Archivo de la etiqueta: divisor

Álgebra Superior II: El algoritmo de Euclides

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores estudiamos los conceptos de máximo común divisor y de mínimo común múltiplo. Ahora nos enfocaremos en un aspecto un poco más práctico sobre el máximo común divisor que dejamos pendiente: ¿cómo lo calculamos? Para ello hablaremos de un procedimiento conocido como el algoritmo de Euclides, el cual afirma que afirma que podemos aplicar iteradas veces el algoritmo de la división en ciertos números específicos, comenzando con dos enteros $a$ y $b$ para encontrar su máximo común divisor de dos enteros positivos $a$ y $b$.

Lo primero que haremos es explicar el procedimiento mediante el cual podemos encontrar el máximo común divisor de dos números aplicando repetidamente el algoritmo de la división. En la siguiente sección daremos la demostración de por qué funciona este procedimiento. Hacia el final de la entrada también veremos que este mismo procedimiento nos permite también escribir al máximo común divisor de dos enteros $a$ y $b$ como combinación lineal de ellos, es decir, de la forma $ra+sb$ con $r$ y $s$ números enteros.

El procedimiento del algoritmo de Euclides

Sean $a, b$ cualesquiera enteros positivos, con $a \neq b$ y $a > b.$ Por el algoritmo de la división, sabemos que siempre existen $q, r \in \mathbb{Z}$ tales que podemos escribir $$a = bq + r, \enspace \text{con} \quad \quad 0 \leq r < b. $$

Luego, como $b$ y $r$ son enteros, también existen $q_1$ y $r_1$ tales que $$b = rq_1 + r_1,\enspace \text{con} \quad \quad 0 \leq r_1 < r.$$

Y como $r$ y $r_1$ son enteros, existen $q_2$ y $r_2 \in \mathbb{Z}^+$ tales que $$r = r_1q_2 + r_2,\enspace \text{con} \quad \quad 0 \leq r_2 < r_1.$$

Se puede continuar así sucesivamente. Pero este procedimiento debe de terminar, pues tenemos $b>r>r_1>r_2>\ldots \geq 0$, de modo que debe existir una $i$ tal que $r_i=0$. De esta forma, en el penúltimo paso tendremos que existen $q_{i-1}$ y $r_{i-1}$ enteros tales que $$r_{i-3} = r_{i-2}q_{i-1} + r_{i-1}, \enspace \text{con} \quad \quad 0 \leq r_{i-1} < r_{i-2}.$$

Y en el último paso tendríamos $q_i \in \mathbb{Z}^+$ y $r_i = 0$ tales que
$$r_{i-2} = r_{i-1}q_i + 0, \enspace \text{con} \quad \quad 0 = r_i < r_{i-1} .$$

Lo que nos dice el algoritmo de Euclides es que el último residuo no cero, en este caso $r_{i-1}$ es el máximo común divisor de $a$ y $b$.

Este procedimiento es particularmente útil cuando $a$ y $b$ son números tan grandes, tanto que determinar el máximo común divisor de ellos no sea inmediato. Aunque se comience con números muy grandes, el algoritmo de Euclides encuentra el MCD de manera rápida.

Ejemplo del algoritmo de Euclides

A continuación veremos el algoritmo de Euclides en acción.

Problema. Encuentra el máximo común divisor de $3456$ y $6524$.

Solución. Observamos que $6524 > 3456$. Así, $$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
Aplicando nuevamente el algoritmo de la división, obtenemos
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
Aplicando una vez más el algoritmo de la división, se tiene
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
Siguiendo este procedimiento,
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Como el último residuo no cero es $4$, entonces $(6524, 3456)=4$.

$\triangle$

Observación. Aunque el algoritmo de Euclides requiere que los números $a$ y $b$ sean positivos, cuando ocurre el caso de que uno de ellos o los dos fueran negativos, no hay un gran obstáculo. Basta sacar el valor absoluto de ambos números al inicio, ya que los divisores de un número negativo son los mismos que los de su valor absoluto.

Veamos un ejemplo que usa esta observación.

Ejemplo. Obtén el máximo común divisor de $-100$ y $45$.

Solución. Como uno de los números es negativo, antes que nada sacamos valores absolutos: $|-100| = 100$ y $|45| = 45.$ Le aplicamos el algoritmo de Euclides a estos números:
$$ 100 = 45 \cdot 2 + 10, \quad \quad 0 \leq 10 < 45. $$
$$ 45 = 10 \cdot 4 + 5, \quad \quad 0 \leq 5 < 10. $$
$$10 = 5 \cdot 2 + 0.$$

Notemos que el último residuo no cero es $5$. Por lo tanto, $(-100, 45) = 5.$

$\triangle$

Demostración de la validez del algoritmo de Euclides

Ahora, veamos la demostración de que el algoritmo de Euclides funciona. El resultado clave para demostrarlo es la siguiente proposición.

