots, n\}$ son los coeficientes y las constantes $c_{i}$, $i = 1, 2, \cdots, n$ son las incógnitas. Debido a que las $c_{i}$ no son todas cero implica que el sistema no tiene solución trivial y por el segundo teorema de los resultados de álgebra concluimos que

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = 0$$

Pero, por hipótesis

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) \neq 0$$

lo cual es una contradicción y todo nace de considerar a $S$ como un conjunto linealmente dependiente. Por lo tanto, el conjunto de soluciones

$$S = \{\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}\}$$

es linealmente independiente en $\delta$.

$\square$

Un resultado interesante se enuncia a continuación.

Este resultado nos garantiza que si $W \neq 0$ para algún punto $t_{0} \in \delta$, entonces $W \neq 0$ para toda $t \in \delta$ y por el criterio anterior las soluciones serán linealmente independientes en ese intervalo.

El conjunto de soluciones linealmente independientes del sistema lineal (\ref{2}) recibe un nombre especial.

El siguiente teorema nos garantiza la existencia de este conjunto.

El conjunto fundamental de soluciones está constituido por vectores que son linealmente independientes entre sí, con estos vectores es posible formar una matriz cuyas columnas están formadas con las entradas de dichos vectores, esta matriz tiene un nombre especial.

Un hecho interesante es que el determinante de la matriz fundamental de soluciones corresponde al Wronskiano.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}) = |\mathbf{M}(t)| \label{13} \tag{13}$$

Realicemos un ejemplo, para ello consideremos el sistema lineal del ejemplo anterior.

Ejemplo: Mostrar que las soluciones

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

del sistema lineal

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

son linealmente independientes.

Solución: En el ejemplo anterior ya comprobamos que efectivamente son solución del sistema lineal dado. Para determinar si son linealmente independientes veamos si el Wronskiano es distinto de cero.

$$W(\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}) = \begin{vmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{vmatrix} = e^{5t} + 0 + 0 -0 -0 -(-e^{5t}) = 2e^{5t} \neq 0$$

Como $W \neq 0$, $\forall$ $t \in \mathbb{R}$, entonces los vectores dados son linealmente independientes y por lo tanto forman un conjunto fundamental de soluciones en $\mathbb{R}$.

$$S = \left\{ \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} \right\}$$

La matriz fundamental de soluciones es

$$\mathbf{M}(t) = \begin{pmatrix}
1 & e^{2t} & 0 \\ -1 & e^{2t} & 0 \\ 0 & 0 & e^{3t}
\end{pmatrix}$$

$\square$

Un buen ejercicio sería mostrar que un conjunto de soluciones del sistema lineal homogéneo (\ref{2}) forma un espacio vectorial, es relativamente sencillo probar cada una de las propiedades o axiomas que definen a un espacio vectorial. El resultado a demostrar de tarea moral es el siguiente.

Soluciones generales a sistemas lineales

Ahora que conocemos algunas propiedades de las soluciones de sistemas lineales, es momento de conocer la forma general de las soluciones de los sistemas lineales tanto homogéneos como no homogéneos.

Comencemos por enunciar el teorema que establece la forma de la solución general de un sistema lineal homogéneo (\ref{2}).

Demostración: Sea $\mathbf{Y}(t)$ una solución arbitraria del sistema lineal homogéneo en el intervalo $\delta$, sea $t_{0} \in \delta$ y supongamos que

$$\mathbf{Y}(t_{0}) = \begin{pmatrix}
b_{1} \\ b_{2} \\ \vdots \\ b_{n}
\end{pmatrix} = \mathbf{Y}_{0}$$

Es decir, la función $\mathbf{Y}(t)$ satisface el problema de valores iniciales $\mathbf{Y}^{\prime} = \mathbf{AY}; \mathbf{Y}(t_{0}) = \mathbf{Y}_{0}$.

