Archivo de la etiqueta: combinación lineal

Álgebra Lineal I: Combinaciones lineales

Introducción

En esta entrada presentamos el concepto de combinaciones lineales en espacios vectoriales que será fundamental para nuestro estudio. De cierta manera (que se verá más claramente cuando hablemos de bases en espacios vectoriales arbitrarios) captura un aspecto de la base canónica de F^n: Todo vector lo podemos escribir como x_1 e_1+\dots+x_n e_n, lo que con nuestro lenguaje será una combinación lineal de los vectores e_i.

También hablamos del concepto de espacio generado. De manera intuitiva, el espacio generado por un conjunto de vectores es el mínimo subespacio que los tiene (y que a la vez tiene a todas las combinaciones lineales de ellos). Geometricamente, los espacios generados describen muchos de los objetos conocidos como rectas y planos. De manera algebraica, este concepto nos servirá mucho en lo que sigue del curso.

Definición de combinaciones lineales

Sea V un espacio vectorial sobre un campo F, y sean v_1, \dots, v_n vectores en V. Por definición, V contiene a todos los vectores de la forma c_1 v_1+\dots +c_n v_n con c_1, \dots, c_n \in F. La colección de los vectores de este estilo es importante y le damos una definición formal:

Definición. Sean v_1, \dots, v_n vectores en un espacio vectorial V sobre F.

  1. Un vector v es una combinación lineal de los vectores v_1, \dots, v_n si existen escalares c_1,\dots, c_n\in F tales que

        \begin{align*}v= c_1 v_1 +c_2 v_2+\dots +c_n v_n.\end{align*}

  2. El espacio generado (que a veces abreviaremos como el generado) por v_1, \dots, v_n es el subconjunto de V de todas las combinaciones lineales de v_1,\dots, v_n, y lo denotamos por \text{span}(v_1, \dots, v_n).

Ejemplo.

  1. La matriz A=\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} es una combinación lineal de las matrices B= \begin{pmatrix} 10 & 0 \\ 5 & 0\end{pmatrix} y C=\begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{2}\end{pmatrix} pues A=\frac{1}{5} B + 2 C. Así, A está en el generado por B y C.
  2. El generado \text{span}(v) de un único vector en \mathbb{R}^n consta de puras copias re-escaladas de v (también nos referimos a estos vectores como múltiplos escalares de v). Usando la interpretación geométrica de vectores en \mathbb{R}^2 o \mathbb{R}^3, si v\neq 0 entonces \text{span}(v) representa una recta por el origen en la dirección de v.
  3. Si e_1=(1,0,0) y e_2=(0,1,0), entonces

        \begin{align*}x e_1+ y e_2=(x,y,0).\end{align*}


    Como x y y fueron arbitrarios, podemos concluir que \text{span}(e_1,e_2) consta de todos los vectores en \mathbb{R}^3 cuya tercer entrada es cero. Esto es el plano xy. En general, si v_1, v_2 son dos vectores no colineales en \mathbb{R}^3 entonces su espacio generado es el único plano por el origen que los contiene.
  4. El polinomio 3x^{10}+7 del espacio vectorial \mathbb{R}_{10}[x] no puede ser escrito como combinación lineal de los polinomios x^{10}+x^2+1, x^7+3x+1, 7x^3. Para demostrar esto, debemos probar que no existen reales a,b,c tales que

        \[3x^{10}+1=a(x^{10}+x^2+1)+b(x^7+3x+1)+7cx^3.\]


    Desarrollando el producto de la derecha y observando el coeficiente de x^{10}, necesitamos que a sea igual a 3. Pero entonces a la derecha va a quedar un término 3x^2 que no se puede cancelar con ninguno otro de los sumandos, sin importar el valor de b o c.

\square

Problemas prácticos de combinaciones lineales

La definición de que un vector sea combinación de otros es existencial. Para mostrar que sí es combinación lineal, basta encontrar algunos coeficientes. Para mostrar que no es combinación lineal, hay que argumental por qué ninguna de las combinaciones lineales de los vectores es igual al vector buscado.

Problema. Muestra que el vector (1,1,1) de \mathbb{R}^3 no se puede expresar como combinación lineal de los vectores

    \begin{align*}v_1= (1,0,0), \hspace{2mm} v_2=(0,1,0)\text{ y } v_3=(1,1,0).\end{align*}

Solución: Una combinación lineal arbitraria de v_1, v_2, v_3 es de la forma

    \begin{align*}x_1 v_1 +x_2 v_2 + x_3 v_3 = (x_1 + x_3, x_2 + x_3, 0)\end{align*}

para x_1,x_2,x_3 reales. Así, las combinaciones lineales de v_1,v_2,v_2 siempre tienen a 0 como tercera coordenada. De esta forma, ninguna de ellas puede ser igual a (1,1,1).

\square

Más generalmente, consideramos el siguiente problema práctico: dada una familia de vectores v_1, v_2, \dots, v_k en F^n y un vector v\in F^n, decide si v es una combinación lineal de v_1, \dots, v_k. En otras palabras, si v\in \text{span}(v_1, \dots, v_k).

Para resolver este problema, consideramos la matriz de tamaño n\times k cuyas columnas son v_1, \dots, v_k. Decir que v\in \text{span}(v_1, \dots, v_k) es lo mismo que encontrar escalares x_1, \dots, x_k\in F tales que v= x_1 v_1 +\dots +x_k v_k. De manera equivalente, si tomamos X=(x_1,\ldots,x_k), queremos la existencia de una solución al sistema AX=v.

Esto es muy útil. Como tenemos una manera práctica de decidir si este sistema es consistente (por reducción gaussiana de la matriz aumentada (A\vert v)), tenemos una manera práctica de resolver el problema de si un vector es combinación lineal de otros. Por supuesto, esto también nos da una solución concreta al problema, es decir, no sólo decide la existencia de la combinación lineal, sino que además da una cuando existe.

Problema. Sean v_1=(1,0,1,2), v_2=(3,4,2,1) y v_3=(5,8,3,0) vectores en el espacio vectorial \mathbb{R}^4. ¿Está el vector v=(1,0,0,0) en el generado de v_1,v_2 y v_3? ¿El vector w=(4,4,3,3)?

Solución: Aplicamos el método que describimos en el párrafo anterior. Es decir, tomemos la matriz

    \begin{align*}A= \begin{pmatrix} 1  & 3 & 5\\ 0 & 4 & 8\\  1 & 2 & 3\\ 2 & 1 & 0\end{pmatrix}.\end{align*}

Queremos ver si el sistema AX=v es consistente. Haciendo reducción gaussiana a mano, o bien usando una calculadora de forma escalonada reducia (por ejemplo, la de eMathHelp), obtenemos que la forma escalonada reducida de la matriz aumentada (A\vert v) es

    \begin{align*}(A\vert v)\sim \begin{pmatrix} 1 & 0 & -1 & 0\\ 0 & 1 &2 & 0\\ 0 & 0 & 0 &1 \\ 0 & 0 & 0 &0\end{pmatrix}.\end{align*}

Viendo el tercer renglón, notamos que tiene pivote en la última columna. Deducimos que el sistema no es consistente, así que v\notin \text{span}(v_1, v_2, v_3).

Procedemos de manera similar para el vector w. Esta vez tenemos

    \begin{align*}(A\vert w)\sim \begin{pmatrix} 1 & 0 & -1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &0\end{pmatrix},\end{align*}

lo que muestra que el sistema es consistente (pues ninguna fila tiene su pivote en la última columna), por lo tanto w\in \text{span}(v_1, v_2, v_3). Si queremos encontrar una combinación lineal explícita tenemos que resolver el sistema

    \begin{align*}\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1  & 2\\ 0 & 0 &0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\\ 0 \\ 0\end{pmatrix}.\end{align*}

Tenemos que ninguna fila tiene su pivote en la columna 3, así que x_3 es variable libre. Las variables x_1 y x_2 son pivote. Esto nos da como solución x_1= x_3+1 y x_2=1-2x_3. Entonces podemos escribir

    \begin{align*}w= (1+x_3) v_1 + (1-2x_3) v_2+ x_3v_3\end{align*}

y esto es válido para cualquier elección de x_3. Podemos, por ejemplo, escoger x_3=0 y obtener w=v_1 + v_2.

\square

Por supuesto, en el problema anterior pudimos haber encontrado la expresión w=v_1+v_2 explorando el problema o por casualidad. Esto sería suficiente para mostrar qeu w es combinación lineal. Pero la ventaja del método sistemático que mostramos es que no se corre el riesgo de no encontrar la solución a simple vista. De me manera definitiva nos dice si hay o no hay solución, y cuando sí hay, encuentra una.

Una caracterización del espacio generado

Probamos el siguiente resultado, que explica la importancia del concepto de espacio generado. En particular, la proposición muestra que el espacio generado es un subespacio. Si te parece un poco confusa la demostración, puede ser de ayuda leer antes la observación que le sigue.

Proposición. Sea V un espacio vectorial sobre un campo F y v_1, v_2, \dots, v_n \in V. Entonces

  1. \text{span}(v_1, v_2, \dots, v_n) es la intersección de todos los subespacios vectoriales de V que contienen a todos los vectores v_1, \dots, v_n.
  2. \text{span}(v_1, v_2, \dots, v_n) es el subespacio más chico (en contención) de V que contiene a v_1,\dots, v_n.

Demostración: Como la intersección arbitraria de subespacios es un subespacio, la parte 1 implica la parte 2. Probemos entonces la parte 1.