Proposición. Sean $a,b \in \mathbb{Z}^+, $ tales que $a = bq + r.$ Entonces $(a,b) = (b,r).$

Demostración. Sean $a,b \in \mathbb{Z}^+$. Sea $d=(a,b)$ el máximo común divisor de $a$ y $b$, y sea $f=(b,r)$ el máximo común divisor de $b$ y $r$.

Tenemos que $d\mid a$. Además, $d \mid b,$ por lo que $d\mid bq$. Así, $d\mid a-bq=r$. De este modo, $d$ es un divisor común de $b$ y de $r$, de modo que $d\mid f$.

Por otro lado, $f\mid b$, de donde $f\mid bq$. Además, $f\mid r$. De este modo, $f\mid bq+r=a$. Concluimos entonces que $f$ es divisor común de $a$ y $b$. Pero entonces $f\mid d$.

Por propiedades de divisibilidad, tenemos entonces que $|f|=|d|$, pero como ambos son números no negativos concluimos entonces que $f=d$, como queríamos.

$\square$

Ya con este resultado demostrado, enunciemos formalmente el algoritmo de Euclides y demos su demostración.

Teorema. Empecemos tomando dos enteros positivos $a$ y $b$, con $a\geq b$. Usando el algoritmo de la división, definimos sucesivamente los números $r_0,r_1,\ldots,r_i$ y $q_0,q_1,\ldots,q_i$ de manera que se cumpla

\begin{align*}
b=aq_0+r_0\\
a=r_0q_1+r_1
\end{align*}

con $0\leq r_0<a$, y $0\leq r_1 < r_0$ y para $j=2,\ldots,i$ que se cumpla

\begin{align*}
r_{j-2}=r_{j-1}q_j+r_{j},
\end{align*}

con $0\leq r_j < r_{j-1}.$

Como $b\geq a > r_0 > r_1 > r_2 > \ldots > r_i$, entonces podemos suponer que $r_i=0$. Entonces $(a,b)=r_{i-1}$.

Demostración. Por la proposición anterior, tenemos que $(a,b)=(b,r_0)$. También por esa misma proposición, tenemos que $(b,r_0)=(r_0,r_1)$. Y, de hecho, aplicando repetidamente la proposición tenemos que:

$$(r_0,r_1)=(r_1,r_2)=\ldots=(r_{i-1},r_i)=(r_{i-1},0)=r_{i-1}.$$

La penúltima igualdad es porque $r_i=0$ y la última porque $(n,0)=n$ para cualquier entero positivo $n$.

$\square$

Máximo común divisor como combinación lineal entera

Una última consecuencia del algoritmo de Euclides es que nos ayuda a poner al máximo común divisor de dos números $a$ y $b$ como combinación lineal entera de ellos dos.

Una forma práctica de encontrar la combinación lineal correspondiente es mediante el siguiente procedimiento. Tomaremos como ejemplo el algoritmo de Euclides que ya habíamos hecho para encontrar $(6524,3456)$.

$$6524 = 3456\cdot 1 + 3068, \quad \quad 0 \leq 3068 < 3456. $$
$$3456 = 3068 \cdot 1 + 388, \quad \quad 0 \leq 388 < 3068. $$
$$3068 = 388\cdot 7 + 352, \quad \quad 0 \leq 352 < 388. $$
$$388 = 352 \cdot 1 + 36, \quad \quad 0 \leq 36 < 352. $$
$$352 = 36 \cdot 9 + 28, \quad \quad 0 \leq 28 < 36. $$
$$36 = 28\cdot 1 + 8, \quad \quad 0 \leq 8 < 28.$$
$$28 = 8 \cdot 3 + 4, \quad \quad 0 \leq 4 < 8.$$
$$8 = 4\cdot 2 + 0.$$

Lo que haremos es la siguiente tabla, en donde en la columna izquierda ponemos todos los residuos que vamos encontrando. Además, completaremos la primera fila con $1,0$ y la segunda con $0,1$.

