Archivo de la etiqueta: espacios vectoriales

Álgebra Lineal II: Polinomio característico

Por Julio Sampietro

Introducción

En el transcurso de esta unidad hemos construido varios de los objetos algebraicos que nos interesan. En primer lugar, dejamos claro qué quería decir evaluar un polinomio en una matriz o transformación lineal. Esto nos llevó a preguntarnos por aquellos polinomios que anulan a una matriz o transformación lineal. De manera natural, descubrimos que aquellos polinomios que anulan son múltiplos de un polinomio especial asociado a la matriz o transformación lineal llamado polinomio mínimo.

De manera un poco separada, comenzamos a estudiar los eigenvalores, eigenvectores y eigenespacios de una transformación lineal y en la entrada anterior nos enfocamos en varias de sus propiedades principales. Uno de los resultados clave que encontramos es que los eigenvalores de una matriz o transformación lineal son las raíces del polinomio mínimo que estén en el campo en el que estemos trabajando.

Aunque este resultado sea interesante de manera teórica, en la práctica debemos hacer algo diferente pues no es tan sencillo encontrar el polinomio mínimo de una matriz o transformación lineal. Es por esto que ahora estudiaremos con profundidad otro objeto que resultará fundamental en nuestro estudio: el polinomio característico. Ya nos encontramos con él anteriormente. Si $A$ es una matriz en $M_n(F)$, dicho polinomio en la variable $\lambda$ es el determinante $\det(\lambda I_n-A)$.

Esta entrada es más bien una introducción, así que nos enfocaremos en probar las cosas más básicas de este objeto. Lo primero, y más importante, es verificar que en efecto es un polinomio (y con ciertas características específicas). También, aprovecharemos para calcularlo en varios contextos (y campos) diferentes.

Definición de polinomio característico

Comencemos con una matriz $A\in M_n(F)$. Vimos que encontrar los eigenvalores de $A$ se reduce a encontrar las soluciones de la ecuación

\begin{align*}
\det(\lambda I_n-A)=0
\end{align*}

en $F$. Vamos a estudiar más a detalle la expresión de la izquierda.

El siguiente teorema va un poco más allá y de hecho estudia expresiones un poco más generales.

Teorema. Sean $A,B\in M_n(F)$ dos matrices. Existe un polinomio $P\in F[X]$ tal que para todo $x\in F$ se cumple

\begin{align*}
P(x)=\det(xA+B).
\end{align*}

Si denotamos a este polinomio por $P(X)=\det(XA+B)$, entonces

\begin{align*}
\det(XA+B)=\det(A)X^{n}+\alpha_{n-1}X^{n-1}+\dots+\alpha_1 X+\det B
\end{align*}

para algunas expresiones polinomiales $\alpha_1,\dots, \alpha_{n-1}$ con coeficientes enteros en las entradas de $A$ y $B$.

Demostración. Consideremos el siguiente polinomio en la variable $X$ y coeficientes en $F$, es decir, el siguiente polinomio en $F[X]$:

\begin{align*}
P(X)=\sum_{\sigma\in S_n} \operatorname{sign}(\sigma)\left(a_{1\sigma(1)} X+b_{1\sigma(1)}\right)\cdots \left(a_{n\sigma(n)}X+b_{n\sigma(n)}\right).
\end{align*}

Por construcción, $P$ es un polinomio cuyos coeficientes son expresiones polinomiales enteras en las entradas de $A$ y $B$. Más aún, se cumple que $P(x)=\det(xA+B)$ para $x\in F$ (podría ser útil revisar la entrada sobre determinantes para convencerte de ello). El término constante lo obtenemos al evaluar en $X=0$, pero eso no es más que $P(0)=\det(0\cdot A+B)=\det(B)$. Finalmente para cada $\sigma\in S_n$ tenemos que el primer término de cada sumando es

\begin{align*}
\operatorname{sign}(\sigma)(a_{1\sigma(1)}X+b_{1\sigma(1)})\cdots (a_{n\sigma(n)} X+b_{n\sigma(n)})
\end{align*}

Notemos que la única manera de obtener un término $X^n$ en esta expresión es cuando en cada binomio que se está multiplicando se usa el término $X$. Así, el coeficiente de $X^n$ es $\operatorname{sign}(\sigma) a_{1\sigma(1)}\cdots a_{n\sigma(n)}X^{n}$.

Agrupando todos los sumandos para todas las $\sigma$ y comparando con la definición del determinante llegamos a que $$P(X)=\det(A)X^{n}+\ldots,$$ es decir el término de orden $n$ es en efecto $\det(A)$.

$\square$

Del teorema se sigue que si $A$ y $B$ tienen entradas enteras o racionales, $\det(XA+B)$ tiene coeficientes enteros o racionales respectivamente.

Enseguida podemos definir (gracias al teorema) el siguiente objeto:

Definición. El polinomio característico de la matriz $A\in M_n(F)$ es el polinomio $\chi_A\in F[X]$ definido por

\begin{align*}
\chi_A(X)=\det(X\cdot I_n-A).
\end{align*}

Una observación inmediata es que, de acuerdo al teorema, el coeficiente principal de $\chi_A(X)$ tiene coeficiente $\det(I_n)=1$. En otras palabras, acabamos de demostrar la siguiente propiedad fundamental del polinomio característico.

Proposición. El polinomio característico de una matriz en $M_n(F)$ siempre tiene grado exactamente $n$ y además es un polinomio mónico, es decir, que el coeficiente que acompaña al término de grado $n$ es igual a $1$.

Veamos un ejemplo sencillo.

Ejemplo. Si queremos calcular el polinomio característico de

\begin{align*}
A=\begin{pmatrix} 1 & -1\\ 1 &0\end{pmatrix}\in M_2(\mathbb{R})
\end{align*}

entonces usamos la definición

\begin{align*}
\chi_A(X)&=\det(X\cdot I_2-A)\\&=\begin{vmatrix} X-1 & 1\\ -1 & X\end{vmatrix}\\&= X(X-1)+1.
\end{align*}

Y así los eigenvalores de $A$ son las raíces reales de $\chi_A(X)$. Es decir, tenemos que resolver

\begin{align*} 0=x(x-1)+1=x^2-x+1.\end{align*}

Sin embargo, el discriminante de esta ecuación cuadrática es $(-1)^2-4(1)(1)=-3$, el cual es un real negativo, por lo que no tenemos eigenvalores reales. Si estuviéramos trabajando en $\mathbb{C}$ tendríamos dos eigenvalores complejos:

\begin{align*}
x_{1,2}= \frac{1\pm i\sqrt{3}}{2}.
\end{align*}

De aquí, ¿cómo encontramos los eigenvectores y eigenespacios? Basta con resolver los sistemas lineales homogéneos de ecuaciones $(A-x_1I_2)X=0$ para encontrar el $x_1$-eigenespacio y $(A-x_2)X=0$ para encontrar el $x_2$-eigenespacio.