Primero demostremos que \text{span}(v_1, v_2,\dots, v_n) está contenido en todo subespacio W de V que tiene a v_1, \dots, v_n. En otras palabras, tenemos que ver que cualquier subespacio W que tenga a v_1,\ldots,v_n tiene a todas las combinaciones lineales de ellos. Esto se sigue de que W, por ser subespacio, es cerrado bajo productos por escalar y bajo sumas. Así, si tomamos escalares \alpha_1,\ldots,\alpha_n tenemos que cada uno de \alpha_1 v_1, \ldots, \alpha_n v_n está en W y por lo tanto la combinación lineal (que es la suma de todos estos), también está en W.

La afirmación anterior implica que \text{span}(v_1, \dots, v_n) está contenido en la intersección de todos los espacios que tienen a v_1,\ldots, v_n, pues está contenido en cada uno de ellos.

Ahora, queremos ver ‘la otra contención’, es decir, que \text{span}(v_1,\ldots,v_n) contiene a la intersección de todos los espacios que tienen a v_1,\ldots,v_n. Para esto veremos primero que \text{span}(v_1, \dots, v_n) es un subespacio vectorial. Sean x,y\in \text{span}(v_1, \dots, v_n) y c\in F un escalar. Como x y y son, por definición, combinaciones lineales de v_1, \dots, v_n, podemos escribir x=a_1 v_1+\dots +a_n v_n para algunos escalares a_i y y=b_1 v_1+\dots + b_n v_n para unos escalares b_i. Así

    \begin{align*}x+cy= (a_1+cb_1) v_1 + \dots + (a_n +c b_n) v_n\end{align*}

también es una combinación lineal de v_1, \dots, v_n y por tanto un elemento del espacio generado. Se sigue que \text{span}(v_1,\dots, v_n) es uno de los subespacios que tienen a v_1, \dots, v_n. Así, este generado “aparece” en la intersección que hacemos de subespacios que tienen a estos vectores, y como la intersección de una familia de conjuntos está contenida en cada uno de esos conjuntos, concluimos que \text{span}(v_1, \dots, v_n) contiene a dicha interesección.

Argumentemos ahora la segunda parte de la proposición. Se usa el mismo argumento que arriba. Si W es cualquier subespacio que contiene a v_1, \dots, v_n, entonces “aparece” en la intersección y por tanto \text{span}(v_1, \dots, v_n) está contenido en W. Es decir, es más chico (en contención) que cualquier otro subespacio que contenga a estos vectores.

\square

Observación. Ya que la demostración previa puede resultar un poco confusa, presentamos una versión un poco más relajada de la idea que se usó. Sea \lbrace W_i\mid i\in I\rbrace la familia de todos los subespacios de V que contienen a v_1, \dots, v_n.

En el primer párrafo, probamos que

    \begin{align*}\text{span}(v_1,\dots, v_n)\subseteq W_i\end{align*}

para todo i\in I. Luego \text{span}(v_1, \dots, v_n)\subseteq \bigcap_{i\in I} W_i.

En el segundo párrafo, probamos que Span(v_1,\dots, v_n) es un subespacio que contiene a v_1, \dots, v_n. Es decir, entra en nuestra familia \lbrace W_i\mid i\in I\rbrace, es uno de los W_i, digamos W_j. Entonces

    \begin{align*}\text{span}(v_1, \dots, v_n)= W_j \supseteq \bigcap_{i\in I} W_i.\end{align*}

En ese momento ya tenemos la primer igualdad: \text{span}(v_1,\ldots,v_n)=\bigcap_{i\in I} W_i.

Ahora, la segunda conclusión de la proposición se sigue de esto con una observación más: Si W' es un subespacio que contiene a v_1, \dots, v_n entonces también entra en nuestra familia de los W_i‘s, es decir es W_{p} para algún p\in I. Ahora usando el inciso 1, tenemos que

    \begin{align*}\text{span}(v_1, \dots, v_n)= \bigcap_{i\in I} W_i \subseteq W_p=W'.\end{align*}

Esto concluye la demostración.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Se puede expresar al vector (1,3,0,5) como combinación lineal de (0,1,0,3), (0,-1,2,0) y (2, 0,-1,-6)? Si sí, encuentra una o más combinaciones lineales que den el vector (1,3,0,5)
  • ¿Se puede expresar al polinomio 1+x^2 +3x^3 -x^4 +x^5 como combinación lineal de los siguientes polinomios

        \begin{align*}x^2-3x^4,\\1+x^2-x^5,\\2x+x^4,\\2+x^2,\\5x+5x^2-x^5?\end{align*}

  • Sea P un plano en \mathbb{R}^3 por el origen y L una recta de \mathbb{R}^3 por el origen y con dirección dada por un vector v\neq 0. Demuestra que la intersección de L con P es una recta si y sólo si existen dos vectores en P tal que su suma sea v.
  • Encuentra el conjunto generado por los vectores del espacio vectorial indicado
    • Las matrices \begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix} y \begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix} del espacio M_{2}.
    • Los vectores (1,-1,0) y (1,0,-1) del espacio \mathbb{R}^3.
    • Los polinomios 1, x, x^2 y x^3 del espacio \mathbb{R}[x].
  • Sea V un espacio vectorial. Si v_1, \dots, v_n, x son vectores en un espacio vectorial V, ¿será cierto siempre que \text{span}(v_1, \dots, v_n)\subseteq \text{span}(v_1, \dots, v_n, x)? De ser así, ¿esta contención siempre es estricta? Demuestra tu respuesta o da un contraejemplo.
  • Sean v_1,\ldots, v_n y x vectores en un espacio vectorial V. Supongamos que v_n está en \text{span}(v_1,\ldots,v_{n-1},x). Muestra que

        \[\text{span}(v_1,\ldots,v_{n-1},x)=\text{span}(v_1,\ldots,v_{n-1},v_n).\]

Más adelante…

El concepto de combinación lineal es la piedra angular para definir varios otros conceptos importantes en espacios vectoriales. Es un primer paso para definir a los conjuntos de vectores generadores y a los conjuntos de vectores linealmente independientes. Una vez que hayamos desarrollado ambos conceptos, podremos hablar de bases de un espacio vectorial, y con ello hablar de la dimensión de un espacio vectorial.

Entradas relacionadas

Álgebra Lineal I: Bases y dimensión de espacios vectoriales

Introducción

Ya hablamos de conjuntos generadores y de independencia lineal. Además, ya platicamos también del lema de intercambio de Steinitz. Con estas herramientas, tenemos todo a nuestra disposición para desarrollar la teoría de dimensión de espacios vectoriales.

Para espacios vectoriales en general, esto puede no resultar tan sencillo. Por esta razón, para este tema nos enfocaremos en el caso en el que la dimensión es finita. Sin embargo, también veremos ejemplos de espacios que no son así, y hablaremos un poco de cómo son.

Espacios de dimensión finita

Definición. Se dice que un espacio vectorial es de dimensión finita si tiene un conjunto generador con una cantidad finita de elementos.

Otra forma de interpretar la definición anterior es la siguiente:
V es un espacio vectorial de dimensión finita si existe una familia finita de vectores v_1, v_2, \dots , v_n \in V tal que todos los vectores en V se pueden expresar como combinación lineal de dicha familia. Por ejemplo, los espacios F^n, \hspace{2mm} M_{m,n}(F), \hspace{2mm} y \hspace{2mm} \mathbb{R}_n[x] son de dimensión finita. Sin embargo, no todos los espacios vectoriales son de dimensión finita, de hecho la mayoría no lo son.

Problema. Demuestra que el espacio vectorial V de todos los polinomios con coeficientes reales no es un espacio vectorial sobre \mathbb{R} de dimensión finita.

Demostración. Supongamos que V tiene un conjunto generador finito, entonces existen polinomios p_1,p_2,\dots,p_n\in V tales que V=\text{span}(p_1,p_2,\dots,p_n). Sea d=\max\{deg(p_1), \dots, deg(p_n)\}. Como todos los p_i tienen grado a lo más d, entonces cualquier combinación lineal de p_1,p_2,\dots,p_n también tiene grado a lo más d. Se sigue que todo vector en V tiene grado a lo más d, pero eso es imposible, pues deg(x^{d+1})=d+1>d. Por lo tanto V no es de dimensión finita.

\square

Nos gustaría definir la dimensión de un espacio vectorial. Para ilustrar esto es bueno pensar primero en \mathbb{R}^n para distintos valores de n. Una linea (digamos \mathbb{R}) debería tener dimensión 1, un plano (digamos \mathbb{R}^2) debería tener dimensión 2, y en general \mathbb{R}^n debería tener dimensión n.

Antes de profundizar más en esto, es conveniente mencionar algunas definiciones y problemas prácticos para generar una mejor intuición sobre el rumbo que estamos a punto de tomar.

Definición. Una base de un espacio vectorial V es un subconjunto B de V tal que B es linealmente independiente y generador.

Ejemplos.

  • El conjunto B=\{e_1,\ldots,e_n\} de vectores canónicos en \mathbb{F}^n es una base. Esto se puede verificar con lo que hicimos al inicio del curso, cuando mostramos que cualquier vector v en \mathbb{F}^n se puede escribir de manera única como v=x_1e_1+\ldots+x_ne_n con x_1,\ldots,x_n escalares. Como existe al menos una forma, entonces \text{span}(B)=F^n. Como es única, en particular la única forma de escribir al vector 0 es si x_1=\ldots=x_n=0. Esto muestra que B es generador y linealmente independiente.
  • El conjunto B=\{E_{ij}\} de matrices canónicas en M_{m,n}(F) es una base.
  • El conjunto 1,x,\ldots,x^n es una base de \mathbb{R}_n[x].