$6524$$1$$0$
$3456$$0$$1$
$3068$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Vamos a ir llenando la tabla con lo que ya sabemos del algoritmo de Euclides. Por el algoritmo de Euclides, sabemos que $3456$ cabe $1$ vez en $6524$. Por esta razón, restamos $1$ vez la segunda fila de la primera, para obtener $1-0=1$ y $0-1=-1$. Estos son los números que van en la fila $3$, columnas $2$ y $3$:

$6524$$1$$0$
$3456$$0$$1$
$3068$$\mathbf{1}$$\mathbf{-1}$
$388$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

De nuevo, $3068$ cabe una vez en $3456$, así que de nuevo restamos una vez el tercer renglón del segundo. Nos queda $0-1=-1$ y $1-(-1)=2$ para las nuevas entradas:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$\mathbf{-1}$$\mathbf{2}$
$352$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Ahora cambia un poco, pues $388$ ya sabemos que cabe $7$ veces en $3068$ (por lo que hicimos del algoritmo de Euclides). Así, para la nueva fila restamos siete veces la cuarta fila de la tercera, para obtener como nuevos números $1-7\cdot (-1)=8$ y $-1-7\cdot (2)=-15$. La tabla queda así:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$\mathbf{8}$$\mathbf{-15}$
$36$
$28$
$8$
$4$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Siguiendo este procedimiento repetidamente, llegamos a la siguiente tabla:

$6524$$1$$0$
$3456$$0$$1$
$3068$$1$$-1$
$388$$-1$$2$
$352$$8$$-15$
$36$$-9$$17$
$28$$89$$-168$
$8$$-98$$185$
$4$$383$$-723$
Ejemplo de cómo poner al MCD como combinación lineal entera.

Los últimos dos números que pusimos en la tabla nos dan la respuesta de cómo poner a $4$ como combinación lineal entera de $6524$ y de $3456$:

$$4=383 \cdot 6524 – 723 \cdot 3456.$$

Verifica que en efecto las cuentas son correctas, y que esta expresión final es válida.

¿Cómo se demuestra que este procedimiento siempre funciona? Se puede mostrar inductivamente que, de hecho, para cada uno de los renglones con entradas $a,b,c$ se cumple que $a=6524b+3456c$. Esto queda como uno de los problemas de tarea moral.

Más adelante…

Esta entrada termina nuestra exploración introductoria al mundo de la aritmética de los números enteros. Sin embargo, todavía hay otros lugares a los que nos llevará el algoritmo de la división. Hasta ahora hemos discutido mucho el caso de la divisibilidad, es decir, cuando el residuo de la división de un número entre otro es igual a cero. Pero también podemos encontrar estructuras matemáticas muy ricas si estudiamos al resto de los posibles residuos. A partir de la siguiente entrada hablaremos del anillo de enteros módulo $n$, lo cual nos ayudará a formalizar estas ideas.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Usa el algoritmo de Euclides para encontrar el máximo común divisor de las siguientes parejas de números, y para escribirlo como combinación lineal entera de ellos.
    1. $15$ y $35$
    2. $18$ y $92$
    3. $201$ y $153$
    4. $328$ y $528$
  2. ¿Cómo usarías el algoritmo de Euclides para encontrar el máximo común divisor de los números $91$, $105$ y $119$? Es decir, debes encontrar el mayor entero $d$ que divida a estos tres números de manera simultánea.
  3. Hay otra forma de encontrar el máximo común divisor de dos números si conocemos su factorización en números primos. Imagina que tenemos dos números $n$ y $m$ y que, conjuntamente, usan los números primos distintos $p_1,p_2,\ldots, p_k$ en su factorización en primos (quizás con exponente cero). Esto nos permite escribirlos como:
    \begin{align*} m=p_1^{\alpha_1}p_2^{\alpha_2}\ldots p_k^{\alpha_k} \\ n=p_1^{\beta_1}p_2^{\beta_2}\ldots p_k^{\beta_k}\ \end{align*}.
    1. Demuestra que la máxima potencia de $p_1$ que divide tanto a $m$ como a $n$ es $p_1^{\text{min}(\alpha_1,\beta_1)}$.
    2. Demuestra que el máximo común divisor de $m$ y $n$ es $$p_1^{\text{min}(\alpha_1,\beta_1)} p_2^{\text{min}(\alpha_2,\beta_2)}\cdots p_k^{\text{min}(\alpha_k,\beta_k)}.$$
  4. Demuestra un resultado análogo al del inciso anterior para el mínimo común múltiplo y usa ambos resultados para dar otra demostración de que $(m,n)[m,n]=mn$.
  5. Verifica que, en efecto, el método explicado en la entrada ayuda a escribir al máximo común divisor de dos enteros como combinación lineal de ellos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Teorema fundamental de la aritmética e infinidad de números primos

Por Ana Ofelia Negrete Fernández

Introducción

En la entrada anterior comenzamos a hablar de los números primos. Lo que ahora veremos es que, en un sentido muy preciso, los números primos son los bloques con los cuales se construyen todos los demás enteros. El enunciado preciso estará dado por el teorema fundamental de la aritmética.

A grandes rasgos, el teorema fundamental de la aritmética afirma que todo entero se puede escribir como producto de primos, quizás algunos repetidos. Nos referimos a situaciones del tipo
\begin{align*}
8 &= 2 \cdot 2 \cdot 2 = 2^3,\\
13 &= 13^1,\\
152 &= 2^3\cdot 19, \enspace \text{etc.}
\end{align*}

Otro resultado que demostraremos en esta entrada es que hay una infinidad de primos. Euclides fue una de las primeras personas de quienes nos queda registro que lo notó. Veremos una demostración similar a la que él dió.

El teorema fundamental de la aritmética

El teorema fundamental de la aritmética dice que cualquier número entero es producto de números primos. Pero, más aún, nos dice que este producto es único, bajo ciertas condiciones que le ponemos a la representación. Para simplificar la presentación, estudiaremos primero lo que dice el enunciado para enteros positivos.

Teorema. Sea $n$ un entero positivo. Entonces, existe un único entero $k$ y únicos números primos $p_1\leq p_2 \leq p_3 \leq \ldots \leq p_k$ tales que $$n=p_1\cdot p_2\cdot \ldots \cdot p_k.$$

Por ejemplo, consideremos el número $1060$. Notemos que en efecto se puede escribir como producto de primos de la siguiente manera: $1060=2\cdot 2 \cdot 5 \cdot 53$. El teorema fundamental de la aritmética nos dice que esta es la única manera en la que podemos ponerlo como producto de primos. Si lo piensas un poco, no es totalmente obvio. ¿Qué impide que, por ejemplo, no pase que $1060$ tenga otra posible representación en donde el $5$ aparezca más veces, o el $2$ menos veces? Es lo que debemos estudiar.

Demostración de la existencia

Vamos a partir la demostración del teorema fundamental de la aritmética en dos partes. Primero veremos la existencia, y después la unicidad. Así, nos enfocaremos primero en ver que cualquier entero positivo tiene una factorización en números primos.

La demostración será por inducción fuerte. Si $n=1$, la factorización es la factorización vacía, en donde $k=0$, y como no estamos multiplicando nada obtenemos $1$. Si $n=2$, entonces la factorización es precisamente $2=2$, pues $2$ es un número primo. Supongamos que el resultado es cierto hasta antes de cierto número fijo $n$ y veamos qué pasa con $n$. Si $n$ es un número primo, entonces $n=n$ ya es una factorización como las que buscamos. Si $n$ no es un número primo, entonces lo podemos factorizar como $n=ab$, en donde $a$ y $b$ son enteros positivos distintos de $1$. Por ello, cada uno de $a$ y $b$ son menores que $n$ y por hipótesis inductiva tienen una factorización en primos, digamos
\begin{align*}
a&=q_1\cdot q_2 \cdot \ldots\cdot q_l\\
b&=r_1\cdot r_2 \cdot \ldots \cdot r_m.
\end{align*}

Así, renombrando $q_1,\ldots,q_l,r_1,\ldots,r_m$ como $p_1\leq \ldots \leq p_k$ (donde $k=l+m$) para que queden en orden no decreciente obtenemos la factorización $$n=p_1\cdot p_2\cdot \ldots \cdot p_k $$ buscada. Esto termina la prueba de la primera parte.

Demostración de la unicidad

Veamos ahora que las factorizaciones en primos son únicas. Una vez más, procedemos por inducción fuerte. El resultado claramente es cierto para $n=1$ y $n=2$. Supongamos que el resultado es cierto hasta antes de cierto entero $n$ dado y supongamos que tenemos dos factorizaciones para $n$:

\begin{align*}
n&=p_1\cdot p_2 \cdot \ldots\cdot p_k\\
n&=q_1\cdot q_2 \cdot \ldots \cdot q_l.
\end{align*}

Notemos que $p_k$ es un divisor de $n$, así que debe dividir a $q_1\cdot\ldots\cdot q_l$. Por una propiedad de divisibilidad que vimos en la entrada pasada, debe suceder que o bien $p_k$ divide a $q_l$, o bien que divide a $q_1\cdot \ldots \cdot q_{l-1}$. Si pasa lo segundo, debe dividir o bien a $q_{l-1}$, o bien a $q_1\cdot \ldots \cdot q_{l-2}$. Y así sucesivamente, de modo que $p_k$ debe dividir a alguno de los $q_i$. Pero como $p_k$ y $q_i$ son primos, debe suceder entonces que $p_k=q_i$. Tras cancelar este término en ambas expresiones de $n$, llegamos a que:

$$p_1\cdot p_2 \cdot \ldots\cdot p_{k-1}=q_1\cdot \ldots \cdot q_{i-1} \cdot q_i \cdot \ldots \cdot q_l,$$

pero esto es una igualdad de factorizaciones en primos para un número menor estricto a $n$. Por hipótesis inductiva, ambas factorizaciones deben de ser la misma. Así, ambas factorizaciones de $n$ son la misma, pues se obtienen a partir de estas multiplicando por el número $p_k=q_i$.

