Archivo de la etiqueta: matrices similares

Álgebra Lineal I: Propiedades del polinomio característico

Introducción

En esta entrada continuamos con el estudio de eigenvalores y eigenvectores de matrices y trasformaciones lineales. Para ello, estudiaremos más a profundidad el polinomio característico.

Como recordatorio, en una entrada pasada demostramos que si A es una matriz en M_n(F), entonces la expresión \det (\lambda I_n - A) es un polinomio en \lambda de grado n con coeficientes en F. A partir de ello, definimos el polinomio característico de A como

    \[\chi_A(\lambda)=\det(\lambda I_n - A).\]

En esta entrada probaremos algunas propiedades importantes del polinomio característico de matrices. Además, hablaremos de la multiplicidad algebraica de los eigenvalores. Finalmente enunciaremos sin demostración dos teoremas fundamentales en álgebra lineal: el teorema de caracterización de matrices diagonalizables y el teorema de Cayley-Hamilton.

Las raíces del polinomio característico son los eigenvalores

Ya vimos que las raíces del polinomio característico son los eigenvalores. Pero hay que tener cuidado. Deben ser las raíces que estén en el campo en el cual la matriz esté definida. Veamos un ejemplo más.

Problema. Encuentra el polinomio característico y los eigenvalores de la matriz

    \begin{align*}\begin{pmatrix}0&1&0&0\\2&0&-1&0\\0& 7 & 0 & 6\\0 & 0 & 3 & 0\end{pmatrix}.\end{align*}

Solución. Debemos encontrar las raíces del polinomio dado por el siguiente determinante:

    \begin{align*}\begin{vmatrix}\lambda&-1&0&0\\-2&\lambda&1&0\\0& -7 & \lambda & -6\\0 & 0 & -3 & \lambda\end{vmatrix}.\end{align*}

Haciendo expansión de Laplace en la primer columna, tenemos que este determinante es igual a

    \begin{align*}\lambda\begin{vmatrix}\lambda&1&0\\ -7 & \lambda & -6\\ 0 & -3 & \lambda\end{vmatrix}+2\begin{vmatrix}-1&0&0\\-7 & \lambda & -6\\0 & -3 & \lambda\end{vmatrix}.\end{align*}

Para calcular los determinantes de cada una de las matrices de 3\times 3 podemos aplicar la fórmula por diagonales para obtener:

    \begin{align*}\lambda\begin{vmatrix}\lambda&1&0\\-7 & \lambda & -6\\0 & -3 & \lambda\end{vmatrix}&=\lambda(\lambda^3-18\lambda+7\lambda)\\&=\lambda(\lambda^3-11\lambda)\\&=\lambda^4-11\lambda^2\end{align*}

y

    \begin{align*}2\begin{vmatrix}-1&0&0\\-7 & \lambda & -6\\0 & -3 & \lambda\end{vmatrix}&=2(-\lambda^2+18)\\&=-2\lambda^2+36.\end{align*}

Concluimos que el polinomio característico es

    \begin{align*}\lambda^4-13\lambda^2+36&=(\lambda^2-4)(\lambda^2-9)\\&=(\lambda+2)(\lambda-2)(\lambda+3)(\lambda-3).\end{align*}

De esta factorización, las raíces del polinomio (y por lo tanto los eigenvalores que buscamos) son -2,2,-3,3.

Si quisiéramos encontrar un eigenvector para, por ejemplo, el eigenvalor -2, tenemos que encontrar una solución no trivial al sistema lineal de ecuaciones homogéneo

    \[(-2I_n-A)X=0.\]

\square

Propiedades del polinomio característico

Veamos ahora algunas propiedades importantes del polinomio característico. El primer resultado habla del polinomio característico de matrices triangulares superiores. Un resultado análogo se cumple para matrices inferiores, y su enunciado y demostración quedan como tarea moral.

