Teorema de la función inversa

Por Angélica Amellali Mercado Aguilar

$\textcolor{Red}{\textbf{Teorema de la Función Inversa $f:\mathbb{R}\rightarrow\mathbb{R}$}}$

$\textbf{Teorema 1.}$ Sea $f:A\subset\mathbb{R}\rightarrow\mathbb{R}$ definida sobre el abierto $A\subset\mathbb{R}$ y sea $x_{0}\in A$.
(1) Supóngase que f tiene derivada continua y que $f'(x_{0})\neq 0$.
(2) Entonces existe un intervalo abierto $I$ que contiene al punto $x_{0}$ y un intervalo abierto $j$ que contiene a $f(x_{0})$, tal que la función $f:I\rightarrow J$ es uno a uno y sobre.
(3) Además, la función inversa $f^{-1}:J\rightarrow I$ también tiene derivada continua y para un punto $y\in J$, si $x\in I$ es tal que $f(x)=y$, entonces
$$\left(f^{-1}\right)'(y)=\frac{1}{f'(x)}$$

$\textbf{Ejercicio.}$ Obtener la tesis del teorema de la función inversa como aplicación del teorema de la función implícita

$\small{Solución}$

Sea $y=f(x)$ una función real de variable real con derivada continua sobre un conjunto abierto A y sea $x_{0}$ un punto de A donde $f'(x_{0})\neq0$.

Considere la función $F(x,y)=y-f(x)$ y calculemos sus derivadas parciales. Así
$$\frac{\partial F}{\partial x}=-f'(x)~~y\frac{\partial F}{\partial y}=1$$ Nótese que $F,\displaystyle{\frac{\partial F}{\partial x},~~\frac{\partial F}{\partial y}}$ son continuas sobre el conjunto
$$B=\left\{(x,y)\in\mathbb{R}^{2}~|~x\in A \right\}$$

Considere ahora como solución inicial el punto $(x_{0},y_{0})$ donde $y_{0}=f(x_{0})$. Tenemos que
$$F(x_{0},y_{0})=0~~y\frac{\partial F}{\partial x}(x_{0},y_{0})\neq0$$ De manera que se cumplen las hipótesis del Teorema de la Función Implicita. Luego entonces cerca del punto $(x_{0},y_{0})$ la variable x puede representarse en términos de la variable y. Estos expresado formalmente nos dice que existe una única función implicita $x=g(y)$ con dominio un intervalo $J=(y_{0}-k,y_{0}+k)$ y con rango $I=(x_{0}-h,x_{0}+h)$ tal que $$g(y_{0})=x_{0}$$ y, para toda y, en el intervalo J $$F(g(y),y)=0~y~~~\frac{\partial F}{\partial x}(g(y),y)\neq 0$$
ademas, g y su derivada $g’$ son continuas sobre J, y
$$g'(y)=-\frac{\frac{\partial F}{\partial y}(g(y),y)}{\frac{\partial F}{\partial x}(g(y),y)}=-\frac{1}{-f'(g(y))}=\frac{1}{f'(x)}$$La función g que ha sido determinada no es otra que la función inversa

$\textbf{Ejemplo.}$ Sea f la función definida por la regla de correspondencia $f(x)=-x^{5}-x$. Si calculamos su derivada, tenemos $f'(x)=-5x^{4}-1$. Observese que $f'(x)<0$ para toda x en los reales, por lo que f es decreciente sobre toda la recta real y a su vez es uno a uno.\Concluimos así que la inversa de f está definida sobre toda la recta real y que su gráfica es decreciente. Sin embargo, no se puede obtener la regla de correspondencia para la inversa. Sin embargo, podemos calcular su derivada. Sea y cualquier número real y supóngase que x es tal que $f^{-1}(y)=x$. Así
$$\left(f^{-1}\right)'(y)=\frac{1}{f'(f^{-1}(y))}=\frac{1}{f'(x)}=-\frac{1}{5x^{4}+1}$$

$\textcolor{Red}{\textbf{Teorema de la Función Inversa (sistema $f_{i}:\mathbb{R}^{n}\rightarrow\mathbb{R}$)}}$

Sea $U\subset\mathbb{R}^{n}$ un abierto y sean
$$\begin{matrix}
f_{1}:U\rightarrow\mathbb{R} \\
\vdots \\
f_{n}:U\rightarrow\mathbb{R}
\end{matrix}$$
con derivadas parciales continuas. Considerar las ecuaciones