$\triangle$

Algunos cálculos de polinomios característicos

Ya que calcular polinomios característicos se reduce a calcular determinantes, te recomendamos fuertemente que recuerdes las propiedades que tienen los determinantes. Sobre todo, aquellas que permiten calcularlos.

¡A calcular polinomios característicos!

Problema 1. Encuentra el polinomio característico y los eigenvalores de $A$ dónde $A$ es

\begin{align*}
A=\begin{pmatrix}
0 & 1 & 0 & 0\\
2 & 0 & -1 & 0\\
0 & 7 & 0 &6\\
0 & 0 & 3 & 0
\end{pmatrix}\in M_4(\mathbb{R}).
\end{align*}

Solución. Usamos la expansión de Laplace respecto al primer renglón:

\begin{align*}
\chi_A(X)&=\det(XI_4-A)\\&= \begin{vmatrix}
X & -1 & 0 & 0\\
-2 & X & 1 & 0\\
0 & -7 & X & -6\\
0 & 0 & -3 & X\end{vmatrix}\\
&= X\begin{vmatrix} X & 1 & 0\\ -7 & X & -6\\ 0 & -3 & X\end{vmatrix}+ \begin{vmatrix}
-2 & 1 & 0\\ 0 & X& -6\\ 0 &-3 & X\end{vmatrix}\\
&= X(X^3-11X)-2(X^2-18)\\
&= X^4-13X^2+36.
\end{align*}

Después, para encontrar los eigenvalores de $A$ tenemos que encontrar las raíces reales de la ecuación

\begin{align*}
x^4-13x^2+36=0.
\end{align*}

Sin embargo, no hay que desalentarse por ver una ecuación de grado $4$. Si hacemos el cambio $y=x^2$ podemos llevar nuestro problema a resolver

\begin{align*}
y^2-13y+36=0.
\end{align*}

¡Es una ecuación de segundo orden! Esta la podemos resolver usando ‘la chicharronera’ y obtenemos como soluciones $y_1=4$ y $y_2=9$. Pero todavía tenemos que resolver $x^2=y_1$ y $x^2=y_2$. Al resolver estas últimas dos ecuaciones obtenemos que $x=\pm 2,\pm 3$ son los eigenvalores de $A$.

$\triangle$

Problema 2. Calcula el polinomio característico y los eigenvalores de la matriz

\begin{align*}
A=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 0\\ 1 & 0 &1 \end{pmatrix}\in M_3(F_2).
\end{align*}

Solución. Nota que estamos trabajando en el campo de dos elementos $F_2$, por lo que $-1=1$. Usando la definición:

\begin{align*}
\chi_A(X)&=\det(XI_3-A)\\&= \begin{vmatrix} X-1 & 0 & -1\\ -1 & X-1 & 0\\ -1 & 0 &X-1\end{vmatrix}\\
&= \begin{vmatrix} X+1 & 0 & 1\\ 1 & X+1& 0 \\ 1 & 0 &X+1\end{vmatrix}.
\end{align*}

Aquí estamos usando repetidamente $-1=1$. Usamos otra vez la expansión de Laplace en el primer renglón para llegar a

\begin{align*}
\chi_A(X)&= (X+1)\begin{vmatrix} X+1 & 0 \\ 0 & X+1\end{vmatrix}+\begin{vmatrix} 1 & X+1\\ 1 & 0\end{vmatrix}\\
&= (X+1)^3-(X+1).
\end{align*}

Luego, si queremos encontrar los eigenvalores de $A$ tenemos que resolver

\begin{align*}
(x+1)^3-(x+1)=0.
\end{align*}

Si bien existen varias maneras de resolver la ecuación, podemos simplemente sustituir los únicos valores posibles de $x$ : $0$ o $1$. Sustituyendo es fácil ver que ambos satisfacen la ecuación, por lo que los eigenvalores de $A$ son $0$ y $1$.

$\triangle$

Más adelante…

En la próxima entrada calcularemos el polinomio característico de una variedad de matrices importantes: triangulares superiores, nilpotentes, etc. Esto nos permitirá entender mejor al polinomio característico y lidiar con muchos casos para facilitarnos los cálculos más adelante.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Demuestra que $0$ es un eigenvalor de una matriz $A$ si y sólo si $\det(A)=0$.
  • ¿Una matriz compleja de tamaño $n$ tiene necesariamente $n$ eigenvalores distintos?
  • Calcular el polinomio característico y los eigenvalores de
    \begin{align*}A=\begin{pmatrix} 1 & 2 & 0\\ 0 & 1 &2\\ 2 & 0 & 1\end{pmatrix}\in M_3(F_3).
    \end{align*}
  • Usando la fórmula del determinante para matrices de tamaño $2$, encuentra un criterio simple para saber si una matriz con entradas reales de tamaño $2$ tiene dos, uno o ningún eigenvalor real.
  • Da un criterio simple para saber si una matriz de tamaño $2$ con entradas complejas tiene eigenvalores puramente imaginarios.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Eigenvectores y eigenvalores

Por Julio Sampietro

Introducción

En esta entrada revisitamos los conceptos de eigenvalores y eigenvectores de una transformación lineal. Estos son esenciales para entender a las transformaciones lineales, y tienen un rango de aplicabilidad impresionante: aparecen en la física, las ecuaciones diferenciales parciales, la ciencia de datos, la topología algebraica y la probabilidad.

Primero enunciaremos la definición, después veremos un primer ejemplo para convencernos de que no son objetos imposibles de calcular. Luego daremos un método para vislumbrar una manera más sencilla de hacer dicho cálculo y concluiremos con unos ejercicios.

Eigen-definiciones

Comenzamos con $V$ un espacio vectorial sobre $F$ y $T:V\to V$ una transformación lineal.

Definición. Un eigenvalor (también conocido como valor propio) de $T$ es un escalar $\lambda \in F$ tal que $\lambda \cdot \operatorname{Id}-T$ no es invertible. Un eigenvector (también conocido como vector propio o $\lambda$-eigenvector) correspondiente a $\lambda$ es un vector no-cero de $\ker (\lambda \cdot \operatorname{Id}-T)$. A este kernel se le conoce como el eigenespacio correspondiente a $\lambda$ (o $\lambda$-eigenespacio).

Entonces un $\lambda$-eigenvector es por definición distinto de cero y satisface

\begin{align*}
T(v)=\lambda v.
\end{align*}

Hay que tener cuidado. se permite que $\lambda=0$ sea eigenvalor, pero no se permite que $v=0$ sea eigenvector.

La colección de todos los eigenvectores, junto con el vector cero, es el eigenespacio asociado a $\lambda$. Podemos enunciar definiciones análogas con matrices.