Encontrar bases de subespacios

Como los subespacios de espacios vectoriales también son espacios vectoriales, entonces también tiene sentido hablar de si un conjunto de vectores es base para un subespacio. Veamos ahora varios problemas para entender mejor esto.

Problema. Dada la matriz A\in M_2(\mathbb{R})

    \begin{align*}A=\begin{pmatrix}2 & 0\\0 & 3\end{pmatrix}\end{align*}


encuentra una base para el subespacio U de M_2(\mathbb{R}) definido por

    \begin{align*}U=\{X\in M_2(\mathbb{R}): XA=AX\}.\end{align*}

Solución. Considera la matriz X=\begin{pmatrix}a_1 & a_2\\a_3 & a_4\end{pmatrix}. Entonces X\in U si y sólo si XA=AX, lo anterior lo escribimos como

    \begin{align*}\begin{pmatrix}2a_1 & 3 a_2\\2a_3 & 3a_4\end{pmatrix} = \begin{pmatrix}2a_1 & 2 a_2\\3a_3 & 3a_4\end{pmatrix}.\end{align*}


De la igualdad anterior obtenemos que a_2=a_3=0. Por lo tanto

    \begin{align*}U=\left\{\begin{pmatrix}a_1 & 0\\0 & a_4\end{pmatrix}:a_1,a_4\in \mathbb{R}\right\}.\end{align*}


Este es un primer paso, pues nos permite poner al subespacio U en una forma en la que es más fácil de entender. Ahora es más fácil encontrar una base para U. Proponemos al siguiente conjunto de dos matrices:

    \begin{align*}B=\left\{ \begin{pmatrix}1 & 0\\0 & 0\end{pmatrix} , \begin{pmatrix}0&0\\0 & 1\end{pmatrix}\right\}.\end{align*}

Por un lado, este es un conjunto generador para U, pues cualquier elemento de U se puede escribir como combinación lineal de elementos en B como sigue:

    \[\begin{pmatrix} a_1 & 0 \\ 0 & a_4 \end{pmatrix}=a_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.\]

Por otro lado, B es un conjunto linealmente independiente pues si a y b son escalares que tan una combinación lineal igual a cero entonces tendríamos

    \[\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.\]

Igualando la primera y última matriz entrada a entrada, tenemos que a=b=0.

\square

Es importante que revises el problema anterior con profundidad, pues da una idea de cómo encontrar una base B de un subespacio U de un espacio vectorial V. Una receta que funciona en algunos casos es la siguiente:

  • Entender bien el subespacio U del que hay que dar una base.
  • Expresar a U en términos simples.
  • Ver cómo son los vectores de U, y de ahí proponer una base B. Para esta parte hay que jugar un poco con conjuntos de vectores, para ver si son suficientes para generar y no son demasiados como para ya no ser linealmente independientes.
  • Mostrar que B genera a U.
  • Mostrar que B es linealmente independiente en V.

Veamos más ejemplos.

Problema. Determina una base para el subespacio U de \mathbb{R}^4 dado por

    \begin{align*}U=\{(a,b,c,d)\in \mathbb{R}^4:a+b=0, c=2d\}.\end{align*}

Solución. Como b=-a y c=2d, entonces

    \begin{align*}U=\{(a,-a,2d,d)\in \mathbb{R}^4:a,d\in \mathbb{R}\}=\{av_1+dv_2|a,d\in \mathbb{R}\},\end{align*}


donde v_1=(1,-1,0,0) y v_2=(0,0,2,1). Por lo tanto v_1,v_2 generan a U. También son linealmente independientes, pues la relación av_1+dv_2=0 es equivalente a (a,-a,2d,d)=(0,0,0,0) e implica a=d=0.Se sigue que \{v_1,v_2\} es una base para U.

\square

Problema. Considera los subespacios U,V de \mathbb{R}^4 definidos por

    \begin{align*}U=\{(x,y,z,w)\in\mathbb{R}^4:y+z+w=0\}\end{align*}


y

    \begin{align*}V=\{(x,y,z,w)\in\mathbb{R}^4:x=-y, \hspace{2mm}z=2w\}.\end{align*}


Encuentra una base para cada uno de los subespacios U,V y U\cap V de \mathbb{R}^4.

Solución. Expresando a w en términos de y y z, obtenemos

    \begin{align*}U&=\{(x,y,z,-y-z)|y,z\in\mathbb{R}\}\\&=\{xu_1+yu_2+zu_3|x,y,z \in \mathbb{R}\},\end{align*}


donde u_1=(1,0,0,0), u_2=(0,1,0,-1) y u_3=(0,0,1,-1).

Veamos si u_1,u_2,u_3 son linealmente independientes. La igualdad xu_1+yu_2+zu_3=0 es equivalente a (x,y,z,-y-z)=(0,0,0,0) e implica x=y=z=0. Por lo tanto, los vectores u_1,u_2,u_3 son linealmente independientes y forman una base de U.

Ahora, para V. Es fácil ver que

    \begin{align*}V&=\{(-y,y,2w,w)| y,w\in\mathbb{R}\}\\&=\{yv_1+wv_2| y,w\in \mathbb{R}\},\end{align*}


donde v_1=(-1,1,0,0) \hspace{2mm} y v_2=(0,0,2,1).

Nuevamente, v_1, v_2 son linealmente independientes, pues la relación yv_1+wv_2=0 es equivalente a (-y,y,2w,w)=(0,0,0,0) e implica y=w=0. Por lo tanto v_1,v_2 forman una base de V.

Finalmente, el vector (x,y,z,w)\in\mathbb{R}^4 pertenece a U\cap V si y sólo si

    \begin{align*}x=-y, \hspace{3mm} z=2w, \hspace{3mm} y+z+w=0.\end{align*}


Se sigue que x=3w, \hspace{2mm} z=2w \hspace{2mm} y y=-3w, o bien

    \begin{align*}(x,y,z,w)=(3w,-3w,2w,w)=w(3,-3,2,1).\end{align*}


Por lo tanto \{(3,-3,2,1)\} es una base de U \cap V.

\square

Problema. Sea V el espacio de funciones f:\mathbb{R}\longrightarrow \mathbb{R} generado por las funciones en B=\{1,x\mapsto \sin (2x), x\mapsto \cos(2x)\}.

a) Demuestra que B es una base de V.
b) Demuestra que x\mapsto \sin ^2 (x) es una función en V y exprésala como combinación lineal de los elementos de B.

Solución. a) . Como V es el generado de B, por definición B es generador. Así, basta demostrar que los vectores en B son linealmente independientes. En otras palabras, queremos ver que si a,b,c son números reales tales que

    \begin{align*}a+b\sin (2x) + c\cos (2x)=0\end{align*}


para todo x\in \mathbb{R}, entonces a=b=c=0.

Tomando x=0 se obtiene que a+c=0. Si tomamos x=\frac{\pi}{2} obtenemos a-c=0. Por lo tanto a=c=0. Finalmente, si tomamos x=\frac{\pi}{4} obtenemos b=0.

b) Para cada x\in\mathbb{R} se tiene

    \begin{align*}\cos (2x)&=2\cos^2(x)-1\\&=2(1-\sin^2(x))-1\\&=1-2\sin^2(x),\end{align*}


por lo tanto

    \begin{align*}\sin^2(x)=\frac{1-\cos (2x)}{2}.\end{align*}


Por lo tanto x\mapsto \sin^2(x) pertence a V y lo expresamos como combinación lineal de los elementos de B de la siguiente manera:

    \begin{align*}\sin^2(x)=\frac{1}{2}\cdot 1 + 0\cdot \sin(2x) - \frac{1}{2} \cos (2x).\end{align*}

\square

Dimensión finita y bases

Ahora veamos un teorema muy importante en la teoría de la dimensión de espacios vectoriales.

Teorema. Sea V un espacio vectorial de dimensión finita. Entonces
a) V contiene una base con una cantidad finita de elementos.
b) Cualesquiera dos bases de V tienen el mismo número de elementos (en particular, cualquier base tiene una cantidad finita de elementos).

Demostración. a) Como V es de dimensión finita, entonces tiene al menos un conjunto generador finito. Sea B un conjunto generador de V con el menor número posible de elementos. Vamos a demostrar que B es una base para V. B ya es conjunto generador porque así lo escogimos, sólo falta probar que es linealmente independiente.

Supongamos por el contrario que B no es linealmente independiente, entonces existe v\in B tal que v\in \text{span}(B\backslash \{v\}). Por lo tanto

    \[\text{span}(B\setminus\{v\})=\text{span}(B)=V.\]

Pero eso es imposible pues B se tomó de tamaño mínimo. Por lo tanto B es linealmente independiente. Se sigue el resultado deseado.

b) Sea B una base con una cantidad finita de elementos, digamos n. Sea B' otra base de V. Por definición de base, B' es linealmente independiente y B es un conjunto generador con n elementos.

Por el lema de Steinitz, B' es finito y tiene a lo más n elementos. Lo anterior nos muestra que cualquier base tiene a lo más n elementos. De hecho, si B' tiene d elementos, el lema de Steinitz garantiza que n\leq d.

Ahora volvemos a aplicar el mismo argumento que antes, pero pensando a B como linealmente independiente y a B' como generador. Concluimos que k\leq d. De este modo, k=d y por lo tanto toda base de V tiene la misma cantidad de elementos.

\square

El resultado anterior justifica que la siguiente definición esté bien hecha.

