Archivo de la etiqueta: generado

Álgebra Superior II: Ideales en los enteros

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada pasada hablamos del concepto de divisibilidad en los números enteros. Enunciamos y demostramos varias de sus propiedades. La noción de divisibilidad da lugar a muchos otros conceptos importantes dentro de la teoría de los números enteros, como el máximo común divisor, el mínimo común múltiplo y los números primos. Así mismo, la noción de divisibilidad está fuertemente ligada con los ideales en los enteros.

En esta entrada hablaremos de este último concepto a detalle. Es una entrada un poco técnica, pero nos ayudará para asentar las bases necesarias para poder hablar de los máximos comunes divisores y los mínimos comunes múltiplos con comodidad un poco más adelante.

Ideales en los enteros y una equivalencia

Los ideales son ciertas estructuras importantes en matemáticas. En el caso particular de los números enteros, tenemos la siguiente definición.

Definición. Un ideal de $\mathbb{Z}$ es un subconjunto $I$ de $\mathbb{Z}$ que cumple las siguientes dos propiedades:

  • No es vacío.
  • Es cerrado bajo restas, es decir, si $a$ y $b$ están en $I$, entonces $a-b$ también.

Veamos un ejemplo sencillo. Diremos que un número entero es par si es múltiplo de $2$ y que es impar si no es múltiplo de dos.

Ejemplo. El conjunto de todos los números pares son un ideal de $\mathbb{Z}$. Este conjunto claramente no es vacío, pues adentro de él está, por ejemplo, el $2$. Además, si tenemos que dos números $a$ y $b$ son pares, entonces por definición podemos encontrar enteros $k$ y $l$ tales que $a=2k$ y $b=2l$, de modo que $$a-b=2k-2l=2(k-l),$$ lo cual nos dice que $a-b$ también es par.

$\triangle$

Como veremos un poco más adelante, el ejemplo anterior se puede generalizar. Antes de ver esto, veremos una caracterización un poco distinta de lo que significa ser un ideal.

Proposición. Un subconjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si cumple las siguientes tres propiedades:

  • No es vacío.
  • Es cerrado bajo sumas, es decir, si $a$ y $b$ están en $I$, entonces $a+b$ también.
  • Es absorbente, es decir, si $a$ está en $I$ y $b$ está en $\mathbb{Z}$, entonces $ab$ también está en $I$.

Demostración. Primero veremos que si $I$ es un ideal, entonces cumple las tres propiedades anteriores. Luego veremos que si $I$ cumple las tres propiedades anteriores, entonces es un idea.

Supongamos que $I$ es un ideal. Por definición, no es vacío, que es lo primero que queríamos ver. Veamos ahora que es cerrado bajo sumas. Supongamos que $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas y $b-b=0$, obtenemos que $b$ está en $I$. Usando nuevamente que $b$ es cerrado bajo restas para $0$ y $b$, obtenemos que $0-b=-b$ también está en $I$. Usando una última vez la cerradura de la resta, obtenemos ahora que $a+b=a-(-b)$ está en $I$, como queríamos.

La tercera propiedad la demostraremos primero para los $b\geq 0$ por inducción. Si $b=0$, debemos ver que $0\cdot a=0$ está en $I$. Esto es cierto pues en el párrafo anterior ya vimos por qué $0$ está en $I$. Supongamos ahora que para cierta $b$ fija se tiene que $ab$ está en $I$. Por la cerradura de la suma obtenemos que $$ab+a=ab+a\cdot 1=a(b+1)$$ también está en $I$, como queríamos. Aquí usamos que $1$ es identidad multiplicativa, la distributividad, la hipótesis inductiva y la cerradura de la suma.

Nos falta ver qué pasa con los $b<0$. Sin embargo, si $b<0$, tenemos que $a(-b)$ sí está en $I$ (pues $-b>0$). Así, por la cerradura de la resta tenemos que $0-a(-b)=ab$ está en $I$.

Apenas llevamos la mitad de la demostración, pues vimos que la definición de ideal implica las tres propiedades que se mencionan. Pero el regreso es más sencillo. Supongamos que un conjunto $I$ cumple las tres propiedades mencionadas. Como cumple la primera, entonces no es vacío. Ahora vemos que es cerrado bajo restas. Tomemos $a$ y $b$ en $I$. Como cumple la segunda propiedad, tenemos que $(-1)b=-b$ está en $I$. Como cumple la cerradura de la suma, tenemos que $a+(-b)=a-b$ está en $I$. Así, $I$ es cerrado bajo restas.

$\square$

La ventaja del resultado anterior es que nos permitirá pensar a los ideales de una o de otra forma, de acuerdo a lo que sea más conveniente para nuestros fines más adelante.

Clasificación de ideales

Veamos la generalización de nuestro ejemplo de números pares e impares.

Definición. Sea $n$ un entero. Al conjunto de todos los múltiplos de $n$ lo denotaremos por $n\mathbb{Z}$ y lo llamaremos el conjunto de los múltiplos de $n$, es decir:

$n\mathbb{Z}=\{nm: m\in \mathbb{Z}\}.$

Proposición. Si $n$ es cualquier entero, entonces $n\mathbb{Z}$ es un ideal de $\mathbb{Z}$.

Demostración. Claramente $n\mathbb{Z}$ no es vacío pues, por ejemplo, $0=0\cdot n$ está en $n\mathbb{Z}$. La demostración de la cerradura de la resta se sigue de un corolario de la entrada anterior. Si $a,b$ están en $n\mathbb{Z}$, entonces ambos son divisibles entre $n$, así que su resta $a-b$ también. Así, $a-b$ está en $n\mathbb{Z}$.

$\square$

El ejemplo anterior de hecho da todos los posibles ideales que existen en $\mathbb{Z}$. El siguiente teorema enuncia esto con precisión.

Teorema. Un conjunto $I$ de $\mathbb{Z}$ es un ideal si y sólo si existe un entero no negativo $n$ tal que $I=n\mathbb{Z}$.

Demostración. Tomemos $I$ un ideal de $\mathbb{Z}$. Existe la posibilidad de que $I=\{0\}$, pues en efecto este es un ideal: es no vacío (pues tiene a $0$) y es cerrado bajo restas (pues sólo hay que verificar que $0-0=0$ está en I). Si este es el caso, entonces $I=0\mathbb{Z}$, como queríamos. Así, a partir de ahora supondremos que $I$ no es este conjunto. Veremos que $I$ tiene por lo menos un elemento positivo.

Sea $a\in I$ cualquier elemento que no sea $0$. Si $a$ es positivo, entonces ya lo logramos. Si $a$ es negativo, entonces notamos que $0=a-a$ está en $I$, y que entonces $-a=0-a$ está en $I$. Pero entonces $-a$ es un número positivo en $I$.

Debido a esto, por el principio del buen orden podemos tomar al menor entero positivo $n$ que está en $I$. Afirmamos que $I=n\mathbb{Z}$. Por la caracterización de ideales que dimos en la sección anterior, todos los múltiplos de $n$ están en $I$, así que $I\supseteq n\mathbb{Z}$.

Veamos que $I\subseteq n\mathbb{Z}$ procediendo por contradicción. Supongamos que este no es el caso, y que entonces existe un $m\in I$ que no sea múltiplo de $n$. Por el algoritmo de la división, podemos escribir $m=qn+r$ con $0<r<n$. Como $m$ está en $I$ y $qn$ está en $I$, tendríamos entonces que $m-qn=r$ está en $I$. ¡Pero esto es una contradicción! Tendríamos que $r$ está en $I$ y que $0<r<n$, lo cual contradice que $n$ era el menor entero positivo en $I$ que tomamos con el principio del buen orden. Esta contradicción sólo puede evitarse si $m$ es múltiplo de $n$, como queríamos.

$\square$

Un teorema como el anterior se conoce como un teorema de clasificación pues nos está diciendo cómo son todas las posibles estructuras que definimos a partir de un criterio fácil de enunciar.

Ideal generado por dos elementos

Dado un conjunto de números enteros $S$, podríamos preguntarnos por el ideal más chiquito que contenga a $S$. Un ejemplo sencillo es tomar $S$ con sólo un elemento, digamos $S=\{n\}$. En este caso, es fácil convencerse de que el ideal más pequeño que contiene a $S$ es precisamente $n\mathbb{Z}$ (ve los problemas de la tarea moral).

Un caso un poco más interesante es, ¿qué sucede si tenemos dos elementos?

Ejemplo. ¿Cuál será el menor ideal posible $I$ que tiene a los números $13$ y $9$? Empecemos a jugar un poco con la propiedad de la cerradura de la resta. Como $13$ y $9$ están, entonces también está $4=13-9$. Como $9$ y $4$ están, entonces también está $5=9-4$. Así mismo, debe estar $1=5-4$. Pero aquí ya llegamos a algo especial: que el $1$ está. Recordemos los ideales también cumplen que una vez que está un número, están todos sus múltiplos. Así, $1\mathbb{Z}$ está contenido en $I$. Pero entonces $I=1\mathbb{Z}=\mathbb{Z}$.