Proposición. Si A=[a_{ij}] es una matriz triangular superior en M_n(F), entonces su polinomio característico es

    \[\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).\]

Demostración. Como A es triangular superior, entonces \lambda I_n -A también, y sus entradas diagonales son precisamente \lambda-a_{ii} para i=1,\ldots,n. Como el determinante de una matriz diagonal es el producto de sus entradas en la diagonal, tenemos que

    \[\chi_A(\lambda)=\prod_{i=1}^n (\lambda-a_{ii}).\]

\square

Como el polinomio característico es un determinante, podemos aprovechar otras propiedades de determinantes para obtener otros resultados.

Proposición. Una matriz y su transpuesta tienen el mismo polinomio característico.

Demostración. Sea A una matriz en M_n(F). Una matriz y su transpuesta tienen el mismo determinante. Además, transponer es una transformación lineal. De este modo:

    \begin{align*}\chi_A(\lambda)&=\det(\lambda I_n - A)\\&=\det({^t(\lambda I_n-A)})\\&=\det(\lambda({^tI_n})-{^tA})\\&=\det(\lambda I_n - {^tA})\\&=\chi_{^tA}(\lambda).\end{align*}

\square

Ya antes habíamos mostrado que matrices similares tienen los mismos eigenvalores, pero que dos polinomios tengan las mismas raíces no necesariamente implica que sean iguales. Por ejemplo, los polinomios

    \[(x-1)^2(x+1) \quad \text{y} \quad (x+1)^2(x-1)\]

tienen las mismas raíces, pero no son iguales.

De esta forma, el siguiente resultado es más fuerte de lo que ya habíamos demostrado antes.

Proposición. Sean A y P matrices en M_n(F) con P invertible. Entonces A y P^{-1}AP tienen el mismo polinomio característico.

Demostración. El resultado se sigue de la siguiente cadena de igualdades, en donde usamos que \det(P)\det(P^{-1})=1 y que el determinante es multiplicativo:

    \begin{align*}\chi_{P^{-1}AP}(\lambda) &= \det(P) \chi_{P^{-1}AP}(\lambda) \det(P)^{-1}\\&=\det(P) \det(\lambda I_n - P^{-1}AP) \det(P^{-1})\\&=\det(P(\lambda I_n - P^{-1}AP)P^{-1})\\&=\det(\lambda PP^{-1}-PP^{-1}APP^{-1})\\&=\det(\lambda I_n - A)\\&=\chi_{A}(\lambda)\end{align*}

\square

Ten cuidado. El determinante es multiplicativo, pero el polinomio característico no es multiplicativo. Esto es evidente por el siguiente argumento. Si A y B son matrices en M_n(F), entonces \chi_A(\lambda) y \chi_B(\lambda) son cada uno polinomios de grado n, así que su producto es un polinomio de grado 2n, que por lo tanto no puede ser igual al polinomio característico \chi_{AB}(\lambda) pues este es de grado n. Así mismo, \chi_{A^2}(\lambda) no es \chi_{A}(\lambda)^2.

Una última propiedad que nos interesa es mostrar que el determinante de una matriz y su traza aparecen en los coeficientes del polinomio característico.

Teorema. Sea A una matriz en M_n(F) y \chi_A(\lambda) su polinomio característico. Entonces \chi_{A}(\lambda) es de la forma

    \[\lambda^n-(\text{tr} A) \lambda^{n-1}+\ldots+(-1)^n \det A.\]

Demostración. Tenemos que mostrar tres cosas:

  • El polinomio \chi_{A} es mónico, es decir, tiene coeficiente principal 1,
  • que el coeficiente del término de grado n-1 es \text{tr} A y
  • el coeficiente libre es (-1)^n \det A.

El coeficiente libre de un polinomio es su evaluación en cero. Usando la homogeneidad del determinante, dicho coeficiente es:

    \begin{align*}\chi_A(0)&=\det(0\cdot I_n-A)\\&=\det(-A)\\&=(-1)^n\det(A).\end{align*}

Esto muestra el tercer punto.

Para el coeficiente del término de grado n-1 y el coeficiente principal analicemos con más detalle la fórmula del determinante

    \begin{align*}\begin{vmatrix}\lambda - a_{11} & -a_{12} & \ldots & -a_{1n}\\-a_{21} & \lambda - a_{22} & \ldots & -a_{1n}\\\vdots & & \ddots & \\-a_{n1} & -a_{n2} & \ldots & \lambda - a_{nn}\end{vmatrix}\end{align*}


en términos de permutaciones.