Definición. Sea $A\in M_n(F)$ una matriz cuadrada. Un escalar $\lambda \in F$ es un eigenvalor de $A$ si existe un vector $X\in F^n$ distinto de cero (un eigenvector) tal que $AX=\lambda X$. En este caso el subespacio

\begin{align*}
\ker(\lambda I_n-A):=\lbrace X\in F^n\mid AX=\lambda X\rbrace
\end{align*}

es el $\lambda$-eigenespacio de $A$.

Puedes verificar que ambas definiciones se corresponden en el siguiente sentido:

Si $V$ es un espacio de dimensión finita y $T:V\to V$ es una transformación lineal, podemos escoger cualquier base de $V$ y asociarle a $T$ su forma matricial, digamos $A$, en esta base. Los eigenvalores de $T$ son precisamente los eigenvalores de $A$. ¡Pero cuidado! Los eigenvectores de $A$ dependerán de la base elegida.

Un primer ejemplo

Seguimos con un sencillo pero importante ejemplo.

Ejemplo 1. Considera la matriz

\begin{align*}
A=\begin{pmatrix}
0 & -1\\
1 & 0
\end{pmatrix}.
\end{align*}

Busquemos los eigenvectores y eigenvalores de $A$, pensando a $A$ como una matriz con entradas complejas. Sea $\lambda\in \mathbb{C}$ un eigenvalor y $X$ un eigenvector asociado. Entonces se cumple la relación $AX=\lambda X$. Si $X=(x_1,x_2)$ entonces la condición mencionada es equivalente al par de ecuaciones

\begin{align*}
-x_2=\lambda x_1, \hspace{5mm} x_1=\lambda x_2.
\end{align*}

Sustituyendo una en la otra obtenemos

\begin{align*}
-x_2=\lambda^2 x_2.
\end{align*}

Si $x_2=0$ entonces $x_1=0$ y así $X$ es un vector nulo, lo que es imposible por definición (recuerda que pedimos que los eigenvectores sean distintos de cero). Entonces $x_2\neq 0$ y podemos dividir por $x_2$ a la ecuación previa, de manera que $\lambda^2=-1$, o sea $\lambda=\pm i$. Conversamente, $i$ y $-i$ son eigenvalores. En efecto, podemos tomar $x_2=1$ y $x_1=\lambda$ como soluciones del problema anterior y obtener un vector propio asociado. De hecho, el eigenespacio está dado por

\begin{align*}
\ker (\lambda I_2-A)=\lbrace (\lambda x_2, x_2)\mid x_2\in \mathbb{C}\rbrace
\end{align*}

y esto no es más que la recta generada por el vector $v=(\lambda,1)\in \mathbb{C}^2$. Por lo tanto, vista como una matriz compleja, $A$ tiene dos eigenvalores distintos $\pm i$ y dos eigenespacios, los generados por $(i,1)$ y $(-i,1)$.

Por otro lado, veamos qué pasa si pensamos a $A$ como una matriz con entradas reales. Haciendo las mismas cuentas llegamos a la misma ecuación, $-x_2=\lambda^2 x_2$. Podemos reescribirla factorizando el término $x_2$:

\begin{align*}
(\lambda^2+1)x_2=0.
\end{align*}

Como $\lambda$ esta vez es un número real, $\lambda^2+1$ siempre es distinto de cero. Entonces para que el producto sea cero, tiene que ocurrir que $x_2=0$, ¡pero entonces $x_1=0$ y así $X=0$! En conclusión: vista como una matriz con entradas reales, $A$ no tiene eigenvalores, y por tanto no tiene eigenespacios. La moraleja es que los eigenvalores y eigenvectores dependen mucho del campo en el que trabajemos.

¿Cómo calcularlos?

Si bien el ejemplo anterior resultó simple, no es difícil imaginar que matrices más complicadas y más grandes pueden resultar en procedimientos menos claros. En general:

  • ¿Cómo podemos calcular los eigenvalores?
  • ¿Cómo podemos calcular los eigenespacios de manera eficiente?
  • ¿Cómo podemos calcular los eigenvectores?

Una vez calculados los eigenvalores, calcular los eigenespacios se reduce a resolver el sistema de ecuaciones homogéneo $(A-\lambda I_n)X=0$, lo cual ya hemos hecho muchas veces mediante reducción gaussiana. Luego, calcular los eigenvectores simplemente es tomar los elementos no cero del eigenespacio. Sin embargo, el cálculo de eigenvalores involucra encontrar raíces de polinomios lo cual de entrada no es obvio. Un primer paso es la siguiente observación que enunciamos como proposición.

Proposición. Un escalar $\lambda \in F$ es un eigenvalor de $A\in M_n(F)$ si y sólo si

\begin{align*}
\det(\lambda I_n-A)=0.
\end{align*}

Demostración. El sistema $(\lambda I_n-A)X=0$ tiene soluciones no triviales si y sólo si la matriz $\lambda I_n-A$ no es invertible. A su vez, la matriz $\lambda I_n-A$ no es invertible si y sólo si su determinante es nulo. El resultado se sigue.

$\square$

Regresemos a nuestra pregunta. Si

\begin{align*}
A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n}\\
a_{21} & a_{22} & \dots & a_{2n}\\
\dots & \dots & \dots& \dots\\
a_{n1} & a_{n2}& \dots & a_{nn}
\end{pmatrix}
\end{align*}

entonces la proposición nos dice que podemos calcular los valores propios de $A$ resolviendo la ecuación polinomial

\begin{align*}
\begin{vmatrix}
\lambda- a_{11} & -a_{12} & \dots & -a_{1n}\\
-a_{21} & \lambda -a_{22} & \dots & -a_{2n}\\
\dots & \dots & \dots & \dots \\
-a_{n1} & -a_{n2} & \dots & \lambda-a_{nn}
\end{vmatrix}
=0
\end{align*}

en $F$. Esta es una ecuación polinomial de grado $n$, y si el grado es mayor a $4$ en general no existe una fórmula para resolverla en términos de radicales (aunque claro que hay casos particulares que si podemos resolver sin mucho problema).

Problema 2. Queremos calcular los eigenvalores de $A$, donde $A$ está dada por

\begin{align*}
A=\begin{pmatrix}
1 & 0 & 0\\
0 & 0 &-1\\
0 & 1 & 0
\end{pmatrix}.
\end{align*}

Solución. Como vimos en la proposición, esto se reduce a calcular las raíces del polinomio

\begin{align*}
\begin{vmatrix}
\lambda -1 & 0 & 0\\
0 & \lambda & 1\\
0 &-1 & \lambda
\end{vmatrix}=0.
\end{align*}

Calculando el determinante vemos que esto es de hecho

\begin{align*}
(\lambda-1)(\lambda^2+1)=0.
\end{align*}

Sin embargo tenemos que recordar que las raíces dependen de nuestro campo de elección. Como no comentamos nada sobre el campo en el cual trabajamos, consideraremos dos casos. Si el campo es $\mathbb{C}$ entonces los eigenvalores son $1$ y $\pm i$. Si trabajamos sobre $\mathbb{R}$ entonces tenemos un único eigenvalor: $1$.