$\square$

No siempre obtenemos $\mathbb{Z}$ como respuesta. Para un ejemplo en donde se obtiene $2\mathbb{Z}$, ve los problemas de la tarea moral. En la siguiente entrada hablaremos con más detalle de la respuesta, pero por el momento probaremos lo siguiente.

Proposición. Si $a$ y $b$ son enteros, entonces:

  • El conjunto $M=\{ra+sb: r,s\in \mathbb{Z}\}$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$.
  • Si $I$ es un ideal de $\mathbb{Z}$ que tiene a $a$ y a $b$, entonces $M\subseteq I$.

En otras palabras, «$M$ es el ideal más pequeño (en contención) que tiene a $a$ y a $b$».

Demostración. Veamos primero que $M$ en efecto es un ideal. Para ello, notemos que no es vacío pues, por ejemplo, $0=0\cdot a+0\cdot b$ está en $M$. Además, es cerrado bajo restas pues si tenemos dos elementos en $M$, son de la forma $ra+sb$ y $ka+lb$, y su resta es $$(ra+sb)-(ka+lb)=(r-k)a+(s-l)b,$$ que vuelve a estar en $M$ pues $r-k$ y $s-l$ son enteros. Además, $a=1\cdot a+ 0\cdot b$, lo que muestra que $a$ está en $M$ y $b=0\cdot a + 1 \cdot b$, lo que muestra que $b$ está en $M$ también. Con esto demostramos el primer punto.

Para el segundo punto, supongamos que $a$ está en $I$ y que $b$ está en $I$ también. Como $I$ es idea, tiene a todos los múltiplos de $a$ y los de $b$, es decir, a todos los números de la forma $ra$ y $sb$. Como es ideal, también es cerrado bajo sumas, así que tiene todas las formas de números de este estilo. En particular, tiene a todos los números de la forma $ra+sb$ (variando $r$ y $s$), es decir, a todos los elementos de $I$, como queríamos.

$\square$

Quizás notaste algo raro. El conjunto $M$ es un ideal, pero se ve un poco distinto de los que obtuvimos con nuestra caracterización de la sección anterior. Parece más bien que «está hecho por dos enteros» en vez de estar hecho sólo por uno. Esto no es problema. Nuestra caracterización nos dice que debe existir un entero $d$ tal que $M=d\mathbb{Z}$. Esto nos llevará en la siguiente entrada a estudiar el máximo común divisor.

Intersección de ideales

Los ideales de $\mathbb{Z}$ son subconjuntos, así que podemos aplicarles operaciones de conjuntos. ¿Qué sucede si intersectamos dos ideales? La siguiente operación nos dice que

Proposición. Si $I$ y $J$ son ideales de $\mathbb{Z}$, entonces $I\cap J$ también.

Demostración. La demostración es sencilla. Como $I$ y $J$ son ideales, se puede ver que ambos tienen al $0$, y que por lo tanto su intersección también. Ahora veamos que $I\cap J$ es cerrada bajo restas. Si $a$ y $b$ están en $I\cap J$, entonces $a$ y $b$ están en $I$. Como $I$ es cerrado bajo restas, $a-b$ está en $I$. Análogamente, está en $J$. Así, $a-b$ está en $I\cap J$, como queríamos.

$\square$

Este resultado motivará nuestro estudio del mínimo común múltiplo un poco más adelante.

Más adelante…

Esta fue una entrada un poco técnica, pero ahora ya conocemos a los ideales en los enteros, algunas de sus propiedades y hasta los caracterizamos. La idea de tomar el ideal generado por dos elementos nos llevará a estudiar en la siguiente entrada el concepto de máximo común divisor. Y luego, la idea de intersectar ideales nos llevará en un par de entradas a explorar la noción de mínimo común múltiplo.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Imagina que sabes que un ideal tiene al número $6$. Esto forza a que también tenga a $6-6=0$. Así, esto forza a que también tenga el $0-6=-6$. Sigue así sucesivamente, jugando con todas las nuevas restas que deben quedarse dentro del ideal. ¿Cuál es el menor ideal que puede tener al $6$?
  2. Repite lo anterior, pero ahora suponiendo que tu ideal tiene a los números $10$ y $12$. ¿Qué números puedes obtener si repetidamente puedes hacer restas? ¿Quién sería el menor ideal que tiene a ambos números?
  3. Sean $I_1,\ldots,I_k$ ideales de $\mathbb{N}$. Demuestra que $I_1\cap I_2 \cap \ldots \cap I_k$ también es un idea. Como sugerencia, usa inducción.
  4. Toma a los ideales $6\mathbb{Z}$ y $8\mathbb{Z}$. Por el resultado de la entrada, tenemos que su intersección $A$ también es un ideal. Intenta averiguar y demostrar quién es el $k$ tal que $A=k\mathbb{Z}$.
  5. ¿Es cierto que la unión de dos ideales siempre es un ideal? Si es falso, encuentra contraejemplos. Si es verdadero, da una demostración. Si es muy fácil, ¿puedes decir exactamente para qué enteros $m$ y $n$ sucede que $m\mathbb{Z}\cup n\mathbb{Z}$ es un ideal?

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

1.6. SUBESPACIO GENERADO POR UN CONJUNTO: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

INTRODUCCIÓN

Queremos saber:
¿Podemos describir el conjunto de todas las combinaciones lineales de un conjunto dado?
Dado un elemento de un conjunto $A$, ¿cómo saber si podemos obtenerlo como combinación lineal de otro conjunto $B$?
¿Qué características cumple el conjunto de todas las combinaciones lineales de un conjunto cualquiera?

SUBESPACIO GENERADO

Definición: Sean $V$ un $K$ – espacio vectorial y $S$ un subconjunto de $V$. Diremos que el subespacio de $V$ generado por $S$ es:
el conjunto de combinaciones lineales de $S$, si $S\not=\emptyset$,
o bien, $\{\theta_V\}$, si $S=\emptyset$.
Se denota por $\langle S\rangle$.

Si $W$ es un subespacio de $V$, se dice que $S$ genera a $W$, o que $S$ es un conjunto generador de $W$, si $\langle S\rangle =W$.

Observación: La proposición de la entrada anterior nos menciona tres importantes propiedades del conjunto de todas las combinaciones de un subconjunto dado, en particular, que forma un subespacio.

Nota: Es común que en algunos libros se denote como $span(S)$ en lugar de $\langle S\rangle$. Además, se suele escribir $\langle v_1,…,v_n\rangle$ cuando $S=\{v_1,…,v_n\}$.

Ejemplos:

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(0,1,0),(0,0,1)\}=\{e_1,e_2,e_3\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(0,1,0)+c(0,0,1)=(a,b,c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=x\,e_1+y\,e_2+z\,e_3\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_2(\mathbb{R})$ y $S=\{1,1-x,1-x-x^2\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$, tenemos que $\lambda_1(1)+\lambda_2(1-x)+\lambda_3(1-x-x^2)$
$=(\lambda_1+\lambda_2+\lambda_3)+(-\lambda_2-\lambda_3)x+(-\lambda_3)x^2\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $a+bx+cx^2\in V$, tenemos que $a+bx+cx^2=(a+b)(1)+(c-b)(1-x)+(-c)(1-x-x^2)\in S$, por lo que $V\subseteq\langle S\rangle$.

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^3$ y $S=\{(1,0,0),(1,-1,0),(1,1,-1)\}$.
    $\langle S\rangle =V$.

Justificación: Para cualesquiera $a,b,c\in\mathbb{R}$, tenemos que $a(1,0,0)+b(1,-1,0)+c(1,1,-1)=(a+b+c,-b+c,-c)\in V$, así que $\langle S\rangle\subseteq V$.
Para cualquier $(x,y,z)\in V$, tenemos que $(x,y,z)=(x+y+2z)(1,0,0)+(-y-z)(1,-1,0)+(-z)(1,1,-1)\in S$, por lo que $V\subseteq\langle S\rangle.$

  • Sean $K=\mathbb{R}$, $V=\mathcal{M}_{2\times 2}(\mathbb{R})$ y $S=\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} , \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \right\}$.
    $\langle S\rangle =\left\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert a,b\in\mathbb{R}\right\}$.

Justificación: \begin{align*}
\langle S\rangle &= \bigg\{ \lambda \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \mu \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \bigg\vert \,\lambda,\mu\in\mathbb{R}\bigg\}\\
&= \bigg\{ \begin{pmatrix} \lambda & \lambda \\ \lambda & \lambda \end{pmatrix} + \begin{pmatrix} \mu & \mu \\ 0 & \mu \end{pmatrix} \bigg\vert \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} \lambda +\mu & \lambda + \mu \\ \lambda & \lambda +\mu \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ (\lambda +\mu)\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \lambda \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, \lambda ,\mu\in\mathbb{R} \bigg\} \\
&= \bigg\{ a\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + b\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \bigg\vert\, a,b\in\mathbb{R} \bigg\} \\
&= \bigg\{ \begin{pmatrix} a & a \\ b & a \end{pmatrix} \bigg\vert \,a,b\in\mathbb{R}\bigg\}
\end{align*}

Nota: Puede ocurrir que $W\subseteq\langle S\rangle$ y $W\not=\langle S\rangle$. En ese caso, $S$ no genera a $W$.
Por ejemplo, si $W=\{(a,a)|a\in\mathbb{R}\}$ y $S=\{e_1,e_2\}$, es claro que $\langle S\rangle =\mathbb{R}^2$, por lo cual, $W\subseteq\langle S\rangle$, pero no son iguales.