Como discutimos anteriormente, la única forma de obtener un término de grado n es cuando elegimos a la permutación identidad. Pero esto también es cierto para términos de grado n-1, pues si no elegimos a la identidad, entonces la permutación elige por lo menos dos entradas fuera de la diagonal, y entonces el grado del producto de entradas correspondiente es a lo más n-2.

De este modo, los únicos términos de grado n y n-1 vienen del producto

    \[(\lambda-a_{11})\cdot\ldots\cdot(\lambda-a_{nn}).\]

El único término de grado n viene de elegir \lambda en todos los factores, y se obtiene el sumando \lambda^n, lo cual muestra que el polinomio es mónico.

Los únicos términos de grado n-1 se obtienen de elegir \lambda en n-1 factores y un término del estilo -a_{ii}. Al considerar todas las opciones, el término de grado n-1 es

    \[-(a_{11}+a_{22}+\ldots+a_{nn})\lambda^{n-1}=-(\text{tr} A) \lambda^{n-1},\]

que era lo último que debíamos mostrar.

\square

Ejemplo. El teorema anterior muestra que si A es una matriz en M_2(F), es decir, de 2\times 2, entonces

    \[\chi_A(\lambda)=\lambda^2 - (\text{tr}A) \lambda +\det A.\]

De manera explícita en términos de las entradas tendríamos entonces que si A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}, entonces su polinomio característico es

    \[\lambda^2-(a+d)\lambda+(ad-bc).\]

Como ejemplo, si A=\begin{pmatrix} 5 & 2 \\ -8 & -3 \end{pmatrix}, entonces su polinomio característico es

    \[\lambda^2 -2\lambda +1=(\lambda-1)^2.\]

Su único eigenvalor sería entonces 1.

\square

Suma y producto de eigenvalores de matrices complejas

A veces queremos referirnos al conjunto de todos los eigenvalores de una matriz.

Definición. Para A una matriz en M_n(F), el espectro de A es el conjunto de eigenvalores de A. Lo denotamos por \text{spec} (A)

Tenemos una definición análoga para el espectro de una transformación lineal. Esa definición da un poco de intuición de por qué los teoremas de diagonalización de matrices se llaman teoremas espectrales. La siguiente definición habla de un sentido en el cual un eigenvalor «se repite».

Definición. Sea A una matriz en M_n(F) y \lambda un eigenvalor de A. La multiplicidad algebraica de \lambda es el mayor entero m_{\lambda} tal que (x-\lambda)^{m_\lambda} divide a \chi_A(x).

Cuando estamos en \mathbb{C}, por el teorema fundamental del álgebra todo polinomio de grado n se puede factorizar en exactamente n términos lineales. Además, los polinomios característicos son mónicos. De este modo, si tenemos una matriz A en M_n(\mathbb{C}), su polinomio característico se puede factorizar como sigue:

    \[\chi_A(\lambda) = \prod_{j=1}^n (\lambda-\lambda_j),\]

en donde \lambda_1,\ldots,\lambda_n son eigenvalores de A, no necesariamente distintos, pero en donde cada eigenvalor aparece en tantos términos como su multiplicidad algebraica.

Desarrollando parcialmente el producto del lado derecho, tenemos que el coeficiente de \lambda^{n-1} es

    \[-(\lambda_1+\ldots+\lambda_n)\]

y que el coeficiente libre es

    \[(-1)^n\lambda_1\cdot\ldots\cdot\lambda_n.\]

Combinando este resultado con el de la sección anterior y agrupando eigenvalores por multiplicidad, se demuestra el siguiente resultado importante. Los detalles de la demostración quedan como tarea moral.

Teorema. Sea A una matriz en M_n(\mathbb{C})

  • La traza A es igual a la suma de los eigenvalores, contando multiplicidades algebraicas, es decir:

        \[\text{tr} A = \sum_{\lambda \in \text{spec}(A)} m_{\lambda} \lambda.\]

  • El determinante de A es igual al producto de los eigenvalores, contando multiplicidades algebraicas, es decir:

        \[\det A = \prod_{\lambda \in \text{spec} (A)} \lambda^{m_{\lambda}}.\]

Veamos un problema en donde se usa este teorema.

Problema. Sea A una matriz en M_n(\mathbb{C}) tal que A^2-4A+3I_n=0. Muestra que el determinante de A es una potencia de 3.

Solución. Sea \lambda un eigenvalor de A y v un eigenvector para \lambda. Tenemos que

    \[A^2v=A(\lambda v) = \lambda(Av)=\lambda^2 v.\]

De esta forma, tendríamos que

    \begin{align*}0&=(A^2-4A+3I_n)v\\&=(\lambda^2 v - 4\lambda v + 3 v)\\&=(\lambda^2-4\lambda+3) v.\end{align*}

Como v no es el vector 0, debe suceder que \lambda^2-4\lambda+3=0. Como \lambda^2-4\lambda+3 = (\lambda-3)(\lambda-1), entonces \lambda=1 ó \lambda=3. Con esto concluimos que los únicos posibles eigenvectores de A son 1 y 3.

Como A es una matriz en \mathbb{C}, tenemos entonces que su polinomio característico es de la forma (x-1)^a(x-3)^b con a y b enteros no negativos tales que a+b=n. Pero entonces por el teorema de producto de eigenvalores, tenemos que el determinante es 1^a\cdot 3^b=3^b, con lo que queda demostrado que es una potencia de 3.

\square

Dos teoremas fundamentales de álgebra lineal (opcional)

Tenemos todo lo necesario para enunciar dos resultados de álgebra lineal. Sin embargo, las demostraciones de estos resultados requieren de más teoría, y se ven en un siguiente curso. No los demostraremos ni los usaremos en el resto de este curso, pero te pueden servir para anticipar el tipo de resultados que verás al continuar tu formación en álgebra lineal.

El primer resultado fundamental es una caracterización de las matrices que pueden diagonalizarse. Para ello necesitamos una definición adicional. Hay otro sentido en el cual un eigenvalor \lambda de una matriz A puede repetirse.

Definición. Sea A una matriz en M_n(F) y \lambda un eigenvalor de A. La multiplicidad geométrica de \lambda es la dimensión del kernel de la matriz \lambda I_n -A pensada como transformación lineal.

En estos términos, el primer teorema al que nos referimos queda enunciado como sigue.

Teorema. Una matriz A en M_n(F) es diagonalizable si y sólo si su polinomio característico \chi_A(\lambda) se puede factorizar en términos lineales en F[\lambda] y además, para cada eigenvalor, su multiplicidad algebraica es igual a su multiplicidad geométrica.

Ejemplo. La matriz

    \[A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\]

tiene como polinomio característico a \chi_A(\lambda)=\lambda^2+1. Este polinomio no se puede factorizar en \mathbb{R}[x], así que A no es diagonalizable con matrices de entradas reales.

Sin embargo, en \mathbb{C} tenemos la factorización en términos lineales \lambda^2+1=(\lambda+i)(\lambda-i), que dice que i y -i son eigenvalores de multiplicidad algebraica 1. Se puede mostrar que la multiplicidad geométrica también es 1. Así, A sí es diagonalizable con matrices de entradas complejas.

\square

El segundo resultado fundamental dice que «cualquier matriz se anula en su polinomio característico». Para definir correctamente esto, tenemos que decir qué quiere decir evaluar un polinomio en una matriz. La definición es más o menos natural.

Definición. Si A es una matriz en M_n(F) y p es un polinomio en F[\lambda] de la forma

    \[p(\lambda)=a_0+a_1\lambda+a_2\lambda^2+\ldots+a_n\lambda^n,\]

definimos a la matriz p(A) como la matriz

    \[a_0I_n+a_1A+a_2A^2+\ldots+a_nA^n.\]

En estos términos, el resultado queda enunciado como sigue.

Teorema (Cayley-Hamilton). Si A es una matriz en M_n(F) y \chi_A(x) es su polinomio característico, entonces

    \[\chi_A(A)=O_n.\]

Ejemplo. Tomemos de nuevo a la matriz

    \[A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\]

del ejemplo anterior. Su polinomio característico es x^2+1. En efecto, verificamos que se cumple el teorema de Cayley-Hamilton pues:

    \begin{align*}A^2+I_2 &= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\&=\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}+\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\\&=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.\end{align*}

\square

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Enuncia y demuestra cómo es el polinomio característico de una matriz triangular inferior.
  • Completa los detalles de la demostración del teorema de suma y producto de eigenvalores. Úsalo para encontrar la suma y producto (con multiplicidades) de los eigenvalores de la matriz

        \[\begin{pmatrix}5 & 0 & -1 & 2 \\ 3 & -2 & 1 & -2 \\ 0 & 0 & 0 & 5\\ 0 & 2 & 4 & 0 \end{pmatrix}.\]

  • Sea A una matriz en M_n(F). ¿Cómo es el polinomio característico de -A en términos del polinomio característico de A?
  • Tomemos A una matriz en M_n(F) y k un entero positivo. Muestra que si \lambda es un eigenvalor de la matriz A, entonces \lambda^k es un eigenvalor de la matriz A^k.

De la sección opcional:

  • Demuestra, haciendo todas las cuentas, el caso particular del teorema de Cayley-Hamilton para matrices de 2\times 2.
  • Ya sabemos calcular el polinomio característico de matrices diagonales. Muestra el teorema de Cayley-Hamilton en este caso particular.
  • Las matrices diagonales trivialmente son diagonalizables. Muestra que la multiplicidad algebraica de sus eigenvalores en efecto coincide con la multiplicidad geométrica.

Álgebra Lineal I: Cambios de base, parte 2

Introducción

En la entrada anterior definimos las matrices de cambio de base. Vimos algunas de sus propiedades básicas y mostramos cómo nos pueden ayudar para resolver el primero de los siguientes dos problemas.

  • Supongamos que tenemos dos bases B_1 y B_2 de un espacio vectorial V y que tomamos un vector v en V. Si ya sabemos la combinación lineal de elementos de B_1 que da v, ¿cómo podemos saber la combinación lineal de elementos de B_2 que da v? En otras palabras, ¿cómo podemos pasar a v de su expresión en base B_1 a su expresión en base B_2?
  • Supongamos que tenemos una transformación lineal T:V\to W entre dos espacios vectoriales V y W, dos bases B_1 y B_2 de V y dos bases C_1 y C_2 de W. Si ya sabemos qué le hace T a los elementos de V en términos de las bases B_1 y C_1, ¿cómo podemos saber qué hace T en términos de las bases B_2 y C_2?

El objetivo de esta entrada es ver cómo con las matrices de cambio de base también podemos resolver el segundo problema. Después de hacer esto, hablaremos de una noción fundamental en álgebra lineal: la de matrices similares.

Matrices de cambio de base y transformaciones lineales

Las matrices de cambios de base nos ayudan a entender a las matrices de transformaciones lineales en bases diferentes.

Teorema. Sea T:V\to W una transformación lineal entre espacios de dimensión finita V y W. Sean B_1 y B_2 bases de V, y C_1 y C_2 bases de W. Entonces

    \[\Mat_{C_2,B_2}(T) = \Mat_{C_2}(C_1)\Mat_{C_1,B_1}(T)\Mat_{B_1}(B_2).\]

Observa cómo la elección de orden en la notación está rindiendo fruto. En el lado derecho «van apareciendo las bases» en el «orden natural» C_2, C_1, B_1, B_2.

Demostración. Sean P=\Mat_{C_1}(C_2) y Q=\Mat_{B_1}(B_2). Por un resultado de la entrada anterior, P es la matriz que representa a la transformación identidad en W con respecto a las bases C_1 y C_2, es decir, P=\Mat_{C_1,C_2}(\text{id}_W).

Por cómo son las matrices de composiciones de transformaciones lineales, y usando que \text{id}_W\circ T=T, tenemos que

    \[\Mat_{C_1,C_2}(\text{id}_W)\Mat_{C_2,B_2}(T)=\Mat_{C_1,B_2}(T).\]

De manera análoga, Q es la matriz que representa a la transformación identidad en V con respecto a las bases B_1 y B_2, de donde tenemos que

    \[\Mat_{C_1,B_1}(T)\Mat_{B_1,B_2}(\text{id}_V)=\Mat_{C_1,B_2}(T).\]

De esta forma,

    \[P\Mat_{C_2,B_2}(T) = \Mat_{C_1,B_2}(T) = \Mat_{C_1,B_1}(T) Q.\]

El resultado se obtiene multiplicando por la izquierda ambos lados de esta ecuación por P^{-1}=\Mat_{C_2}(C_1).

\square

En la siguiente entrada se verán varios ejemplos que involucran crear matrices para transformaciones lineales, matrices de cambios de base y multiplicarlas para entender una transformación lineal en distintas bases.

Por el momento, dejamos únicamente un corolario del teorema anterior, para el caso en el que tenemos una transformación lineal de un espacio vectorial a sí mismo expresado en términos de dos bases.

Corolario. Sea T:V\to V una transformación lineal de un espacio vectorial V de dimensión finita a sí mismo. Sean B y B' bases de V y P la matriz de cambio de base de B a B'. Entonces

    \[\Mat_{B'}(T)=P^{-1}\Mat_{B}(T)P.\]

Matrices similares

Definición. Decimos que dos matrices A y B en M_{n}(F) son similares o conjugadas si existe una matriz invertible P en M_n(F) tal que B=P^{-1}AP.

En otras palabras, A y B son matrices similares si representan a una misma transformación lineal en diferentes bases.

Proposición. La relación «ser similares» es una relación de equivalencia en M_n(F).

Demostración. Toda matriz es similar a sí misma usando P=I_n, la identidad. Si A y B son similares con matriz invertible P, entonces B y A son similares con matriz invertible P^{-1}. Si A y B son similares con matriz invertible P y B y C son similares con matriz invertible Q, notemos que A=P^{-1}BP=P^{-1}(Q^{-1}CQ)P=(QP)^{-1}C(QP), de modo que A y C son similares con matriz invertible QP.

\square

¿Por qué es importante saber si dos matrices son similares? Resulta que dos matrices similares comparten muchas propiedades, como su traza, su determinante, su rango, etc. Para algunas matrices es más sencillo calcular estas propiedades. Así que una buena estrategia en álgebra lineal es tomar una matriz A «complicada» y de ahí encontrar una matriz similar B «más simple», y usar B para encontrar propiedades de A.

Veamos un ejemplo de esto. Mediante un sencillo argumento inductivo se puede mostrar lo siguiente.

Proposición. Si A y B son matrices similares con A=P^{-1}BP, entonces A^n=P^{-1}B^nP.

Si B fuera una matriz diagonal, entonces es fácil encontrar B^n: basta con elevar cada una de las entradas de su diagonal a la n (lo cual es mucho más fácil que hacer productos de matrices). Así, esto da una forma muy fácil de encontrar A^n: basta con encontrar B^n, y luego hacer dos multiplicaciones de matrices más, por P^{-1} a la izquierda y por P a la derecha.

Cuando A es una matriz similar a una matriz diagonal, decimos que A es diagonalizable. Una parte importante de lo que resta del curso consistirá en entender por qué las matrices simétricas con entradas reales son diagonalizables.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Deduce el corolario del teorema principal de esta entrada.
  • Considera \mathbb{R}[x]_2 de polinomios con coeficientes reales y grado a lo más dos. Sea T: \mathbb{R}[x]_2 la transformación tal qur T(p)=p', el polinomio derivado. Encuentra la matriz que representa a la transformación en la base \{1+x+x^2,1+2x,1\} y la matriz que representa a la transformación en la base \{1,x,x^2\}. Encuentra también la matriz de cambio de base de la primera a la segunda. Verifica que se cumple la conclusión del corolario.
  • Sean A y B matrices similares. Muestra que A es invertible si y sólo si B lo es.
  • Sean A y B matrices similares. Muestra que A y B tienen la misma traza.
  • Completa el argumento inductivo para demostrar la última proposición.
  • Considera la matriz con entradas complejas A=\begin{pmatrix}1 & 0 & 0\\ 0 & i & 0\\ 0 & 0 & -1 \end{pmatrix}. Encuentra A^{105}.