$\triangle$

Ejercicios

Acabamos esta entrada con unos ejercicios para reforzar lo que vimos.

Problema 1. Encuentra todos los números reales $x$ tales que la matriz

\begin{align*}
A=\begin{pmatrix}
1 & x\\
2 & 1
\end{pmatrix}
\end{align*}

tiene exactamente dos eigenvalores distintos. La misma pregunta para ningún eigenvalor.

Solución. El número de eigenvalores va a estar dado por el número de raíces del polinomio $\det(\lambda I_2-A)$. Es decir, tenemos que trabajar la ecuación

\begin{align*}
\det(\lambda I_2-A)=\begin{vmatrix} \lambda -1 & -x\\ -2 & \lambda-1\end{vmatrix}=0.
\end{align*}

Que a su vez se reduce a

\begin{align*}
(\lambda-1)^2-2x=0.
\end{align*}

Y para que tenga dos soluciones basta con que $2x$ sea un número positivo. En efecto, en ese caso podemos despejar y resolver

\begin{align*}
\lambda = 1 \pm \sqrt{2x}.
\end{align*}

Como $2x$ es positivo solo si $x$ lo es, podemos concluir que la condición necesaria y suficiente es que $x$ sea un real positivo. Similarmente, si $x$ es un número negativo no tendremos ningún eigenvalor.

$\triangle$

Problema 2. Sea $V$ el conjunto de todas las matrices $A\in M_2(\mathbb{C})$ tales que $v=\begin{pmatrix} 1\\ 2 \end{pmatrix}$ es un eigenvector de $A$. Demuestra que $V$ es un subespacio de $M_2(\mathbb{C})$ y da una base.

Solución. Supongamos que $v$ es un eigenvector de $A$, con eigenvalor $\lambda$, y que es eigenvector de $B$, con eigenvalor $\mu$. Entonces

\begin{align*}
(A+c B)(v)= Av+c Bv= \lambda v+c\mu v= (\lambda+c\mu)v
\end{align*}

por lo que $v$ es eigenvector de $A+cB$ con eigenvalor $\lambda +c\mu$. Esto demuestra que $V$ es un subespacio. Para darnos una idea de cómo podría ser una base para $V$, comencemos con una matriz genérica $A=\begin{pmatrix} a & b\\ c & d\end{pmatrix}$ tal que $A\in V$. Entonces $A$ tiene que satisfacer $Av=\lambda v$ para algún $\lambda$. Escribamos esto más explícitamente

\begin{align*}
\begin{pmatrix}
a & b\\
c & d
\end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2\end{pmatrix}= \begin{pmatrix}
a+2b\\
c+2d
\end{pmatrix}=\begin{pmatrix} \lambda \\ 2\lambda\end{pmatrix}.
\end{align*}

Así se desprenden dos ecuaciones

\begin{align*}
\begin{cases}
a+2b=\lambda \\
c+2d=2\lambda
\end{cases}.
\end{align*}

Sabemos que $\lambda$ es un parámetro libre, pues puede ser cualquier eigenvalor. Si conocemos a $\lambda$ entonces necesitamos alguna de las variables, $a$ o $b$ para determinar a la otra y lo mismo con $c$ y $d$. Entonces escojamos $b$ y $d$ como variables libres. Enseguida nuestra matriz es de la forma (reemplazando a $a$ y $c$ por sus valores en $b$ y $d$):

\begin{align*}
A&= \begin{pmatrix}
\lambda -2b & b\\
2\lambda -2d & d
\end{pmatrix}\\
&= b\begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}+ d \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix}+\lambda \begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}.
\end{align*}

Entonces proponemos como base

\begin{align*}
\beta = \bigg\lbrace \begin{pmatrix} -2 & 1\\ 0 & 0
\end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -2 & 1\end{pmatrix},\begin{pmatrix} 1 & 0\\
2 & 0
\end{pmatrix}\bigg\rbrace.
\end{align*}

Ya vimos que $\beta$ genera a $V$, y dejamos la independencia lineal como ejercicio.

$\square$

Más adelante…

En las próximas entradas desarrollaremos las propiedades relevantes de los eigenvalores y eigenvectores para eventualmente llegar al polinomio característico y establecer el puente con el polinomio mínimo.

Tarea moral

Aquí unos ejercicios para que repases el material de esta entrada.

  1. Encuentra todos los eigenvalores de la matriz $A=\begin{pmatrix} 1 & 1 &0 \\ 0 & 2 &1\\ 0 & 0 & 1\end{pmatrix}\in M_3(\mathbb{C})$.
  2. Completa la demostración del último ejercicio de la sección de ejercicios, verificando que las soluciones encontradas son matrices linealmente independientes. ¿Puedes generalizar este ejercicio de alguna manera?
  3. Encuentra los eigenvalores de la matriz $A\in M_n(\mathbb{R})$ cuyas entradas son puros $2$.
  4. Da contraejemplos para cada una de las siguientes afirmaciones:
    1. Si $u$ y $v$ son eigenvectores de $A$, entonces $u+v$ es eigenvector de $A$.
    2. Si $\lambda$ es eigenvalor de $A$ y $\mu$ es eigenvalor de $B$, entonces $\lambda \mu$ es eigenvalor de $AB$.
    3. Si $A$ y $B$ son formas matriciales de una misma transformación $T$ y $v$ es eigenvector de $A$, entonces $v$ es eigenvector de $B$.
  5. Considera la transformación derivada en $\mathbb{R}[x]$. ¿Quienes son sus eigenvectores y eigenvalores? Como sugerencia, estudia el coeficiente de mayor grado.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal I: Combinaciones lineales

Por Julio Sampietro

Introducción

En esta entrada presentamos el concepto de combinaciones lineales en espacios vectoriales que será fundamental para nuestro estudio. De cierta manera (que se verá más claramente cuando hablemos de bases en espacios vectoriales arbitrarios) captura un aspecto de la base canónica de $F^n$: Todo vector lo podemos escribir como $x_1 e_1+\dots+x_n e_n$, lo que con nuestro lenguaje será una combinación lineal de los vectores $e_i$.

También hablamos del concepto de espacio generado. De manera intuitiva, el espacio generado por un conjunto de vectores es el mínimo subespacio que los tiene (y que a la vez tiene a todas las combinaciones lineales de ellos). Geométricamente, los espacios generados describen muchos de los objetos conocidos como rectas y planos. De manera algebraica, este concepto nos servirá mucho en lo que sigue del curso.