Por otro lado, por el principio de superposición sabemos que la combinación lineal

$$\hat{\mathbf{Y}}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

también es solución del sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Donde $c_{i}$, $i = 1, 2, \cdots, n$ son constantes arbitrarias y las $\mathbf{Y}_{i}$, $i = 1, 2, \cdots, n$ son las soluciones del conjunto fundamental de soluciones del sistema lineal. Supongamos que

$$\hat{\mathbf{Y}}(t_{0}) = c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = \mathbf{Y}_{0}$$

Lo que tenemos es el siguiente sistema de $n$ ecuaciones.

$$\begin{matrix}
c_{1}y_{11}(t_{0}) + c_{2}y_{12}(t_{0}) + \cdots + c_{n}y_{1n}(t_{0}) = b_{1} \\
c_{1}y_{21}(t_{0}) + c_{2}y_{22}(t_{0}) + \cdots + c_{n}y_{2n}(t_{0}) = b_{2} \\
\vdots \\
c_{1}y_{n1}(t_{0}) + c_{2}y_{n2}(t_{0}) + \cdots + c_{n}y_{nn}(t_{0}) = b_{n}
\end{matrix}$$

En donde las incógnitas son las contantes $c_{i}$, $i = 1, 2, \cdots, n$. Como las funciones $y_{ij}$, $i,j \in \{1, 2, 3, \cdots, n \}$ pertenecen a vectores del conjunto de soluciones, entonces sabemos que $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \cdots, \mathbf{Y}_{n}$ son linealmente independientes y por el criterio para soluciones linealmente independientes inferimos que $W(t_{0}) \neq 0$, donde

$$W(t_{0}) = W(\mathbf{Y}_{1}(t_{0}), \mathbf{Y}_{2}(t_{0}), \cdots, \mathbf{Y}_{n}(t_{0}))$$

De los resultados de álgebra deducimos que el sistema de $n$ ecuaciones tiene solución única, esto significa que existen constantes únicas $c_{1}, c_{2}, \cdots, c_{n}$, tal que

$$c_{1} \mathbf{Y}_{1}(t_{0}) + c_{2} \mathbf{Y}_{2}(t_{0}) + \cdots + c_{n} \mathbf{Y}_{n}(t_{0}) = \mathbf{Y}_{0}$$

Esto nos indica que

$$\hat{\mathbf{Y}}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

es solución del problema de valores iniciales. Por el teorema de existencia y unicidad para sistemas lineales homogéneas concluimos que $\mathbf{Y}(t) = \hat{\mathbf{Y}}(t)$, es decir,

$$\mathbf{Y}(t) = c_{1} \mathbf{Y}_{1}(t) + c_{2} \mathbf{Y}_{2}(t) + \cdots + c_{n} \mathbf{Y}_{n}(t)$$

Como $\mathbf{Y}(t)$ es una solución arbitraria, entonces debe ser la solución general del sistema lineal homogéneo en $\delta$.

$\square$

Para concluir la entrada estudiemos el caso no homogéneo.

Sistemas no homogéneos

El sistema lineal de primer orden no homogéneo es

$$\begin{pmatrix}
y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)
\end{pmatrix} = \begin{pmatrix}
a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\
a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\
\vdots & & & \vdots \\
a_{n1}(t) & a_{n2}(t) & \cdots & a_{nn}(t)
\end{pmatrix} \begin{pmatrix}
y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)
\end{pmatrix} + \begin{pmatrix}
g_{1}(t) \\ g_{2}(t) \\ \vdots \\ g_{n}(t)
\end{pmatrix} \label{15} \tag{15}$$

O bien,

$$\mathbf{Y^{\prime}} = \mathbf{AY} + \mathbf{G} \label{16} \tag{16}$$

El vector de funciones que satisface el sistema (\ref{16}) es una solución y recibe un nombre.

A continuación se enuncia el teorema que nos muestra la forma general de la solución de un sistema lineal no homogéneo.

Demostración: Sea

$$\mathbf{Y}_{p}(t) = \begin{pmatrix}
y_{1p} \\ y_{2p} \\ \vdots \\ y_{np}
\end{pmatrix}$$

una solución particular de (\ref{16}) y sean $\mathbf{Y}_{1}(t), \mathbf{Y}_{2}(t), \cdots, \mathbf{Y}_{n}(t)$, $n$ soluciones linealmente independientes del sistema homogéneo asociado $\mathbf{Y^{\prime}} = \mathbf{AY}$.