$f_1(x_1,x_2,…,x_n)= y_1$
$f_2(x_1,x_2,…,x_n)= y_2$
$\vdots\\$
$f_n(x_1,x_2,…,x_n)= y_n$
Tratamos de resolver las n-ecuaciones para $x_1,x_2,… x_n$como funciones de $y_1,y_2,… y_n$

La condición de existencia para la solución en una vecindad del punto $x_0$ es que el determinante de la matriz $Df(x_0)$ y $f=(f_i,f_2,… f_n)$ sean distintos de cero. Explícitamente:

$\displaystyle \frac{\partial(f_1,f_2,…,f_n)}{\partial(x_1,x_2,…,x_n)}|_{x=x_0}= J(f)(x_0)= \left| \begin{array}{ccc} \displaystyle\frac{\partial f_1}{\partial x_1} (x_0)&\ldots&\displaystyle\frac{\partial f_1}{\partial x_1}(x_0)\\ \vdots & & \vdots\\
\displaystyle\frac{\partial f_n}{\partial x_1}(x_0)&\ldots&\displaystyle\frac{\partial f_n}{\partial x_n}(x_0) \end{array}\right|\neq 0$

entonces el sistema anterior se puede resolver de manera ‘unica como $x=g(y)$ para $x$ cerca de $x_{0}$ y y cerca de $y_{0}$

$\textbf{Nota:}$ La cuestión de existencia se responde por medio del teorema general de la función implícita aplicado a las funciones $y_i-f_i(x_1,x_2,…,x_n)$ con las incognitas $x_1,x_2,…,x_n$.

$\small{Solución.}$ Aquí las funciones son
$$u(x,y)=f_{1}(x,y)=\frac{x^{4}+y^{4}}{x},~~y~~v(x,y)=f_{2}(x,y)= sen~x+\cos~y$$
De acuerdo al teorema de la función inversa
$$\frac{\partial(f_{1},f_{2})}{\partial(x,y)}=\left|\begin{matrix}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{matrix}\right|$$
$$=\left|\begin{matrix}
\frac{3x^{4}-y^{4}}{x^{2}} & \frac{4y^{3}}{x} \\
\cos~x & -sen~y
\end{matrix}\right|= \frac{sen~y}{x^{2}}(y^{4}-3x^{4})-\frac{4y^{3}}{x}\cos~x$$
por lo tanto, en los puntos donde la expresión anterior no se anula, se puede resolver para $x$,$y$ en términos de $u$ y $v$.

Mas aún, si consideramos las expresiones:
$G(x,y,u,v)=x-f(u,v)=0$
$H(x,y,u,v)=y-g(u,v)=0$

Lo que pretendemos es «despejar» de ella a $u$ y $v$ en términos de $x$ e $y$ y poder establecer así las funciones $u=\varphi(x,y), v=\psi(x,y)$. Entonces el T.F.Im. (tercera versión) nos da las condiciones para que podamos hacer esto. Sea $P (x,y,u,v)\epsilon\mathbb{R}^4$ un punto tal que $G(p)=H(p)=0$. Supongamos que en una bola de centro en P las derivadas parciales de $G$ y $H$ son continuas. Si el jacobiano.

$$\displaystyle\frac{\partial(G,H)}{\partial(u,v)}=\left|\begin{matrix}
\frac{\partial G}{\partial u} & \frac{\partial G}{\partial v} \\
\frac{\partial H}{\partial u} & \frac{\partial H}{\partial v}
\end{matrix}\right|=\left|\begin{matrix}
-\frac{\partial f}{\partial u} & -\frac{\partial f}{\partial v} \\
-\frac{\partial g}{\partial u} & -\frac{\partial g}{\partial v}
\end{matrix}\right|=\left|\begin{matrix}
\frac{\partial f}{\partial u} & \frac{\partial f}{\partial v} \\
\frac{\partial g}{\partial u} & \frac{\partial g}{\partial v}
\end{matrix}\right|\neq0$$

en $P$, entonces es posible «despejar» de ellas a $u$ y $v$ en terminos de $x$ e $y$, y establecer así funciones $u=\varphi(x,y), v=\varphi(x,y)$ definidas en una vecindad $V$ de $(x,y)=F(u,v)$, las cuales tienen derivadas parciales continuas en $V$ que se pueden calcular como

