Archivo de la etiqueta: norma

Álgebra Superior II: Problemas de norma y la ecuación general de segundo grado

Por Claudia Silva

Introducción

Estudiamos ya la norma de un número complejo, así como la ecuación general de segundo grado en $\mathbb{C}$ y un método para obtener raíces complejas. Abordaremos ahora varios ejemplos y ejercicios del libro de Álgebra Superior de Bravo, Rincón, Rincón, así como un ejercicio de norma.

Ejemplo de ecuaciones cuadráticas

Comenzaremos viendo con detalle el ejemplo 134 del libro. Antes de eso, hacemos un pequeño recordatorio de cómo se resuelven ecuaciones cuadráticas en los complejos. El ejemplo 134 dice lo siguiente.

Ejercicio. Encontrar las raíces de $z^2-2iz-9-6i=0$.

Ejemplo de resolución de ecuación cuadrática compleja (parte 1)
Ejemplo de resolución de ecuación cuadrática compleja (parte 2).

Problemas de raíces cuadradas y ecuaciones cuadráticas

A continuación, un par de incisos del ejercicio 326. Los incisos de este ejercicio consisten en encontrar raíces (cuadradas) complejas:

Ejercicio. Encuentra las raíces cuadradas de $1+\sqrt{3}i$ y las de $-1$.

Cómo encontrar raíces cuadradas complejas

Posteriormente, un ejercicio de resolución de una ecuación cuadrática compleja.

Ejercicio. Resuelve la ecuación cuadrática $z^2-3z+3-i=0$.

Resolución de una ecuación cuadrática compleja

Problema de norma compleja

Finalmente, resolvemos el siguiente problema de norma compleja.

Problema. Encuentra todos los complejos de la forma $z=2a+(1-3a)i$ en donde $a$ es un real y $z$ tiene norma $1$.

Ejercicio de norma compleja

Más adelante…

Tarea moral

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Lineal I: Formas bilineales, propiedades, ejemplos y aclaraciones

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hemos platicado de dualidad, ortogonalidad y transformaciones transpuestas. Es importante que repases esas entradas y nos escribas si tienes dudas, pues ahora pasaremos a un tema un poco diferente: formas bilineales y cuadráticas. Estas nociones nos permitirán seguir hablando acerca de la geometría de espacios vectoriales en general.

Para esta parte del curso, nos vamos a enfocar únicamente en espacios vectoriales sobre $\mathbb{R}$. Se pueden definir los conceptos que veremos para espacios vectoriales en otros campos. Sobre todo, es posible definir conceptos análogos en $\mathbb{C}$ y obtener una teoría muy rica. Pero por ahora consideraremos sólo el caso de espacios vectoriales reales.

Aunque hablaremos de formas bilineales en general, una subfamilia muy importante de ellas son los productos interiores, que nos permiten hablar de espacios euclideanos. El producto interior es el paso inicial en una cadena muy profunda de ideas matemáticas:

  • Un producto interior nos permite definir la norma de un vector.
  • Con la noción de norma, podemos definir la distancia entre dos vectores.
  • A partir de un producto interior y su norma podemos mostrar la desigualdad de Cauchy-Schwarz, con la cual podemos definir ángulos entre vectores (por ejemplo, ¡podremos definir el ángulo entre dos polinomios!).
  • De la desigualdad de Cauchy-Schwarz, podemos probar que la noción de norma satisface la desigualdad del triángulo, y que por lo tanto la noción de distancia define una métrica.
  • Aunque no lo veremos en este curso, más adelante verás que una métrica induce una topología, y que con una topología se puede hablar de continuidad.

En resumen, a partir de un producto interior podemos hacer cálculo en espacios vectoriales en general.

Una forma bilineal con la cual probablemente estés familiarizado es el producto punto en $\mathbb{R}^n$, que a dos vectores $(x_1,x_2,\ldots,x_n)$ y $(y_1,y_2,\ldots,y_n)$ los manda al real $$x_1y_1+x_2y_2+\ldots+x_ny_n.$$ Este es un ejemplo de una forma bilineal que es un producto interior. También puede que estés familiarizado con la norma en $\mathbb{R}^n$, que a un vector $(x_1,\ldots,x_n)$ lo manda al real $$\sqrt{x_1^2+x_2^2+\ldots+x_n^2}.$$ Lo que está dentro de la raíz es un ejemplo de una forma cuadrática positiva definida. Incluyendo la raíz, este es un ejemplo de norma en espacios vectoriales.

Hay muchas otras formas bilineales y formas cuadráticas, pero los ejemplos mencionados arriba te pueden ayudar a entender la intuición detrás de algunos de los conceptos que mencionaremos. Para marcar algunas cosas en las que la intuición puede fallar, pondremos algunas «Aclaraciones» a lo largo de esta entrada.

En el futuro, tener una buena noción de la geometría de espacios vectoriales te ayudará a entender mucho mejor los argumentos de cursos de análisis matemático, de variable compleja y de optativas como geometría diferencial. Dentro de este curso, entender bien el concepto de forma bilineal te será de gran utilidad para cuando más adelante hablemos de formas multilineales y determinantes.

Formas bilineales

La definición fundamental para los temas que veremos en estas entradas es la siguiente, así que enunciaremos la definición, veremos varios ejemplos y haremos algunas aclaraciones.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$. Una forma bilineal es una función $b:V\times V \to \mathbb{R}$ tal que:

  • Para todo $x$ en $V$, la función $b(x,\cdot):V\to \mathbb{R}$ que manda $v\in V$ a $b(x,v)$ es una forma lineal.
  • Para todo $y$ en $V$, la función $b(\cdot, y):V\to \mathbb{R}$ que manda $v\in V$ a $b(v,y)$ es una forma lineal.

Ejemplo 1. Considera el espacio vectorial de polinomios $\mathbb{R}_3[x]$ y considera la función $$b(p,q)=p(0)q(10)+p(1)q(11).$$ Afirmamos que $b$ es una forma bilineal. En efecto, fijemos un polinomio $p$ y tomemos dos polinomios $q_1$, $q_2$ y un real $r$. Tenemos que
\begin{align*}
b(p,q_1+rq_2)&=p(0)(q_1+rq_2)(10)+p(1)(q_1+rq_2)(11)\\
&= p(0)q_1(10)+p(1)q_1(11) + r ( p(0)q_2(10)+p(1)q_2(11))\\
&= b(p,q_1)+rb(p,q_2),
\end{align*}

De manera similar se puede probar que para $q$ fijo y $p_1$, $p_2$ polinomios y $r$ real tenemos que $$b(p_1+rp_2,q)=b(p_1,q)+rb(p_2,q).$$ Esto muestra que $b$ es una forma bilineal.