Observación: Si $S\subseteq W$, entonces $\langle S\rangle\subseteq W$.
Si además todo vector en $W$ es combinación lineal de vectores de $S$, entonces $W\subseteq\langle S\rangle$ y en ese caso tendremos que $\langle S\rangle= W.$

Como el subespacio generado por un conjunto es un conjunto, nos interesa analizar algunas operaciones y ver qué relaciones encontramos.

Sea $V=\mathbb{R}^2$ con $K=\mathbb{R}$.
Sean $S_1=\{(1,0)\}$, $S_2=\{(0,1)\}$ y $S_3={(1,1)}$.

  • $S_1\cup S_2=\{(1,0),(0,1)\}$
  • $S_1\cap S_2=\emptyset$
  • $S_1\cup S_3=\{(1,0),(1,1)\}$
  • $S_1\cap S_3=\emptyset$
  • $\langle S_1\rangle =\{(x,0)|x\in\mathbb{R}\}$
  • $\langle S_2\rangle =\{(0,y)|y\in\mathbb{R}\}$
  • $\langle S_3\rangle =\{(x,x)|x\in\mathbb{R}\}$
  • $\langle S_1\cup S_2\rangle$$=\langle\{(1,0),(0,1)\}\rangle$
    Sean $a\in\mathbb{R}$, $b\in\mathbb{R}$
    Como $a(1,0)+b(0,1)=(a,0)+(0,b)=(a,b)$ y $a$ y $b$ son números reales cualesquiera, entonces para cualquier $(x,y)\in\mathbb{R}$ podremos encontrar una combinación lineal de $S_1\cup S_2$ cuyo resultado sea $(x,y)$
    Por lo tanto, $\langle S_1\cup S_2\rangle=\mathbb{R}^2$.
  • $\langle S_1\rangle\cup\langle S_2\rangle$$=\{(x,0)|x\in\mathbb{R}\}\cup\{(0,y)|y\in\mathbb{R}\}$
    Es decir, únicamente podemos obtener valores en los ejes de nuestro plano cartesiano.
  • $\langle S_1\cap S_3\rangle$$=\emptyset$$=(0,0)$
  • $\langle S_1\rangle\cap\langle S_3\rangle$$=\langle\{(x,0)|x\in\mathbb{R}\}\rangle\cap\langle\{(x,x)|x\in\mathbb{R}\}\rangle$
    Una combinación lineal pertenece a este conjunto si el resultado puede expresarse con únicamente elementos de $S_1$ y con únicamente elementos de $S_2$.
    ¿Qué elementos de $\mathbb{R}^2$ tienen en la segunda entrada al cero y en ambas entradas al mismo número? Solo en $(0,0)$
    Por lo tanto, $\langle S_1\rangle\cap\langle S_3\rangle =(0,0)$.

Tarea Moral

  1. Encuentra un $K_1$ campo y un $K_1$ – espacio vectorial donde puedas definir un subconjunto infinito $S_1$ tal que $\langle S_1\rangle$ sea finito.
  2. Encuentra un $K_2$ campo y un $K_2$ – espacio vectorial donde puedas definir un subconjunto $S_2$ de un solo elemento tal que $\langle S_2\rangle$ sea infinito.
  3. Toma en cuenta los subconjuntos definidos al final de esta entrada donde $K=\mathbb{R}$ y $V=\mathbb{R}^2$. Describe la relación que existe entre:
    • $\langle S_1\cup S_3\rangle$ y $\langle S_1\rangle\cup\langle S_3\rangle$
    • $\langle S_1\cap S_2\rangle$ y $\langle S_1\rangle\cap\langle S_2\rangle$

Más adelante…

Muchas veces en matemáticas buscamos el mayor / menor conjunto con el cual obtengamos ciertas propiedes. Siguiendo esta idea, veremos un nuevo concepto: conjunto linealmente independiente.

Entradas relacionadas

Álgebra Lineal I: Combinaciones lineales

Por Julio Sampietro

Introducción

En esta entrada presentamos el concepto de combinaciones lineales en espacios vectoriales que será fundamental para nuestro estudio. De cierta manera (que se verá más claramente cuando hablemos de bases en espacios vectoriales arbitrarios) captura un aspecto de la base canónica de $F^n$: Todo vector lo podemos escribir como $x_1 e_1+\dots+x_n e_n$, lo que con nuestro lenguaje será una combinación lineal de los vectores $e_i$.

También hablamos del concepto de espacio generado. De manera intuitiva, el espacio generado por un conjunto de vectores es el mínimo subespacio que los tiene (y que a la vez tiene a todas las combinaciones lineales de ellos). Geométricamente, los espacios generados describen muchos de los objetos conocidos como rectas y planos. De manera algebraica, este concepto nos servirá mucho en lo que sigue del curso.

Definición de combinaciones lineales

Sea $V$ un espacio vectorial sobre un campo $F$, y sean $v_1, \dots, v_n$ vectores en $V$. Por definición, $V$ contiene a todos los vectores de la forma $c_1 v_1+\dots +c_n v_n$ con $c_1, \dots, c_n \in F$. La colección de los vectores de este estilo es importante y le damos una definición formal:

Definición. Sean $v_1, \dots, v_n$ vectores en un espacio vectorial $V$ sobre $F$.

  1. Un vector $v$ es una combinación lineal de los vectores $v_1, \dots, v_n$ si existen escalares $c_1,\dots, c_n\in F$ tales que
    \begin{align*}
    v= c_1 v_1 +c_2 v_2+\dots +c_n v_n.
    \end{align*}
  2. El espacio generado (que a veces abreviaremos como el generado) por $v_1, \dots, v_n$ es el subconjunto de $V$ de todas las combinaciones lineales de $v_1,\dots, v_n$, y lo denotamos por $\text{span}(v_1, \dots, v_n)$.

Ejemplo.

  1. La matriz $A=\begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$ es una combinación lineal de las matrices $B= \begin{pmatrix} 10 & 0 \\ 5 & 0\end{pmatrix}$ y $C=\begin{pmatrix} 0 & 1 \\ 0 & \frac{1}{2}\end{pmatrix}$ pues $A=\frac{1}{5} B + 2 C$. Así, $A$ está en el generado por $B$ y $C$.
  2. El generado $\text{span}(v)$ de un único vector en $\mathbb{R}^n$ consta de puras copias re-escaladas de $v$ (también nos referimos a estos vectores como múltiplos escalares de $v$). Usando la interpretación geométrica de vectores en $\mathbb{R}^2$ o $\mathbb{R}^3$, si $v\neq 0$ entonces $\text{span}(v)$ representa una recta por el origen en la dirección de $v$.
  3. Si $e_1=(1,0,0)$ y $e_2=(0,1,0)$, entonces
    \begin{align*}
    x e_1+ y e_2=(x,y,0).
    \end{align*}
    Como $x$ y $y$ fueron arbitrarios, podemos concluir que $\text{span}(e_1,e_2)$ consta de todos los vectores en $\mathbb{R}^3$ cuya tercer entrada es cero. Esto es el plano $xy$. En general, si $v_1, v_2$ son dos vectores no colineales en $\mathbb{R}^3$ entonces su espacio generado es el único plano por el origen que los contiene.
  4. El polinomio $3x^{10}+7$ del espacio vectorial $\mathbb{R}_{10}[x]$ no puede ser escrito como combinación lineal de los polinomios $x^{10}+x^2+1$, $x^7+3x+1$, $7x^3$. Para demostrar esto, debemos probar que no existen reales $a,b,c$ tales que $$3x^{10}+7=a(x^{10}+x^2+1)+b(x^7+3x+1)+7cx^3.$$
    Procedamos por contradicción. Si acaso esto fuera posible, desarrollando el producto de la derecha y observando el coeficiente de $x^{10}$, necesitamos que $a$ sea igual a $3$. Pero entonces a la derecha va a quedar un término $3x^2$ que no se puede cancelar con ninguno otro de los sumandos, sin importar el valor de $b$ o $c$. Igualando términos cuadráticos, tendríamos entonces $0=3x^2$, lo cual es una contradicción.

$\triangle$

Problemas prácticos de combinaciones lineales

La definición de que un vector sea combinación de otros es existencial. Para mostrar que sí es combinación lineal, basta encontrar algunos coeficientes. Para mostrar que no es combinación lineal, hay que argumental por qué ninguna de las combinaciones lineales de los vectores es igual al vector buscado.