Definición. Sea V un espacio vectorial de dimensión finita. Definimos la dimensión dim V de V como el número de elementos de una base de V.

Ejemplos y problemas de dimensión

Ejemplo. Considera el espacio vectorial \mathbb{R}^n y su base canónica B=\{e_1,e_2,\dots , e_n\}. Como B es base y tiene n elementos, entonces dim(\mathbb{R}^n)=n.

\square

Ejemplo. Considera el espacio vectorial \mathbb{R}_n[x] de polinomios con coeficientes reales y grado a lo más n. Una base para \mathbb{R}_n[x] es \{1,x,\dots, x^n\}, por lo tanto dim(\mathbb{R}_n[x])=n+1.

\square

Ejemplo. Considera el espacio vectorial M_{m,n}(\mathbb{R}). Sea E_{ij}\in M_{m,n}(\mathbb{R}) la matriz cuya entrada (i,j) es 1 y el resto de sus entradas son 0. Entonces B=\{E_{ij}| 1\leq i \leq m, 1\leq j \leq n \} es una base para M_{m,n}(\mathbb{R}). Así, \dim(M_{m,n}(\mathbb{R}))=mn.

\square

Problema. Encuentra una base y la dimensión del subespacio

    \begin{align*}V=\{(a,2a)|a\in \mathbb{R}\}\subset \mathbb{R}^2.\end{align*}

Solución. Notemos que V=\text{span}((1,2)), pues (a,2a)=a(1,2). Como (1,2)\neq (0,0), entonces B=\{(1,2)\} es una base de V. Por lo tanto \dim(V)=1.

\square

Un lema útil para demostrar que algo es base

Para finalizar esta entrada demostraremos otro teorema muy importante en la teoría de la dimensión de espacios vectoriales. En este resultado usamos de nuevo de manera repetida el lema de intercambio de Steinitz.

Teorema. Sea V un espacio vectorial de dimensión finita n. Entonces
a) Cualquier conjunto linealmente independiente de vectores de V tiene a lo más n elementos.
b) Cualquier conjunto generador de V tiene al menos n elementos.
c) Si S es un subconjunto de V con n elementos, entonces las siguientes afirmaciones son equivalentes:

  1. S es linealmente independiente.
  2. S es un conjunto generador.
  3. S es una base de V.

Demostración. Sea V una base de B. Por definición B tiene n elementos.

a) Como B es un conjunto generador con n elementos, por el lema de intercambio se tiene que cualquier conjunto linealmente independiente tiene a lo más n elementos.

b) Sea S un conjunto generador de V y supongamos que S tiene d<n elementos. Como B es linealmente independiente, entonces por el lema de intercambio se tiene que n \leq d, lo cual sería una contradicción.

c) Es claro que (3) implica (1) y (2), por lo que solamente probaremos que (1) implica (3) y que (2) implica (3).

Supongamos que S es linealmente independiente, entonces por el lema de intercambio de Steintz podemos agregar n-n=0 vectores a S de manera que el nuevo conjunto es generador. Claramente el nuevo conjunto es S mismo, pues no le agregamos nada. Por lo tanto S es un conjunto generador y como estamos bajo el supuesto de que S es linealmente independiente, entonces S es una base de V.

Ahora supongamos que S es un conjunto generador que no es linealmente independiente. Entonces existe v\in S tal que v\in \text{span}(S\setminus \{v\}). Se sigue que S\setminus \{v\} es un conjunto generador de n-1 elementos (al generar a v, genera todo lo que generaba S). Pero esto contradice el inciso b). Por lo tanto S es linealmente independiente y por lo tanto es una base de V.

\square

El resultado anterior nos permite pensar a las bases de un espacio vectorial como los conjuntos linealmente independientes “más grandes”, o bien como los conjuntos generadores “más chicos”. En la siguiente entrada veremos ejemplos prácticos del uso del teorema anterior.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • En todos los problemas en donde se hable de subespacios, verifica que en efecto los conjuntos dados son subespacios del espacio vectorial mencionado.
  • En todos los ejemplos y problemas en los que se menciona que algo es base, verifica que en efecto se tiene un conjunto que es generador y linealmente independiente.
  • Sea V un espacio vectorial sobre \mathbb{C} y de dimensión n. Demuestra que si ves a V como un espacio vectorial sobre \mathbb{R}, entonces \dim(V)=2n.
  • Sea V un espacio vectorial de dimensión finita y W un subespacio de V. Demuestra que W es de dimensión finita, que \dim(W)\leq \dim(V) y que la igualdad se da si y sólo si W=V.
  • Sean W_1,W_2 subespacios de un espacio vectorial V con dimensiones m y n, respectivamente, con m\geq n.
    a) Demuestra que \dim(W_1\cap W_2)\leq n.
    b) Demuestra que \dim(W_1 + W_2)\leq m+n.
  • Encuentra la dimensión del subespacio de matrices en M_n(\mathbb{R}) que son simétricas.

Más adelante…

A partir de la definición de dimensión, más adelante construiremos la noción de rango, que nos permite decir “qué tanta información guarda una matriz”. La dimensión ayuda también a comprender cuándo hay cierto tipo de transformaciones lineales entre espacios vectoriales. Una aplicación más de la dimensión es que en muchos casos queremos probar afirmaciones para todos los espacios vectoriales de dimensión finita. Como la dimensión nos permite asociar a cada uno de estos un entero, muchas de estas demostraciones se pueden hacer por inducción.

Entradas relacionadas

Álgebra Lineal I: Introducción al curso, vectores y matrices

Introducción

Esta es la primer entrada correspondiente a las notas del curso Álgebra Lineal I. En esta serie de entradas, cubriremos todo el temario correspondiente al plan de estudios de la materia en la Facultad de Ciencias de la UNAM. Las notas están basadas fuertemente en el libro Essential Lineal Algebra with Applications de Titu Andreescu.

El curso se trata, muy a grandes rasgos, de definir espacios vectoriales y estudiar muchas de sus propiedades. Un espacio vectorial con el que tal vez estés familiarizado es \mathbb{R}^n, donde sus elementos son vectores con n entradas. En él se pueden hacer sumas entrada a entrada, por ejemplo, si n=3 una suma sería

    \begin{align*}(5,-1,2)+(1,4,9)=(6,3,11).\end{align*}

También se puede multiplicar un vector por un número real, haciéndolo entrada a entrada, por ejemplo,

    \begin{align*}3(1,5,-2,6)=(3,15,-6,18).\end{align*}

El álgebra lineal estudia espacios vectoriales más generales que simplemente \mathbb{R}^n. Como veremos más adelante, hay muchos objetos matemáticos en los que se puede definir una suma y un producto escalar. Algunos ejemplos son los polinomios, ciertas familias de funciones y sucesiones. La ventaja de estudiar estos espacios desde el punto de vista del álgebra lineal es que todas las propiedades que probemos “en general”, se valdran para todos y cada uno de estos ejemplos.

Lo que haremos en la primer unidad del curso es entender muy a profundidad a F^n, una generalización de \mathbb{R}^n en la que usamos un campo arbitrario F. También, entenderemos a las matrices en M_{m,n}(F), que son arreglos rectangulares con entradas en F. La unidad culmina con estudiar sistemas de ecuaciones lineales y el método de reducción Gaussiana.

Más adelante veremos que estudiar estos conceptos primero es muy buena idea pues los espacios vectoriales más generales tienen muchas de las propiedades de F^n, y podemos entender a ciertas transformaciones entre ellos al entender a M_{m,n}(F).

Breve comentario sobre campos

En este curso no nos enfocaremos en estudiar a profundidad las propiedades que tienen los campos como estructuras algebraicas. De manera pragmática, pensaremos que un campo F consiste de elementos que se pueden sumar y multiplicar bajo propiedades bonitas:

  • La suma y el producto son asociativas, conmutativas, tienen neutro (que llamaremos 0 y 1 respectivamente y tienen inversos (i.e. se vale “restar” y “dividir”)
  • La suma y producto satisfacen la regla distributiva

De hecho, de manera muy práctica, únicamente usaremos a los campos \mathbb{Q} de racionales, \mathbb{R} de reales, \mathbb{C} de complejos y \mathbb{F}_2, el campo de dos elementos 0 y 1. Este último sólo lo usaremos para observar que hay algunas sutilezas cuando usamos campos con una cantidad finita de elementos.

Para todos estos campos, supondremos que sabes cómo se suman y multiplican elementos. Si necesitas dar un repaso a estos temas, puedes echarle un ojo a las entradas del curso Álgebra Superior II, que también están aquí en el blog.

Nociones iniciales de álgebra lineal: escalares, vectores y matrices

Quizás te has encontrado con vectores y matrices en otros cursos. Por ejemplo, en geometría analítica es usual identificar a un vector (x,y) con un punto en el plano cartesiano, o bien con una “flecha” que va del origen a ese punto. En álgebra lineal nos olvidaremos de esta interpretación por mucho tiempo. Será hasta unidades posterioresque tocaremos el tema de geometría de espacios vectoriales. Por el momento, sólo nos importan los vectores desde el punto de vista algebraico.

Tomemos un campo F. A los elementos de F les llamaremos escalares. Para un entero positivo n, un vector X en F^n consiste de un arreglo de n entradas a_1,a_2,\ldots,a_n que pueden estar dispuestas en un vector fila

    \[X=(a_1, a_2,\ldots, a_n),\]

o bien un vector columna

    \[X=\begin{pmatrix}a_1 \\ a_2 \\ \vdots \\ a_n\end{pmatrix}.\]

Para i=1,\ldots,n, a a_i le llamamos la i-ésima coordenada o i-ésima entrada de X.