$\displaystyle\frac{\partial G}{\partial u}=-\displaystyle\frac{\partial f}{\partial u} ~,~ \displaystyle\frac{\partial G}{\partial v}=-\displaystyle\frac{\partial f}{\partial v} ~,~ \displaystyle\frac{\partial H}{\partial u}=-\displaystyle\frac{\partial g}{\partial u} ~,~ \displaystyle\frac{\partial H}{\partial v}=-\displaystyle\frac{\partial g}{\partial v}$

$$\displaystyle\frac{\partial u}{\partial x}=-\displaystyle\frac{\displaystyle\frac{\partial(G,H)}{\partial((x,v)}}{\displaystyle\frac{\partial(G,H)}{\partial(u,v)}}=-\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det
\left| \begin{array}{cc}
\displaystyle\frac{\partial G}{\partial x} & \displaystyle\frac{\partial G}{\partial v}\\
\displaystyle\frac{\partial H}{\partial x} & \displaystyle\frac{\partial H}{\partial v}
\end{array} \right|= -\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det \left|\begin{array}{cc}
1 & -\displaystyle\frac{\partial f}{\partial v}\\
0 & -\displaystyle\frac{\partial g}{\partial v}\end{array}\right|=\displaystyle\frac{\displaystyle\frac{\partial g}{\partial v}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}
$$

Por lo tanto: $\displaystyle\frac{\partial u}{\partial x} = \displaystyle\frac{\displaystyle\frac{\partial g}{\partial v}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}$

$$\displaystyle\frac{\partial u}{\partial y}=-\displaystyle\frac{\displaystyle\frac{\partial(G,H)}{\partial((y,v)}}{\displaystyle\frac{\partial(G,H)}{\partial(u,v)}}=-\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det
\left| \begin{array}{cc}
\displaystyle\frac{\partial G}{\partial y} & \displaystyle\frac{\partial G}{\partial v}\\
\displaystyle\frac{\partial H}{\partial y} & \displaystyle\frac{\partial H}{\partial v}
\end{array} \right|= -\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det \left|\begin{array}{cc}
0 & -\displaystyle\frac{\partial f}{\partial v}\\
1& -\displaystyle\frac{\partial g}{\partial v}\end{array}\right|=-\displaystyle\frac{\displaystyle\frac{\partial f}{\partial v}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}
$$

Por lo tanto: $\displaystyle\frac{\partial u}{\partial y} = -\displaystyle\frac{\displaystyle\frac{\partial f}{\partial v}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}$

$$\displaystyle\frac{\partial v}{\partial x}=-\displaystyle\frac{\displaystyle\frac{\partial(G,H)}{\partial((u,x)}}{\displaystyle\frac{\partial(G,H)}{\partial(u,v)}}=-\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det
\left| \begin{array}{cc}
\displaystyle\frac{\partial G}{\partial u} & \displaystyle\frac{\partial G}{\partial x}\\
\displaystyle\frac{\partial H}{\partial u} & \displaystyle\frac{\partial H}{\partial x}
\end{array} \right|= -\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det \left|\begin{array}{cc}
-\displaystyle\frac{\partial f}{\partial u} & 1\\
-\displaystyle\frac{\partial g}{\partial u} & 0 \end{array}\right|=-\displaystyle\frac{\displaystyle\frac{\partial g}{\partial u}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}$$

$$\displaystyle\frac{\partial v}{\partial y}=-\displaystyle\frac{\displaystyle\frac{\partial(G,H)}{\partial((u,y)}}{\displaystyle\frac{\partial(G,H)}{\partial(u,v)}}=-\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det
\left| \begin{array}{cc}
\displaystyle\frac{\partial G}{\partial u} & \displaystyle\frac{\partial G}{\partial y}\\
\displaystyle\frac{\partial H}{\partial u} & \displaystyle\frac{\partial H}{\partial y}
\end{array} \right|= -\displaystyle\frac{1}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}det \left|\begin{array}{cc}
-\displaystyle\frac{\partial f}{\partial u} & 0\\
-\displaystyle\frac{\partial g}{\partial u} & 1 \end{array}\right|=\displaystyle\frac{\displaystyle\frac{\partial f}{\partial u}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}$$

En resumen tenemos: Sean $f,g: U \subseteq \mathbb{R}^2 \rightarrow \mathbb{R}$ funciones definidas en el conjunto abierto $U$ de $\mathbb{R}^2$. Sean $x=f(u,v)$, $y=g(u,v)$.