Problema 1. Muestra que el vector $(1,1,1)$ de $\mathbb{R}^3$ no se puede expresar como combinación lineal de los vectores

\begin{align*}
v_1= (1,0,0), \hspace{2mm} v_2=(0,1,0)\text{ y } v_3=(1,1,0).
\end{align*}

Solución. Una combinación lineal arbitraria de $v_1, v_2, v_3$ es de la forma

\begin{align*}
x_1 v_1 +x_2 v_2 + x_3 v_3 = (x_1 + x_3, x_2 + x_3, 0)
\end{align*}

para $x_1,x_2,x_3$ reales. Así, las combinaciones lineales de $v_1,v_2,v_2$ siempre tienen a $0$ como tercera coordenada. De esta forma, ninguna de ellas puede ser igual a $(1,1,1)$.

$\square$

Más generalmente, consideramos el siguiente problema práctico: dada una familia de vectores $v_1, v_2, \dots, v_k$ en $F^n$ y un vector $v\in F^n$, decide si $v$ es una combinación lineal de $v_1, \dots, v_k$. En otras palabras, si $v\in \text{span}(v_1, \dots, v_k)$.

Para resolver este problema, consideramos la matriz de tamaño $n\times k$ cuyas columnas son $v_1, \dots, v_k$. Decir que $v\in \text{span}(v_1, \dots, v_k)$ es lo mismo que encontrar escalares $x_1, \dots, x_k\in F$ tales que $v= x_1 v_1 +\dots +x_k v_k$. De manera equivalente, si tomamos $X=(x_1,\ldots,x_k)$, queremos la existencia de una solución al sistema $AX=v$.

Esto es muy útil. Como tenemos una manera práctica de decidir si este sistema es consistente (por reducción gaussiana de la matriz aumentada $(A\vert v)$), tenemos una manera práctica de resolver el problema de si un vector es combinación lineal de otros. Por supuesto, esto también nos da una solución concreta al problema, es decir, no sólo decide la existencia de la combinación lineal, sino que además da una cuando existe.

Problema 2. Sean $v_1=(1,0,1,2), v_2=(3,4,2,1)$ y $v_3=(5,8,3,0)$ vectores en el espacio vectorial $\mathbb{R}^4$. ¿Está el vector $v=(1,0,0,0)$ en el generado de $v_1,v_2$ y $v_3$? ¿El vector $w=(4,4,3,3)$?

Solución. Aplicamos el método que describimos en el párrafo anterior. Es decir, tomemos la matriz

\begin{align*}
A= \begin{pmatrix} 1 & 3 & 5\\ 0 & 4 & 8\\ 1 & 2 & 3\\ 2 & 1 & 0\end{pmatrix}.
\end{align*}

Queremos ver si el sistema $AX=v$ es consistente. Haciendo reducción gaussiana a mano, o bien usando una calculadora de forma escalonada reducida (por ejemplo, la de eMathHelp), obtenemos que la forma escalonada reducida de la matriz aumentada $(A\vert v)$ es

\begin{align*}
(A\vert v)\sim \begin{pmatrix} 1 & 0 & -1 & 0\\ 0 & 1 &2 & 0\\ 0 & 0 & 0 &1 \\ 0 & 0 & 0 &0\end{pmatrix}.
\end{align*}

Viendo el tercer renglón, notamos que tiene pivote en la última columna. Deducimos que el sistema no es consistente, así que $v\notin \text{span}(v_1, v_2, v_3)$.

Procedemos de manera similar para el vector $w$. Esta vez tenemos

\begin{align*}
(A\vert w)\sim \begin{pmatrix} 1 & 0 & -1 & 1\\ 0 & 1 & 2 & 1\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 &0\end{pmatrix},
\end{align*}

lo que muestra que el sistema es consistente (pues ninguna fila tiene su pivote en la última columna), por lo tanto $w\in \text{span}(v_1, v_2, v_3)$. Si queremos encontrar una combinación lineal explícita tenemos que resolver el sistema

\begin{align*}
\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2\\ 0 & 0 &0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1\\ 0 \\ 0\end{pmatrix}.
\end{align*}

Tenemos que ninguna fila tiene su pivote en la columna $3$, así que $x_3$ es variable libre. Las variables $x_1$ y $x_2$ son pivote. Esto nos da como solución $x_1= x_3+1$ y $x_2=1-2x_3$. Entonces podemos escribir

\begin{align*}
w= (1+x_3) v_1 + (1-2x_3) v_2+ x_3v_3
\end{align*}

y esto es válido para cualquier elección de $x_3$. Podemos, por ejemplo, escoger $x_3=0$ y obtener $w=v_1 + v_2$.

$\triangle$

Por supuesto, en el problema anterior pudimos haber encontrado la expresión $w=v_1+v_2$ explorando el problema o por casualidad. Esto sería suficiente para mostrar que $w$ es combinación lineal. Pero la ventaja del método sistemático que mostramos es que no se corre el riesgo de no encontrar la solución a simple vista. De me manera definitiva nos dice si hay o no hay solución, y cuando sí hay, encuentra una.

Una caracterización del espacio generado

Probamos el siguiente resultado, que explica la importancia del concepto de espacio generado. En particular, la proposición muestra que el espacio generado es un subespacio. Si te parece un poco confusa la demostración, puede ser de ayuda leer antes la observación que le sigue.

Proposición. Sea $V$ un espacio vectorial sobre un campo $F$ y $v_1, v_2, \dots, v_n \in V$. Entonces

  1. $\text{span}(v_1, v_2, \dots, v_n)$ es la intersección de todos los subespacios vectoriales de $V$ que contienen a todos los vectores $v_1, \dots, v_n$.
  2. $\text{span}(v_1, v_2, \dots, v_n)$ es el subespacio más chico (en contención) de $V$ que contiene a $v_1,\dots, v_n$.

Demostración. Como la intersección arbitraria de subespacios es un subespacio, la parte $1$ implica la parte $2$. Probemos entonces la parte $1$.

Primero demostremos que $\text{span}(v_1, v_2,\dots, v_n)$ está contenido en todo subespacio $W$ de $V$ que tiene a $v_1, \dots, v_n$. En otras palabras, tenemos que ver que cualquier subespacio $W$ que tenga a $v_1,\ldots,v_n$ tiene a todas las combinaciones lineales de ellos. Esto se sigue de que $W$, por ser subespacio, es cerrado bajo productos por escalar y bajo sumas. Así, si tomamos escalares $\alpha_1,\ldots,\alpha_n$ tenemos que cada uno de $\alpha_1 v_1, \ldots, \alpha_n v_n$ está en $W$ y por lo tanto la combinación lineal (que es la suma de todos estos), también está en $W$.

La afirmación anterior implica que $\text{span}(v_1, \dots, v_n)$ está contenido en la intersección de todos los espacios que tienen a $v_1,\ldots, v_n$, pues está contenido en cada uno de ellos.

Ahora, queremos ver ‘la otra contención’, es decir, que $\text{span}(v_1,\ldots,v_n)$ contiene a la intersección de todos los espacios que tienen a $v_1,\ldots,v_n$. Para esto veremos primero que $\text{span}(v_1, \dots, v_n)$ es un subespacio vectorial. Sean $x,y\in \text{span}(v_1, \dots, v_n)$ y $c\in F$ un escalar. Como $x$ y $y$ son, por definición, combinaciones lineales de $v_1, \dots, v_n$, podemos escribir $x=a_1 v_1+\dots +a_n v_n$ para algunos escalares $a_i$ y $y=b_1 v_1+\dots + b_n v_n$ para unos escalares $b_i$. Así

\begin{align*}
x+cy= (a_1+cb_1) v_1 + \dots + (a_n +c b_n) v_n
\end{align*}

también es una combinación lineal de $v_1, \dots, v_n$ y por tanto un elemento del espacio generado. Se sigue que $\text{span}(v_1,\dots, v_n)$ es uno de los subespacios que tienen a $v_1, \dots, v_n$. Así, este generado «aparece» en la intersección que hacemos de subespacios que tienen a estos vectores, y como la intersección de una familia de conjuntos está contenida en cada uno de esos conjuntos, concluimos que $\text{span}(v_1, \dots, v_n)$ contiene a dicha inteesección.

Argumentemos ahora la segunda parte de la proposición. Se usa el mismo argumento que arriba. Si $W$ es cualquier subespacio que contiene a $v_1, \dots, v_n$, entonces «aparece» en la intersección y por tanto $\text{span}(v_1, \dots, v_n)$ está contenido en $W$. Es decir, es más chico (en contención) que cualquier otro subespacio que contenga a estos vectores.

$\square$

Observación. Ya que la demostración previa puede resultar un poco confusa, presentamos una versión un poco más relajada de la idea que se usó. Sea $\lbrace W_i\mid i\in I\rbrace$ la familia de todos los subespacios de $V$ que contienen a $v_1, \dots, v_n$.