Como vectores, puedes pensar que el vector fila y el vector columna correspondientes son el mismo. Abajo veremos en qué sentido tenemos que pensarlos como diferentes. Aunque como vectores sean los mismos, los vectores columna tienen varias ventajas conceptuales en álgebra lineal.

Ejemplo. El vector

    \[X=\left(\frac{1}{2}, -1, \frac{2}{3}, 4\right).\]

tiene cuatro entradas, y todas ellas son números racionales. Por lo tanto, es un vector en \mathbb{Q}^4. Su primer entrada es \frac{1}{2}. Está escrito como vector fila, pero podríamos escribirlo también como vector columna:

    \[\begin{pmatrix} \frac{1}{2} \\ -1 \\ \frac{2}{3} \\ 4 \end{pmatrix}.\]

El vector

    \[Y=\left(\pi, \frac{3}{4}, 5, 6, \sqrt{2}\right)\]

es un vector fila en \mathbb{R}^5, pero no en \mathbb{Q}^5, pues no todas sus entradas son racionales. A Y también lo podemos pensar como un vector en \mathbb{C}.

\square

Una matriz en M_{m,n}(F) es un arreglo rectangular de elementos en F dispuestos en m filas y n columnas como sigue:

    \[A=\begin{pmatrix}a_{11} & a_{12} & a_{13} & \cdots & a_{1n}\\a_{21} & a_{22} & a_{23} & \cdots & a_{2n}\\$\vdots & & \ddots & \vdots \\a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn}\end{pmatrix}.\]

Al escalar a_{ij} le llamamos la entrada (i,j) de A.

Para cada i=1,\ldots,m, definimos a la i-ésima fila de A como el vector fila

    \[L_i=(a_{i1},a_{i2},\ldots,a_{in}),\]

y para cada j=1,2,\ldots,n definimos a la j-ésima columna de A como el vector columna

    \[C_j=\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj}\end{pmatrix}.\]

Veamos algunas aclaraciones de notación. Cuando m=n, las matrices en M_{m,n}(F) tienen la misma cantidad de filas que de columnas. En este caso simplemente usamos la notación M_{n}(F) para ahorrarnos una letra, y si una matriz está en M_{n}(F), le llamamos una matriz cuadrada. También, ocasiones expresamos a una matriz en forma compacta diciendo cuántas filas y columnas tiene y usando la notación A=[a_{ij}].

Ejemplo. Consideremos la matriz A en M_3(\mathbb{R}) dada por A=[a_{ij}]=[i+2j]. Si queremos poner a A de manera explícita, simplemente usamos la fórmula en cada una de sus entradas:

    \begin{align*}A=\begin{pmatrix}a_{11} & a_{12} & a_{13}\\a_{21} & a_{22} & a_{23}\\a_{31} & a_{32} & a_{33}\\\end{pmatrix}&=\begin{pmatrix}1+2\cdot 1 & 1+2\cdot 2 & 1+2\cdot 3\\2+2\cdot 1 & 2+2\cdot 2 & 2+2\cdot 3\\3+2\cdot 1 & 3+2\cdot 2 & 3+2\cdot 3\\\end{pmatrix}\\&=\begin{pmatrix}3 & 5 & 7\\4 & 6 & 8\\5 & 7 & 9\\\end{pmatrix}\end{align*}

Esta es una matriz cuadrada. Sin embargo, la matriz B en M_{3,2}(\mathbb{R}) con la misma regla B=[b_{ij}]=[i+2j] no es una matriz cuadrada pues es

    \begin{align*}B=\begin{pmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \\a_{31} & a_{32} \\\end{pmatrix}&=\begin{pmatrix}1+2\cdot 1 & 1+2\cdot 2\\2+2\cdot 1 & 2+2\cdot 2\\3+2\cdot 1 & 3+2\cdot 2\\\end{pmatrix}\\&=\begin{pmatrix}3 & 5 \\4 & 6 \\5 & 7 \\\end{pmatrix},\end{align*}

la cual es una matriz con 3 filas y 2 columnas.

\square

Cualquier vector fila en F^n lo podemos pensar como una matriz en M_{1n}(F) y cualquier vector columna en F^n lo podemos pensar como una matriz en M_{n1}(F). En este sentido estos dos vectores sí serían distintos. Usualmente será claro si se necesita o no hacer la distinción.

Para que dos vectores o dos matrices sean iguales, tienen que serlo coordenada a coordenada.

Vectores y matrices especiales

Al vector en F^n con todas sus entradas iguales al cero del campo F le llamamos el vector cero y lo denotamos con 0. El contexto nos ayuda a decidir si estamos hablando del escalar cero (el neutro aditivo del campo F) o del vector cero.

De manera similar, a la matriz en M_{m,n} con todas sus entradas iguales al cero del campo F le llamamos la matriz cero y la denotamos con O_{m,n}. Si m=n, la llamamos simplemente O_n.

Otra matriz especial que nos encontraremos frecuentemente es la matriz identidad. Para cada n, es la matriz I_n en M_n(F) tal que cada entrada de la forma a_{ii} es igual a uno (el neutro multiplicativo de F) y el resto de sus entradas son iguales a 0.

Cuando estamos trabajando en M_n(F), es decir, con matrices cuadradas, hay otras familias de matrices que nos encontraremos frecuentemente. Una matriz A=[a_{ij}] en M_{n}(F):

  • Es diagonal si cuando i\neq j, entonces a_{ij}=0.
  • Es triangular superior si cuando i>j, entonces a_{ij}=0.
  • Y es triangular inferior si cuando i<j entonces a_{ij}=0.

A las entradas de la forma a_{ii} se les conoce como las entradas de la diagonal principal de la matriz. En otras palabras, A es diagonal cuando sus únicas entradas no cero están en la diagonal principal. Es triangular superior cuando sus entradas por debajo de la diagonal principal son iguales a cero. Y de manera similar, es triangular inferior cuando sus entradas por encima de la diagonal principal son iguales a cero.

Ejemplo. La matriz O_{3,2} de M_{3,2}(\mathbb{Q}) es la siguiente

    \[O_{3,2}=\begin{pmatrix}0 & 0 \\ 0& 0 \\ 0 & 0 \\\end{pmatrix}\]

La matriz I_4 de M_{4}(F) es la siguiente

    \[I_4=\begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{pmatrix}.\]

Esta matriz identidad es diagonal, triangular superior y triangular inferior. Una matriz diagonal distinta a la identidad podría ser la siguiente matriz en M_3(\mathbb{Q}):

    \[\begin{pmatrix}1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \\\end{pmatrix}.\]

Una matriz que es triangular superior, pero que no es diagonal (ni triangular inferior), podría ser la siguiente matriz en M_4(\mathbb{R}):

    \[\begin{pmatrix}1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 0\\ 0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1\end{pmatrix}.\]

\square

Operaciones de vectores y matrices

Si tenemos dos matrices A=[a_{ij}] y B=[b_{ij}] en M_{m,n}(F), entonces podemos definir a la matriz suma A+B como la matriz cuyas entradas son [a_{ij}+b_{ij}], es decir, se realiza la suma (del campo F) entrada por entrada.

Ejemplo. Si queremos sumar a las matrices A y B en M_{4}(\mathbb{R}) dadas por

    \[A=\begin{pmatrix}1 & \sqrt{2} & 2 & \sqrt{5}\\ 0 & 1 & \sqrt{3} & 2\\  0& 0 & 1 & \sqrt{2}\\ 0 & 0 & 0 & 1\end{pmatrix}.\]

y

    \[B=\begin{pmatrix}1 & 1 & -1 & -3\\ 0 & 1 & 1 & -2\\ 0& 0 & 1 & 1\\ 0 & 0 & 0 & 1\end{pmatrix},\]

entonces hacemos la suma entrada por entrada para obtener:

    \[A+B=\begin{pmatrix}2 & 1+\sqrt{2} & 1 & -3+\sqrt{5}\\ 0 & 2 & 1+\sqrt{3} & 0\\ 0 & 0 & 2 & 1+\sqrt{2}\\ 0 & 0 & 0 & 2\end{pmatrix}.\]

\square

Es muy importante que las dos matrices tengan la misma cantidad de filas y renglones. Insistiendo: si no coinciden la cantidad de filas o de columnas, entonces las matrices no se pueden sumar.

Si tenemos una matriz A=[a_{ij}] en M_{m,n}(F) y un escalar c en F, podemos definir el producto escalar de A por c como la matriz cA=[ca_{ij}], es decir, aquella que se obtiene al multiplicar cada una de las entradas de A por el escalar c (usando la multiplicación del campo F).

Ejemplo. Al tomar la siguiente matriz en M_{2}(\mathbb{C})

    \[A=\begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}\]

y el escalar i en \mathbb{C}, se tiene que

    \[iA=\begin{pmatrix} i\cdot 1 &i\cdot i \\ i\cdot (-i) & i\cdot 1\end{pmatrix} = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}.\]

\square

Dada una matriz A, a la matriz (-1)A le llamamos simplemente -A, y definimos A-B:=A+(-B).

Como todo vector en F^n se puede pensar como una matriz, estas operaciones también se pueden definir para vectores para obtener la suma de vectores y la producto escalar en vectores.

En álgebra lineal frecuentemente hablaremos de escalares, vectores y matrices simultáneamente. Cada que veas una una variable es importante que te preguntes de cuál de estos tipos de objeto es. También, cada que veas una operación (por ejemplo, una suma), es importante preguntarte si es una suma de escalares, vectores o matrices.