Sea $\mathbf{Y}(t)$ una solución arbitraria del sistema no homogéneo, notemos lo siguiente.

\begin{align*}
(\mathbf{Y}(t) -\mathbf{Y}_{p}(t))^{\prime} &= \mathbf{Y}^{\prime}(t) -\mathbf{Y}_{p}^{\prime}(t) \\
&= (\mathbf{AY}(t) + \mathbf{G}) -(\mathbf{AY}_{p}(t) + \mathbf{G}) \\
&= \mathbf{A} (\mathbf{Y}(t) -\mathbf{Y}_{p}(t))
\end{align*}

Este resultado nos indica que $\mathbf{Y}(t) -\mathbf{Y}_{p}(t)$ es solución del sistema homogéneo, eso significa que se puede escribir como

$$\mathbf{Y}(t) -\mathbf{Y}_{p}(t) = c_{1}\mathbf{Y}_{1}(t) + c_{2}\mathbf{Y}_{2}(t) + \cdots + c_{n}\mathbf{Y}_{n}(t)$$

entonces, la solución $\mathbf{Y}$ tiene la forma

$$\mathbf{Y}(t) = c_{1}\mathbf{Y}_{1}(t) + c_{2}\mathbf{Y}_{2}(t) + \cdots + c_{n}\mathbf{Y}_{n}(t) + \mathbf{Y}_{p}(t) \label{19} \tag{19}$$

La solución $\mathbf{Y}(t)$, al ser cualquier solución del sistema lineal no homogéneo, podemos deducir que la solución general debe tener la forma (\ref{19}), por lo que concluimos que $\mathbf{Y}(t)$ se trata de la solución general de (\ref{16}).

Considerando la hipótesis (\ref{17}) concluimos que la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = \mathbf{Y}_{c}(t) + \mathbf{Y}_{p}(t)$$

$\square$

Cuando estamos trabajando con un sistema lineal no homogéneo, la solución general del sistema lineal homogéneo asociado (\ref{17}) recibe un nombre particular.

Concluyamos con un ejemplo.

Ejemplo: Probar que el vector

$$\mathbf{Y}_{p} = \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix}$$

es una solución particular del siguiente sistema lineal no homogéneo.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y} + \begin{pmatrix}
e^{t} \\ e^{2t} \\ te^{3t}
\end{pmatrix}$$

Solución: Por un lado, derivemos el vector dado.

$$\mathbf{Y}^{\prime}_{p} = \begin{pmatrix}
-\dfrac{1}{2}e^{2t} + \dfrac{1}{2}e^{2t} + te^{2t} \\ -e^{t} + \dfrac{1}{2}e^{2t} + \dfrac{1}{2}e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix} = \begin{pmatrix}
te^{2t} \\ -e^{t} + e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix}$$

Por otro lado, sustituyamos directamente en el sistema al vector dado.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix} + \begin{pmatrix}
e^{t} \\ e^{2t} \\ te^{3t}
\end{pmatrix}$$

Operando obtenemos lo siguiente.

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} + e^{t} \\ -\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t}+e^{2t} \\ \dfrac{3}{2}t^{2}e^{3t} + te^{3t}
\end{pmatrix} = \begin{pmatrix}
te^{2t} \\ -e^{t} + e^{2t} + te^{2t} \\ te^{3t} + \dfrac{3}{2}t^{2}e^{3t}
\end{pmatrix}$$

Los resultados obtenidos son los mismos, por lo tanto el vector $\mathbf{Y}_{p}$ es solución del sistema.

En los ejemplos anteriores de esta entrada probamos que el conjunto fundamental de soluciones del sistema lineal homogéneo asociado

$$\mathbf{Y}^{\prime} = \begin{pmatrix}
1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 3
\end{pmatrix} \mathbf{Y}$$

esta constituido por los vectores linealmente independientes

$$\mathbf{Y}_{1} = \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix}, \hspace{1cm} \mathbf{Y}_{3} = \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

de manera que la función complementaria es

$$\mathbf{Y}_{c} = c_{1}
\begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix}$$

Como la solución general es

$$\mathbf{Y} = \mathbf{Y}_{c} + \mathbf{Y}_{p}$$

Entonces la solución general del sistema lineal no homogéneo es

$$\mathbf{Y}(t) = c_{1} \begin{pmatrix}
1 \\ -1 \\ 0
\end{pmatrix} + c_{2} \begin{pmatrix}
e^{2t} \\ e^{2t} \\ 0
\end{pmatrix} + c_{3} \begin{pmatrix}
0 \\ 0 \\ e^{3t}
\end{pmatrix} + \begin{pmatrix}
-\dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ -e^{t} + \dfrac{1}{4}e^{2t} + \dfrac{1}{2}te^{2t} \\ \dfrac{1}{2}t^{2}e^{3t}
\end{pmatrix}$$