En el primer párrafo, probamos que

\begin{align*}
\text{span}(v_1,\dots, v_n)\subseteq W_i
\end{align*}

para todo $i\in I$. Luego $\text{span}(v_1, \dots, v_n)\subseteq \bigcap_{i\in I} W_i$.

En el segundo párrafo, probamos que $Span(v_1,\dots, v_n)$ es un subespacio que contiene a $v_1, \dots, v_n$. Es decir, entra en nuestra familia $\lbrace W_i\mid i\in I\rbrace$, es uno de los $W_i$, digamos $W_j$. Entonces

\begin{align*}
\text{span}(v_1, \dots, v_n)= W_j \supseteq \bigcap_{i\in I} W_i.
\end{align*}

En ese momento ya tenemos la primer igualdad: $\text{span}(v_1,\ldots,v_n)=\bigcap_{i\in I} W_i.$

Ahora, la segunda conclusión de la proposición se sigue de esto con una observación más: Si $W’$ es un subespacio que contiene a $v_1, \dots, v_n$ entonces también entra en nuestra familia de los $W_i$’s, es decir es $W_{p}$ para algún $p\in I$. Ahora usando el inciso $1$, tenemos que

\begin{align*}
\text{span}(v_1, \dots, v_n)= \bigcap_{i\in I} W_i \subseteq W_p=W’.
\end{align*}

Esto concluye la demostración.

Más adelante…

El concepto de combinación lineal es la piedra angular para definir varios otros conceptos importantes en espacios vectoriales. Es un primer paso para definir a los conjuntos de vectores generadores y a los conjuntos de vectores linealmente independientes. Una vez que hayamos desarrollado ambos conceptos, podremos hablar de bases de un espacio vectorial, y con ello hablar de la dimensión de un espacio vectorial.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. ¿Se puede expresar al vector $(1,3,0,5)$ como combinación lineal de $(0,1,0,3)$, $(0,-1,2,0)$ y $(2, 0,-1,-6)$? Si sí, encuentra una o más combinaciones lineales que den el vector $(1,3,0,5)$
  2. ¿Se puede expresar al polinomio $1+x^2 +3x^3 -x^4 +x^5$ como combinación lineal de los siguientes polinomios
    \begin{align*}
    x^2-3x^4,\\
    1+x^2-x^5,\\
    2x+x^4,\\
    2+x^2,\\
    5x+5x^2-x^5?
    \end{align*}
  3. Sea $P$ un plano en $\mathbb{R}^3$ por el origen y $L$ una recta de $\mathbb{R}^3$ por el origen y con dirección dada por un vector $v\neq 0$. Demuestra que la intersección de $L$ con $P$ es una recta si y sólo si existen dos vectores en $P$ tal que su suma sea $v$.
  4. Encuentra el conjunto generado por los vectores del espacio vectorial indicado
    • Las matrices $\begin{pmatrix} 1 & 0 \\ 0 & 1\end{pmatrix}$ y $\begin{pmatrix}1 & 0 \\ 0 & -1 \end{pmatrix}$ del espacio $M_{2}$.
    • Los vectores $(1,-1,0)$ y $(1,0,-1)$ del espacio $\mathbb{R}^3$.
    • Los polinomios $1$, $x$, $x^2$ y $x^3$ del espacio $\mathbb{R}[x]$.
  5. Sea $V$ un espacio vectorial. Si $v_1, \dots, v_n, x$ son vectores en un espacio vectorial $V$, ¿será cierto siempre que $\text{span}(v_1, \dots, v_n)\subseteq \text{span}(v_1, \dots, v_n, x)$? De ser así, ¿esta contención siempre es estricta? Demuestra tu respuesta o da un contraejemplo.
  6. Sean $v_1,\ldots, v_n$ y $x$ vectores en un espacio vectorial $V$. Supongamos que $v_n$ está en $\text{span}(v_1,\ldots,v_{n-1},x)$. Muestra que $$\text{span}(v_1,\ldots,v_{n-1},x)=\text{span}(v_1,\ldots,v_{n-1},v_n).$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Problemas de combinaciones lineales, generadores e independientes

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores ya hablamos de combinaciones lineales, de conjuntos generadores y de conjuntos independientes. Lo que haremos aquí es resolver problemas para reforzar el contenido de estos temas.

Problemas resueltos

Problema 1. Demuestra que el polinomio $p(x)=x^2+x+1$ no puede ser escrito en el espacio vectorial $\mathbb{R}[x]$ como una combinación lineal de los polinomios \begin{align*} p_1(x)=x^2-x\\ p_2(x) = x^2-1\\ p_3(x) = x-1.\end{align*}

Solución. Para resolver este problema, podemos plantearlo en términos de sistemas de ecuaciones. Supongamos que existen reales $a$, $b$ y $c$ tales que $$p(x)=ap_1(x)+bp_2(x)+cp_3(x).$$

Desarrollando la expresión, tendríamos que
\begin{align*}
x^2+x+1 &= a(x^2-x)+b(x^2-1)+c(x-1)\\
&= (a+b)x^2+(-a+c)x+(-b-c),
\end{align*}

de donde igualando coeficientes de términos del mismo grado, obtenemos el siguiente sistema de ecuaciones: $$\begin{cases}a+b & = 1\\ -a + c &= 1 \\ -b-c &= 1.\end{cases}$$

Para mostrar que este sistema de ecuaciones no tiene solución, le aplicaremos reducción gaussiana a la siguiente matriz extendida: $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_2+R_1$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & -1 & -1 & 1 \end{pmatrix}.$$

Tras la transvección $R_3+R_2$, obtenemos $$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{pmatrix}.$$

De aquí se ve que la forma escalonada reducida tendrá un pivote en la última columna. Por el teorema de existencia y unicidad el sistema original no tiene solución.

$\square$

En el problema anterior usamos un argumento de reducción gaussiana para mostrar que el sistema no tiene solución. Este es un método general que funciona en muchas ocasiones. Una solución más sencilla para ver que el sistema del problema no tiene solución es que al sumar las tres ecuaciones se obtiene $0=3$.

Problema 2. Sea $n$ un entero positivo. Sea $W$ el subconjunto de vectores en $\mathbb{R}^n$ cuya suma de entradas es igual a $0$. Sea $Z$ el espacio generado por el vector $(1,1,\ldots,1)$ de $\mathbb{R}^n$. Determina si es cierto que $$\mathbb{R}^n=W\oplus Z.$$

Solución. El espacio $Z$ está generado por todas las combinaciones lineales que se pueden hacer con el vector $v=(1,1,\ldots,1)$. Como sólo es un vector, las combinaciones lineales son de la forma $av$ con $a$ en $\mathbb{R}$, de modo que $Z$ es precisamente $$Z=\{(a,a,\ldots,a): a\in\mathbb{R}\}.$$

Para obtener la igualdad $$\mathbb{R}^n=W\oplus Z,$$ tienen que pasar las siguientes dos cosas (aquí estamos usando un resultado de la entrada de suma y suma directa de subespacios):

  • $W\cap Z = \{0\}$
  • $W+Z=\mathbb{R}^n$

Veamos qué sucede con un vector $v$ en $W\cap Z$. Como está en $Z$, debe ser de la forma $v=(a,a,\ldots,a)$. Como está en $W$, la suma de sus entradas debe ser igual a $0$. En otras palabras, $0=a+a+\ldots+a=na$. Como $n$ es un entero positivo, esta igualdad implica que $a=0$. De aquí obtenemos que $v=(0,0,\ldots,0)$, y por lo tanto $W\cap Z = \{0\}$.

Veamos ahora si se cumple la igualdad $\mathbb{R}^n=W+Z$. Por supuesto, se tiene que $W+Z\subseteq \mathbb{R}^n$, pues los elementos de $W$ y $Z$ son vectores en $\mathbb{R}^n$. Para que la igualdad $\mathbb{R}^n\subseteq W+Z$ se cumpla, tiene que pasar que cualquier vector $v=(x_1,\ldots,x_n)$ en $\mathbb{R}^n$ se pueda escribir como suma de un vector $w$ uno con suma de entradas $0$ y un vector $z$ con todas sus entradas iguales. Veamos que esto siempre se puede hacer.

Para hacerlo, sea $S=x_1+\ldots+x_n$ la suma de las entradas del vector $v$. Consideremos al vector $w=\left(x_1-\frac{S}{n},\ldots, x_n-\frac{S}{n} \right)$ y al vector $z=\left(\frac{S}{n},\ldots,\frac{S}{n}\right)$.

Por un lado, $z$ está en $Z$, pues todas sus entradas son iguales. Por otro lado, la suma de las entradas de $w$ es
\begin{align*}
\left(x_1-\frac{S}{n}\right)+\ldots + \left(x_n-\frac{S}{n}\right)&=(x_1+\ldots+x_n)-n\cdot \frac{S}{n}\\ &= S-S=0,
\end{align*}

lo cual muestra que $w$ está en $W$. Finalmente, notemos que la igualdad $w+z=v$ se puede comprobar haciendo la suma entrada a entrada. Con esto mostramos que cualquier vector de $V$ es suma de vectores en $W$ y $Z$ y por lo tanto concluimos la igualdad $\mathbb{R}^n=W\oplus Z$.