Definición de combinaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$, y sean $v_1, \dots, v_n$ vectores en $V$. Por definición, $V$ contiene a todos los vectores de la forma $c_1 v_1+\dots +c_n v_n$ con $c_1, \dots, c_n \in F$. La colección de los vectores de este estilo es importante y le damos una definición formal:

Definición. Sean $v_1, \dots, v_n$ vectores en un espacio vectorial $V$ sobre $F$.

  1. Un vector $v$ es una combinación lineal de los vectores $v_1, \dots, v_n$ si existen escalares $c_1,\dots, c_n\in F$ tales que
    \begin{align*}
    v= c_1 v_1 +c_2 v_2+\dots +c_n v_n.
    \end{align*}
  2. El espacio generado (que a veces abreviaremos como el generado) por $v_1, \dots, v_n$ es el subconjunto de $V$ de todas las combinaciones lineales de $v_1,\dots, v_n$, y lo denotamos por $\text{span}(v_1, \dots, v_n)$.

Ejemplo.

  1. La matriz $A=\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ es una combinación lineal de las matrices $B= \begin{pmatrix} 10 & 0 \\ 5 & 0\end{pmatrix}$ y $C=\begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{2}\end{pmatrix}$ pues $A=\frac{1}{5} B + 2 C$. Así, $A$ está en el generado por $B$ y $C$.
  2. El generado $\text{span}(v)$ de un único vector en $\mathbb{R}^n$ consta de puras copias re-escaladas de $v$ (también nos referimos a estos vectores como múltiplos escalares de $v$). Usando la interpretación geométrica de vectores en $\mathbb{R}^2$ o $\mathbb{R}^3$, si $v\neq 0$ entonces $\text{span}(v)$ representa una recta por el origen en la dirección de $v$.
  3. Si $e_1=(1,0,0)$ y $e_2=(0,1,0)$, entonces
    \begin{align*}
    x e_1+ y e_2=(x,y,0).
    \end{align*}
    Como $x$ y $y$ fueron arbitrarios, podemos concluir que $\text{span}(e_1,e_2)$ consta de todos los vectores en $\mathbb{R}^3$ cuya tercer entrada es cero. Esto es el plano $xy$. En general, si $v_1, v_2$ son dos vectores no colineales en $\mathbb{R}^3$ entonces su espacio generado es el único plano por el origen que los contiene.
  4. El polinomio $3x^{10}+7$ del espacio vectorial $\mathbb{R}_{10}[x]$ no puede ser escrito como combinación lineal de los polinomios $x^{10}+x^2+1$, $x^7+3x+1$, $7x^3$. Para demostrar esto, debemos probar que no existen reales $a,b,c$ tales que $$3x^{10}+7=a(x^{10}+x^2+1)+b(x^7+3x+1)+7cx^3.$$
    Procedamos por contradicción. Si acaso esto fuera posible, desarrollando el producto de la derecha y observando el coeficiente de $x^{10}$, necesitamos que $a$ sea igual a $3$. Pero entonces a la derecha va a quedar un término $3x^2$ que no se puede cancelar con ninguno otro de los sumandos, sin importar el valor de $b$ o $c$. Igualando términos cuadráticos, tendríamos entonces $0=3x^2$, lo cual es una contradicción.

$\triangle$

Problemas prácticos de combinaciones lineales

La definición de que un vector sea combinación de otros es existencial. Para mostrar que sí es combinación lineal, basta encontrar algunos coeficientes. Para mostrar que no es combinación lineal, hay que argumental por qué ninguna de las combinaciones lineales de los vectores es igual al vector buscado.

Problema 1. Muestra que el vector $(1,1,1)$ de $\mathbb{R}^3$ no se puede expresar como combinación lineal de los vectores

\begin{align*}
v_1= (1,0,0), \hspace{2mm} v_2=(0,1,0)\text{ y } v_3=(1,1,0).
\end{align*}

Solución. Una combinación lineal arbitraria de $v_1, v_2, v_3$ es de la forma

\begin{align*}
x_1 v_1 +x_2 v_2 + x_3 v_3 = (x_1 + x_3, x_2 + x_3, 0)
\end{align*}

para $x_1,x_2,x_3$ reales. Así, las combinaciones lineales de $v_1,v_2,v_2$ siempre tienen a $0$ como tercera coordenada. De esta forma, ninguna de ellas puede ser igual a $(1,1,1)$.

$\square$

Más generalmente, consideramos el siguiente problema práctico: dada una familia de vectores $v_1, v_2, \dots, v_k$ en $F^n$ y un vector $v\in F^n$, decide si $v$ es una combinación lineal de $v_1, \dots, v_k$. En otras palabras, si $v\in \text{span}(v_1, \dots, v_k)$.

Para resolver este problema, consideramos la matriz de tamaño $n\times k$ cuyas columnas son $v_1, \dots, v_k$. Decir que $v\in \text{span}(v_1, \dots, v_k)$ es lo mismo que encontrar escalares $x_1, \dots, x_k\in F$ tales que $v= x_1 v_1 +\dots +x_k v_k$. De manera equivalente, si tomamos $X=(x_1,\ldots,x_k)$, queremos la existencia de una solución al sistema $AX=v$.

Esto es muy útil. Como tenemos una manera práctica de decidir si este sistema es consistente (por reducción gaussiana de la matriz aumentada $(A\vert v)$), tenemos una manera práctica de resolver el problema de si un vector es combinación lineal de otros. Por supuesto, esto también nos da una solución concreta al problema, es decir, no sólo decide la existencia de la combinación lineal, sino que además da una cuando existe.

Problema 2. Sean $v_1=(1,0,1,2), v_2=(3,4,2,1)$ y $v_3=(5,8,3,0)$ vectores en el espacio vectorial $\mathbb{R}^4$. ¿Está el vector $v=(1,0,0,0)$ en el generado de $v_1,v_2$ y $v_3$? ¿El vector $w=(4,4,3,3)$?

Solución. Aplicamos el método que describimos en el párrafo anterior. Es decir, tomemos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 3 & 5\\ 0 & 4 & 8\\ 1 & 2 & 3\\ 2 & 1 & 0\end{pmatrix}.
\end{align*}

Queremos ver si el sistema $AX=v$ es consistente. Haciendo reducción gaussiana a mano, o bien usando una calculadora de forma escalonada reducida (por ejemplo, la de eMathHelp), obtenemos que la forma escalonada reducida de la matriz aumentada $(A\vert v)$ es

\begin{align*}
(A\vert v)\sim \begin{pmatrix} 1 & 0 & -1 & 0\\ 0 & 1 &2 & 0\\ 0 & 0 & 0 &1 \\ 0 & 0 & 0 &0\end{pmatrix}.
\end{align*}

Viendo el tercer renglón, notamos que tiene pivote en la última columna. Deducimos que el sistema no es consistente, así que $v\notin \text{span}(v_1, v_2, v_3)$.