$\square$

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Los siguientes vectores son soluciones de un sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$. Determinar si forman un conjunto fundamental de soluciones en $\mathbb{R}$.
  • $\mathbf{Y}_{1} = \begin{pmatrix}
    1 \\ -1
    \end{pmatrix} e^{t}, \hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
    2 \\ 6
    \end{pmatrix}e^{t} + \begin{pmatrix}
    8 \\ -8
    \end{pmatrix}te^{t}$
  • $\mathbf{Y}_{1} = \begin{pmatrix}
    1 \\ 6 \\ -13
    \end{pmatrix},\hspace{1cm} \mathbf{Y}_{2} = \begin{pmatrix}
    1 \\ -2 \\ -1
    \end{pmatrix}e^{-4t}, \hspace{1cm} \mathbf{Y}_{3}= \begin{pmatrix}
    2 \\ 3 \\ -2
    \end{pmatrix}e^{3t}$
  1. Probar que el vector $\mathbf{Y}_{p}$ es una solución particular del sistema lineal dado.
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    2 & 1 \\ 3 & 4
    \end{pmatrix} \mathbf{Y} -\begin{pmatrix}
    1 \\ 7
    \end{pmatrix}e^{t}, \hspace{1cm} \mathbf{Y}_{p} = \begin{pmatrix}
    1 \\ 1
    \end{pmatrix}e^{t} + \begin{pmatrix}
    1 \\ -1
    \end{pmatrix}te^{t}$
  • $\mathbf{Y}^{\prime} = \begin{pmatrix}
    1 & 2 & 3 \\
    -4 & 2 & 0 \\
    -6 & 1 & 0
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    -1 \\ 4 \\ 3
    \end{pmatrix} \sin(3t), \hspace{1cm} \mathbf{Y}_{p} = \begin{pmatrix}
    \sin(3t) \\ 0 \\ \cos (3t)
    \end{pmatrix}$
  1. Mostrar que la solución general de

    $\mathbf{Y}^{\prime} = \begin{pmatrix}
    0 & 6 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0
    \end{pmatrix} \mathbf{Y}$

    en el intervalo $(-\infty, \infty)$ es

    $\mathbf{Y} = c_{1} \begin{pmatrix}
    6 \\ -1 \\ -5
    \end{pmatrix}e^{-t} + c_{2} \begin{pmatrix}
    -3 \\ 1 \\ 1
    \end{pmatrix}e^{-2t} + c_{3} \begin{pmatrix}
    2 \\ 1 \\ 1
    \end{pmatrix}e^{3t}$
  1. Mostrar que la solución general de

    $\mathbf{Y}^{\prime} = \begin{pmatrix}
    -1 & -1 \\ -1 & 1
    \end{pmatrix} \mathbf{Y} + \begin{pmatrix}
    1 \\ 1
    \end{pmatrix}t^{2} + \begin{pmatrix}
    4 \\ -6
    \end{pmatrix}t + \begin{pmatrix}
    -1 \\ 5
    \end{pmatrix}$

    en el intervalo $(-\infty, \infty)$ es

    $\mathbf{Y} = c_{1} \begin{pmatrix}
    1 \\ -1 -\sqrt{2}
    \end{pmatrix}e^{\sqrt{2t}} + c_{2} \begin{pmatrix}
    1 \\ -1 + \sqrt{2}
    \end{pmatrix}e^{-\sqrt{2t}} + \begin{pmatrix}
    1 \\ 0 \end{pmatrix}t^{2} + \begin{pmatrix}
    -2 \\ 4
    \end{pmatrix}t + \begin{pmatrix}
    1 \\ 0
    \end{pmatrix}$
  1. Demostrar que el conjunto de soluciones del sistema lineal homogéneo $\mathbf{Y}^{\prime} = \mathbf{AY}$ forma un espacio vectorial con la suma y el producto por escalares usuales de matrices.