$\square$

En el problema anterior puede parecer algo mágico la propuesta de vectores $w$ y $z$. ¿Qué es lo que motiva la elección de $\frac{S}{n}$? Una forma de enfrentar los problemas de este estilo es utilizar la heurística de trabajar hacia atrás. Sabemos que el vector $w$ debe tener todas sus entradas iguales a cierto número $a$ y queremos que $z=v-w$ tenga suma de entradas igual a $0$. La suma de las entradas de $v-w$ es $$(x_1-a)+\ldots+(x_n-a)= S -na.$$ La elección de $a=\frac{S}{n}$ está motivada en que queremos que esto sea cero.

Problema 3. Considera las siguientes tres matrices en $M_2(\mathbb{C})$:
\begin{align*}
A&= \begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix}\\
B&= \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix}\\
C&= \begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix}.
\end{align*}

Demuestra que $A$, $B$ y $C$ son matrices linealmente dependientes. Da una combinación lineal no trivial de ellas que sea igual a $0$.

Solución. Para mostrar que son linealmente dependientes, basta dar la combinación lineal no trivial buscada. Buscamos entonces $a,b,c$ números complejos no cero tales que $aA+bB+cC=O_2$, la matriz cero en $M_2(\mathbb{C})$. Para que se de esta igualdad, es necesario que suceda entrada a entrada. Tenemos entonces el siguiente sistema de ecuaciones:
$$\begin{cases}
-i a + 2i b + ic &= 0\\
-3a + b -7c &=0\\
2a + 3b + 12c &= 0\\
3a -b +7c &=0.
\end{cases}$$

En este sistema de ecuaciones tenemos números complejos, pero se resuelve exactamente de la misma manera que en el caso real. Para ello, llevamos la matriz correspondiente al sistema a su forma escalonada reducida. Comenzamos dividiendo el primer renglón por $-i$ y aplicando transvecciones para hacer el resto de las entradas de la columna iguales a $0$. Luego intercambiamos la tercera y cuarta filas.

\begin{align*}
&\begin{pmatrix}
-i & 2i & i \\
-3 & 1 & -7 \\
2 & 3 & 12 \\
3 & -1 & 7
\end{pmatrix}\\
\to&\begin{pmatrix}
1 & -2 & -1 \\
0 & -5 & -10 \\
0 & 7 & 14 \\
0 & 5 & 10
\end{pmatrix}
\end{align*}

Ahora reescalamos con factor $-\frac{1}{5}$ la segunda fila y hacemos transvecciones para hacer igual a cero el resto de entradas de la columna 2:

\begin{align*}
&\begin{pmatrix}
1 & 0& 3 \\
0 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\end{align*}

Con esto llegamos a la forma escalonada reducida de la matriz. De acuerdo al procedimiento que discutimos en la entrada de sistemas lineales homogéneos, concluimos que las variables $a$ y $b$ son pivote y la variable $c$ es libre. Para poner a $a$ y $b$ en términos de $c$, usamos la primera y segunda ecuaciones. Nos queda \begin{align*} a &= -3c \\ b &= -2c. \end{align*}

En resumen, concluimos que para cualqueir número complejo $c$ en $\mathbb{C}$ se tiene la combinación lineal $$-3c\begin{pmatrix} -i & -3 \\ 2 & 3 \end{pmatrix} – 2c \begin{pmatrix} 2i& 1 \\ 3 & -1 \end{pmatrix} + c\begin{pmatrix} i & -7 \\ 12 & 7 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

Una posible combinación lineal no trivial se obtiene tomando $c=1$.

$\square$

En el problema anterior bastaba encontrar una combinación lineal no trivial para acabar el ejercicio. Por supuesto, esto también se puede hacer por prueba y error. Sin embargo, la solución que dimos da una manera sistemática de resolver problemas de este estilo.

Problema 4. Consideremos el espacio vectorial $V$ de funciones $f:\mathbb{R}\to \mathbb{R}$. Para cada real $a$ en $(0,\infty)$, definimos a la función $f_a\in V$ dada por $$f_a(x)=e^{ax}.$$

Tomemos reales distintos $0<a_1<a_2<\ldots<a_n$. Supongamos que existe una combinación lineal de las funciones $f_{a_1},\ldots,f_{a_n}$ que es igual a $0$, es decir, que existen reales $\alpha_1,\ldots,\alpha_n$ tales que $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Muestra que $\alpha_1=\ldots=\alpha_n=0$. Concluye que la familia $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$.

Solución. Procedemos por inducción sobre $n$. Para $n=1$, si tenemos la igualdad $\alpha e^{ax}=0$ para toda $x$, entonces $\alpha=0$, pues $e^{ax}$ siempre es un número positivo. Supongamos ahora que sabemos el resultado para cada que elijamos $n-1$ reales cualesquiera. Probaremos el resultado para $n$ reales cualesquiera.

Supongamos que tenemos la combinación lineal $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_n e^{a_nx} = 0$$ para todo real $x\geq 0$.

Dividamos esta igualdad que tenemos entre $e^{a_nx}$:

$$\alpha_1 e^{(a_1-a_n)x} + \alpha_2e^{(a_2-a_n)x} + \ldots + \alpha_{n-1}e^{(a_{n-1}-a_n)x}+\alpha_n = 0.$$

¿Qué sucede cuando hacemos $x\to \infty$? Cada uno de los sumandos de la forma $\alpha_i e^{(a_i-a_n)x}$ se hace cero, pues $a_i<a_n$ y entonces el exponente es negativo y se va a $-\infty$. De esta forma, queda la igualdad $\alpha_n=0$. Así, nuestra combinación lineal se ve ahora de la forma $$\alpha_1 e^{a_1x} + \alpha_2e^{a_2x} + \ldots + \alpha_{n-1} e^{a_{n-1}x} = 0.$$

Por la hipótesis inductiva, $\alpha_1=\ldots=\alpha_{n-1}=0$. Como también ya demostramos $\alpha_n=0$, hemos terminado el paso inductivo.

Concluimos que la familia (infinita) $(f_a)_{a\in \mathbb{R}}$ es linealmente independiente en $V$ pues cualquier subconjunto finito de ella es linealmente independiente.

$\square$

El problema anterior muestra que la razón por la cual ciertos objetos son linealmente independientes puede deberse a una propiedad analítica o de cálculo. A veces dependiendo del contexto en el que estemos, hay que usar herramientas de ese contexto para probar afirmaciones de álgebra lineal.

Entradas relacionadas

Agradecimiento

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»

Álgebra Lineal I: Bases y dimensión de espacios vectoriales

Por Ayax Calderón

Introducción

Ya hablamos de conjuntos generadores y de independencia lineal. Además, ya platicamos también del lema de intercambio de Steinitz. Con estas herramientas, tenemos todo a nuestra disposición para desarrollar la teoría de dimensión de espacios vectoriales.

Para espacios vectoriales en general, esto puede no resultar tan sencillo. Por esta razón, para este tema nos enfocaremos en el caso en el que la dimensión es finita. Sin embargo, también veremos ejemplos de espacios que no son así, y hablaremos un poco de cómo son.

Espacios de dimensión finita

Definición. Se dice que un espacio vectorial es de dimensión finita si tiene un conjunto generador con una cantidad finita de elementos.

Otra forma de interpretar la definición anterior es la siguiente:
$V$ es un espacio vectorial de dimensión finita si existe una familia finita de vectores $v_1, v_2, \dots , v_n \in V$ tal que todos los vectores en $V$ se pueden expresar como combinación lineal de dicha familia. Por ejemplo, los espacios $F^n, \hspace{2mm} M_{m,n}(F), \hspace{2mm}$ y $\hspace{2mm} \mathbb{R}_n[x]$ son de dimensión finita. Sin embargo, no todos los espacios vectoriales son de dimensión finita, de hecho la mayoría no lo son.

Problema. Demuestra que el espacio vectorial $V$ de todos los polinomios con coeficientes reales no es un espacio vectorial sobre $\mathbb{R}$ de dimensión finita.

Demostración. Supongamos que $V$ tiene un conjunto generador finito, entonces existen polinomios $p_1,p_2,\dots,p_n\in V$ tales que $V=\text{span}(p_1,p_2,\dots,p_n)$. Sea $d=\max\{deg(p_1), \dots, deg(p_n)\}$. Como todos los $p_i$ tienen grado a lo más $d$, entonces cualquier combinación lineal de $p_1,p_2,\dots,p_n$ también tiene grado a lo más $d$. Se sigue que todo vector en $V$ tiene grado a lo más $d$, pero eso es imposible, pues $deg(x^{d+1})=d+1>d$. Por lo tanto $V$ no es de dimensión finita.