Muchas de las buenas propiedades de las operaciones de suma y producto en el campo F también se cumplen para estas definiciones de suma y producto escalar de vectores y matrices.

Teorema. Sean A,B,C matrices en M_{m,n}(F) y \alpha,\beta,\gamma escalares en F. Entonces la suma de matrices:

  • Es asociativa: (A+B)+C = A+(B+C)
  • Es conmutativa: A+B=B+A
  • Tiene neutro: A+O_{m,n}=A=O_{m,n}+A
  • Tiene inversos: A+(-A)=O_{m,n}=(-A)+A

Además,

  • La suma de escalares y el producto escalar se distribuyen: (\alpha+\beta)A=\alpha A + \beta A
  • La suma de matrices y el producto escalar se distribuyen: \alpha(A+B)=\alpha A + \alpha B
  • El producto escalar es homogéneo: \alpha(\beta A) = (\alpha \beta) A
  • El 1 es neutral para el producto escalar: 1A = A

Un teorema análogo se vale al cambiar matrices por vectores. La demostración de este teorema se sigue directamente de las propiedades del campo F. La notación de entradas nos ayuda mucha a escribir una demostración sin tener que escribir demasiadas entradas una por una. Veamos, como ejemplo, la demostración de la primera propiedad.

Demostración. Tomemos matrices A=[a_{ij}], B=[b_{ij}] y C=[c_{ij}] en M_{m,n}(F). Para mostrar que

    \[(A+B)+C=A+(B+C),\]

tenemos que mostrar que la entrada (i,j) del lado izquierdo es igual a la entrada (i,j) del lado derecho para cada i=1,\ldots,m y j=1,\ldots,n.

Por definición de suma, A+B=[a_{ij}]+[b_{ij}]=[a_{ij}+b_{ij}]. Por ello, y de nuevo por definicón de suma,

    \[(A+B)+C=[(a_{ij}+b_{ij})+c_{ij}].\]

De manera similar,

    \[A+(B+C)=[a_{ij}+(b_{ij}+c_{ij})].\]

Pero en F la suma es asociativa, de modo que

    \[(a_{ij}+b_{ij})+c_{ij}=a_{ij}+(b_{ij}+c_{ij}).\]

Con esto hemos demostrado que (A+B)+C y A+(B+C) son iguales entrada a entrada, y por lo tanto son iguales como matrices.

\square

La receta para demostrar el resto de las propiedades es la misma:

  1. Usar la definición de suma o producto por escalares para saber cómo es la entrada (i,j) del lado izquierdo y del lado derecho.
  2. Usar las propiedades del campo F para concluir que las entradas son iguales.
  3. Concluir que las matrices son iguales.

Para practicar las definiciones y esta técnica, la demostración del resto de las propiedades queda como tarea moral. A partir de ahora usaremos todas estas propiedades frecuentemente, así que es importante que las tengas en cuenta.

Base canónica de vectores y matrices

Cuando estamos trabajando en F^n, al vector e_i tal que su i-ésima entrada es 1 y el resto son 0 lo llamamos el i-ésimo vector de la base canónica. Al conjunto de vectores \{e_1,\ldots,e_n\} le llamamos la base canónica de F^n.

De manera similar, cuando estamos trabajando en M_{m,n}(F), para cada i=1,\ldots,m y j=1,\ldots,n, la matriz E_{ij} tal que su entrada (i,j) es 1 y todas las otras entradas son cero se le conoce como la matriz (i,j) de la base canónica. Al conjunto de todas estas matrices E_{ij} le llamamos la base canónica de M_{m,n}(F).

Ejemplo. El vector e_2 de F^3 es (0,1,0). Ten cuidado, pues este es distinto al vector e_2 de F^5, que es (0,1,0,0,0).

La matriz E_{12} de M_{2,3}(\mathbb{R}) es

    \[\begin{pmatrix} 0 &  1 & 0\\ 0 & 0 & 0 \end{pmatrix}.\]

\square

Más adelante veremos el concepto de base en general, cuando hablemos de espacios vectoriales. Por el momento, la intuición para álgebra lineal es que una base es un conjunto que nos ayuda a generar elementos que nos interesan mediante sumas y productos escalares. Los siguientes resultados dan una intuición inicial de este fenómeno.

Teorema. Todo vector X en F^n se puede escribir de manera única de la forma

    \[X=x_1e_1+x_2e_2+\ldots+x_ne_n,\]

en donde x_1,\ldots,x_n son escalares en F y \{e_1,\ldots,e_n\} es la base canónica.

Demostración. Si X es un vector en F^n, entonces es de la forma X=(x_1,x_2,\ldots,x_n). Afirmamos que las coordenadas de X son los x_i buscados.

En efecto, tomemos una i=1,\ldots,n. Como e_i tiene 1 en la i-ésima entrada y 0 en el resto, entonces x_ie_i es el vector con x_i en la i-ésima entrada y 0 en el resto. De esta forma, sumando entrada a entrada, tenemos

    \begin{align*}x_1e_1+x_2e_2+\ldots+x_ne_n&=\begin{pmatrix} x_1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ x_2 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \begin{pmatrix} 0\\ 0 \\ 0 \\ \vdots \\ x_n \end{pmatrix}\\&=\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X.\end{align*}

Esto muestra la existencia.

Para demostrar la unicidad, un argumento análogo muestra que si tenemos otros escalares y_1,\ldots,y_n que cumplan, entonces:

    \[\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix}=X=y_1e_1+\ldots+y_ne_n=\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{pmatrix},\]

de modo que x_i=y_i para todo i=1,\ldots,n.

\square

Tenemos un resultado análogo para matrices.

Teorema. Toda matriz A en M_{m,n}(F) se puede escribir de manera única de la forma

    \[A=\sum_{i=1}^m \sum_{j=1}^n x_{ij} E_{ij},\]

en donde para i=1,\ldots,m y j=1,\ldots,n, se tiene que x_{ij} son escalares en F y E_{ij} son las matrices de la base canónica.

La demostración es muy similar a la del teorema anterior y como práctica queda como tarea moral.

Ejemplo. La matriz

    \[A=\begin{pmatrix} 2 & 0\\ 0 & -1 \\ 3 & 5 \end{pmatrix}\]

en M_{3,2}(\mathbb{C}) se expresa de manera única en términos de la base canónica como

    \[A=2E_{11}-1E_{22}+3E_{31}+5E_{32}.\]

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Explica por qué no puedes sumar la matriz I_5 con la matriz O_4
  • Muestra que la suma de dos matrices diagonales es diagonal. Haz lo mismo para matrices triangulares superiores y para matrices triangulares inferiores.
  • Termina de demostrar el teorema de propiedades de las operaciones de suma y producto escalar.
  • Explica por qué si una matriz es simultáneamente triangular superior y triangular inferior, entonces es diagonal.
  • Expresa a la siguiente matriz como combinación lineal de matrices de la base canónica:

        \[\begin{pmatrix}2 & \frac{1}{2} & 0 & 1\\3 & -3 & 3 & -3\\7 & -8 & -1 & 0\end{pmatrix}.\]

  • Demuestra el teorema de representación de matrices en términos de la base canónica.

Más adelante…

En esta entrada dimos una breve introducción al álgebra lineal. Ya definimos la suma y el producto escalar para vectores y matrices. En la siguiente entrada hablaremos de otro producto que sucede en álgebra lineal: la de una matriz en M_{m,n}(F) por un vector en F^n. Veremos que esta multiplicación nos permite pensar a una matriz A como una función \varphi_A:F^n\to F^m con ciertas propiedades especiales.

Entradas relacionadas

Álgebra Lineal I: Cambio de base de transformaciones lineales

Introducción

En la entrada anterior definimos las matrices de cambio de base. Vimos algunas de sus propiedades básicas y mostramos cómo nos pueden ayudar para resolver el primero de los siguientes dos problemas.

  • Supongamos que tenemos dos bases B_1 y B_2 de un espacio vectorial V y que tomamos un vector v en V. Si ya sabemos la combinación lineal de elementos de B_1 que da v, ¿cómo podemos saber la combinación lineal de elementos de B_2 que da v? En otras palabras, ¿cómo podemos pasar a v de su expresión en base B_1 a su expresión en base B_2?
  • Supongamos que tenemos una transformación lineal T:V\to W entre dos espacios vectoriales V y W, dos bases B_1 y B_2 de V y dos bases C_1 y C_2 de W. Si ya sabemos qué le hace T a los elementos de V en términos de las bases B_1 y C_1, ¿cómo podemos saber qué hace T en términos de las bases B_2 y C_2?

El objetivo de esta entrada es ver cómo con las matrices de cambio de base también podemos resolver el segundo problema. Después de hacer esto, hablaremos de una noción fundamental en álgebra lineal: la de matrices similares.

Matrices de cambio de base y transformaciones lineales

Las matrices de cambios de base nos ayudan a entender a las matrices de transformaciones lineales en bases diferentes.

Teorema. Sea T:V\to W una transformación lineal entre espacios de dimensión finita V y W. Sean B_1 y B_2 bases de V, y C_1 y C_2 bases de W. Entonces

    \[\Mat_{C_2,B_2}(T) = \Mat_{C_2}(C_1)\Mat_{C_1,B_1}(T)\Mat_{B_1}(B_2).\]

Observa cómo la elección de orden en la notación está rindiendo fruto. En el lado derecho “van apareciendo las bases” en el “orden natural” C_2, C_1, B_1, B_2.