Más adelante…

Ahora que conocemos lo que son los sistemas lineales de ecuaciones diferenciales y las propiedades de sus soluciones estamos casi listos para comenzar a desarrollar los distintos métodos de resolución, sin embargo, antes de ello es necesario definir una herramienta matemática que será de suma utilidad en el desarrollo posterior de esta unidad. Dicha herramienta es la exponencial de una matriz.

En la siguiente entrada definiremos lo que significa $e^{\mathbf{A} t}$, donde $\mathbf{A}$ es una matriz de $n \times n$ con componentes constantes y veremos como se relaciona con un sistema lineal $\mathbf{Y}^{\prime} = \mathbf{AY}$. Así mismo, profundizaremos en el concepto de matriz fundamental de soluciones.

Entradas relacionadas

Geometría Analítica I: Aplicaciones a más dimensiones

Introducción

Hasta ahora, describimos la recta de distintas maneras en el espacio $\mathbb{R}^2$. A partir de esto, es posible ampliar esas definiciones de recta al espacio $\mathbb{R}^n$, en especial a $\mathbb{R}^3$. Para este último caso, de manera escrita lo único que tendríamos que hacer sería establecer los puntos que definen a la recta dentro de $\mathbb{R}^3$; en la parte geométrica, estamos agregando una dimensión más al graficar, por lo que tenemos más opciones aún.

En esta entrada ampliaremos esas definiciones de recta al espacio vectorial $\mathbb{R}^3$ y el siguiente paso será definir el plano en este mismo espacio a partir de las definiciones mencionadas al inicio de este párrafo.

Rectas en $\mathbb{R}^3$

Comencemos esta entrada redefiniendo la recta en el espacio $\mathbb{R}^3$ a partir de las dos definiciones que tenemos de este elemento hasta ahora.

Definición. Una recta en forma paramétrica en $\mathbb{R}^3$ consiste de tomar un punto $P \in \mathbb{R}^3$ y otro punto (o vector) dirección $Q \in \mathbb{R}^3$ y considerar el conjunto

$L=\{ P+rQ : r \in \mathbb{R} \}$

Definición. Una recta en forma baricéntrica en $\mathbb{R}^3$ consta de tomar puntos distintos $P$ y $Q$ $\in \mathbb{R}^3$ y considerar al conjunto

$L=\{ rP+sQ : r,s \in \mathbb{R}, r+s=1 \}$

En el siguiente interactivo ponle Play a los delizadores para comprender mejor estas dos definiciones de recta en el espacio. Nota que $C$ es la definición paramétrica de la recta, cuyo parámetro es $a$; mientras que $F$ es la recta en forma baricéntrica que pasa por los puntos $A$ y $E$.

Si bien los deslizadores en este interactivo sólo corren de$-2$ a $2$, recuerda que tanto $a$ como $b$ $\in \mathbb{R}$.

En esta entrada comenzamos generalizando las definiciones de recta al espacio $\mathbb{R}^3. Por lo que (siguiendo esta lógica), el siguiente paso es plantear y trabajar la idea de un plano en el espacio.

Plano en forma paramétrica

Si el considerar un punto en $\mathbb{R}^3$ al cual se le suman multiplos de un punto director (también en $\mathbb{R}^3$) obtenemos una recta en este espacio, ¿entonces qué necesitamos para describir un plano en el espacio?

Definición. Un plano en forma paramétrica en $\mathbb{R}^3$ consiste de tomar un punto $P \in \mathbb{R}^3$ y dos puntos dirección $Q, R \in \mathbb{R}^3$ y considerar el conjunto

$\Pi = \{ P+rQ+sR : r,s \in\mathbb{R} \}$

Para continuar, analicemos esta definición por partes con ayuda de lo que hemos descrito hasta ahora en esta entrada. Al tomar $r$ fijo en la parte de la definición dada por $rQ+sR$, obtenemos una recta que pasa por $rQ$ con dirección $R$; . De manera análoga, al tomar $s$ fijo, obtenemos una recta que para por $sR$ y tiene dirección $Q$.

Tomando a $Q=(-2,5,1)$ y a $R=(3,4,5)$ como ejemplo, usa los deslizadores en el siguiente interactivo para notar qué pasa cuando fusionas las dos ideas que acabamos de discutir, al establecer un punto $C=rQ+sR$ (con $r$ y $s$ en $\mathbb{R}$).