$\square$

Nos gustaría definir la dimensión de un espacio vectorial. Para ilustrar esto es bueno pensar primero en $\mathbb{R}^n$ para distintos valores de $n$. Una linea (digamos $\mathbb{R}$) debería tener dimensión $1$, un plano (digamos $\mathbb{R}^2$) debería tener dimensión 2, y en general $\mathbb{R}^n$ debería tener dimensión $n$.

Antes de profundizar más en esto, es conveniente mencionar algunas definiciones y problemas prácticos para generar una mejor intuición sobre el rumbo que estamos a punto de tomar.

Definición. Una base de un espacio vectorial $V$ es un subconjunto $B$ de $V$ tal que $B$ es linealmente independiente y generador.

Ejemplos.

  • El conjunto $B=\{e_1,\ldots,e_n\}$ de vectores canónicos en $\mathbb{F}^n$ es una base. Esto se puede verificar con lo que hicimos al inicio del curso, cuando mostramos que cualquier vector $v$ en $\mathbb{F}^n$ se puede escribir de manera única como $v=x_1e_1+\ldots+x_ne_n$ con $x_1,\ldots,x_n$ escalares. Como existe al menos una forma, entonces $\text{span}(B)=F^n$. Como es única, en particular la única forma de escribir al vector $0$ es si $x_1=\ldots=x_n=0$. Esto muestra que $B$ es generador y linealmente independiente.
  • El conjunto $B=\{E_{ij}\}$ de matrices canónicas en $M_{m,n}(F)$ es una base.
  • El conjunto $1,x,\ldots,x^n$ es una base de $\mathbb{R}_n[x]$.

Encontrar bases de subespacios

Como los subespacios de espacios vectoriales también son espacios vectoriales, entonces también tiene sentido hablar de si un conjunto de vectores es base para un subespacio. Veamos ahora varios problemas para entender mejor esto.

Problema 1. Dada la matriz $A\in M_2(\mathbb{R})$
\begin{align*}
A=\begin{pmatrix}
2 & 0\\
0 & 3
\end{pmatrix}
\end{align*}
encuentra una base para el subespacio $U$ de $M_2(\mathbb{R})$ definido por
\begin{align*}
U=\{X\in M_2(\mathbb{R}): XA=AX\}.
\end{align*}

Solución. Considera la matriz $X=\begin{pmatrix}
a_1 & a_2\\
a_3 & a_4\end{pmatrix}$. Entonces $X\in U$ si y sólo si $XA=AX$, lo anterior lo escribimos como
\begin{align*}
\begin{pmatrix}
2a_1 & 3 a_2\\
2a_3 & 3a_4
\end{pmatrix} = \begin{pmatrix}
2a_1 & 2 a_2\\
3a_3 & 3a_4
\end{pmatrix}.
\end{align*}
De la igualdad anterior obtenemos que $a_2=a_3=0$. Por lo tanto
\begin{align*}
U=\left\{\begin{pmatrix}
a_1 & 0\\
0 & a_4\end{pmatrix}:a_1,a_4\in \mathbb{R}\right\}.
\end{align*}

Este es un primer paso, pues nos permite poner al subespacio $U$ en una forma en la que es más fácil de entender. Ahora es más fácil encontrar una base para $U$. Proponemos al siguiente conjunto de dos matrices:
\begin{align*}
B=\left\{ \begin{pmatrix}
1 & 0\\
0 & 0\end{pmatrix} , \begin{pmatrix}
0&0\\
0 & 1\end{pmatrix}\right\}.
\end{align*}

Por un lado, este es un conjunto generador para $U$, pues cualquier elemento de $U$ se puede escribir como combinación lineal de elementos en $B$ como sigue: $$\begin{pmatrix} a_1 & 0 \\ 0 & a_4 \end{pmatrix}=a_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Por otro lado, $B$ es un conjunto linealmente independiente pues si $a$ y $b$ son escalares que tan una combinación lineal igual a cero entonces tendríamos $$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}.$$

Igualando la primera y última matriz entrada a entrada, tenemos que $a=b=0$.

$\triangle$

Es importante que revises el problema anterior con profundidad, pues da una idea de cómo encontrar una base $B$ de un subespacio $U$ de un espacio vectorial $V$. Una receta que funciona en algunos casos es la siguiente:

  • Entender bien el subespacio $U$ del que hay que dar una base.
  • Expresar a $U$ en términos simples.
  • Ver cómo son los vectores de $U$, y de ahí proponer una base $B$. Para esta parte hay que jugar un poco con conjuntos de vectores, para ver si son suficientes para generar y no son demasiados como para ya no ser linealmente independientes.
  • Mostrar que $B$ genera a $U$.
  • Mostrar que $B$ es linealmente independiente en $V$.

Veamos más ejemplos.

Problema 2. Determina una base para el subespacio $U$ de $\mathbb{R}^4$ dado por
\begin{align*}
U=\{(a,b,c,d)\in \mathbb{R}^4:a+b=0, c=2d\}.
\end{align*}

Solución. Como $b=-a$ y $c=2d$, entonces
\begin{align*}
U=\{(a,-a,2d,d)\in \mathbb{R}^4:a,d\in \mathbb{R}\}=\{av_1+dv_2|a,d\in \mathbb{R}\},
\end{align*}
donde $v_1=(1,-1,0,0)$ y $v_2=(0,0,2,1)$. Por lo tanto $v_1,v_2$ generan a $U$. También son linealmente independientes, pues la relación $av_1+dv_2=0$ es equivalente a $(a,-a,2d,d)=(0,0,0,0)$ e implica $a=d=0$.Se sigue que $\{v_1,v_2\}$ es una base para $U$.

$\triangle$

Problema 3. Considera los subespacios $U,V$ de $\mathbb{R}^4$ definidos por
\begin{align*}
U=\{(x,y,z,w)\in\mathbb{R}^4:y+z+w=0\}
\end{align*}
y
\begin{align*}
V=\{(x,y,z,w)\in\mathbb{R}^4:x=-y, \hspace{2mm}z=2w\}.
\end{align*}
Encuentra una base para cada uno de los subespacios $U,V$ y $U\cap V$ de $\mathbb{R}^4$.

Solución. Expresando a $w$ en términos de $y$ y $z$, obtenemos
\begin{align*}
U&=\{(x,y,z,-y-z)|y,z\in\mathbb{R}\}\\
&=\{xu_1+yu_2+zu_3|x,y,z \in \mathbb{R}\},
\end{align*}
donde $u_1=(1,0,0,0), u_2=(0,1,0,-1)$ y $u_3=(0,0,1,-1)$.

Veamos si $u_1,u_2,u_3$ son linealmente independientes. La igualdad $xu_1+yu_2+zu_3=0$ es equivalente a $(x,y,z,-y-z)=(0,0,0,0)$ e implica $x=y=z=0$. Por lo tanto, los vectores $u_1,u_2,u_3$ son linealmente independientes y forman una base de $U$.

Ahora, para $V$. Es fácil ver que
\begin{align*}
V&=\{(-y,y,2w,w)| y,w\in\mathbb{R}\}\\
&=\{yv_1+wv_2| y,w\in \mathbb{R}\},
\end{align*}
donde $v_1=(-1,1,0,0) \hspace{2mm}$ y $v_2=(0,0,2,1)$.

Nuevamente, $v_1, v_2$ son linealmente independientes, pues la relación $yv_1+wv_2=0$ es equivalente a $(-y,y,2w,w)=(0,0,0,0)$ e implica $y=w=0$. Por lo tanto $v_1,v_2$ forman una base de $V$.

Finalmente, el vector $(x,y,z,w)\in\mathbb{R}^4$ pertenece a $U\cap V$ si y sólo si
\begin{align*}
x=-y, \hspace{3mm} z=2w, \hspace{3mm} y+z+w=0.
\end{align*}
Se sigue que $x=3w, \hspace{2mm} z=2w \hspace{2mm}$ y $y=-3w$, o bien
\begin{align*}
(x,y,z,w)=(3w,-3w,2w,w)=w(3,-3,2,1).
\end{align*}
Por lo tanto $\{(3,-3,2,1)\}$ es una base de $U \cap V$.

$\triangle$

Problema 4. Sea $V$ el espacio de funciones $f:\mathbb{R}\longrightarrow \mathbb{R}$ generado por las funciones en $B=\{1,x\mapsto \sin (2x), x\mapsto \cos(2x)\}$.

a) Demuestra que $B$ es una base de $V$.
b) Demuestra que $x\mapsto \sin ^2 (x)$ es una función en $V$ y exprésala como combinación lineal de los elementos de $B$.

Solución. a) . Como $V$ es el generado de $B$, por definición $B$ es generador. Así, basta demostrar que los vectores en $B$ son linealmente independientes. En otras palabras, queremos ver que si $a,b,c$ son números reales tales que
\begin{align*}
a+b\sin (2x) + c\cos (2x)=0
\end{align*}
para todo $x\in \mathbb{R}$, entonces $a=b=c=0$.