Suponga que alguna bola $B$ de $\mathbb{R}^2$ con centro $(u,v)$, las derivadas parciales $\displaystyle\frac{\partial f}{\partial u}$, $\displaystyle\frac{\partial f}{\partial v}$, $\displaystyle\frac{\partial g}{\partial u}$, $\displaystyle\frac{\partial g}{\partial v}$ son continuas.

Si el jacobiano $\displaystyle\frac{\partial(f,g)}{\partial (u,v)}$ es no nulo en $(u,v)$ entonces $\exists$ una vecindad $V$ de $\bar{x},\bar{y}$ donde podemos definir «funciones inversas» $u=\varphi(x,y),v=\psi(x,y)$ es decir tales que $$u=\varphi(x,y), v=\psi(x,y)$, y $f(\varphi(x,y), \psi(x,y))=x ,g(\varphi(x,y), \psi(x,y))=y$$

para $(x,y) \epsilon V$ las cuales tienen derivadas parciales continuas en $V$ que se calculan como

$$\displaystyle\frac{\partial u}{\partial x} = \displaystyle\frac{\displaystyle\frac{\partial g}{\partial v}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}}\ ~,~ \displaystyle\frac{\partial u}{\partial y} = -\displaystyle\frac{\displaystyle\frac{\partial f}{\partial v}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}} ~,~ \displaystyle\frac{\partial v}{\partial x}=-\displaystyle\frac{\displaystyle\frac{\partial g}{\partial u}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}} ~,~ \displaystyle\frac{\partial v}{\partial y}=\displaystyle\frac{\displaystyle\frac{\partial f}{\partial u}}{\displaystyle\frac{\partial(f,g)}{\partial(u,v)}} \ast$$

Ahora bien con las funciones $u=\varphi(x,y),~~v=\psi(x,y)$. Podemos formar el sistema
$$\begin{matrix}G(x,y,u,v)=u-\varphi(x,y)\\H(x,y,u,v)=v-\psi(x,y)\end{matrix}$$
se tiene entonces que

$$\frac{\partial (G,H)}{\partial (x,y)}=\left|\begin{matrix}
\frac{\partial G}{\partial x} & \frac{\partial G}{\partial y} \\
\frac{\partial H}{\partial x} & \frac{\partial H}{\partial y}
\end{matrix}\right|$$

$$=\left|\begin{matrix}
-\frac{\partial \varphi}{\partial x} & -\frac{\partial \varphi}{\partial y} \\
-\frac{\partial \psi}{\partial x} & -\frac{\partial \psi}{\partial y}
\end{matrix}\right|$$
$$=\left|\begin{matrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} &\frac{\partial v}{\partial y}
\end{matrix}\right|$$
$$
JF^{-1}=\left[\begin{array}{cc}
\displaystyle\frac{\partial u}{\partial x} & \displaystyle\frac{\partial u}{\partial y}\\
\displaystyle\frac{\partial v}{\partial x} & \displaystyle\frac{\partial v}{\partial y} \end{array} \right]
$$

El resultado anterior $\ast$ nos dice como calcular las derivadas parciales $\displaystyle\frac{\partial u}{\partial x}$, $\displaystyle\frac{\partial u}{\partial y}$, $\displaystyle\frac{\partial v}{\partial x}$, $\displaystyle\frac{\partial v}{\partial y}$ en una vecindad $V$ de $(x,y)$ al sustituir las fórmulas correspondientes en $JF^{-1}$, recordando que $\displaystyle\frac{\partial(f,g)}{\partial(u,v)}= det(JF)$.

$$ JF^{-1}= \left|\begin{array}{cc}
\displaystyle\frac{\displaystyle\frac{\partial g}{\partial v}}{det(JF)} & -\displaystyle\frac{\displaystyle\frac{\partial g}{\partial u}}{det(JF)}\\
-\displaystyle\frac{\displaystyle\frac{\partial f}{\partial v}}{det(JF)} & \displaystyle\frac{\displaystyle\frac{\partial f}{\partial U}}{det(JF)}\end{array}\right|=\displaystyle\frac{1}{det(JF)} \left|\begin{array}{cc}
\displaystyle\frac{\partial g}{\partial v} & -\displaystyle\frac{\partial f}{\partial v}\\
-\displaystyle\frac{\partial g}{\partial u} & \displaystyle\frac{\partial f}{\partial u} \end{array}\right|
$$