Procedemos de manera similar para el vector $w$. Esta vez tenemos

\begin{align*}
(A\vert w)\sim \begin{pmatrix} 1 & 0 & -1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &0\end{pmatrix},
\end{align*}

lo que muestra que el sistema es consistente (pues ninguna fila tiene su pivote en la última columna), por lo tanto $w\in \text{span}(v_1, v_2, v_3)$. Si queremos encontrar una combinación lineal explícita tenemos que resolver el sistema

\begin{align*}
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2\\ 0 & 0 &0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\\ 0 \\ 0\end{pmatrix}.
\end{align*}

Tenemos que ninguna fila tiene su pivote en la columna $3$, así que $x_3$ es variable libre. Las variables $x_1$ y $x_2$ son pivote. Esto nos da como solución $x_1= x_3+1$ y $x_2=1-2x_3$. Entonces podemos escribir

\begin{align*}
w= (1+x_3) v_1 + (1-2x_3) v_2+ x_3v_3
\end{align*}

y esto es válido para cualquier elección de $x_3$. Podemos, por ejemplo, escoger $x_3=0$ y obtener $w=v_1 + v_2$.

$\triangle$

Por supuesto, en el problema anterior pudimos haber encontrado la expresión $w=v_1+v_2$ explorando el problema o por casualidad. Esto sería suficiente para mostrar que $w$ es combinación lineal. Pero la ventaja del método sistemático que mostramos es que no se corre el riesgo de no encontrar la solución a simple vista. De me manera definitiva nos dice si hay o no hay solución, y cuando sí hay, encuentra una.

Una caracterización del espacio generado

Probamos el siguiente resultado, que explica la importancia del concepto de espacio generado. En particular, la proposición muestra que el espacio generado es un subespacio. Si te parece un poco confusa la demostración, puede ser de ayuda leer antes la observación que le sigue.

Proposición. Sea $V$ un espacio vectorial sobre un campo $F$ y $v_1, v_2, \dots, v_n \in V$. Entonces

  1. $\text{span}(v_1, v_2, \dots, v_n)$ es la intersección de todos los subespacios vectoriales de $V$ que contienen a todos los vectores $v_1, \dots, v_n$.
  2. $\text{span}(v_1, v_2, \dots, v_n)$ es el subespacio más chico (en contención) de $V$ que contiene a $v_1,\dots, v_n$.

Demostración. Como la intersección arbitraria de subespacios es un subespacio, la parte $1$ implica la parte $2$. Probemos entonces la parte $1$.

Primero demostremos que $\text{span}(v_1, v_2,\dots, v_n)$ está contenido en todo subespacio $W$ de $V$ que tiene a $v_1, \dots, v_n$. En otras palabras, tenemos que ver que cualquier subespacio $W$ que tenga a $v_1,\ldots,v_n$ tiene a todas las combinaciones lineales de ellos. Esto se sigue de que $W$, por ser subespacio, es cerrado bajo productos por escalar y bajo sumas. Así, si tomamos escalares $\alpha_1,\ldots,\alpha_n$ tenemos que cada uno de $\alpha_1 v_1, \ldots, \alpha_n v_n$ está en $W$ y por lo tanto la combinación lineal (que es la suma de todos estos), también está en $W$.

La afirmación anterior implica que $\text{span}(v_1, \dots, v_n)$ está contenido en la intersección de todos los espacios que tienen a $v_1,\ldots, v_n$, pues está contenido en cada uno de ellos.

Ahora, queremos ver ‘la otra contención’, es decir, que $\text{span}(v_1,\ldots,v_n)$ contiene a la intersección de todos los espacios que tienen a $v_1,\ldots,v_n$. Para esto veremos primero que $\text{span}(v_1, \dots, v_n)$ es un subespacio vectorial. Sean $x,y\in \text{span}(v_1, \dots, v_n)$ y $c\in F$ un escalar. Como $x$ y $y$ son, por definición, combinaciones lineales de $v_1, \dots, v_n$, podemos escribir $x=a_1 v_1+\dots +a_n v_n$ para algunos escalares $a_i$ y $y=b_1 v_1+\dots + b_n v_n$ para unos escalares $b_i$. Así

\begin{align*}
x+cy= (a_1+cb_1) v_1 + \dots + (a_n +c b_n) v_n
\end{align*}

también es una combinación lineal de $v_1, \dots, v_n$ y por tanto un elemento del espacio generado. Se sigue que $\text{span}(v_1,\dots, v_n)$ es uno de los subespacios que tienen a $v_1, \dots, v_n$. Así, este generado «aparece» en la intersección que hacemos de subespacios que tienen a estos vectores, y como la intersección de una familia de conjuntos está contenida en cada uno de esos conjuntos, concluimos que $\text{span}(v_1, \dots, v_n)$ contiene a dicha inteesección.

Argumentemos ahora la segunda parte de la proposición. Se usa el mismo argumento que arriba. Si $W$ es cualquier subespacio que contiene a $v_1, \dots, v_n$, entonces «aparece» en la intersección y por tanto $\text{span}(v_1, \dots, v_n)$ está contenido en $W$. Es decir, es más chico (en contención) que cualquier otro subespacio que contenga a estos vectores.

$\square$

Observación. Ya que la demostración previa puede resultar un poco confusa, presentamos una versión un poco más relajada de la idea que se usó. Sea $\lbrace W_i\mid i\in I\rbrace$ la familia de todos los subespacios de $V$ que contienen a $v_1, \dots, v_n$.

En el primer párrafo, probamos que

\begin{align*}
\text{span}(v_1,\dots, v_n)\subseteq W_i
\end{align*}

para todo $i\in I$. Luego $\text{span}(v_1, \dots, v_n)\subseteq \bigcap_{i\in I} W_i$.

En el segundo párrafo, probamos que $Span(v_1,\dots, v_n)$ es un subespacio que contiene a $v_1, \dots, v_n$. Es decir, entra en nuestra familia $\lbrace W_i\mid i\in I\rbrace$, es uno de los $W_i$, digamos $W_j$. Entonces

\begin{align*}
\text{span}(v_1, \dots, v_n)= W_j \supseteq \bigcap_{i\in I} W_i.
\end{align*}

En ese momento ya tenemos la primer igualdad: $\text{span}(v_1,\ldots,v_n)=\bigcap_{i\in I} W_i.$

Ahora, la segunda conclusión de la proposición se sigue de esto con una observación más: Si $W’$ es un subespacio que contiene a $v_1, \dots, v_n$ entonces también entra en nuestra familia de los $W_i$’s, es decir es $W_{p}$ para algún $p\in I$. Ahora usando el inciso $1$, tenemos que

\begin{align*}
\text{span}(v_1, \dots, v_n)= \bigcap_{i\in I} W_i \subseteq W_p=W’.
\end{align*}

Esto concluye la demostración.