Tomando $x=0$ se obtiene que $a+c=0$. Si tomamos $x=\frac{\pi}{2}$ obtenemos $a-c=0$. Por lo tanto $a=c=0$. Finalmente, si tomamos $x=\frac{\pi}{4}$ obtenemos $b=0$.

b) Para cada $x\in\mathbb{R}$ se tiene
\begin{align*}
\cos (2x)&=2\cos^2(x)-1\\
&=2(1-\sin^2(x))-1\\
&=1-2\sin^2(x),
\end{align*}
por lo tanto
\begin{align*}
\sin^2(x)=\frac{1-\cos (2x)}{2}.
\end{align*}
Por lo tanto $x\mapsto \sin^2(x)$ pertence a $V$ y lo expresamos como combinación lineal de los elementos de $B$ de la siguiente manera:
\begin{align*}
\sin^2(x)=\frac{1}{2}\cdot 1 + 0\cdot \sin(2x) – \frac{1}{2} \cos (2x).
\end{align*}

$\square$

Dimensión finita y bases

Ahora veamos un teorema muy importante en la teoría de la dimensión de espacios vectoriales.

Teorema. Sea $V$ un espacio vectorial de dimensión finita. Entonces
a) $V$ contiene una base con una cantidad finita de elementos.
b) Cualesquiera dos bases de $V$ tienen el mismo número de elementos (en particular, cualquier base tiene una cantidad finita de elementos).

Demostración. a) Como $V$ es de dimensión finita, entonces tiene al menos un conjunto generador finito. Sea $B$ un conjunto generador de $V$ con el menor número posible de elementos. Vamos a demostrar que $B$ es una base para $V$. $B$ ya es conjunto generador porque así lo escogimos, sólo falta probar que es linealmente independiente.

Supongamos por el contrario que $B$ no es linealmente independiente, entonces existe $v\in B$ tal que $v\in \text{span}(B\backslash \{v\})$. Por lo tanto $$\text{span}(B\setminus\{v\})=\text{span}(B)=V.$$

Pero eso es imposible pues $B$ se tomó de tamaño mínimo. Por lo tanto $B$ es linealmente independiente. Se sigue el resultado deseado.

b) Sea $B$ una base con una cantidad finita de elementos, digamos $n$. Sea $B’$ otra base de $V$. Por definición de base, $B’$ es linealmente independiente y $B$ es un conjunto generador con $n$ elementos.

Por el lema de Steinitz, $B’$ es finito y tiene a lo más $n$ elementos. Lo anterior nos muestra que cualquier base tiene a lo más $n$ elementos. De hecho, si $B’$ tiene $d$ elementos, el lema de Steinitz garantiza que $n\leq d$.

Ahora volvemos a aplicar el mismo argumento que antes, pero pensando a $B$ como linealmente independiente y a $B’$ como generador. Concluimos que $k\leq d$. De este modo, $k=d$ y por lo tanto toda base de $V$ tiene la misma cantidad de elementos.

$\square$

El resultado anterior justifica que la siguiente definición esté bien hecha.

Definición. Sea $V$ un espacio vectorial de dimensión finita. Definimos la dimensión $dim V$ de $V$ como el número de elementos de una base de $V$.

Ejemplos y problemas de dimensión

Ejemplo 1. Considera el espacio vectorial $\mathbb{R}^n$ y su base canónica $B=\{e_1,e_2,\dots , e_n\}$. Como $B$ es base y tiene $n$ elementos, entonces $dim(\mathbb{R}^n)=n$.

$\triangle$

Ejemplo 2. Considera el espacio vectorial $\mathbb{R}_n[x]$ de polinomios con coeficientes reales y grado a lo más $n$. Una base para $\mathbb{R}_n[x]$ es $\{1,x,\dots, x^n\}$, por lo tanto $dim(\mathbb{R}_n[x])=n+1$.

$\triangle$

Ejemplo 3. Considera el espacio vectorial $M_{m,n}(\mathbb{R})$. Sea $E_{ij}\in M_{m,n}(\mathbb{R})$ la matriz cuya entrada $(i,j)$ es $1$ y el resto de sus entradas son $0$. Entonces $B=\{E_{ij}| 1\leq i \leq m, 1\leq j \leq n \}$ es una base para $M_{m,n}(\mathbb{R})$. Así, $\dim(M_{m,n}(\mathbb{R}))=mn$.

$\triangle$

Problema 4. Encuentra una base y la dimensión del subespacio
\begin{align*}
V=\{(a,2a)|a\in \mathbb{R}\}\subset \mathbb{R}^2.
\end{align*}

Solución. Notemos que $V=\text{span}((1,2))$, pues $(a,2a)=a(1,2)$. Como $(1,2)\neq (0,0)$, entonces $B=\{(1,2)\}$ es una base de $V$. Por lo tanto $\dim(V)=1$.

$\triangle$

Un lema útil para demostrar que algo es base

Para finalizar esta entrada demostraremos otro teorema muy importante en la teoría de la dimensión de espacios vectoriales. En este resultado usamos de nuevo de manera repetida el lema de intercambio de Steinitz.

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$. Entonces
a) Cualquier conjunto linealmente independiente de vectores de $V$ tiene a lo más $n$ elementos.
b) Cualquier conjunto generador de $V$ tiene al menos $n$ elementos.
c) Si $S$ es un subconjunto de $V$ con $n$ elementos, entonces las siguientes afirmaciones son equivalentes:

  1. $S$ es linealmente independiente.
  2. $ S $ es un conjunto generador.
  3. $S$ es una base de $V$.

Demostración. Sea $V$ una base de $B$. Por definición $B$ tiene $n$ elementos.

a) Como $B$ es un conjunto generador con $n$ elementos, por el lema de intercambio se tiene que cualquier conjunto linealmente independiente tiene a lo más $n$ elementos.

b) Sea $S$ un conjunto generador de $V$ y supongamos que $S$ tiene $d<n$ elementos. Como $B$ es linealmente independiente, entonces por el lema de intercambio se tiene que $n \leq d$, lo cual sería una contradicción.

c) Es claro que (3) implica (1) y (2), por lo que solamente probaremos que (1) implica (3) y que (2) implica (3).

Supongamos que $S$ es linealmente independiente, entonces por el lema de intercambio de Steintz podemos agregar $n-n=0$ vectores a $S$ de manera que el nuevo conjunto es generador. Claramente el nuevo conjunto es $S$ mismo, pues no le agregamos nada. Por lo tanto $S$ es un conjunto generador y como estamos bajo el supuesto de que $S$ es linealmente independiente, entonces $S$ es una base de $V$.

Ahora supongamos que $S$ es un conjunto generador que no es linealmente independiente. Entonces existe $v\in S$ tal que $v\in \text{span}(S\setminus \{v\})$. Se sigue que $S\setminus \{v\}$ es un conjunto generador de $n-1$ elementos (al generar a $v$, genera todo lo que generaba $S$). Pero esto contradice el inciso b). Por lo tanto $S$ es linealmente independiente y por lo tanto es una base de $V$.

$\square$

El resultado anterior nos permite pensar a las bases de un espacio vectorial como los conjuntos linealmente independientes «más grandes», o bien como los conjuntos generadores «más chicos». En la siguiente entrada veremos ejemplos prácticos del uso del teorema anterior.

Más adelante…

A partir de la definición de dimensión, más adelante construiremos la noción de rango, que nos permite decir «qué tanta información guarda una matriz». La dimensión ayuda también a comprender cuándo hay cierto tipo de transformaciones lineales entre espacios vectoriales. Una aplicación más de la dimensión es que en muchos casos queremos probar afirmaciones para todos los espacios vectoriales de dimensión finita. Como la dimensión nos permite asociar a cada uno de estos un entero, muchas de estas demostraciones se pueden hacer por inducción.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • En todos los problemas en donde se hable de subespacios, verifica que en efecto los conjuntos dados son subespacios del espacio vectorial mencionado.
  • En todos los ejemplos y problemas en los que se menciona que algo es base, verifica que en efecto se tiene un conjunto que es generador y linealmente independiente.
  • Sea $V$ un espacio vectorial sobre $\mathbb{C}$ y de dimensión $n$. Demuestra que si ves a $V$ como un espacio vectorial sobre $\mathbb{R}$, entonces $\dim(V)=2n$.
  • Sea $V$ un espacio vectorial de dimensión finita y $W$ un subespacio de $V$. Demuestra que $W$ es de dimensión finita, que $\dim(W)\leq \dim(V)$ y que la igualdad se da si y sólo si $W=V$.
  • Sean $W_1,W_2$ subespacios de un espacio vectorial $V$ con dimensiones $m$ y $n$, respectivamente, con $m\geq n$.
    a) Demuestra que $\dim(W_1\cap W_2)\leq n$.
    b) Demuestra que $\dim(W_1 + W_2)\leq m+n$.
  • Encuentra la dimensión del subespacio de matrices en $M_n(\mathbb{R})$ que son simétricas.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104721 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM»