Archivo de la etiqueta: coseno

Geometría Moderna I: Trigonometría

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada presentaremos las razones trigonométricas respecto de un ángulo agudo en un triángulo rectángulo, estas pueden ser vistas como funciones si consideramos el ángulo como una variable, veremos como extender estas funciones a ángulos de cualquier magnitud y algunas identidades trigonométricas.

Razones trigonométricas

Definiciones. Consideremos un triángulo rectángulo ABC donde AB es la hipotenusa y sea α=BAC, decimos que BC es el cateto opuesto a α y AC es el cateto adyacente a α.

Definimos las razones trigonométricas respecto del ángulo α como sigue:

El seno del ángulo α como c.opuestohipotenusa y lo denotamos como sinα=BCAB.
El coseno del ángulo α como c.adyacentehipotenusa y lo denotamos como cosα=ACAB.
La tangente del ángulo α como c.opuestoc.adyacente y lo denotamos como tanα=BCAC.
La cosecante del ángulo α como como hipotenusac.opuesto y lo denotamos como cscα=ABBC.
La secante del ángulo α como hipotenusac.adyacente  y lo denotamos como secα=ABAC.
La cotangente del ángulo α como c.adyacentec.opuesto y lo denotamos como cotα=ACBC.

Figura 1

Si consideramos el ángulo complementario a α, β=CBA, entonces de las definiciones se siguen las siguientes relaciones:

sinα=cosβ, cosα=sinβ, tanα=sinαcosα, tanαtanβ=1.

cscα=secβ, secα=cscβ, cotα=cosαsinα, cotαcotβ=1.

Círculo trigonométrico

Consideremos (O,1) un círculo con centro en O de radio 1, por O trazamos dos rectas perpendiculares x e y, tomamos un punto P(O,1) en el cuadrante formado por el rayo derecho Ox y el rayo superior Oy y trazamos las proyecciones X, Y de O a las rectas x, y respectivamente.

El triángulo OPX es rectángulo y su hipotenusa OP=1, si consideramos el ángulo XOP=γ entonces
sinγ=PX y
cosγ=OX.

Figura 2

Tracemos la tangente a (O,1) por Q, la intersección entre x y (O,1), tomemos R como la intersección entre la tangente y OP entonces RQPX y los triángulos OPX y ORQ son semejantes por lo tanto
tanγ=PXOX=RQOQ=RQ y
secγ=OPOX=OROQ=OR.

Ahora trazamos la tangente a (O,1) por S, la intersección de y con (O,1), tomamos T como la intersección de la tangente con OP entonces STx, por lo tanto γ=STO y así OPX y TOS son semejantes, por lo tanto,
cscγ=OPPX=OTOS=OT
cotα=OXPX=STOS=ST.

Con esta construcción podemos extender las definiciones de función trigonométrica para ángulos agudos a ángulos de cualquier magnitud trasladando el punto P alrededor de la circunferencia (O,1) y tomando las proyecciones de P, X e Y a las rectas x e y respectivamente que tomaremos como positivas si se encuentran en los rayos derecho y superior o negativas si se encuentran en los rayos izquierdos e inferior de las rectas x, y respectivamente.

De esta manera todas las razones trigonométricas quedan determinadas por el valor de sinγ=PX y cosγ=OX.

Teorema 1, identidad pitagórica. Sea 0γ<2π entonces, sin2γ+cos2γ=1.

Demostración. Aplicamos el teorema de Pitágoras al triángulo rectángulo OPX, (figura 2).

1=PX2+OX2=sin2γ+cos2γ.

◼

Ley extendida de senos

Teorema 2, ley extendida de los senos. Sean ABC y (O,R) su circuncírculo, etiquetemos BAC=α, CBA=β, ACB=γ y a=BC, b=AC, c=AB las longitudes de sus lados, entonces
sinαa=sinβb=sinγc=12R.

Demostración. Tracemos D el punto diametralmente opuesto a C, entonces BDC=α, pues subtienden el mismo arco.

CBD es un ángulo recto, pues CD es diámetro, por lo tanto sinα=sinBDC=aCD.

Por lo tanto, sinαa=12R.

Figura 3

De manera análoga podemos ver que
sinβ=b2R y
sinγ=c2R.

Por lo tanto, sinαa=sinβb=sinγc=12R.

◼

Corolario. El seno de un ángulo inscrito en una circunferencia de diámetro 1 es igual a la cuerda que abarca dicho ángulo.

Demostración. Se sigue de sustituir 2R=1 en el teorema anterior.

◼

Ley de cosenos

Teorema 3, ley de cosenos. Sean ABC, BAC=α, CBA=β, ACB=γ y a=BC, b=AC, c=AB las longitudes de sus lados, entonces se da la siguiente igualdad:
c2=a2+b22abcosγ.

Demostración. Trazamos D el pie de la perpendicular a BC desde A y aplicamos el teorema de Pitágoras a ABD y ADC, de donde obtenemos

(1)c2=AD2+(aDC)2=AD2+a22a(DC)+DC2,
b2=AD2+DC2
(2)AD2=b2DC2.

Figura 4

Sustituimos (2) en (1) y obtenemos c2=b2+a22a(DC).

Por otro lado cosγ=DCb bcosγ=DC.

Así que c2=a2+b22abcosγ.

De manera similar se puede ver que
a2=b2+c22bccosα y
b2=a2+c22accosβ.

◼

El seno de la suma

Teorema 4, el seno de la suma de dos ángulos. Sean α y β ángulos agudos entonces sin(α+β)=sinαcosβ+sinβcosα.

Demostración. Sea ◻ABCD cíclico tal que BD=1 es diámetro del circuncírculo, DBA=α y CBD=β.

Figura 5

Como consecuencia del corolario tenemos que AC=sin(α+β), ademas BAD y DCB son triángulos rectángulos pues DB es diámetro.

Se sigue que
AB=cosα,
CD=sinβ,
AD=sinα y
BC=cosβ.

El teorema de Ptolomeo nos dice que
(3)AC×BD=AB×CD+BC×AD.

Por lo tanto, sin(α+β)=cosαsinβ+sinαcosβ.

◼

El coseno de la suma

Teorema 5, el coseno de la suma de dos ángulos. Sean α0 y β ángulos agudos tales que α+β<π2 entonces cos(α+β)=cosαcosβsinαsinβ.

Demostración. Sea ◻ABCD cíclico tal que BC=1 es diámetro del circuncírculo, CBD=α y DBA=β.

Figura 6

Como BAC y BDC son triángulos rectángulos y BC=1 tenemos que
AC=sin(α+β)=sinαcosβ+sinβcosα (teorema 4),
BD=cosα,
AB=cos(α+β),
CD=sinα,
AD=sinDCA=sinβ (corolario).

Por el teorema de Ptolomeo (3), aplicado a ◻ABCD obtenemos:
cos(α+β)sinα+sinβ
=(sinαcosβ+sinβcosα)cosα
=sinαcosβcosα+sinβcos2α
=sinαcosβcosα+(sinβ)(1sin2α) (teorema 1)
=sinαcosβcosαsinβsin2α+sinβ.

cos(α+β)sinα=sinαcosβcosαsinβsin2α.

Por lo tanto, cos(α+β)=cosβcosαsinβsinα.

◼

Seno y coseno del ángulo medio

Teorema 6, el seno y el coseno del ángulo medio. Sea α0 un ángulo agudo entonces
sinα2=1cosα2 y cosα2=1+cosα2.

Demostración. Sea ◻ABCD cíclico tal que BC=1 es diámetro y CBD=DBA=α2.

Figura 7

Ya que BAC y BDC son triángulos rectángulos podemos ver que
AC=sinα,
BD=cosα2,
AB=cosα,
CD=sinα2,
AD=sinDCA=sinα2 (corolario).

Aplicando Ptolomeo (3) y el teorema 4 obtenemos:
cosαsinα2+sinα2=sinαcosα2
=sin(α2+α2)cosα2=2sinα2cos2α2.

Por lo tanto, 2sinα2cos2α2=sinα2(cosα+1)  
(4)cos2α2=cosα+12.

De donde se sigue que cosα2=cosα+12.

Ahora sustituimos la identidad pitagórica en la ecuación (4) y obtenemos:
1sin2α2=cosα+12

sinα2=1cosα2.

◼

Más adelante…

En la siguiente entrada estudiaremos algunas propiedades relacionadas con el incírculo y los excÍrculos de un triángulo, así como también sobre sus centros y radios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. i) A partir de un triangulo equilátero deriva los valores de las seis razones trigonométricas para los ángulos π3 y π6,
    ii) A partir de un triángulo rectángulo isósceles deduce los valores de las seis razones trigonométricas para el ángulo π4.
  2. Recordemos que consideramos la magnitud de un ángulo central como positiva, si recorremos el arco de circunferencia que subtiende dicho ángulo en el sentido contrario al de las manecillas del reloj y negativa en caso contraio, muestra que para cualquier valor de α se cumple que:
    i) sin(α)=sinα,
    ii) cos(α)=cosα,
    iii) sin(πα)=sinα,
    iv) cos(πα)=cosα,
    v) sec2α=1+tan2α.
  3. Sean α y β ángulos agudos tales que αβ, muestra geométricamente:
    i) el seno de la diferencia de dos ángulos, sin(αβ)=sinαcosβsinβcosα,
    ii) el coseno de la diferencia de dos ángulos, cos(αβ)=cosαcosβ+sinαsinβ.
  4.  Sean α y β ángulos agudos prueba que:
    i) sinαcosβ=sin(α+β)+sin(αβ)2,
    ii) cosαsinβ=sin(α+β)sin(αβ)2.
  5. Sea ABC, por A traza cualquier recta que corte a BC en L, muestra que BLLC=ABsinBALACsinLAC.
Figura 8
  1. Demuestra que si sinαsinβ=sinδsinγ y α+β=δ+γ<π entonces α=δ y β=γ.
  2. Sea ABC con a=BC, b=AC, c=AB, α=BAC, β=CBA, γ=ACB, demuestra las siguientes formulas para calcular el área de ABC:
    i) (ABC)=acsinβ2=absinγ2=bcsinα2,
    ii) (ABC)=a2sinβsinγ2sin(β+γ)=b2sinαsinγ2sin(α+γ)=c2sinαsinβ2sin(α+β).

Entradas relacionadas

Fuentes

  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 69-78.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 55-62.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 89-95.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Álgebra Superior II: Exponencial, logaritmo y trigonometría en los complejos

Por Leonardo Ignacio Martínez Sandoval

Introducción

Gracias a las entradas anteriores ya hemos desarrollado un buen manejo de los números complejos. Sabemos cómo se construyen y cómo hacer operaciones básicas, incluyendo obtener conjugados, la forma polar, sacar normas y elevar a potencias. También hemos aprendido a resolver varias ecuaciones en los complejos: cuadráticas, sistemas lineales y raíces n-ésimas. Todo esto forma parte de los fundamentos algebraicos de C. Ahora hablaremos un poco de la exponencial, el logaritmo y trigonometría en los complejos.

Aunque mencionaremos un poco de las motivaciones detrás de las definiciones, no profundizaremos tanto como con otros temas. Varias de las razones para elegir las siguientes definiciones tienen que ver con temas de ecuaciones diferenciales y de análisis complejo, que no se estudian sino hasta semestres posteriores.

Función exponencial compleja

Recordemos que, para un real y, definimos cis(y)=cosy+isiny. La función cis y la exponenciación en los reales nos ayudarán a definir la exponencial compleja.

Definición. Definimos la función exp:CC como exp(x+yi)=excis(y).

Ejemplo 1. Se tiene que exp(1+π2i)=e1cis(π2)=ei.

Ejemplo 2. Se tiene que exp(πi)=e0cis(π)=(1)(1)=1. Como veremos más abajo, esto lo podemos reescribir como la famosa identidad de Euler eπi+1=0.

Ejemplo 3. Se tiene que exp(2+3i)=e2cis(3). Como cos(3) y sin(3) no tienen ningún valor especial, esta es la forma final de la expresión.