Multipliquemos $JF$ y $JF^{-1}$, se obtiene

$$
(JF)(JF^{-1})= \left|\begin{array}{cc}
\displaystyle\frac{\partial f}{\partial u} & \displaystyle\frac{\partial f}{\partial v}\\
\displaystyle\frac{\partial g}{\partial u} & \displaystyle\frac{\partial g}{\partial v} \end{array}\right| \displaystyle\frac{1}{det(JF)}\left[\begin{array}{cc}
\displaystyle\frac{\partial g}{\partial v} & -\displaystyle\frac{\partial f}{\partial v}\\
-\displaystyle\frac{\partial g}{\partial u} & \displaystyle\frac{\partial f}{\partial u} \end{array}\right]= \displaystyle\frac{1}{det(JF)}\left|\begin{array}{cc}
\displaystyle\frac{\partial f}{\partial u} & \displaystyle\frac{\partial f}{\partial v}\\
\displaystyle\frac{\partial g}{\partial u} & \displaystyle\frac{\partial g}{\partial v} \end{array}\right| \left|\begin{array}{cc}
\displaystyle\frac{\partial g}{\partial v} & -\displaystyle\frac{\partial f}{\partial v}\\
-\displaystyle\frac{\partial g}{\partial u} & \displaystyle\frac{\partial f}{\partial u} \end{array}\right|
$$

$$= \displaystyle\frac{1}{det(JF)}\left|\begin{array}{cc} \displaystyle\frac{\partial f}{\partial u} \displaystyle\frac{\partial g}{\partial v} – \displaystyle\frac{\partial f}{\partial v} \displaystyle\frac{\partial g}{\partial u} & 0 \\
0& -\displaystyle\frac{\partial g}{\partial u} \displaystyle\frac{\partial f}{\partial v} + \displaystyle\frac{\partial g}{\partial v} \displaystyle\frac{\partial f}{\partial u} \end{array}\right|=\displaystyle\frac{\displaystyle\frac{\partial f}{\partial u}\displaystyle\frac{\partial g}{\partial v} – \displaystyle\frac{\partial f}{\partial v}\displaystyle\frac{\partial g}{\partial u}}{det(JF)}\left[\begin{array}{cc}
1 & 0\\
0 & 1 \end{array}\right] = \left[\begin{array}{cc}
1 & 0\\
0 & 1 \end{array}\right]
$$

Así concluimos que la matriz jacobiana de la función inversa de F es justamente la inversa de la matriz jacobiana de F. Es decir se tiene
$$JF^{-1}=(JF)^{-1}$$

$\textbf{Ejemplo.}$

Considere las ecuaciones dadas por $x=u^2+v^3,~~y=u^2+uv$. Se tiene
que en $p=(1,2)$ $x=9,~y=3$.\
Las derivadas parciales de las funciones
$x=f(u,v)=u^3+v^3$ , $y=g(u,v)=u^2+uv$ son
$$
\displaystyle\frac{\partial f}{\partial u}=3u^2~,~ \displaystyle\frac{\partial f}{\partial v}=3v^2 ~,~ \displaystyle\frac{\partial g}{\partial u}=2u+v ~,~\displaystyle\frac{\partial g}{\partial v}=u
$$

La matriz jacobiana de f es
$$JF=\left|\begin{array}{cc}
\displaystyle\frac{\partial f}{\partial u} & \displaystyle\frac{\partial f}{\partial v}\\
\displaystyle\frac{\partial g}{\partial u} & \displaystyle\frac{\partial g}{\partial v} \end{array}\right|=\left|\begin{array}{cc}
3u^2 & 3v^2\
2u+v & u \end{array}\right|
$$
la cual en el punto $(1,2)$ es invertible pues
$$ detJF(1,2) = \left|\begin{array}{cc}
3 & 12\
4 & 1 \end{array}\right| = -45\neq0
$$

Así podemos concluir que en una bola $B’$ de $(9,3)$ se da la inversa $F^{-1}$ de $F$ o bien, que podemos despejar de $x=u^3+v^3 , y=u^2+uv$ a $u,v$ como funciones de $x$ e $y$, la cual es de clase $C^1$ en $B’$ y que su derivada es
$$JF^{-1}(x,y)= [JF(u,v)]^{-1}=\displaystyle\frac{1}{detJF} \left[\begin{array}{cc}
\displaystyle\frac{\partial g}{\partial v} & -\displaystyle\frac{\partial f}{\partial v}\\
-\displaystyle\frac{\partial g}{\partial u} & \displaystyle\frac{\partial f}{\partial u} \end{array}\right]=\displaystyle\frac{1}{3u^3-6uv^2-3v^3} \left|\begin{array}{cc}
u & -3v^2\
-(2u+v) & 3u^2 \end{array}\right|
$$
donde $x=u^3+v^3 , y=u^2+uv$. Es decir

$$\displaystyle\frac{\partial u}{\partial x}(u^3+v^3, u^2+uv)= \displaystyle\frac{u}{3u^3-6uv^2-3v^3}$$
$$\displaystyle\frac{\partial u}{\partial y}(u^3+v^3, u^2+uv)= \displaystyle\frac{-3v^2}{3u^3-6uv^2-3v^3}$$
$$\displaystyle\frac{\partial u}{\partial y}(u^3+v^3, u^2+uv)= \displaystyle\frac{-2u+v}{3u^3-6uv^2-3v^3}$$
$$\displaystyle\frac{\partial u}{\partial y}(u^3+v^3, u^2+uv)= \displaystyle\frac{3u^2}{3u^3-6uv^2-3v^3}$$

Considere las ecuaciones
$$x=u+v+e^{w}$$
$$y=u+w+e^{2v}$$
$$x=v+w+e^{3u}$$
para $p=(u,v,w)=(0,0,0)$ se tiene que $q=(x,y,z)=(1,1,1)$ el
determinante de la matriz jacobiana de la función $F(u,v,w))(x,y,z)$
es:

$$
det
JF=\frac{\partial(x,y,z)}{\partial(u,v,w)}=\left|\begin{array}{ccc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w}\\
\frac{\partial y}{\partial u} & \frac{\partial x}{\partial v} &
\frac{\partial y}{\partial w}\\ \frac{\partial z}{\partial u} &
\frac{\partial z}{\partial v} & \frac{\partial z}{\partial
w}\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & e^{w}\\
1 & 2e^{2v} & 1\\ 3e^{3u} & 1 &
1\end{array}\right|_{(0,0,0)}=\left|\begin{array}{ccc}
1& 1 &1\\
1 & 2 &1\\3 & 1 & 1\end{array}\right|
$$

Si calculamos su determinante obtenemos

$$=\left|\begin{array}{ccc}
\textcolor{Green}{1}&\textcolor{Red} {1} &\textcolor{Blue}{1}\\
1 & 2 &1\\ 3 & 1 & 1\end{array}\right|=\textcolor{Green}{1\times
\left|\begin{array}{cc}
2 & 1 \\
1 & 1\end{array}\right|}-\textcolor{Red}{1\times
\left|\begin{array}{cc}
1 & 1 \\
3 & 1\end{array}\right|}+\textcolor{Blue}{1\times
\left|\begin{array}{cc}
1 & 2 \\
3 & 1
1\end{array}\right|}=\textcolor{Green}{1\times(2-1)}-\textcolor{Red}{1\times(1-3)}+\textcolor{Blue}{1\times(1-6)}=\textcolor{Green}{1}+\textcolor{Red}{2}-\textcolor{Blue}{5}=-2\neq
0$$

$\therefore$ Podemos localmente invertir la función $F$, entorno al punto $q$, donde podemos definir funciones de clase

$c^{1}$ $u(x,y,z), v(x,y,z)$ y $w(x,y,z)$. Ahora bien como $$JF^{-1}(q)=\left[JF(p)\right]^{-1}=\left|\begin{array}{ccc}
1& 1 &1\\
1 & 2 &1\\3 & 1 &
1\end{array}\right|^{-1}\underbrace{=}_{*}\left|\begin{array}{ccc}
-\frac{1}{2}& 0 &\frac{1}{2}\\
-1 & 1 &0\\ \frac{5}{2} & -1 & -\frac{1}{2}\end{array}\right|$$

  • Vamos a calcular la inversa usando la matriz de cofactores de la matriz $\left(\begin{array}{ccc}
    \textcolor{OliveGreen}{1}&\textcolor{Magenta} {1} &\textcolor{Violet}{1}\\
    \textcolor{Brown}{1} &\textcolor{Orange} {2}
    &\textcolor{Blue}{1}\\ \textcolor{RedViolet}{3} &
    \textcolor{Fuchsia}{1} &\textcolor{Emerald} {1}\end{array}\right)$

$$\left(\begin{array}{ccc}
\textcolor{OliveGreen}{(-1)^{1+1}\times \left|\begin{array}{cc}
2 & 1 \\
1 & 1\end{array}\right|}&\textcolor{Magenta} {(-1)^{1+2}\times
\left|\begin{array}{cc}
1 & 1 \\
3 & 1\end{array}\right|} &\textcolor{Violet}{(-1)^{1+3}\times
\left|\begin{array}{cc}
1 & 2 \\
3 & 1
1\end{array}\right|}\\
\textcolor{Brown}{(-1)^{2+1}\times \left|\begin{array}{cc}
1 & 1 \\
1 & 1\end{array}\right|} &\textcolor{Orange} {(1)^{2+2}\times
\left|\begin{array}{cc}
1 & 1 \\
3 & 1\end{array}\right|} &\textcolor{Blue}{(-1)^{2+3}\times
\left|\begin{array}{cc}
1 & 1 \\
3 & 1\end{array}\right|}\\ \textcolor{RedViolet}{(-1)^{3+1}\times
\left|\begin{array}{cc}
1 & 1 \\
2 & 1\end{array}\right|} & \textcolor{Fuchsia}{(-1)^{3+2}\times
\left|\begin{array}{cc}
1 & 1 \\
1 & 1\end{array}\right|} &\textcolor{Emerald} {(1)^{3+3}\times
\left|\begin{array}{cc}
1 & 1 \\
1 & 2\end{array}\right|}\end{array}\right)=\left(\begin{array}{ccc}
\textcolor{OliveGreen}{1}&\textcolor{Magenta} {2} & \textcolor{Violet}{-5}\\
\textcolor{Brown}{0} &\textcolor{Orange} {-2}
&\textcolor{Blue}{2}\\ \textcolor{RedViolet}{-1} &
\textcolor{Fuchsia}{0} &\textcolor{Emerald} {1}\end{array}\right)$$

Transponiendo la ultima matriz tenemos
$$\left(\begin{array}{ccc}
\textcolor{OliveGreen}{1}&\textcolor{Brown} {0} &\textcolor{RedViolet}{-1}\\
\textcolor{Magenta}{2} &\textcolor{Orange} {-2}
&\textcolor{Fuchsia}{0}\\ \textcolor{Violet}{-5} &
\textcolor{Blue}{2} &\textcolor{Emerald} {1}\end{array}\right)$$
$\therefore$

$$\left|\begin{array}{ccc}
1& 1 &1\\
1 & 2 &1\\ 3 & 1 & 1\end{array}\right|^{-1}=\frac{1}{-2}\times
\left(\begin{array}{ccc}
\textcolor{OliveGreen}{1}&\textcolor{Brown} {0} &\textcolor{RedViolet}{-1}\\
\textcolor{Magenta}{2} &\textcolor{Orange} {-2}
&\textcolor{Fuchsia}{0}\\ \textcolor{Violet}{-5} &
\textcolor{Blue}{2} &\textcolor{Emerald}
{1}\end{array}\right)=\left(\begin{array}{ccc}
\textcolor{OliveGreen}{-\frac{1}{2}}&\textcolor{Brown} {0} &\textcolor{RedViolet}{\frac{1}{2}}\\
\textcolor{Magenta}{-1} &\textcolor{Orange} {1}
&\textcolor{Fuchsia}{0}\\\textcolor{Violet}{\frac{5}{2}} &
\textcolor{Blue}{-1} &\textcolor{Emerald}
{-\frac{1}{2}}\end{array}\right)$$ $\therefore$ las parciales son:
$$\frac{\partial u}{\partial x}(q)=-\frac{1}{2}\quad \frac{\partial u}{\partial y}(q)=0\quad \frac{\partial u}{\partial z}(q)=\frac{1}{2}$$
$$\frac{\partial v}{\partial x}(q)=-1\quad \frac{\partial v}{\partial y}(q)=1\quad \frac{\partial v}{\partial z}(q)=0$$
$$\frac{\partial w}{\partial x}(q)=\frac{5}{2}\quad \frac{\partial w}{\partial y}(q)=-1\quad \frac{\partial w}{\partial z}(q)=-\frac{1}{2}$$

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.