$\square$

Otra forma de escribir el teorema fundamental de la aritmética

Hay otra manera de escribir el teorema fundamental de la aritmética, en donde los primos iguales se agrupan en un mismo término, y se coloca la potencia correspondiente.

Teorema. Sea $n$ un entero positivo. Existe un único entero no negativo $k$, únicos primos $p_1\leq \ldots \leq p_k$ y únicos exponentes $\alpha_1,\ldots,\alpha_k$ tales que:

$$n=p_1^{\alpha_1}\cdot p_2^{\alpha_2}\cdot \ldots \cdot p_k^{\alpha_k}.$$

En realidad esta segunda versión del teorema se deduce de manera inmediata de la anterior.

Ejemplo. Consideremos el número $36$. El $2$ lo divide, así que $36=18\cdot 2$. Luego, el $3$ divide al $18$, de manera que $36=3\cdot 6\cdot 2$. Finalmente, notamos que $6=2\cdot 3$, de donde $36=3\cdot 2 \cdot 3 \cdot 2$. Para obtener la «forma estándar» de la factorización, agrupamos los primos iguales, les ponenmos el orden correspondiente y escribimos en orden creciente de primos. Así, la factorización de $36$ quedaría $36=2^2\cdot 3^2$.

$\triangle$

El conjunto de primos es infinito

En esta sección queremos demostrar otro resultado importante sobre el conjunto de los números primos.

Teorema. El conjunto de números primos es infinito.

Para dar la demostración, usaremos el método de demostración por contradicción, es decir, partiremos de que el conjunto de primos no es finito y, eventualmente se disparatará el asunto.

Este en efecto parece ser el método más conveniente. Sería difícil usar inducción dado que, si bien el conjunto de primos puede indexarse por $p_1, p_2, p_3, \ldots$, no es fácil determinar cuál es el primo que sigue en la lista. O bien, dado un entero $n$, no es fácil determinar si $n+1$ será o no un número primo. Resultaría igualmente difícil intentar la demostración por algún otro método directo.

La idea que usaremos es la siguiente. Si hay finitos primos, digamos $k$, significa que se puede crear una lista finita con ellos: $p_1, p_2, \ldots , p_k$. Veremos que siempre debe existir un primo distinto de los de la lista, lo que llevará a una contradicción con la hipótesis de que sólo existían $k$ primos.

Veamos primero unos casos particulares del argumento que usaremos. Supongamos que sólo existieran $2$ primos, el $2$ y el $3$. Consideremos el número $z = 2\cdot 3 + 1$. De acuerdo al teorema fundamental de la aritmética, este número o bien es primo, o bien debe tener un divisor primo $p$. No puede ser primo, pues dijimos que los únicos primos eran $2$ y $3$. No puede ser divisible entre $2$ pues deja residuo $1$ al hacer la división. Tampoco puede ser divisible entre $3$ pues también deja residuo $1$ al hacer la división. Así, debe haber otro primo que no sea $2$ y $3$ y que divida a este número. Esto contradice que sólo existieran $2$ primos.

Veamos otro ejemplo. Supongamos que hay únicamente 4 primos: $2,3,5,7$. Consideremos el número $2 \cdot 3 \cdot 5 \cdot 7 + 1 = 211.$ Si dividimos este número entre $2$, nos da $211=105\cdot 2 +1$, así que $2\nmid 211$. Si lo dividimos entre $3$, nos da $211=70\cdot 3 + 1$, así que $3\nmid 211$. De manera similar, se puede ver que las divisiones entre $5$ y $7$ también dejan residuo $1$, así que $5 \nmid 211$ y $7\nmid 211$.

Por el teorema fundamental de la aritmética, debe haber algún primo que divida a $211$. Pero estamos suponiendo que los únicos primos que existen son $2,3,5,7$ y acabamos de ver que ninguno de estos funciona. ¡Esto es una contradicción! Lo mismo ocurrirá sin importar la cantidad de primos $p_1, p_2, \ldots , p_k$ inicial. El problema no es cuántos son exactamente, sino la suposición de que son una cantidad finita.

Demostración. Supongamos, para buscar una contradicción, que el conjunto de números primos es finito y que consiste de exactamente los $k$ números primos $p_1, p_2, \ldots , p_k$. Consideremos el número $$p_1\cdot p_2 \cdot \ldots \cdot p_k +1.$$

El anterior número no es divisible por ninguno de los primos $$p_1, p_2, \ldots , p_k,$$ pues precisamente al hacer la división el residuo que queda es igual a $1$.

Por el teorema fundamental de la aritmética, $$p_1\cdot p_2 \cdot \ldots \cdot p_k + 1$$ debe tener entonces un divisor primo $p$ diferente de $$p_1, p_2, \ldots , p_k. $$ Esto es una contradicción, pues supusimos que sólo existían los primos $p_1,\ldots,p_k$.