Demostración. Sean P=\Mat_{C_1}(C_2) y Q=\Mat_{B_1}(B_2). Por un resultado de la entrada anterior, P es la matriz que representa a la transformación identidad en W con respecto a las bases C_1 y C_2, es decir, P=\Mat_{C_1,C_2}(\text{id}_W).

Por cómo son las matrices de composiciones de transformaciones lineales, y usando que \text{id}_W\circ T=T, tenemos que

    \[\Mat_{C_1,C_2}(\text{id}_W)\Mat_{C_2,B_2}(T)=\Mat_{C_1,B_2}(T).\]

De manera análoga, Q es la matriz que representa a la transformación identidad en V con respecto a las bases B_1 y B_2, de donde tenemos que

    \[\Mat_{C_1,B_1}(T)\Mat_{B_1,B_2}(\text{id}_V)=\Mat_{C_1,B_2}(T).\]

De esta forma,

    \[P\Mat_{C_2,B_2}(T) = \Mat_{C_1,B_2}(T) = \Mat_{C_1,B_1}(T) Q.\]

El resultado se obtiene multiplicando por la izquierda ambos lados de esta ecuación por P^{-1}=\Mat_{C_2}(C_1).

\square

En la siguiente entrada se verán varios ejemplos que involucran crear matrices para transformaciones lineales, matrices de cambios de base y multiplicarlas para entender una transformación lineal en distintas bases.

Por el momento, dejamos únicamente un corolario del teorema anterior, para el caso en el que tenemos una transformación lineal de un espacio vectorial a sí mismo expresado en términos de dos bases.

Corolario. Sea T:V\to V una transformación lineal de un espacio vectorial V de dimensión finita a sí mismo. Sean B y B' bases de V y P la matriz de cambio de base de B a B'. Entonces

    \[\Mat_{B'}(T)=P^{-1}\Mat_{B}(T)P.\]

Matrices similares

Definición. Decimos que dos matrices A y B en M_{n}(F) son similares o conjugadas si existe una matriz invertible P en M_n(F) tal que B=P^{-1}AP.

En otras palabras, A y B son matrices similares si representan a una misma transformación lineal en diferentes bases.

Proposición. La relación “ser similares” es una relación de equivalencia en M_n(F).

Demostración. Toda matriz es similar a sí misma usando P=I_n, la identidad. Si A y B son similares con matriz invertible P, entonces B y A son similares con matriz invertible P^{-1}. Si A y B son similares con matriz invertible P y B y C son similares con matriz invertible Q, notemos que A=P^{-1}BP=P^{-1}(Q^{-1}CQ)P=(QP)^{-1}C(QP), de modo que A y C son similares con matriz invertible QP.

\square

¿Por qué es importante saber si dos matrices son similares? Resulta que dos matrices similares comparten muchas propiedades, como su traza, su determinante, su rango, etc. Para algunas matrices es más sencillo calcular estas propiedades. Así que una buena estrategia en álgebra lineal es tomar una matriz A “complicada” y de ahí encontrar una matriz similar B “más simple”, y usar B para encontrar propiedades de A.

Veamos un ejemplo de esto. Mediante un sencillo argumento inductivo se puede mostrar lo siguiente.

Proposición. Si A y B son matrices similares con A=P^{-1}BP, entonces A^n=P^{-1}B^nP.

Si B fuera una matriz diagonal, entonces es fácil encontrar B^n: basta con elevar cada una de las entradas de su diagonal a la n (lo cual es mucho más fácil que hacer productos de matrices). Así, esto da una forma muy fácil de encontrar A^n: basta con encontrar B^n, y luego hacer dos multiplicaciones de matrices más, por P^{-1} a la izquierda y por P a la derecha.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Deduce el corolario del teorema principal de esta entrada.
  • Considera \mathbb{R}[x]_2 de polinomios con coeficientes reales y grado a lo más dos. Sea T: \mathbb{R}[x]_2 la transformación tal qur T(p)=p', el polinomio derivado. Encuentra la matriz que representa a la transformación en la base \{1+x+x^2,1+2x,1\} y la matriz que representa a la transformación en la base \{1,x,x^2\}. Encuentra también la matriz de cambio de base de la primera a la segunda. Verifica que se cumple la conclusión del corolario.
  • Sean A y B matrices similares. Muestra que A es invertible si y sólo si B lo es.
  • Sean A y B matrices similares. Muestra que A y B tienen la misma traza.
  • Completa el argumento inductivo para demostrar la última proposición.
  • Considera la matriz con entradas complejas A=\begin{pmatrix}1 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -1 \end{pmatrix}. Encuentra A^{105}.

Más adelante…

En estas últimas dos entradas aprendimos a hacer “cambios de base”, tanto para coordenadas, como para formas matriciales. También, introdujimos el concepto de similitud de matrices. Cuando A es una matriz similar a una matriz diagonal, decimos que A es diagonalizable. Que una matriz sea diagonalizable trae muchas ventajas. Como ya mencionamos, una de ellas es poder elevar la matriz a potencias de manera sencilla. Otra ventaja es que en las matrices diagonalizables es sencillo calcular rangos, determinantes y otras invariantes de álgebra lineal.

Una parte importante de lo que resta del curso consistirá en entender por qué las matrices simétricas con entradas reales son diagonalizables. El teorema principal del curso (el teorema espectral), consistirá en mostrar que toda matriz simétrica con entradas reales es diagonalizable mediante matrices ortogonales. Para poder demostrarlo, necesitaremos primero estudiar teoría geométrica de espacios vectoriales y teoría de determinantes.

Entradas relacionadas

Álgebra Lineal I: Matrices de cambio de base

Introducción

Anteriormente platicamos de cómo al elegir una base ordenada B de un espacio vectorial V de dimensión finita n, podemos expresar a cada uno de sus vectores en términos de “coordenadas”, que vienen de los coeficientes de la combinación lineal de elementos de B que da el vector. Así mismo, vimos cómo podemos comenzar con una transformación lineal T:V\to W entre espacios vectoriales V y W y de ahí obtener una “matriz que la represente”. Para ello, necesitamos elegir bases ordenadas B_V y B_W de V y W respectivamente. Tanto las coordenadas, como las matrices que representan a transformaciones lineales, dependen fuertemente de las bases ordenadas elegidas. En esta entrada hablaremos de las matrices de cambio de base, pues nos ayudarán a pasar de unas coordenadas a otras.

Siento más concretos, es posible que en algunas aplicaciones de álgebra lineal tengamos una transformación T:V\to W, y que los vectores de V o los de W los tengamos que entender en más de una base. Así, los dos siguientes problemas aparecen frecuentemente:

  • Supongamos que tenemos dos bases (ordenadas) B_1 y B_2 de un espacio vectorial V y que tomamos un vector v en V. Si ya sabemos la combinación lineal de elementos de B_1 que da v, ¿cómo podemos saber la combinación lineal de elementos de B_2 que da v? En otras palabras, ¿cómo podemos pasar a v de su expresión en base B_1 a su expresión en base B_2?
  • Supongamos que tenemos una transformación lineal T:V\to W entre dos espacios vectoriales V y W, dos bases (ordenadas) B_1 y B_2 de V y dos bases (ordenadas) C_1 y C_2 de W. Si ya sabemos qué le hace T a los elementos de V en términos de las bases B_1 y C_1, ¿cómo podemos saber qué hace T en términos de las bases B_2 y C_2?

La herramienta que necesitamos para responder ambos problemas se le conoce como matrices de cambio de base. El objetivo de esta entrada es definir estas matrices, ver algunas propiedades básicas que cumplen y ver cómo nos ayudan a resolver el primero de los problemas de aquí arriba. En una segunda entrada veremos cómo también sirven para resolver el segundo.

Matrices de cambio de base

Definición. Sea V un espacio vectorial de dimensión n sobre el campo F. Sean B=(v_1,\ldots,v_n) y B'=(v_1', \ldots, v_n') dos bases ordenadas de V. La matriz de cambio de base de B a B' es la matriz P=[p_{ij}] en M_{n}(F) cuya columna j tiene como entradas a las coordenadas de v_j' escrito en términos de la base B. En otras palabras, las entradas p_{1j},\ldots,p_{nj} de la j-ésima columna de P son los únicos elementos de F para los cuales

    \[v_j'=p_{1j}v_1+\ldots +p_{nj} v_n,\]

para toda j=1,2,\ldots,n.

Ejemplo. Considera la base ordenada B=(1,x,x^2) de \mathbb{R}_2[x], el espacio vectorial de polinomios de coeficientes reales grado a lo más 2. Veremos que B'=(3x^2,2x,1) es también una base de \mathbb{R}_2[x]. Encontraremos la matriz de cambio de base de B a B' y la matriz de cambio de base de B' a B.

La dimensión de \mathbb{R}_2[x] es 3 y B' tiene 3 elementos, así que basta ver que los elementos de B' son linealmente independientes para ver que B' es base. Una combinación lineal a(3x^2)+b(2x)+c(1)=0 es equivalente a que 3ax^2+2bx+c=0, lo cual sucede si y sólo si a=b=c=0. Esto muestra que B' es base.