Más adelante…

El concepto de combinación lineal es la piedra angular para definir varios otros conceptos importantes en espacios vectoriales. Es un primer paso para definir a los conjuntos de vectores generadores y a los conjuntos de vectores linealmente independientes. Una vez que hayamos desarrollado ambos conceptos, podremos hablar de bases de un espacio vectorial, y con ello hablar de la dimensión de un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Se puede expresar al vector $(1,3,0,5)$ como combinación lineal de $(0,1,0,3)$, $(0,-1,2,0)$ y $(2, 0,-1,-6)$? Si sí, encuentra una o más combinaciones lineales que den el vector $(1,3,0,5)$
  2. ¿Se puede expresar al polinomio $1+x^2 +3x^3 -x^4 +x^5$ como combinación lineal de los siguientes polinomios
    \begin{align*}
    x^2-3x^4,\\
    1+x^2-x^5,\\
    2x+x^4,\\
    2+x^2,\\
    5x+5x^2-x^5?
    \end{align*}
  3. Sea $P$ un plano en $\mathbb{R}^3$ por el origen y $L$ una recta de $\mathbb{R}^3$ por el origen y con dirección dada por un vector $v\neq 0$. Demuestra que la intersección de $L$ con $P$ es una recta si y sólo si existen dos vectores en $P$ tal que su suma sea $v$.
  4. Encuentra el conjunto generado por los vectores del espacio vectorial indicado
    • Las matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}$ y $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$ del espacio $M_{2}$.
    • Los vectores $(1,-1,0)$ y $(1,0,-1)$ del espacio $\mathbb{R}^3$.
    • Los polinomios $1$, $x$, $x^2$ y $x^3$ del espacio $\mathbb{R}[x]$.
  5. Sea $V$ un espacio vectorial. Si $v_1, \dots, v_n, x$ son vectores en un espacio vectorial $V$, ¿será cierto siempre que $\text{span}(v_1, \dots, v_n)\subseteq \text{span}(v_1, \dots, v_n, x)$? De ser así, ¿esta contención siempre es estricta? Demuestra tu respuesta o da un contraejemplo.
  6. Sean $v_1,\ldots, v_n$ y $x$ vectores en un espacio vectorial $V$. Supongamos que $v_n$ está en $\text{span}(v_1,\ldots,v_{n-1},x)$. Muestra que $$\text{span}(v_1,\ldots,v_{n-1},x)=\text{span}(v_1,\ldots,v_{n-1},v_n).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Producto interior y desigualdad de Cauchy-Schwarz

Por Leonardo Ignacio Martínez Sandoval

Introducción

Anteriormente, platicamos acerca de formas bilineales y de formas cuadráticas. Ahora veremos un tipo de formas bilineales especiales: las positivas y las positivas definidas. Las formas positivas definidas nos ayudan a definir qué es un producto interior. Esta es una noción fundamental que más adelante nos ayudará a definir distancias y ángulos.

Formas bilineales positivas y positivas definidas

Para hablar de geometría en espacios vectoriales, la siguiente noción es fundamental. Es importante notar que es una definición únicamente para formas bilineales simétricas.

Definición. Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica.

  • Diremos que $b$ es positiva si $b(x,x)\geq 0$ para todo vector $x$ de $V$.
  • Diremos que $b$ es positiva definida si $b(x,x)>0$ para todo vector $x\neq 0$ de $v$.

Tenemos una noción análoga para formas cuadráticas.

Definición. Sea $q:V\to \mathbb{R}$ una forma cuadrática con forma polar $b$. Diremos que $q$ es positiva si $b$ lo es, y diremos que es positiva definida si $b$ lo es.

Ejemplo 1. Como ya vimos antes, el producto punto de $\mathbb{R}^n$ es una forma bilineal simétrica. También es positiva definida, pues si tenemos $x=(x_1,\ldots,x_n)$, tenemos que $$x\cdot x = x_1^2+\ldots+x_n^2\geq 0,$$ y esta es una igualdad si y sólo si $x_1=\ldots=x_n=0$, lo cual sucede si y sólo si $x=0$.

$\triangle$

Ejemplo 2. Considera $V=\mathbb{R}_2[x]$ y consideremos la forma bilineal $b$ dada por $$b(p,q)=p(0)q(1)+p(1)q(0).$$ Esta es una forma bilineal simétrica pues \begin{align*}b(p,q)&=p(0)q(1)+p(1)q(0)\\&=q(0)p(1)+q(1)p(0)\\&=b(q,p).\end{align*} Notemos que $$b(p,p)=2p(0)p(1),$$ que no necesariamente es positivo. Por ejemplo, si tomamos el polinomio $p(x)=x-\frac{1}{2}$, tenemos que \begin{align*}b(p,p)&=2p(0)p(1)\\&=-2\cdot\frac{1}{2}\cdot\frac{1}{2}\\&=-\frac{1}{2}.\end{align*} Así, esta es una forma bilineal simétrica, pero no es positiva (y por lo tanto tampoco es positiva definida).

$\triangle$

Problema. Considera la forma cuadrática $Q$ en $M_{2}(\mathbb{R})$ que suma el cuadrado de las entradas de la diagonal de una matriz, es decir, aquella dada por $$Q\begin{pmatrix} a & b\\c & d\end{pmatrix}=a^2+d^2.$$ Determina su forma polar y si es positiva o positiva definida.

Solución. Para encontrar la forma polar $B$ de $Q$, usamos la identidad de polarización
\begin{align*}
B&\left(\begin{pmatrix}a&b\\c&d\end{pmatrix},\begin{pmatrix} e & f\\ g & h \end{pmatrix}\right)\\
&=\frac{(a+e)^2+(d+h)^2-a^2-e^2-d^2-h^2}{2}\\
&=\frac{2ae+2dh}{2}\\
&=ae+dh.
\end{align*}

Como $Q\begin{pmatrix}a&b\\c&d\end{pmatrix}=a^2+d^2\geq 0$, tenemos que $Q$ (y $B$) son positivas. Sin embargo, $Q$ no es positiva definida (ni $B$), pues por ejemplo, $$Q\begin{pmatrix}0&1\\1&0\end{pmatrix} = 0.$$

Producto interior

Estamos listos para definir aquellos espacios sobre los que podemos hacer geometría.

Definición. Sea $V$ un espacio vectorial sobre $\mathbb{R}$

  • Un producto interior en $V$ es una forma bilineal simétrica y positiva definida.
  • Decimos que $V$ es un espacio Euclideano si es de dimensión finita y está equipado con un producto interior.

Estamos siguiendo la convención del libro de Titu Andreescu, en donde es importante pedir que $V$ sea de dimensión finita para ser Euclideano.