$\square$

Más adelante…

Con los dos teoremas de esta entrada hemos profundizando un poco más en por qué los números primos son interesantes e importantes. La exploración de los números primos en este curso no irá mucho más lejos, pues pronto comenzaremos a tratar otros temas de aritmética modular. Sin embargo, te dejamos algunos pocos párrafos más sobre los números primos.

Los números primos siguen siendo interesantes para los matemáticos hoy en día; primero por la irregularidad con que van apareciendo en la recta numérica y porque hay muchas cosas que aún no se sabe acerca de su raro comportamiento. Por ejemplo, se conjetura que hay infinitos «primos gemelos», es decir, se cree que siempre es posible encontrar dos primos $a$ y $b$ que estén distanciados en dos unidades; no importa qué tan alejados estén del cero. El $3$ y el $5$ son primos gemelos. También los son el $17$ y el $19$. Nadie sabe si esta conjetura es cierta o falsa.

Los números primos aparecen en patrones muy irregulares, pero sí es posible decir algunas cosas al respecto. Por ejemplo, después del $2$ todo número primo $p$, es de la forma $4n +1$ o de la forma $4n -1$ para alguna $n \in \mathbb{N}$. Un resultado lindo en teoría de números es que para aquéllos primos que pertenecen a la primera categoría, que son los de la forma $4n+1$, siempre existe su expresión como una suma de cuadrados: $p = 4n + 1 = m^2 + n^2$, $n, m \in \mathbb{Z}.$ Pero a los primos de la segunda categoría es imposible expresarlos como suma de cuadrados. Estos son dos de los muchos resultados que demostró Euler para números primos, y puedes ahondar en ello en un curso de teoría de números.

Los números primos también han encontrado aplicaciones en criptografía, pues es bien sabido que si se eligen dos primos $p_1$ y $p_2$ tales que al multiplicarlos se obtenga un número compuesto $z$ de más de 100 dígitos, y si luego se establece que $p_1$ y $p_2$ sean la «clave» de mi mensaje cifrado pero yo únicamente doy a conocer el número compuesto $z$ a otra persona, entonces a una computadora le resultaría imposible factorizar $z$ en un corto lapso de tiempo. ¡Le tomaría años! De ahí que la contraseña secreta sería indescifrable.

Ahora, lo que se conoce como el «teorema fundamental de la aritmética» también tiene varias extensiones interesantes en otras áreas de las matemáticas. De hecho, en algunas estructuras la unicidad deja de ser cierta. Si combinamos a los números enteros con los números complejos (que veremos después), tenemos algunos ejemplos como $$12 = (1 + \sqrt{-11})(1 – \sqrt{-11})$$ pero también $$12 = (2 + \sqrt{-8})(2 – \sqrt{-8}).$$

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Encuentra la factorización en primos de cada uno de los siguientes números 100, 170, 2022, 5000 y 713.
  2. Encuentra el menor entero positivo $k$ que haga que $775k$ sea un número cuadrado perfecto, es decir, de la forma $n^2$ para algún entero $n$.
  3. Halla el número de divisores de $2360$ y calcula la suma de todos ellos.
  4. ¿Cuál es el número entero de $1$ a $100$ que tiene la mayor cantidad posible de divisores?
  5. Demuestra que un entero tiene una cantidad impar de divisores si y sólo si es un número cuadrado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Máximo común divisor

Por Ana Ofelia Negrete Fernández

Introducción

La entrada anterior fue un poco técnica y habló acerca de ideales en los números enteros. Podemos apoyarnos de los ideales para construir otras nociones conocidas de la teoría de números enteros. En esta entrada hablaremos de una de ellas: la de máximo común divisor.

Quizás recuerdes la idea general del máximo común divisor a partir de lo que aprendiste en la educación básica. Por ejemplo, si tenemos a los números $14$ y $35$,y queremos encontrar su máximo común divisor, lo que se hacía es escribir los divisores de ambos:

  • Divisores de $14$: $1,2,7,14$.
  • Divisores de $35$: $1,5,7,35$.

Ya teniendo ambas listas, se elige número más grande que estén en ambas: el $7$.

Con lo que platicaremos en esta entrada vamos a recuperar esta misma noción, sin embargo lo haremos desde un punto de vista un poco más teórico, el cual nos permitirá entender más aspectos de divisibilidad de los máximos comunes divisores.

Definición de máximo común divisor

Recordemos, que en la entrada pasada vimos cómo encontrar al «ideal más pequeño» que tuviera a dos números $a$ y $b$ enteros dados.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb:r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

Como $M$ es el ideal más pequeño que tiene a $a$ y a $b$, le llamamos el ideal generado por $a$ y $b$, y lo escribimos como $\langle a,b\rangle$.