Para encontrar a la matriz de cambio de base de B a B' lo que tenemos que hacer es escribir a los elementos de B' como combinación lineal de los elementos de B. Esto lo hacemos de la siguiente manera (recuerda que el orden es importante):

    \begin{align*}3x^2 &= 0 \cdot 1 + 0 \cdot x + 3 \cdot x^2\\2x &= 0\cdot 1+ 2\cdot x + 0 \cdot x^2\\1 & = 1\cdot 1 + 0 \cdot x + 0 \cdot x^2.\end{align*}

Como los coeficientes de 3x^2 en la base ordenada B son 0, 0 y 3, entonces la primer columna de la matriz de cambio de base será \begin{pmatrix} 0 \\ 0 \\ 3\end{pmatrix}. Argumentando de manera similar para 2x y 1, tenemos que la matriz de cambio de base de B a B' es

    \[\begin{pmatrix}0 & 0 & 1\\0 & 2 & 0 \\3 & 0 & 0\end{pmatrix}.\]

Para encontrar a la matriz de cambio de base de B' a B, expresamos a los elementos de B en términos de la base B' como sigue:

    \begin{align*}1 &= 0 \cdot (3x^2) + 0 \cdot (2x) + 1 \cdot 1\\x &= 0\cdot (3x^2)+ \frac{1}{2} \cdot (2x) + 0 \cdot 1\\x^2 & = \frac{1}{3} \cdot (3x^2) + 0 \cdot (2x) + 0 \cdot 1.\end{align*}

En este caso fue sencillo hacerlo, pero en otros problemas frecuentemente esto se hace resolviendo un sistema de ecuaciones.

De esta manera, tenemos que la matriz de cambio de base de B' a B es

    \[\begin{pmatrix}0 & 0 & \frac{1}{3}\\0 & \frac{1}{2} & 0 \\1 & 0 & 0\end{pmatrix}.\]

\square

Cambio de coordenadas usando matrices de cambio de base

Las matrices de cambio de base nos ayudan a responder la primer pregunta que planteamos al inicio de esta entrada. Si conocemos las coordenadas de un vector en una base, podemos usar la matriz de cambio de base para encontrar las coordenadas del vector en otra base.

Proposición. Sea V un espacio vectorial de dimensión n, B=(v_1,\ldots,v_n), B'=(v_1',\ldots,v_n') bases ordenadas de V y P la matriz de cambio de base de B a B'. Supongamos que el vector v de V se escribe en base B como

    \[v=c_1v_1+c_2v_2+\ldots+c_nv_n\]

y en base B' como

    \[v=c_1'v_1'+c_2'v_2'+\ldots+c_n'v_n'.\]

Entonces:

    \[P \begin{pmatrix}c_1' \\\vdots \\c_n'\end{pmatrix}=\begin{pmatrix}c_1 \\\vdots \\c_n\end{pmatrix} .\]

En otras palabras, la matriz P de cambio de base de B a B' manda las coordenadas de un vector en base B' a coordenadas en base B al multiplicar por la izquierda. Ojo: para construir P expresamos a B' en términos de B, pero lo que hace P es expresar a alguien de coordenadas en B' a coordenadas en B.

Demostración. El vector de coordenadas de v_j' escrito en base B' es el vector canónico e_j de F^n. Además, Pe_j es la j-ésima columna de P, que por construcción es el vector de coordenadas de v_j' en la base B. Así, el resultado es cierto para los vectores v_j' de la base B'. Para cualquier otro vector v, basta expresarlo en términos de la base B' y usar la linealidad de asignar el vector de coordenadas y la linealidad de P.

\square

Problema. Escribe a los vectores v_1=(4,3,5,2), v_2=(2,2,2,2) y v_3(0,0,0,1) de \mathbb{R}^4 como combinación lineal de los elementos de la base B de \mathbb{R}^4 conformada por los vectores (1,0,0,0), (1,1,0,0), (1,1,1,0) y (1,1,1,1).

Solución. Conocemos las coordenadas de v_1,v_2,v_3 en la base canónica (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1). De hecho, el vector de coordenadas de v_1 es exactamente v_1 (esto es algo que sucede pues estamos trabajando en \mathbb{R}^4). Lo que nos estan pidiendo son las coordenadas de v_1,v_2,v_3 en la base B. Nos gustaría usar la proposición anterior. Para ello, necesitamos encontrar la matriz de cambio de base de B a la base canónica. Escribamos entonces a la base canónica en términos de los vectores de B:

    \begin{align*}(1,0,0,0)&=1\cdot (1,0,0,0)+0\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\(0,1,0,0)&= -1\cdot (1,0,0,0)+1\cdot (1,1,0,0)+0\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\(0,0,1,0)&= 0\cdot (1,0,0,0)-1\cdot (1,1,0,0)+1\cdot (1,1,1,0)+0\cdot (1,1,1,1)\\(0,0,0,1)&= 0\cdot (1,0,0,0)+0\cdot (1,1,0,0)-1\cdot (1,1,1,0)+1\cdot (1,1,1,1)\\\end{align*}

A estas coordenadas las ponemos como columnas para encontrar la matriz de cambio de base de B a la base canónica:

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix}.\]

Para encontrar las coordenadas de v_1, v_2, v_3 en términos de la base B, basta con multiplicar esta matriz a la izquierda para cada uno de ellos:

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix} \begin{pmatrix}4 \\3 \\ 5 \\ 2\end{pmatrix} =  \begin{pmatrix}1 \\-2 \\ 3\\ 2\end{pmatrix},\]

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix} \begin{pmatrix}2 \\2 \\ 2 \\ 2\end{pmatrix} = \begin{pmatrix}0 \\0 \\ 0\\ 2\end{pmatrix}\]

y

    \[\begin{pmatrix}1 & -1 & 0 & 0\\0 & 1 & -1 & 0\\ 0 & 0 & 1 & -1\\ 0 & 0 & 0 & 1\end{pmatrix} \begin{pmatrix}0 \\0 \\ 0 \\ 1\end{pmatrix} = \begin{pmatrix}0 \\0 \\ -1\\ 1\end{pmatrix}.\]

En efecto, se puede verificar que estos nuevos vectores dan las combinaciones lineales de la base B que hacen a v_1, v_2 y v_3, por ejemplo, para v_1 tenemos:

    \[(4,5,3,2)=(1,0,0,0)-2(1,1,0,0)+3(1,1,1,0)+2(1,1,1,1).\]

\square

Matrices de cambio de base como la forma matricial de una transformación lineal

A la matriz de cambio de base de B a B' la denotamos por \text{Mat}_B(B').

Una observación crucial es que podemos pensar a las matrices de cambio de base en un espacio vectorial V justo como formas matriciales correspondientes a una transformación lineal específica. De hecho, la transformación lineal que le corresponde es muy bonita: es la identidad \text{id}_V que manda a cada vector de V a sí mismo.

De manera más concreta, si B y B' son bases de V y \text{Mat}_B(B') es la matriz de cambio de base de B a B', entonces

    \[\text{Mat}_B(B')=\text{Mat}_{B,B'}(\text{id}_V).\]

A estas alturas tienes todas las herramientas necesarias para demostrar esto.

¿Qué sucede si ahora tenemos tres bases B, B' y B'' de V y componemos a la identidad consigo misma? Utilizando los argumentos de la entrada anterior, la matriz correspondiente a la composición es el producto de las matrices de cada transformación. Juntando esto con la observación anterior, tenemos la siguiente propiedad para matrices de cambio de base:

    \[\text{Mat}_B(B'')=\text{Mat}_{B}(B')\cdot \text{Mat}_{B'}(B'').\]

Finalmente, ¿qué sucede si en la igualdad anterior ponemos B''=B? Al lado izquierdo tenemos la matriz de cambio de base de B a sí misma, que puedes verificar que es la identidad. Al lado derecho tenemos al producto de la matriz de cambio de base de B a B' con la matriz de cambio de B' a B. Esto muestra que las matrices de cambio de base son invertibles.

Resumimos todas estas observaciones en la siguiente proposición:

Proposición. Sean B, B' y B'' bases del espacio vectorial de dimensión finita V.

  • La matriz de cambio de base de B a B' corresponde a la matriz de la transformación identidad de V a V, en donde el primer V lo pensamos con la base B' y al segundo con la base B.
  • El producto de matrices de cambio de base de B a B' y de B' a B'' es la matriz de cambio de base de B a B''.
  • La matriz de cambio de base de B a B' es invertible, y su inversa es la de cambio de base de B' a B.

En la próxima entrada veremos cómo las matrices de cambio de base también nos ayudan a entender transformaciones lineales bajo distintas bases.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • ¿Qué sucede en el primer ejemplo si multiplicas ambas matrices de cambio de base que encontramos?
  • En el segundo ejemplo, encuentra la matriz de cambio de base de la base canónica a la matriz B
  • Considera las cuatro matrices de 2\times 2 que puedes formar colocando tres unos y un cero. Muestra que estas cuatro matrices forman una base B de M_{2,2}(\mathbb{R}). Determina la matriz de cambio de base de B a la base canónica de M_{2,2}(\mathbb{R}). Ojo: Una cosa son los elementos del espacio vectorial y otra cosa van a ser las matrices de cambio de base. Como M_{2,2}(\mathbb{R}) es de dimensión 4, la matriz de cambio de base que tienes que determinar en realidad es de 4\times 4.
  • Da una demostración de que, en efecto

        \[\text{Mat}_B(B')=\text{Mat}_{B,B'}(\text{id}_V).\]

  • Verifica que la matriz de cambio de base B a sí misma es la identidad.

Más adelante…

En esta entrada ya vimos cómo cambian las coordenadas de un vector cuando cambiamos de base. Lo que haremos en la siguiente entrada es estudiar cómo cambia la forma matricial de una transformación lineal cuando cambiamos las bases de su espacio vectorial origen y su espacio vectorial destino.

Entradas relacionadas