Ojalá hayas notado que al dejar correr ambos deslizadores, el rastro del punto $C$ describe un plano que claro pasa por $Q$ y $R$, pero pasa por otro punto definido más. Dentro del mismo interactivo, utiliza la herramienta Plano por tres puntos para definir el plano del que hablamos; deja correr los deslizadores y confirma con esto que el rastro de $C$ es este plano.

Para continuar con nuestro análisis, agreguemos la parte faltante al conjunto $\Pi$, el punto $P$. Ojalá recuerdes que en la descripción paramétrica de una recta, el punto que no tiene un parámetro multiplicando es el punto por el que pasa la recta, si ese punto no está, significa que la recta pasa por el origen. Esta idea se repite análogamente en el caso del plano.

En el análisis que acabamos de realizar, el plano descrito por $rQ+sR$, es el plano que tiene como dirección a $Q$ y a $R$ y además pasa por el origen. Al agregar $P$ a la expresión, lo que se obtiene es un plano paralelo al descrito anteriormente, pero esta vez pasa por $P$, es decir, a cada punto del plano $rQ+sR$ se le sumará el punto fijo $P$.

Plano en forma baricéntrica

Continuemos con la lógica que hemos seguido hasta ahora, con lo cual el siguiente paso es definir el plano en forma baricéntrica.

Definición. Un plano en forma baricéntrica en $\mathbb{R}^3$ consta de tomar los puntos $P$, $Q$, y $R$ y considerar el conjunto

$\Pi= \{ pP+qQ+rR : p,q,r \in \mathbb{R}$ y $p+q+r=1 \}$

Al definir el plano de esta manera, lo que debes imaginar es algo distinto a la primera definición que establecimos. Piensa a $\Pi$ como un plano que pasa por los puntos $P$, $Q$ y $R$.

El siguiente interactivo sólo es la ilustración de un plano en su forma baricéntrica.

Ahora que ya definimos de maneras distintas el plano en el espacio, lo más natural sería encontrar la equivalencia entre estas dos definiciones así como lo vimos al hablar de la recta, sólo que en este caso lo formalizaremos con una proposición.

Relación entre las expresiones de un plano

Proposición. Todo plano en forma paramétrica puede expresarse en forma baricéntrica y viceversa.

Lo que nos gustaría hacer para la demostración, sería mostrar que siempre se pueden encontrar $P’$, $Q’$ y $R’$ con los cuales se puede definir un plano en forma baricéntrica de tal manera que ese conjunto sea el mismo que el conjunto que define a un plano en forma paramétrica.

Demostración.

Parte 1: Partamos de un plano en su forma paramétrica al tomar $P,Q,R \in \mathbb{R}^3$ tal que

$\Pi=\{ P+rQ+sR :r,s \in \mathbb{R} \}$

En esta parte de la demostración, nuestro objetivo es encontrar tres puntos en $\Pi$ muy específicos con los cuales podemos describir el mismo plano pero en su forma baricéntrica.

Por lo anterior y yendo directo al grano, busquemos dos puntos en el plano. Si bien podemos escoger cualesquiera valores de $r$ y $s$ para determinar ciertos puntos en el plano, facilitaremos el álgebra al escoger casos particulares de valores para $r$ y $s$ y así obtener tres puntos «prácticos» en el plano que nos servirán para la forma baricéntrica de este. Los valores de los parámetros no serán tomados de manera aleatoria. Por lo que discutimos anteriormente, podemos definir ciertos puntos (en nuestra demostración $P$’, $Q$’ y $R$’) como combinaciones lineales puntuales de $P$, $Q$, $R$.

  1. El caso más sencillo es tomar $r=s=0$ y así obtener el punto $P$’$=P \in \Pi$.
  2. Si ahora $r=0$ y $s=1$, tenemos $R$’$=P+R$
  3. Y si $r=1$ y $s=0$, obtenemos $Q$’$=P+Q$

Ya que tenemos estos 3 puntos en $\Pi$, podemos definir el plano en su forma baricéntrica:

$\Pi$’$=\{pP$’$+qQ$’$+rR$’$ : p,q,r \in \mathbb{R}\}$

Para continuar, afirmamos que $\Pi=\Pi$’, y para comprobarlo, tenemos que checar que cada elemento en $\Pi$, está en $\Pi$’. La manera más sencilla de hacerlo, es tomar un elemento genérico de $\Pi$ (i.e. un elemento que «represente» a todos) y mostrar que está en $\Pi$’.

Tomemos un elemento de $\Pi$, es decir un vector de la forma $P+rQ+sR$.

Por Demostrar: Existen $a,b,c \in \mathbb{R}$, tales que $a+b+c=1$ y además

$P+rQ+sR=aP$’$+bQ$’$+cR$’

Encontremos entonces los valores de $a$,$b$, $c$.

Al sustituir los elementos primados, tenemos

\begin{align*}
P+rQ+sR&=aP+b(P+Q)+c(P+R) \\
&=aP+bP+bQ+cP+cR\\
&=(a+b+c)P+bQ+cR
\end{align*}

$\Rightarrow P+rQ+sR= (a+b+c)P+bQ+cR$

La igualdad nos lleva a un sistema de ecuaciones a partir del cual podremos obtener los valores de $a$, $b$, y $c$ para que esta se cumpla

\begin{align*}
a+b+c&=1 \\
b&=r \\
c&=s
\end{align*}

La primera condición ya cumple algo que queríamos y además, podemos despejar a $a=1-b-c$, que gracias a las otras igualdades que tenemos, conocemos su valor en términos de $r$ y $s$

$a=1-r-s$

Por lo que

$P+rQ+sR=(1-r-s)P+r(P+Q)+s(P+R)$

tal que $(1-r-s)+r+s=1$.

Hasta aquí, lo que hemos demostrado es que cualquier elemento en $\Pi$ lo podemos escribir como un elemento en $\Pi$’, esto es que $\Pi \subseteq Pi$’. Lo que sigue es realizar el camino contrario.

Ahora, lo que queremos es demostrar que $\Pi$’$\subseteq Pi$; para lo cual partiremos de un elemento en $\Pi$’ y buscaremos llegar a un elemento en $\Pi$.

Tomemos un elemento en $\Pi’$, esto es que es de la forma

$aP$’$+bQ$’$+cR$’$=aP+b(P+Q)+c(P+R)$

con $a+b+c=1$. Por medio de álgebra, queremos llegar a una expresión que represente un elemento de $\Pi$

\begin{align*}
aP+b(P+Q)+c(P+R) &= \\
&=aP+bP+bQ+cP+Cr \\
&=(a+b+c)P+bQ+cR \\
\end{align*}

Pero por hipótesis, $a+b+c=1$, por lo que

$=P+bQ+cR$

que efectivamente está en $\Pi$, pues es un elemento de la forma $P+rQ+sR$. Por lo que $\Pi$’ $\subseteq \Pi$.

$\therefore$ $\Pi \subseteq \Pi$’ y $\Pi$’ $\subseteq Pi$, entonces $\Pi=\Pi$’. Nota que concluimos esto partiendo de un plano en su forma paramétrica y al hacer el caso de la forma baricéntrica, utilizamos los puntos definidos a partir de la primera forma mencionada.

Parte 2. Para la parte 2, sólo te dare algunos consejos para que completes la demostración, pues es bastante parecida a lo que hicimos en la parte 1. Primero, tienes que partir del plano en su forma baricéntrica, es decir

$\Pi=\{ pP+qQ+rR : p+q+r=1 \text{ con }p,q,r \in \mathbb{R} \}$

Y buscar los puntos $P$’, $Q$’ y $R$’ tales que al tomar $P$’ como punto base y $Q$’ y $R$’ como direcciones, obtengas que $\Pi=\Pi’$.

Si realizas el procedimiento de la manera correcta, llegarás a que los puntos son :

\begin{align*}
P&=P’ \\
Q’&=Q-P \\
R’&=R-P
\end{align*}

Al completar esta segunda parte, entonces la demostración estará completa.

$\square$

Dimensiones mayores a 3

Para cerrar esta entrada, enunciaremos algunas definiciones que nos ayudarán en un futuro a definir cosas más complejas.

Definición. Sean $u_1$, $u_2$, $\dots$, $u_k$ puntos en $\mathbb{R}^n$. Sean $s_1$, $s_2$, $\dots$, $s_k$ números reales. A una expresión de la forma

$s_1u_2+s_2u_2+\dots+s_ku_k$

le llamamos una combinación lineal de $u_1$, $u_2$, $\dots$ $u_k$.

Ejemplo: Sea el espacio $\mathbb{R}^5$, una combinaión lineal en este es

$-5(3,1,0,-2,7)+2(-3,6,8,1,9)+(-3)(3,9,0,-1,-2)$

Definición. A una combinación lineal en donde los coeficientes suman $1$, le llamamos una combinación afín. Esto es que

$s_1+s_2+\dots+s_k=1$

Ejemplo: La combinación del ejemplo anterior no es afín, pues

$-5+2+(-3)=-5+2-3=-8+2=-6 \neq 1$

Sin embargo, podemos obtener una combinación afín con los mismos vectores.

$-4(3,1,0,-2,7)+2(-3,6,8,1,9)+3(3,9,0,-1,-2)$

Es una combinación afín, pues

$-4+2+3=-4+5=1$

Definición. Al conjunto de todas las combinaciones lineales de ciertos vectores dados $u_1$, $u_2$, $\dots$ $u_k$ $\in \mathbb{R}^n$ se le conoce como el subespacio generado por $u_1$, $u_2$, $\dots$ $u_k$ y lo denotamos como

$\braket{u_1, u_2, \dots, u_k}$

esto es

$\braket{u_1, u_2, \dots, u_k}=\{ s_1u_2+s_2u_2+\dots+s_ku_k : s_1, \dots, s_k \in \mathbb{R} \}$

Veamos dos ejemplos de esta definición.

Ejemplo 1: Sea $v_1 \in \mathbb{R}^2$, $v_1 \neq 0$, el espacio generado por este vector es

$\braket{v_1}=\{ s_1v_1 : s_1 \in \mathbb{R} \}$

Ejemplo 2: Sea $v_1, v_2 \in \mathbb{R}^2$, $v_1 \neq 0$ y $v_2 \neq 0$, el espacio generado es

$\braket{v_1,v_2} = \{s_1v_1+s_2v_2 : s_1, s_2 \in \mathbb{R}\}$

Cerremos esta entrada con una última definición y su respectivo ejemplo.

Definición. Si $A$ es un subconjunto de $\mathbb{R}^n$y $p$ es un vector en $\mathbb{R}^n$, entonces el traslado de $A$ por el vector $p$ es el conjunto

$A+p=p+A= \{ x+p : x \in A \}$

Esta última definición nos es de utilidad para pasar de una recta o un plano que pasa por el orígen a otro que pasa por cualquier punto $p$.

Ejemplo: Sea $\Pi=\{r(5,3,2)+s(-1,7,0): s,r \in mathbb{R}$ el plano que pasa por el origen y que tiene como vectores directores a $(5,3,2$ y $(-1,7,0)$. Entonces el traslado de $\Pi$ por $p=(-2,3,9)$ es el conjunto

\begin{align*}
p+\Pi&=\Pi+p=\Pi+(-2,3,9) \\
&=\{r(5,3,2)+s(-1,7,0)+(-2,3,9): s,r \in \mathbb{R}\}
\end{align*}

Tarea moral

  • En el párrafo siguiente a la definición de un plano en el espacio:
    • ¿Cuál es el parámetro de la recta descrita al tomar $r$ fijo?
    • ¿Cuál es el parámetro de la recta descrita al tomar $s$ fijo?
  • Completa el interactivo de la sección Plano en el espacio al dibujar el plano definido por los puntos $Q$ y $R$ del interactivo y $P=(-3,2-6)$. Estarás en lo correcto si el plano que obtienes es paralelo al definido por $Q$, $R$ y el origen.
  • Completa la demostración de la proposición que trata la equivalencia entre las definiciones de plano en el espacio.
  • ¿Qué espacio geométrico define el primer ejemplo de subespacio generado? ¿y el ejemplo 2?
  • Da una expresión paramétrica para el plano que pasa por los puntos $P=(1,2,0)$, $Q=(1,0,1)$ y $R=(-1,0-2)$.

Más adelante

Con lo desarrollado en esta entrada seremos capaces de definir ciertos lugares geométricos ya no sólo en el plano, si no también eln el espacio. Además, desarrollamos una intuición lógica para continuar construyendo lo que resta del curso.