Además, en la entrada anterior también vimos que cualquier ideal de $\mathbb{Z}$ forzosamente es de la forma $k\mathbb{Z}$ para algún entero no negativo $k$, es decir, que consiste justo de los múltiplos de algún entero no negativo $k$. Esto nos permite plantear la siguiente definición.

Definición. Si $a$ y $b$ son enteros, definimos a su máximo común divisor como el entero no negativo $k$ tal que $$k\mathbb{Z}=\langle a,b\rangle.$$ A este número $k$ a veces se le denota por $\text{MCD}(a,b)$, o bien simplemente $(a,b)$.

Esta es una definición muy distinta de la que nos dan en la educación básica, sin embargo, pronto recuperaremos las propiedades familiares: veremos que en efecto es un divisor de $a$, es un divisor de $b$, y que de entre los divisores en común, es el más grande de ellos. Antes de pasar a las propiedades, veamos un ejemplo.

Ejemplo. Tomemos a los enteros $6$ y $14$. ¿Qué ideal $I$ generan? Es decir, ¿quién es $\langle 6,8\rangle$? Bueno, dicho ideal $I$ debe tener a $6$ y $14$, así que por cerradura de la resta tiene también a $14-6-8$, y similarmente debe tener a $8-6=2$. Pero recordemos que los ideales también son cerrados bajo producto por cualquier entero, así que al estar $2$ en $I$, debe pasar que todos los números pares están en $I$. Y en efecto, los números pares son un ideal de $\mathbb{Z}$ que tienen a $6$ y $14$. Con esto acabamos de demostrar que $\langle 6,14 \rangle = 2\mathbb{Z}$. De este modo, por definición, el máximo común divisor de $6$ y $14$ es igual a $2$.

$\triangle$

Propiedades del máximo común divisor

En esta sección veremos dos propiedades muy importantes del máximo común divisor. Por un lado, veremos que siempre se puede escribir «como combinación» de los números originales, en un sentido muy específico. Por otro lado, recuperaremos las «propiedades usuales» que queremos que se cumplan por lo que aprendimos en educación básica.

Proposición. Sean $a$ y $b$ números enteros. Entonces, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

Demostración. Por definición, $(a,b)$ es el entero tal que $\langle a,b \rangle =(a,b)\mathbb{Z}$, en particular, $(a,b)$ está en $\langle a,b\rangle$. Pero también ya sabemos que $$\langle a,b \rangle = \{ra+sb:r,s\in \mathbb{Z}\}.$$ Como $(a,b)$ está en $\langle a,b \rangle$, entonces se puede escribir de la forma de los elementos del conjunto de la derecha también, es decir, existen enteros $r$ y $s$ tales que $$(a,b)=ra+sb.$$

$\square$

Como estamos poniendo a $(a,b)$ de la forma $ra+sb$, en donde los coeficientes de $a$ y $b$ son los números enteros $r$ y $s$, decimos que $(a,b)$ se puede escribir como una combinación lineal entera de $a$ y $b$. La proposición anterior nos demuestra la existencia de dicha combinación lineal, sin embargo no nos dice exactamente cómo encontrarla. Más adelante veremos el algoritmo de Euclides, el cual nos da una forma práctica de encontrar al máximo común divisor de dos números como combinación lineal de ellos.

Veamos ahora el resultado que nos dice que, en efecto, el máximo común divisor divide a cada número, y que es «el más grande» que hace esto.

Proposición. Sean $a$ y $b$ números enteros. Entonces, se cumple lo siguiente:

  • $(a,b)|a$ y $(a,b)|b$.
  • Si $d$ es algún otro número tal que $d|a$ y $d|b$, entonces $d|(a,b)$.

Demostración. Notemos que $a\in \langle a, b\rangle$, y que por definición $\langle a,b \rangle = (a,b) \mathbb{Z}$. De este modo, $a$ es múltiplo de $(a,b)$. Análogamente, $b$ es múltiplo de $(a,b)$. Esto muestra el primer inciso.

Ahora supongamos que $d$ es otro número tal que $d|a$ y $d|b$. Por la proposición anterior, existen enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Como $d|a$, entonces $d|ra$. Como $d|b$, entonces $d|sb$. Así, $d|ra+sb=(a,b)$, como queríamos.

$\square$

La proposición anterior sí dice que el máximo común divisor divide a ambos, sin embargo no es totalmente directo por qué es el «máximo» en tamaño. La segunda parte habla más bien de una divisibilidad. Pero esto se traduce rápidamente a una desigualdad con la ayuda de las propiedades de la divisibilidad. Observa que si $d$ es un número tal que $d|a$ y $d|b$, entonces $d|(a,b)$. Tenemos entonces que $|d|\leq |(a,b)|$. Pero $(a,b)$ siempre es no negativo por definición, así que $|d|\leq (a,b)$. En resumen, tenemos el siguiente resultado.