$\triangle$

Si $v=0$, entonces por el primer inciso de la definición, $b(x,v)=0$ para toda $x$ y por el segundo $b(v,y)=0$ para toda $y$, en otras palabras:

Proposición. Si $b$ es una forma bilineal en $b$, y alguno de $x$ o $y$ es $0$, entonces $b(x,y)=0$.

De la linealidad de ambas entradas de $b$, se tiene la siguiente proposición.

Proposición. Tomemos $b:V\times V\to \mathbb{R}$ una forma bilineal, vectores $x_1,\ldots,x_n$, $y_1,\ldots,y_m$ y escalares $a_1,\ldots,a_n,c_1,\ldots,c_m$. Tenemos que $$b\left(\sum_{i=1}^n a_ix_i, \sum_{j=1}^m c_j y_j\right)=\sum_{i=1}^n\sum_{j=1}^m a_ic_jb(x_i,y_j).$$

La proposición anterior muestra, en particular, que para definir una forma bilineal en un espacio vectorial $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ de $V$ y definir $b(e_i,e_j)$ para toda $1\leq i,j \leq n$.

Hagamos algunas aclaraciones acerca de las formas bilineales.

Aclaración 1. No es lo mismo una forma bilineal en $V$, que una transformación lineal de $V\times V$ a $\mathbb{R}$.

Ejemplo 2. La transformación $b((w,x),(y,z))=w+x+y+z$ sí es una transformación lineal de $\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$, lo cual se puede verificar fácilmente a partir de la definición. Sin embargo, no es una forma bilineal. Una forma de verlo es notando que $$b((0,0),(1,1))=0+0+1+1=2.$$ Aquí una de las entradas es el vector cero, pero el resultado no fue igual a cero.

$\triangle$

Aclaración 2. Puede pasar que ninguna de las entradas de la forma bilineal sea $0$, pero que evaluando en ella sí de $0$.

Ejemplo 3. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wy-xz.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Además, se tiene que $b((1,0),(0,1))=0$.

$\triangle$

Más adelante, cuando definamos producto interior, nos van a importar mucho las parejas de vectores $v$, $w$ para las cuales $b(v,w)=0$.

Aclaración 3. Si $b$ es una forma bilineal, no necesariamente es cierto que $b(x,y)=b(y,x)$.

Ejemplo 4. Consideremos la transformación $b:\mathbb{R}^2\times \mathbb{R}^2 \to \mathbb{R}$ tal que $$b((w,x),(y,z))=wz-xy.$$ Verificar que esta es una forma bilineal es sencillo y se deja como tarea moral. Notemos que $b((2,1),(2,3))=6-2=4$, mientras que $b((2,3),(2,1))=2-6=-4$.

$\triangle$

Aquellas formas para las que sí sucede que $b(x,y)=b(y,x)$ son importantes y merecen un nombre especial.

Definición. Una forma bilineal $b:V\times V\to \mathbb{R}$ es simétrica si $b(x,y)=b(y,x)$ para todo par de vectores $x,y$ en $V$.

Para definir una forma bilineal $b$ simétrica en un espacio $V$ de dimensión finita $n$, basta tomar una base $\{e_1,\ldots,e_n\}$ y definir $b$ en aquellas parejas $b(e_i,e_j)$ con $1\leq i \leq j \leq n$.

Más ejemplos de formas bilineales

A continuación enunciamos más ejemplos de formas bilineales, sin demostración. Es un buen ejercicio verificar la definición para todas ellas.

Ejemplo 1. Si $a_1, a_2,\ldots, a_n$ son números reales y $V=\mathbb{R}^n$, entonces podemos definir $b:V\times V \to \mathbb{R}$ que manda a $x=(x_1,\ldots,x_n)$ y $y=(y_1,\ldots,y_n)$ a $$b(x,y)=a_1x_1y_1+\ldots+a_nx_ny_n.$$

Este es un ejemplo de una forma bilineal simétrica. Si todos los $a_i$ son iguales a $1$, obtenemos el producto punto o producto interior canónico de $\mathbb{R}^n$.

Ejemplo 2. Tomemos $V$ como el espacio vectorial de matrices $M_n(\mathbb{R})$. La transformación $b:V\times V\to \mathbb{R}$ tal que $b(A,B)=\text{tr}(AB)$ es una forma bilineal. Además, es simétrica, pues la traza cumple la importante propiedad $\text{tr}(AB)=\text{tr}(BA)$, cuya verificación queda como tarea moral.

Ejemplo 3. Tomemos $V$ el conjunto de funciones continuas y de periodo $2\pi$ que van de $\mathbb{R}$ a sí mismo. Es decir, $f:\mathbb{R}\to \mathbb{R}$ está en $V$ si es continua y $f(x)=f(x+2 \pi)$ para todo real $x$. Se puede mostrar que $V$ es un subespacio del espacio de funciones continuas, lo cual es sencillo y se queda como tarea moral. La transformación $b:V\times V \to \mathbb{R}$ tal que $$b(f,g)=\int_{-\pi}^\pi f(x) g(x)\, dx$$ es una forma bilineal.

Ejemplo 4. Consideremos $V=\mathbb{R}[x]$, el espacio vectorial de polinomios con coeficientes reales. Para $P$ y $Q$ polinomios definimos $$b(P,Q)=\sum_{n=1}^\infty \frac{P(n)Q(2n)}{2^n}.$$

La serie de la derecha converge absolutamente, de modo que esta expresión está bien definida. Se tiene que $b$ es una forma bilineal, pero no es simétrica.

Formas cuadráticas

Otra definición fundamental es la siguiente

Definición. Una forma cuadrática es una transformación $q:V\to \mathbb{R}$ que se obtiene tomando una forma bilineal $b:V\times V \to \mathbb{R}$ y definiendo $$q(x)=b(x,x).$$

Aclaración 4. Es posible que la forma bilineal $b$ que define a una forma cuadrática no sea única.

Ejemplo. Consideremos a la forma bilineal de $\mathbb{R}^2$ tal que $$b((x,y),(w,z))=xz-yw.$$ La forma cuadrática dada por $b$ es $$q(x,y)=b((x,y),(x,y))=xy-yx=0.$$ Esta es la misma forma cuadrática que la dada por la forma bilineal $$b'((x,y),(w,z))=yw-xz.$$ Pero $b$ y $b’$ son formas bilineales distintas, pues $b((1,0),(0,1))=1$, mientras que $b'((1,0),(0,1))=-1$.

$\triangle$

La aclaración anterior dice que puede que haya más de una forma bilineal que de una misma forma cuadrática. Sin embargo, resulta que la asignación es única si además pedimos a la forma bilineal ser simétrica. Este es el contenido del siguiente resultado importante.

Teorema (identidad de polarización). Sea $q:V\to \mathbb{R}$ una forma cuadrática. Existe una única forma bilineal simétrica $b:V\times V \to \mathbb{R}$ tal que $q(x)=b(x,x)$ para todo vector $x$. Esta forma bilineal está determinada mediante la identidad de polarización $$b(x,y)=\frac{q(x+y)-q(x)-q(y)}{2}.$$

En la siguiente entrada mostraremos el teorema de la identidad de polarización. Por el momento, para tomar más intuición, observa como la identidad se parece mucho a la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ en números reales.

Más adelante…

En esta entrada estudiamos una extensión de la noción de transformaciones lineales que ya habíamos discutido en la unidad anterior. Enunciamos algunos teoremas muy importantes sobre las transformaciones bilineales e hicimos algunos ejemplos de cómo podemos verificar si una transformación es bilineal. La noción de transformación bilineal, nos permitirá abordar un concepto muy importante: el producto interior.

En las siguientes entradas hablaremos del producto interior y cómo éste nos ayuda a definir ángulos y distancias entre vectores de un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Completa los detalles de la segunda parte del primer ejemplo.
  • Verifica que en efecto las transformaciones de los ejemplos de las aclaración 2 y 3 son formas bilineales.
  • Muestra que el subconjunto de funciones continuas $\mathbb{R}$ a $\mathbb{R}$ y de cualquier periodo $p$ es un subespacio del espacio vectorial $\mathcal{C}(\mathbb{R})$ de funciones continuas reales.
  • Demuestra que para $A$ y $B$ matrices en $M_{n}(F)$ se tiene que $\text{tr}(AB)=\text{tr}(BA)$.
  • Encuentra una forma cuadrática en el espacio vectorial $\mathbb{R}_3[x]$ que venga de más de una forma bilineal.
  • Muestra que el conjunto de formas bilineales de $V$ es un subespacio del espacio de funciones $V\times V \to \mathbb{R}$. Muestra que el conjunto de formas bilineales simétricas de $V$ es un subespacio del espacio de formas bilineales de $V$.
  • Piensa en cómo la igualdad $$xy=\frac{(x+y)^2-x^2-y^2}{2}$$ de números reales está relacionada con la identidad de polarización para el producto punto en $\mathbb{R}^n$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Superior II: Norma y distancia en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Ya definimos a $\mathbb{C}$ y sus operaciones. También definimos y dimos las propiedades de la conjugación compleja. Ahora hablaremos de la norma en los números complejos.

Definición. Dado el número complejo $w=a+bi$, su norma es $\sqrt{a^2+b^2}$. Denotamos a la norma de $w$ por $\Vert w \Vert$.

Ejemplo. La norma del complejo $\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}i$ es $$\sqrt{\left(\frac{1}{\sqrt 2}\right)^2+ \left(\frac{1}{\sqrt 2}\right)^2}=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)}=\sqrt{1}=1.$$ La norma del complejo $-3i$ es $$\sqrt{0^2+(-3)^2}=\sqrt{9}=3.$$

$\triangle$

Cuando pensamos a los números complejos como elementos del plano, identificando al complejo $a+bi$ con el punto $(a,b)$, la norma es una forma de medir qué tan alejado está del origen.

A partir de la noción de norma podemos definir la noción de distancia, que dice qué tan lejos están dos complejos entre sí.

Definición. Para dos números complejos $w$ y $z$ definimos la distancia entre $w$ y $z$ como la norma de $w-z$, es decir, $\Vert w-z\Vert$. La denotamos por $d(w, z)$

Propiedades básicas de la norma en los complejos

La norma en los complejos está relacionada con otras operaciones definidas como sigue:

Teorema 1. Sean $w$ y $z$ números complejos. Entonces:

  1. La norma es la raíz del producto de un complejo por su conjugado, es decir, $\Vert z \Vert = \sqrt{z\overline{z}}.$
  2. $\Vert z \Vert$ es un número real no negativo.
  3. $\Vert z \Vert = 0$ si y sólo si $z=0$.
  4. La norma es multiplicativa, es decir, $\Vert zw \Vert = \Vert z \Vert \Vert w \Vert$.

Demostración. Si $z=a+ib$, entonces $\overline{z}=a-ib$, y por lo tanto

\begin{align*}
\sqrt{z\overline{z}}&=\sqrt{a^2-(ib)^2}\\
&=\sqrt{a^2+b^2}\\
&=\Vert z \Vert.
\end{align*}

La norma de $z=a+ib$ es la suma del cuadrado de dos reales. Cada uno de ellos es no negativo, así que esa suma es no negativa. De este modo, al sacar raíz cuadrada obtenemos un número real y no negativo. Para que este número sea cero, necesitamos que $a^2=b^2=0$, es decir, que $a=b=0$, lo cual sucede justo cuando $z=0$.

Para mostrar la última propiedad, se pueden tomar dos números complejos explícitos y hacer las cuentas. Sin embargo, también podemos probarla usando la primer propiedad y la conmutatividad del producto, de números complejos, como sigue:

$$\Vert zw \Vert ^2= zw\overline{zw} = z\overline{z} w\overline{w}= \Vert z \Vert^2 \Vert w \Vert ^2.$$

Sacando raíz cuadrada de ambos lados obtenemos el resultado deseado.

$\square$

Ejercicios que usan las propiedades básicas

Veamos algunas formas en las que podemos usar las propiedades anteriores, de la norma, en los complejos.

Ejercicio 1. Muestra que $z$ y $\overline{z}$ tienen la misma norma.

Solución. Usando que $\overline{\overline{z}}=z$, la propiedad 1 del Teorema 1 y la conmutatividad del producto en $\mathbb{C}$ tenemos que $$\Vert \overline{z}\Vert = \sqrt{\overline{z}z}=\sqrt{z\overline{z}} = \Vert z \Vert.$$

$\triangle$

El siguiente es un corolario de la propiedad 4 del Teorema 1, que se puede mostrar usando inducción. La prueba de este corolario se deja como tarea moral.

Corolario. Para $z$ un complejo y $n$ un natural, se tiene que $$\Vert z^n \Vert = \Vert z \Vert ^n.$$

Ejercicio 2. Determina la norma del complejo $$\left(3+4i\right)^{20}.$$

Solución. Tomemos $u=3+4i$. El problema nos pide determinar $\Vert u^{20} \Vert$. Una forma de hacerlo es realizar primero la operación $u^{20}$, pero esto parece ser complicado. En vez de eso, usamos el Corolario anterior. Para ello, notamos que $$\Vert u \Vert = \sqrt{3^2+4^2}= \sqrt{25}=5.$$

De este forma, por el corolario, la norma que buscamos es $$\Vert u^{20} \Vert = \Vert u \Vert ^{20}= 5^{20}.$$

$\triangle$

Ejercicio 3. Sea $z$ un número complejo. Muestra que los siguientes números complejos tienen la misma norma: $$z, -z, iz, -iz.$$

Solución. Se sigue de la propiedad $4$ del Teorema 1 y de que $$\Vert -1 \Vert = \Vert i \Vert = \Vert -i \Vert = 1.$$

$\square$

Ejercicio 4. Muestra que para un número real, $r$, su norma compleja coincide con su valor absoluto.

Solución. Usando la propiedad 1 del Teorema 1 y que $\overline{r}=r$, tenemos que $$\Vert r \Vert = \sqrt{\overline{r}r}=\sqrt{r^2}=|r|.$$

$\square$

La desigualdad del triángulo

¿Cómo se comporta la norma con la suma de los complejos? Lo responderemos en esta sección. Pero antes, de pasar al teorema 2 que contiene la respuesta, veamos un pequeño resultado auxiliar.

Lema. Si $z$ es un número complejo, entonces $|\text{Re}(z)| \leq \Vert z \Vert$ y $|\text{Im}(z)|\leq \Vert z \Vert$. La primer igualdad se da si y sólo si $z$ es un número real y la segunda si y sólo si $z$ es un número imaginario puro, es decir, si su parte real es $0$.

Demostración. Tomemos $z=a+ib$. Tenemos que $a^2\leq a^2+b^2$, de modo que sacando raíces cuadradas tenemos que $$|\text{Re}(z)| = |a| = \sqrt{a^2}\leq \sqrt{a^2+b^2}=\Vert z \Vert.$$ La igualdad se da si y sólo si $b=0$, lo cual sucede si y sólo si $z$ es real.

$\square$

La demostración de la segunda parte es análoga, y queda como tarea moral.

Teorema 2 (desigualdad del triángulo). Para dos números complejos $w$ y $z$ se tiene que $$\Vert w+z \Vert \leq \Vert w \Vert + \Vert z \Vert.$$ La igualdad se da si y sólo si $w$ es un múltiplo real de $z$, es decir, si y sólo si existe un real $r$ tal que $w=rz$.

Demostración. Tenemos que:
\begin{align*}
\Vert w+z \Vert^2 &= (w+z)\overline{(w+z)}\\
&=(w\overline{w}+w\overline{z}+\overline{w}z+z\overline{z})\\
&=\Vert w \Vert^2 + 2\text{Re}(w\overline{z}) + \Vert z \Vert^2.
\end{align*}

Podemos continuar usando la desigualdad del Lema anterior (notemos que se obtiene la igualdad si y sólo si $w\overline{z}$ es real)

\begin{align*}
&\leq \Vert w \Vert^2 + 2\Vert w\overline{z}\Vert + \Vert z \Vert^2\\
&=\Vert w \Vert ^2 + 2 \Vert w \Vert \Vert z \Vert + \vert z \Vert^2\\
&=\left(\Vert w \Vert + \Vert z \Vert \right)^2.
\end{align*}

Esta cadena de desigualdades se resume a $$ \Vert w+z \Vert^2 \leq \left(\Vert w \Vert + \Vert z \Vert \right)^2, $$ de donde sacando raíz cuadrada en ambos lados, obtenemos lo deseado.

Como observamos durante la demostración, la igualdad se da si y sólo si $w\overline{z}$ es un número real, es decir, si y sólo si existe un real $s$ tal que $w\overline{z}=s$. Multiplicando por $z$ de ambos lados, obtenemos que $$w\Vert z \Vert^2 = sz.$$ Si $z=0$, entonces $w=0$ y por lo tanto $w$ es trivialmente un múltiplo real de $z$. Si $z\neq 0$, entonces $w=\frac{s}{\Vert z \Vert ^2}\cdot z$ también es un múltiplo real de $z$, con $r=\frac{s}{\Vert z \Vert ^2}$. Esto termina el análisis, de los casos, de la igualdad.

$\square$

Propiedades de la distancia

En la introducción definimos la distancia entre dos números complejos $w$ y $z$ como la norma de $w-z$, en símbolos, $d(w,z)=\Vert w-z \Vert$. Para formalizar ideas veamos la siguiente definición.

Definición. Sea $X$ un conjunto y $e: X\times X\rightarrow \mathbb{R}^{+}\cup \lbrace 0\rbrace$ una función, $e$ es una métrica en $X$ si, para todo $x$, $y$ y $z\in X$, satisface que:

  1. $e(x, y)\geq 0$.
  2. $e(x, y)=0$ si, y sólo si, $x=y$.
  3. $e(x, y)=e(y, x)$.
  4. $e(x, y)\leq e(x, z) + e(y, z)$.

Observa que a partir de los teoremas 1 y 2, la distancia $d$ cumple las propiedades de esta definición, por lo que decimos que $d$ es una métrica en $\mathbb{C}$. Así tenemos el siguiente teorema.

Teorema 3. Sean $w$ y $z$ dos números complejos cualesquiera y $d(w, z)=\vert\vert w- z\vert\vert$. Entonces $d$ es una métrica en $\mathbb{C}$.

Demostrar este teorema es sencillo a partir de lo que ya vimos, así que su demostración queda como tarea moral.

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Muestra la propiedad 4 del Teorema 1 usando de manera explícita las partes reales e imaginarias de los complejos $z$ y $w$.
  2. Demuestra el corolario de normas de potencias de complejos.
  3. Determina la norma del complejo $(12-5i)^{10}$.
  4. Determina la norma del complejo $(1+2i)(-3+4i)(5-6i)(-7-8i)$.
  5. Demuestra la segunda parte del Lema.
  6. Demuestra el Teorema 3.
  7. Sean $w=(3+4i)(5-i)$ y $z=(5-i)(4+2i)$. Determina $d(w,z)$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Construcción de números complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En una entrada anterior esbozamos las construcciones de los números racionales y los números reales. Es hora de construir los números complejos. Para ello, definiremos primero el conjunto, $\mathbb{C}$, sobre el que trabajaremos, después definiremos sus operaciones.

Una forma intuitiva de visualizar a $\mathbb{C}$ es tomar el conjunto de los números reales ($\mathbb{R}$) y en ellos introducir un nuevo elemento, $i$, el cual satisface que $i^2=-1$. Este es, realmente, un nuevo elemento, pues en $\mathbb{R}$ siempre se tiene que $x^2\geq 0$.

Una vez que introducimos a $i$, queremos que las operaciones de suma y producto estén definidas en $\mathbb{C}$ y que, además este conjunto, sea cerrado bajo estas operaciones. Es decir, es necesario que para cualquier número real $b$ se tenga $bi\in \mathbb{C}$ y que para cualesquiera números reales $a$ y $b$ tengamos, también, $a+bi\in \mathbb{C}$. Resulta que esto «es suficiente», en el sentido de que ya no hay que meter más números para que las operaciones estén bien definidas. Veamos como es esto, si tenemos los números de la forma $a+bi$ y $c+di$ con $a,b,c,d\in \mathbb{R}$ y los sumamos y multiplicamos como sigue: $$(a+bi)+(c+di)=(a+c)+(b+d)i$$, vemos que, la suma, «tiene la misma forma» (ya que $a+c$ y $b+d$ son números reales) así como su producto:
\begin{align*}
(a+bi)(c+di)&=ac+bci+adi+bdi^2\\
&=(ac-bd)+(ad+bc)i.
\end{align*}
Desde luego que lo anterior es soló una discusión informal. En las siguientes secciones veremos cómo formalizar estas ideas.

Los números complejos se comportan muy bien en términos algebraicos y en términos de análisis. En términos algebraicos, esto se comenzará a notar en la última parte del curso en donde veremos que cualquier polinomio tiene por lo menos una raíz compleja. En cursos posteriores, como el de álgebra lineal, verás otras de las propiedades algebraicas de los polinomios. Más adelante, si llevas un curso de variable compleja verás las bellas propiedades analíticas que tienen los números complejos.

El campo de los números complejos

La construcción del conjunto de números complejos es bastante sencilla. Para hacerla, simplemente consideraremos las parejas de números reales $$\mathbb{C}=\{(a,b): a,b\in \mathbb{R}\}.$$

Por el momento a cada $(a,b)$ lo puedes pensar de manera informal como el complejo $a+bi$. Lo interesante del conjunto de los números complejos no son sus elementos en sí, sino las siguientes operaciones que están definidas en él.

Definición. Para $(a,b)$ y $(c,d)$ en $\mathbb{C}$, definimos su suma como $$(a,b)+(c,d)=(a+c,b+d).$$

Recordemos que dentro del paréntesis se usa la suma de $\mathbb{R}$ ya que $a$, $b$, $c$ y $d$ son números reales.

Definición. Para $(a,b)$ y $(c,d)$ en $\mathbb{C}$, definimos su producto como $$(a,b)(c,d)=(ac-bd,ad+bc).$$

Igualmente dentro del paréntesis se usan la suma y producto de $\mathbb{R}$. La definición de producto está motivada por la discusión que hicimos en la introducción.

Teorema. El conjunto $\mathbb{C}$, junto con las operaciones de suma y producto que definimos, es un campo.

Demostración. La suma es conmutativa y asociativa ya que cada entrada pertenece a $\mathbb{R}$ y en $\mathbb{R}$ la suma es conmutativa y asociativa. El neutro es $(0,0)$ pues $$(a,b)+(0,0)=(a+0,b+0)=(a,b)$$ y para $(a,b)$ su inverso aditivo es $(-a,-b)$.

Veamos ahora el producto. Probemos que es conmutativo. Para dos complejos $(a,b)$ y $(c,d)$ tenemos que $$(a,b)(c,d)=(ac-bd,ad+bc)$$ y que $$(c,d)(a,b)=(ca-db,cb+da).$$

Ambos resultados son iguales ya que cada entrada pertenece a $\mathbb{R}$ y la suma y el producto son conmutativos en $\mathbb{R}$.

Probemos que el producto es asociativo. Para ello tomemos tres complejos $(a,b)$, $(c,d)$ y $(e,f)$. Tenemos que
\begin{align*}
[(a,b)(c,d)](e,f)&=(ac-bd,ad+bc)(e,f)\\
&=(ace-bde-adf-bcf,acf-bdf+ade+bce),
\end{align*} y que
\begin{align*}
(a,b)[(c,d)(e,f)]&=(a,b)(ce-df,cf+de)\\
&=(ace-adf-bcf-bde,acf+ade+bce-bdf),
\end{align*}

Ambas expresiones son iguales ya que cada entrada pertenece a $\mathbb{R}$ y la suma es conmutativa en $\mathbb{R}$.

El complejo $(1,0)$ actúa como neutro multiplicativo, pues $$(a,b)(1,0)=(a\cdot 1 – b\cdot 0, a\cdot 0 + b\cdot 1)=(a,b).$$ Además, si tomamos un complejo $(a,b)\neq (0,0)$ y lo multiplicamos por $\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)$ obtenemos \begin{align*}
(a,b)\left(\frac{a}{a^2+b^2},\frac{-b}{a^2+b^2}\right)&= \left(\frac{a^2+b^2}{a^2+b^2}, \frac{-ab}{a^2+b^2}+\frac{ba}{a^2+b^2}\right)\\ &= (1,0),
\end{align*} lo cual muestra que tenemos inversos multiplicativos.

Sólo falta demostrar la propiedad distributiva. Su verificación se deja como tarea moral.

$\square$

La copia de los reales en los números complejos

Dentro de $\mathbb{C}$ hay una copia de los números reales. Esta consiste en asociarle, a cada número real $a$, el número complejo $\varphi(a)=(a,0)$. Esta asociación es claramente biyectiva. Además, si $a$ y $b$ son números reales, tenemos que $$(a,0)+(b,0)=(a+b,0)=\varphi(a+b)$$ y
\begin{align*}
(a,0)(b,0) &= (ab-0\cdot 0, a\cdot 0 + b\cdot 0)\\
&= (ab,0) = \varphi(ab).
\end{align*}
Además los neutros se van a neutros y los inversos a inversos. Esto muestra que $\varphi$ es una asociación biyectiva entre $\mathbb{R}$ y los complejos de la forma $(a,0)$ y que respeta la estructura de campo de $\mathbb{R}$.

Por otro lado, notemos que $$(0,1) (0,1)= (0\cdot 0 – 1\cdot 1, 0\cdot 1 + 1\cdot 0)= (-1, 0).$$

En otras palabras, al elevar el complejo $(0,1)$ al cuadrado obtenemos el número $(-1,0)$, que es precisamente $\varphi(-1)$.

Tras toda esta discusión, estamos justificados entonces en llamar simplemente $1$ al complejo $(1,0)$, en llamar $i$ al complejo $(0,1)$, y por lo tanto en llamar $a+bi$ al complejo $(a,b)$. A partir de aquí ya podemos olvidar la notación de parejas y tratar a los números complejos como lo discutimos en la introducción.

Operaciones en la notación $a+bi$

La notación $a+bi$ para números complejos es bastante práctica. Podemos trabajar con los complejos «igualito que en $\mathbb{R}$, pero, además, con la propiedad de que $i^2=-1$».

Como $i^4=(-1)^2=1$, tenemos que las potencias de $i$ se ciclan cada cuatro: $$1, i, i^2, i^3, i^4, i^5, i^6, \ldots$$ son $$1,i, -1, -i, 1, i,\ldots .$$ Ya mencionamos en la introducción que para complejos $a+bi$ y $c+di$ se tiene que $$(a+bi)+(c+di)=(a+c)+(b+d)i$$ y que $$(a+bi)(c+di)=(ac-bd)+(ad+bc)i,$$ de modo que cualquier composición de sumas y productos de números complejos se puede simplificar a la forma $x+yi$ con $x$ y $y$ reales.

Ejemplo. Simplifica la expresión $$(1+i)(1-i)+(2+i)(3-4i).$$ Solución. Haciendo el producto del primer sumando tenemos $(1+i)(1-i)=1^2-i^2=1-(-1)=2$. Haciendo el producto del segundo sumando tenemos \begin{align*}
(2+i)(3-4i)&=6+3i-8i-4i^2\\
&=6-5i+4\\
&=10-5i.
\end{align*}
De esta forma, el resultado de la operación es $$2+(10-5i)=12-5i.$$

$\triangle$

En complejos también podemos usar expresiones fraccionales, como $\frac{3+2i}{5-i}$. Si queremos pasar estas expresiones a la forma $x+yi$ con $x$ y $y$ reales, tenemos que pensar a $\frac{1}{5-i}$ como «el inverso multiplicativo de $5-i$», que como vimos en la demostración de que $\mathbb{C}$ es un campo, es $$\frac{5}{5^2+(-1)^2}+\frac{1}{5^2+(-1)^2}i=\frac{5}{26}+\frac{1}{26} i.$$ Una vez hecho esto, tenemos que \begin{align*}
\frac{3+2i}{5-i}&=(3+2i)\left( \frac{5}{26}+\frac{1}{26} i \right)\\
&=\frac{13}{26} + \frac{13}{26} i\\
&=\frac{1}{2}+\frac{1}{2} i.
\end{align*}

Otra forma de pensarlo es que a una expresión de la forma $\frac{a+bi}{c+di}$ la podemos simplificar «multiplicando arriba y abajo» por $c-di$. De esta forma, obtenemos
\begin{align*}
\frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} = \left(\frac{ac+bd}{c^2+d^2}\right) + \left(\frac{bc-ad}{c^2+d^2}\right)i.
\end{align*}

Ambos métodos dan el mismo resultado.

Más adelante…

Al tomar un número complejo $z=a+bi$ y calcular su inverso, aparecen de manera natural las expresiones $a-bi$ y $a^2+b^2$. Estas expresiones son fundamentales.

  • A $a-bi$ se le conoce como el conjugado de $z$, y se denota por $\overline{z}$.
  • A $\sqrt{a^2+b^2}$ se le conoce como la norma de $z$ y se denota por $|z|$.

En la siguiente ocasión hablaremos de las propiedades de estas dos operaciones y cómo están relacionadas entre sí. Más adelante veremos su utilidad al resolver ecuaciones cuadráticas en los números complejos.

Si quieres, puedes revisar esta entrada sobre aplicaciones interesantes de los números complejos en la resolución de problemas. Tiene teoría que no hemos visto, pero te puede servir de motivación para aprender lo que veremos a continuación.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra que en los complejos se satisface la ley distributiva.
  2. Verifica que bajo la asociación $\varphi$ en efecto los neutros se van a los neutros y los inversos a inversos.
  3. Realiza la operación $(1+i)(2+i)(1+2i)(2+2i)$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.
  4. Realiza la operación $$\frac{3+5i}{2+i}-\frac{1+2i}{4-3i}$$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.
  5. Realiza la operación $$1+(1+i)+(1+i)^2+(1+i)^3+(1+i)^4$$ y expresa el resultado de la forma $x+yi$ con $x$ y $y$ reales.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Aritmética de números complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores de esta sección hablamos de propiedades aritméticas de números enteros. En esta entrada veremos varias de las propiedades aritméticas de los números complejos y cómo se pueden usar para resolver problemas, incluso aquellos en los que los números complejos no están mencionados de manera explícita en el enunciado.

Distintas formas de los números complejos

La forma más común en la que pensamos en números complejos es en su forma rectangular, en donde un complejo se escribe de la forma $z=a+bi$, en donde $a$ y $b$ son números reales y pensamos a $i$ como un número tal que $i^2=-1$. A $a$ le llamamos la parte real y a $b$ la parte imaginaria.

Podemos colocar al complejo $z=a+ib$ en el plano cartesiano, identificándolo con el punto $(a,b)$. De aquí, la forma polar del complejo es $z=r(\cos \theta + i \sin \theta)$, en donde $r$ es la norma $|z|:=\sqrt{a^2+b^2}$ y si $z\neq 0$, $\theta$ es el argumento, que es el ángulo en el sentido antihorario desde el origen entre el eje horizontal y el punto $(a,b)$. Si $z=0+i0=0$, no definimos el argumento.

Forma polar y rectangular de un complejo
Forma polar y rectangular de un complejo.

Así como le hacíamos en el caso de trabajar con módulos, a veces conviene pensar que el argumento es el único ángulo en $[0,2\pi)$ que cumple lo anterior. En otras ocasiones, conviene pensar al argumento como a veces que es la clase de todos los ángulos módulo $2\pi$.

Cuando tenemos a complejos $w=a+ib$ y $z=c+id$ en forma rectangular, su suma $w+z=(a+c) + i(b+d)$ corresponde geométricamente a encontrar la diagonal del paralelogramo definido por $(a,b)$, $(c,d)$ y el origen, pues corresponde justo al punto $(a+c,b+d)$.

Suma de números complejos
Suma de números complejos.

Su multiplicación $wz$ en forma rectangular es $(ac-bd)+(ad+bc)i$, que geométricamente no es tan claro que sea.

La forma exponencial $z=re^{i\theta}$ es simplemente una forma de abreviar a la forma polar, pues por definición $e^{i\theta}=\cos \theta + i \sin \theta$. En forma exponencial, el producto es más sencillo de entender.

Ejercicio. Demuestra lo siguiente:

  • Muestra que la norma es multiplicativa, es decir, que para complejos $r$ y $s$ se tiene que $|rs|=|r||s|$.
  • Muestra que $e^{i\alpha}e^{i\beta}=e^{i(\alpha+\beta)}$.

Sugerencia. Para el primer punto, haz las cuentas usando la forma rectangular. Para el segundo punto, escribe las definiciones de todos los términos en forma polar. Haz las multiplicaciones en el lado izquierdo y usa las fórmulas trigonométricas para sumas de ángulos.

Por el ejercicio anterior, si tenemos a los complejos en forma polar $w=re^{i\alpha}$, $z=se^{i\beta}$, entonces el producto es $wz=rse^{i(\alpha+\beta)}$, de modo que el producto corresponde al complejo con el producto de normas y suma de argumentos. En ocasiones esto nos permite plantear algunos problemas geométricos en términos de números complejos.

Producto de números complejos.
Multiplicación de números complejos.


Aplicaciones de aritmética de complejos

Veamos dos aplicaciones de la teoría anterior a problemas que no mencionan en el enunciado a los números complejos.

Problema. Sean $a$ y $b$ enteros. Muestra que el número $(a^2+b^2)^n$ se puede expresar como la suma de los cuadrados de dos números enteros.

Podría ser tentador usar el binomio de Newton para elevar el binomio a la $n$-ésima potencia. Sugerimos que intentes esto para darte cuenta de las dificultades que presenta.

Sugerencia pre-solución. Escribe a $a^2+b^2$ como el cuadrado de la norma de un complejo y usa que es multiplicativa.

Solución. El número $r=a^2+b^2$ es la norma al cuadrado del número complejo $z=a+ib$. Entonces, el número $r^n=(a^2+b^2)^n$ es la norma al cuadrado del número complejo $z^n=(a+ib)^n$. Pero al desarrollar $(a+ib)^n$ obtenemos únicamente a $i$, potencias de $a$ y de $b$, y coeficientes binomiales. De modo que $z^n=(a+ib)^n=c+id$ con $c$ y $d$ enteros (aquí estamos usando notación adecuada: no es necesario saber quienes son, sólo que son enteros). Así, $r^n=c^2+d^2$ con $c$ y $d$ enteros.

$\square$

Veamos ahora un ejemplo de geometría. Este problema es posible resolverlo de muchas formas, pero notemos que los números complejos nos dan una forma de hacerlo de manera algebraica de manera inmediata.

Problema. En la siguiente figura hay tres cuadrados de lado $1$ pegados uno tras otro. Determina la suma de los ángulos marcados con $\alpha$ y $\beta$.

Problema de suma de ángulos
Determinar el valor de la suma $\alpha+\beta$.

Sugerencia pre-solución. El problema pide determinar una suma de ángulos, así que conviene pensar esta suma de ángulos como el ángulo del producto de dos complejos. Haz tu propia figura, pero ahora sobre el plano complejo.

Solución. El ángulo $\alpha$ es igual al argumento del complejo $2+i$ y el ángulo $\beta$ es igual al argumento del complejo $3+i$. De esta forma, $\alpha+\beta$ es igual al argumento del complejo $(2+i)(3+i)=(6-1)+(2+3)i=5+5i$. Este complejo cae sobre la recta $\text{Re}(z)=\text{Im}(z)$, de modo que su argumento es $\pi / 4$.

$\square$

Este problema también se puede resolver de (numerosas) maneras geométricas, que puedes consultar en este video.

Fórmula de De Moivre

El siguiente teorema se puede demostrar por inducción sobre $n$.

Teorema (fórmula de De Moivre). Para cualquier entero $n$ y ángulo $\theta$ se tiene que $$(\cos \theta + i \sin \theta)^n=\cos (n\theta) + i \sin (n\theta).$$ Dicho de otra forma, en términos de la forma exponencial, se vale usar la siguiente ley de los exponentes $$(e^{\theta i})^n=e^{(n\theta) i}.$$

La fórmula de De Moivre es otra herramienta que ayuda a resolver problemas de números reales enunciándolos en términos trigonométricos. El truco consiste en:

  1. Tomar una expresión real que queramos entender.
  2. Identificarla como la parte real o imaginaria de una expresión compleja.
  3. Usar la aritmética de números complejos para entender la expresión compleja.
  4. Regresar lo que entendamos a los reales.

Veamos un par de ejemplos, relacionados con funciones trigonométricas. Comenzamos con una fórma de encontrar la fórmula para el coseno de cinco veces un ángulo.

Problema. Sea $\theta\in [0,2\pi)$. Expresa a $\cos 5\theta$ en términos de $\cos \theta$.

Sugerencia pre-solución. Identifica a $\cos 5\theta$ como la parte real de un número complejo. Inspírate en la fórmula de De Moivre. Usa binomio de Newton.

Solución. Por la fórmula de De Moivre, $\cos 5\theta$ es la parte real del complejo $(\cos \theta + i \sin \theta)^5$, así que calculemos quién es exactamente este número usando binomio de Newton. Para simplificar la notación, definimos $a=\cos \theta$ y $b=\sin \theta$. Tenemos que

\begin{align*}
(a+ib)^5&=a^5+5a^4(bi)+10a^3(ib)^2+10a^2(ib)^3+5a(ib)^4+(ib)^5\\
&=(a^5-10a^3b^2+5ab^4) + (5a^4b-10a^2b^3+b^5) i.
\end{align*}

Además, por la identidad pitagórica recordemos que $a^2+b^2=1$, de donde $b^2=1-a^2$, de modo que la parte real de la expresión anterior es $$a^5-10a^3(1-a^2)+5a(1-2a^2+a^4),$$ que agrupando es $$16a^5-20a^3+5a.$$ Recordando que $a$ es $\cos \theta$, obtenemos la fórmula final $$\cos 5\theta = 16\cos^5 \theta – 20 \cos^3 \theta + 5\cos \theta.$$

$\square$

Raíces de la unidad

En muchos problemas se utilizan las raíces de la ecuación $x^n=1$.

Teorema. Sea $n\geq 1$ un entero. Las ecuación $x^n=1$ tiene $n$ soluciones complejas, que en el plano complejo forman los vértices del $n$-ágono regular con centro en $0$ y tal que uno de sus vértices es $1$. Si $\omega$ es la raíz de menor argumento positivo, entonces estas soluciones son $1,\omega, \omega^2,\ldots,\omega^{n-1}$.

Raíces de la unidad en los números complejos
Raíces $n$-ésimas de la unidad para $n=5$.

A estas soluciones les llamamos las raíces $n$-ésimas de la unidad. Notemos que $\omega^{n}=1$, y que en general si escribimos a un entero $m$ usando el algoritmo de la división como $m=qn+r$, entonces $\omega^m=\omega^r$. ¡Los productos de raíces de la unidad se comportan como los elementos de $\mathbb{Z}_n$ bajo suma módulo $n$!

Proposición. Sea $n\geq 2$ un entero. La suma de las $n$ raíces $n$-ésimas de la unidad es $0$ y su producto es $1$.

La proposición anterior nos permite, en ocasiones, «filtrar» ciertas expresiones algebraicas. A continuación presentamos un ejemplo, que retomamos de los primeros ejemplos que vimos, cuando estábamos aprendiendo la heurística de encontrar un patrón.

Problema. Determina el valor de la suma $$\binom{100}{0}+\binom{100}{3}+\binom{100}{6}+\ldots+\binom{100}{99}.$$

Sugerencia pre-solución. Si no recuerdas lo que debería salir, vuelve a experimentar con los primeros valores, para cuando en vez de usar $100$ se usan números más chiquitos. Para entender mejor el patron, generaliza el problema, y en vez de sólo tener múltiplos de $3$ abajo, explora también qué sucede cuando tienes los números que dejan residuo $0$, $1$ o $2$ módulo $3$.

Ya que recuerdes la fórmula que queremos, considera una raíz cúbica $\omega$ de la unidad distinta de $1$. Calcula $(1+1)^{100}$, $(1+\omega)^{100}$ y $(1+\omega^2)^{100}$ usando el binomio de Newton y aprovechando que toda potencia de $\omega$ es $1$, $\omega$ u $\omega^2$ para simplificar la notación.

Solución. Sea $\omega$ una raíz cúbica de la unidad distinta de $1$. Tenemos que $\omega^3=1$ y que $1+\omega+\omega^2=0$. De este modo, podemos usar $\omega$ y el binomio de Newton para calcular las siguientes expresiones

\begin{align*}
(1+1)^{100}&=\binom{100}{0}+\binom{100}{1}+\binom{100}{2}+ \binom{100}{3}+ \ldots\\
(1+\omega)^{100}&= \binom{100}{0}+\binom{100}{1}\omega+\binom{100}{2}\omega^2+\binom{100}{3}+\ldots\\
(1+\omega^2)^{100}&= \binom{100}{0}+\binom{100}{1}\omega^2+\binom{100}{2}\omega+ \binom{100}{3}+\ldots
\end{align*}

¿Qué sucede al sumar las tres expresiones? En el lado derecho, cada vez que $m$ es un múltiplo de $3$, tenemos $3\binom{100}{m}$, y cada vez que $m$ no es un múltiplo de $3$, tenemos $$(1+\omega+\omega^2)\binom{100}{m}=0.$$ ¡Se filtran exactamente los coeficientes binomiales con parte inferior múltiplo de $3$! Así, tres veces la suma que buscamos es igual a $$2^{100}+(1+\omega)^{100}+(1+\omega^2)^{100}.$$

Esta ya es una expresión suficientemente cerrada, pero podemos simplificar todavía más:

\begin{align*}
(1+\omega)^{100}&=(-\omega^2)^{100}=\omega^{200}=\omega^2\\
(1+\omega^2)^{100}&=(-\omega)^{100}=\omega\\
(1+\omega)^{100}+(1+\omega^2)^{100}&=\omega^2+\omega=-1.
\end{align*}

Así, la expresión que queremos es $\frac{2^{100}-1}{3}$.

$\square$

Más ejemplos

Puedes ver más ejemplos del uso de esta teoría en la Sección 3.5 del libro Problem Solving through Problems de Loren Larson.