Cuando estamos hablando de espacios con producto interior, o de espacios Euclideanos, tenemos una forma bilineal simétrica y positiva definida $b$. Sin embargo, en vez de usar constantemente $b(x,y)$, para simplificar la notación usaremos simplemente $\langle x, y\rangle$.

Definición. Si $V$ es un espacio con producto interior $\langle \cdot,\cdot \rangle$, definimos la norma de un vector $x$ como $$\Vert x \Vert =\sqrt{\langle x, x \rangle}.$$

Ejemplo. Como dijimos arriba, el producto punto en $\mathbb{R}^n$ es una forma bilineal simétrica, así que es un producto interior. Como $\mathbb{R}^n$ es de dimensión finita, entonces es un espacio Euclideano.

La norma de un vector $x=(x_1,\ldots,x_n)$ está dada por $\Vert x \Vert = \sqrt{x_1^2+\ldots+x_n^2},$ y geométricamente se interpreta como la distancia de $x$ al origen.

Un ejemplo más concreto es $\mathbb{R}^4$, en donde la norma del vector $(1,2,3,1)$ es $\sqrt{1^2+2^2+3^2+1^2}=\sqrt{15}$.

$\triangle$

La notación de producto interior quizás te recuerde la notación que se usa cuando hablamos de dualidad. Sin embargo, es muy importante que distingas los contextos. En el caso de dualidad, tenemos $$\langle \cdot, \cdot \rangle: V^\ast\times V \to \mathbb{R},$$ y en este contexto de producto interior tenemos $$\langle \cdot, \cdot \rangle: V\times V \to \mathbb{R}.$$ Más adelante, puede que te encuentres en tu preparación matemática con el teorema de representación de Riesz, a partir del cual tendrá sentido que se use la misma notación.

Desigualdad de Cauchy-Schwarz

A continuación presentamos un resultado fundamental es espacios con formas bilineales positivas y positivas definidas.

Teorema (desigualdad de Cauchy-Schwarz). Sea $b:V\times V\to \mathbb{R}$ una forma bilineal simétrica y $q$ su forma cuadrática asociada.

  • Si $b$ es positiva, entonces para todo $x$ y $y$ en $V$ tenemos que $$b(x,y)^2\leq q(x)q(y).$$ Si $x$ y $y$ son linealmente dependientes, se alcanza la igualdad.
  • Además, si $b$ es positiva definida y $x$ y $y$ son linealmente independientes, entonces la desigualdad es estricta.

Demostración. Supongamos primero solamente que $b$ es positiva. Consideremos la función $f:\mathbb{R}\to \mathbb{R}$ dada por $f(t)=q(x+ty)$. Como $q$ es forma cuadrática positiva, tenemos que $f(t)\geq 0$ para todo real $t$. Por otro lado, expandiendo y usando que $b$ es simétrica, tenemos que
\begin{align*}
f(t)&=q(x+ty)\\
&=b(x+ty,x+ty)\\
&=b(x,x)+2b(x,y)\cdot t + b(y,y) \cdot t^2\\
&=q(x) + 2b(x,y)\cdot t + q(y) \cdot t^2.
\end{align*}

En esta expresión, $q(x)$, $2b(x,y)$ y $q(y)$ son reales, así que $f(t)$ es un polinomio cuadrático en $t$. Como $f(t)\geq 0$ para todo $t$ en $\mathbb{R}$, el discriminante de este polinomio es no positivo, en otras palabras, $$(2b(x,y))^2-4q(x)q(y)\leq 0.$$

Sumando $4q(x)q(y)$ y dividiendo entre $4$ ambos lados de la desigualdad, obtenemos que $$b(x,y)^2\leq q(x)q(y),$$ la cual es la desigualdad que queremos.

Si $x$ y $y$ son linealmente dependientes, podemos despejar a uno en términos del otro. Sin perder generalidad, podemos suponer que $x=\alpha y$. En este caso, $$b(\alpha y,y)^2=\alpha^2 b(y,y)=q(\alpha(y))q(y),$$ así que se da la igualdad.

Ahora, supongamos además que $b$ es positiva definida y que se da la igualdad. Si esto sucede, el discriminante del polinomio cuadrático de arriba es igual a $0$ y por lo tanto el polinomio tiene una raíz $t$. En otras palabras, $q(x+ty)=0$. Pero como $q$ es positiva definida, esto implica que $x+ty=0$, de donde $x$ y $y$ son linealmente dependientes. Así, si $x$ y $y$ son linealmente independientes, tenemos que la desigualdad es estricta.

$\square$

El siguiente caso particular es uno de los más importantes y los más usados, por lo cual amerita que lo enunciemos separadamente.

Corolario. Sea $V$ un espacio vectorial sobre $\mathbb{R}$ equipado con un producto interior $\langle \cdot, \cdot \rangle$. Para cualesquiera $x,y$ en $V$ se cumple $|\langle x, y \rangle| \leq \Vert x \Vert \cdot \Vert y \Vert$.

Puede que te preguntes por qué enfatizamos los resultados de desigualdades. En varias partes de tu formación matemática trabajarás con espacios vectoriales en donde quieres hacer cálculo. Ahí, se define la convergencia y los límites en términos de una norma. Las desigualdades que probemos para espacios vectoriales son útiles para cuando se quiere demostrar la validez de ciertos límites. Más adelante mencionaremos algunas cosas adicionales al respecto.

Más adelante…

En esta entrada definimos el concepto de producto interior y vimos cómo el producto interior induce una norma en el espacio vectorial. El concepto de norma nos permite generalizar la noción de distancia y esto nos permitirá ver cómo se puede hacer cálculo en espacios vectoriales.

En las siguientes entradas veremos cómo se define esta norma para diferentes espacios vectoriales con diferentes productos interiores. Podremos ver entonces cómo se generalizan otras nociones que ya hemos visto en cursos anteriores; como el concepto de ángulo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Considera la función $q(w,x,y,z)=wx+yz$. Muestra que es una forma cuadrática en $\mathbb{R}^4$. Encuentra su forma polar y determina si es una forma cuadrática positiva y/o positiva definida.
  • Muestra que $$q(w,x,y,z)=x^2+y^2+z^2+xy+yz+zx$$ es una forma cuadrática en $\mathbb{R}^4$ y determina si es positiva y/o positiva definida.
  • Considera $V=\mathcal{C}[0,1]$ el espacio vectorial de funciones continuas en el intervalo $[0,1]$. Muestra que $$\langle f,g\rangle = \int_0^1 f(x)g(x)\, dx$$ define un producto interior en $V$. ¿Es $V$ un espacio Euclideano? Determina la norma de la función $f(x)=x^3$.
  • Sea $V=\mathbb{R}_2[x]$ el espacio vectorial de polinomios con coeficientes reales y de grado a lo más $1$. Muestra que $$\langle p,q\rangle = p(0)q(0)+p(1)q(1)+p(2)q(2)$$ hace a $V$ un espacio Euclideano.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»