Corolario. Si $a$ y $b$ son enteros y $d$ es un entero tal que $d|a$ y $d|b$, entonces $|d|\leq (a,b)$.

Números primos relativos (de máximo común divisor igual a uno)

Una situación muy especial en la teoría de los números ocurre cuando el máximo común divisor de dos números es igual a $1$.

Definición. Decimos que dos números enteros $a$ y $b$ son primos relativos si su máximo común divisor es igual a $1$. En símbolos, son primos relativos si $(m,n)=1$.

Por lo que hemos discutido hasta ahora, algunas de las consecuencias de que dos números $a$ y $b$ sean primos relativos son las siguientes:

  • Si $d$ es un número que divide a $a$ y a $b$, entonces $|d|\leq (a,b)=1$, es decir, $d=1$ o $d=-1$. De este modo, los únicos divisores que tienen en común son el $1$ y el $-1$.
  • El ideal generado por $a$ y $b$ es $1\cdot \mathbb{Z} = \mathbb{Z}$, es decir, consiste de todos los enteros.
  • Por esa misma razón, se tiene que $\{ra+sb: r,s \in \mathbb{Z}\}=\mathbb{Z}$, en otras palabras, cualquier entero es combinación lineal entera de $a$ y de $b$.
  • En particular, el $1$ es combinación lineal entera de $a$ y de $b$, es decir, existen enteros $r,s$ tales que $ra+sb=1$.

Estas consecuencias son prácticamente inmediatas de la definición, y es recomendable que intentes deducirlas por tu cuenta.

Veamos algunas otras propiedades que relacionan a los números primos relativos, con divisibilidad de algunas expresiones.

Proposición. Sean $a,b,c$ números enteros . Si $a\mid bc$ y $(a,b) = 1$, entonces $a\mid c.$

Demostración. Como $a$ divide a $bc$, existe $x \in \mathbb{Z}$ tal que $ax = bc$. Como $a$ y $b$ son primos relativos, sabemos que existen enteros $r$ y $s$ tales que $1 = ra+sb$. Multipliquemos esta última igualdad por $c$. Tenemos entonces que:
$$ c = rac + sbc = rac+ sax = a (rc+sx).$$

De aquí obtenemos la divisibilidad $a\mid c$ que buscábamos.

$\square$

En la proposición anterior es crucial la hipótesis de que $a$ y $b$ sean primos relativos. Por ejemplo, $7|28=14\cdot 2$, pero no pasa que $7|2$. Es decir, usualmente si dividimos a un producto, no se cumple que dividamos a cualquiera de sus factores.

A continuación tenemos otro resultado con un estilo similar.

Proposición. Sean $a,b,c \in \mathbb{Z}.$ Si $a\mid c$, $b\mid c$ y $(a,b) =1,$ entonces $ab \mid c$.

Demostración. Ya que $a,b$ son primos relativos, existen $m,n \in \mathbb{Z}$ tales que $1=am + bn $. Multipliquemos dicha ecuación por $c$: $$c=cam + cbn.$$

Como $a\mid c$ y $b\mid c$, existen $q,r \in \mathbb{Z}$ tales que $aq = c$ y $br = c$. Sustituyendo esto en la ecuación anterior, obtenemos que: $$c=cam + cbn = bram + aqbn = ab(rm+qn).$$

Esta igualdad justo nos dice que $ab\mid c$, como queríamos.

$\square$

Intenta encontrar un contraejemplo cuando no se cumple la hipótesis de que $a$ y $b$ son números primos relativos.

Más adelante…

Dejaremos el estudio del máximo común divisor hasta aquí por el momento. En la siguiente entrada hablaremos de un concepto muy cercano: el de mínimo común múltiplo. Así como en el caso de esta entrada, introduciremos la noción a partir de un contexto de ideales, para luego ver ejemplos y algunas propiedades clave.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Demuestra todas las consecuencias de ser primos relativos de la lista enunciada en la entrada.
  2. Prueba que dos enteros consecutivos siempre son primos relativos. Usa esto para demostrar que siempre que se eligen $51$ números distintos entre $1$ y $100$, forzosamente debes tener dos de ellos que sean primos relativos.
  3. Sea $m$ un entero positivo. Demuestra que $(a,b)=1$ si y sólo si $(a^m, b^m) =1.$
  4. De acuerdo a la entrada, al tomar dos números $a$ y $b$ podemos encontrar enteros $r$ y $s$ tales que $(a,b)=ra+sb$. Demuestra que siempre sucede que $(r,s)=1$.
  5. Encuentra el máximo común divisor de $91$ y $70$ e intenta escribirlo como combinación lineal entera de ellos.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»