Propiedades de la función exponencial compleja

Una buena razón para definir la exponencial así es que si y=0, entonces la definición coincide con la definición en los reales: exp(x)=excis(0)=ex. Si x=0, tenemos que exp(iy)=cis(y), de modo que si w tiene norma r y argumento θ, podemos reescribir su forma polar como w=rexp(θi), y una forma alternativa de escribir el teorema de De Moivre es wn=rnexp(nθi).

Otra buena razón para definir la exponencial compleja como lo hicimos es que se sigue satisfaciendo que las sumas en la exponencial se abren en productos.

Proposición. Para w y z complejos se tiene que E(w+z)=E(w)E(z).

Demostración. Escribamos w=a+bi y z=c+di con a,b,c y d reales. Tenemos que
exp(w+z)=exp((a+c)+(b+d)i)=ea+ccis(b+d).

Por propiedades de la exponencial en R tenemos que ea+c=eaec. Además, por cómo funciona la multiplicación compleja en términos polares, tenemos que cis(b+d)=cis(b)cis(d). Usando estas observaciones podemos continuar con la cadena de igualdades,

=eaeccis(b)cis(d)=(eacis(b))(eccis(d))=exp(a+bi)exp(c+di)=exp(w)exp(z).

◻

Como exp extiende a la exponencial real y se vale abrir las sumas de exponentes en productos, puede ser tentador usar la notación ex+yi en vez de exp(x+yi). Hay que tener cuidado con esta interpretación, pues hasta ahora no hemos dicho qué quiere decir «elevar a una potencia». Cuando lo hagamos, veremos que usar la notación ex+yi sí tiene sentido, pero por el momento hay que apegarnos a la definición.

Hay otras buenas razones para definir la exponencial compleja como lo hicimos. Una muy importante es que es la solución a una ecuación diferencial muy natural. Más adelante, en tu formación matemática, verás esto.

Función logaritmo complejo

Con el logaritmo natural ln en R y la multifunción argumento podemos extender el logaritmo a C.

Definición. Definimos la función L:C{0}C como L(z)=lnz+arg(z)i.

Hay que ser un poco más precisos, pues arg(z) es una multifunción y toma varios valores. Cuando estamos trabajando con logaritmo, lo más conveniente por razones de simetría es que tomemos el argumento en el intervalo (π,π]. En cursos posteriores hablarás de «otras» funciones logaritmo, y de por qué ésta es usualmente una buena elección.

Ejemplo. Los logaritmos de i y de 1 son, respectivamente,
L(i)=lni+arg(i)i=ln(1)+π2i=π2iL(1)=ln1+arg(1)i=ln(1)+πi=πi.

Propiedades del logaritmo complejo

La función exp restringida a los números con parte imaginaria en (π,π] es invertible y su inversa es L. Esto justifica en parte la definición de logaritmo. Demostrar esto es sencillo y queda como tarea moral.

La función L restringida a los reales positivos coincide con la función logaritmo natural, pues para z=x+0i=x, con x>0 se tiene que arg(x)=0 y entonces L(z)=L(x)=x+arg(x)i=x.

Como en el caso real, la función logaritmo abre productos en sumas, pero con un detalle que hay que cuidar.

Proposición. Para w y z complejos no 0, se tiene que L(wz) y L(w)+L(z) difieren en un múltiplo entero de 2πi.

Con la función logaritmo podemos definir potencias de números complejos.

Definición. Para w,z en C con w0, definimos wz=exp(zL(w)).

Ejemplo. En particular, podemos tomar w=e, de donde ez=exp(zL(e))=exp(zln(e))=exp(z), de donde ahora sí podemos justificar usar la notación ex+yi en vez de exp(x+yi).

◻

Esta definición de exponenciación en C es buena, en parte, porque se puede probar que se satisfacen las leyes de los exponentes.

Proposición. Para w,z1,z2 en C, con w0, se cumple que zw1+w2=zw1zw2 y que (zw1)w2=zw1w2.

La demostración es sencilla y se deja como tarea moral.

Funciones trigonométricas complejas

Finalmente, definiremos las funciones trigonométricas en C. Para ello, nos basaremos en la función exponencial que ya definimos.

Definición. Para z cualquier complejo, definimos cos(z)=eiz+eiz2 y sin(z)=eizeiz2.

Una de las razones por las cuales esta definición es buena es que extiende a las funciones trigonométricas reales. En efecto, si z=x+0i=x es real, entonces cos(z) es eiz+eiz2=cis(x)+cis(x)2=2cos(x)2=cos(x), y de manera similar para sin(z).

Las funciones trigonométricas en C siguen cumpliendo varias propiedades que cumplían en R.

Proposición. Para w y z complejos, se tiene que
cos(w+z)=cos(w)cos(z)sin(w)sin(z)sin(w+z)=sin(w)cos(z)+sin(z)cos(w).

Demostración. Procedemos por definición. Tenemos que
4cos(w)cos(z)=(eiw+eiw)(eiz+eiz)=(ei(w+z)+ei(wz)+ei(zw)+ei(zw))

y que
4sin(w)sin(z)=(eiweiw)(eizeiz)=(ei(w+z)ei(wz)ei(zw)+ei(zw)),

de modo que
4(cos(w)cos(z)sin(w)sin(z))=2(ei(w+z)+ei(w+z))=4cos(w+z).

Dividiendo entre 4 ambos lados de la igualdad, obtenemos la primer identidad. La segunda se demuestra de manera análoga, y queda como tarea moral.

◻

Más adelante…

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. Determina los valores de exp(3+3π4i) y de L(i).
  2. Muestra que para z con parte imaginaria en (π,π] se tiene que L(exp(z))=z.
  3. Determina el valor de (1+i)1+i.
  4. Muestra las leyes de los exponentes para la exponenciación en C.
  5. Determina el valor de sin(i) y de cos(1+i).
  6. Muestra la identidad de seno de la suma de ángulos en C.
  7. Investiga qué otras propiedades de las funciones trigonométricas reales se extienden al caso complejo.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Seminario de Resolución de Problemas: Funciones diferenciables y la derivada

Por Leonardo Ignacio Martínez Sandoval

Introducción

En entradas anteriores hemos platicado acerca de funciones continuas. A partir de ahí, platicamos de dos teoremas importantes para esta clase de funciones: el teorema del valor intermedio y el teorema del valor extremo. La siguiente clase de funciones que nos interesa es la de funciones diferenciables. Hablaremos de esta clase de funciones y de la derivada.

Como recordatorio, si AR y a es un punto en el interior de A, decimos que f:AR es diferenciable en a si el límite limh0f(a+h)f(a)h existe y es finito.

En ese caso, llamamos f(a) al valor de ese límite. Cuando A es abierto y f es diferenciable en todo punto a de A, entonces simplemente decimos qur f es diferenciable y podemos definir a la derivada f de f como la función f:AR tal que a cada punto lo manda al límite anterior.

Mencionaremos algunas propiedades básicas de funciones diferenciables y cómo se pueden usar para resolver problemas. Como en ocasiones anteriores, no hacemos mucho énfasis en la demostración de las propiedades básicas, pues se pueden encontrar en libros de texto, como el Cálculo de Spivak.

Propiedades básicas de funciones diferenciables

En la definición de diferenciabilidad, se calcula el límite limh0f(x+h)f(x)h. Sin embargo, en algunas ocasiones es más sencillo calcular el límite limyxf(x)f(y)xy. Estos dos límites son equivalentes, pues sólo difieren en el cambio de variable y=x+h. Dependiendo del problema que se esté estudiando, a veces conviene usar una notación u otra para simplificar las cuentas.

Como en el caso de la continuidad, la diferenciabilidad se comporta bien con las operaciones básicas.

Proposición. Si f:(a,b)R y g:(a,b)R son diferenciables, entonces f+g, fg y fg son diferenciables. Tenemos que sus derivadas son
(f+g)=f+g(fg)=fg(fg)=fg+fg. Si g(x)0, entonces f/g también es diferenciable en x, con derivada (f/g)=fgfgg2.

La proposición anterior se puede probar directamente de las definiciones. Se demuestra en un curso usual de cálculo, pero es un ejercicio recomendable hacer las demostraciones de nuevo.

La tercera igualdad se llama la regla del producto y la última la regla del cociente. En la regla del producto tenemos simetría, así que no importa cuál función derivamos primero. En la regla del cociente sí importa que derivemos primero a f en el numerador. Para acordarse de ello, es fácil acordarse que g va «al cuadrado» y como va al cuadrado, es «más fuerte», y «no se deja derivar primero».

Las funciones diferenciables son continuas, en el sentido de la siguiente proposición.

Proposición. Si f:AR es una función diferenciable en x, entonces es continua en x.

Demostración. En efecto,
limh0f(a+h)f(a)=limh0f(a+h)f(a)hh=limh0f(a+h)f(a)hlimh0h=f(a)0=0,

de modo que limh0f(a+h)=f(a), en otras palabras, limxaf(x)=f(a), así que f es continua en a.

◻

Una propiedad más es que las funciones diferenciables alcanzan su máximo en puntos en donde la derivada se anula. Damos un esbozo de la demostración de una parte de la proposición, pero recomendamos completar con cuidado el resto de la prueba, sobre todo cuidando que al pasar términos negativos multiplicando o dividiendo, se invierta la desigualdad correctamente.

Proposición. Si f:(a,b)R tiene un máximo o un mínimo en x, entonces f(x)=0.

Sugerencia pre-demostración. Supón que f(x)0. Divide en casos de acuerdo a si f(x)>0 ó f(x)<0. También, haz una figura que te ayude a entender lo que está sucediendo: si la derivada existe y es mayor que 0 en un punto x, entonces cerca de x la función se ve como si «tuviera pendiente positiva» y entonces tantito a la derecha crece y tantito a la izquierda decrece.

Esbozo de demostración. Procedemos por contradicción. Si f(x)=c>0, entonces para h>0 suficientemente pequeño tenemos que |f(x+h)f(x)hc|<c/2, de modo que f(x+h)f(x)h>c/2, de donde f(x+h)>f(x)+hc2>f(x), lo que muestra que x no es un máximo.

Del mismo modo, tomando h<0 suficientemente cercano a 0, tenemos que x no es un mínimo. Los casos en los que f(x)=c<0 son parecidos.

◻

La proposición anterior nos permite usar la derivada para estudiar los valores extremos de una función, aunque no esté definida en un intervalo abierto. Si f:[a,b]R es diferenciable en (a,b) y es continua en [a,b], entonces sus valores extremos forzosamente están o bien en los extremos del intervalo (en a o b), o bien en un punto x(a,b) en donde la derivada es 0. Esta es la estrategia que usaremos para mostrar los teoremas de Rolle y del valor medio.

Problemas resueltos de funciones diferenciables

Veamos algunos problemas en los que podemos aplicar las propiedades anteriores de funciones diferenciables.

Problema. Supongamos que la función xf(x) es diferenciable en un punto x00 y que la función f es continua en x0. Muestra que f es diferenciable en x0.

Sugerencia pre-solución. Para mostrar que la expresión es diferenciable, usa la definición de diferenciabilidad con límite xx0. En vez de tratar de encontrar el límite del cociente directamente, cambia el problema multiplicando y dividiendo por xx0.

Solución. Primero, como xf(x) es diferenciable en x0, tenemos que el siguiente límite existe y es finito A:=limxx0xf(x)x0f(x0)xx0.

Tenemos que mostrar que el límite limxx0f(x)f(x0)xx0 existe. Para ello tomamos una x suficientemente cerca de x0, de modo que x0, y multiplicamos el numerador y denominador por xx0, y luego sumamos y restamos x02f(x0) en el numerador para obtener lo siguiente:

f(x)f(x0)xx0=xx0f(x)xx0f(x0)xx0(xx0)=xx0f(x)x02f(x0)xx0f(x0)+x02f(x0)xx0(xx0)=1x(xf(x)x0f(x0)xx0)f(x0)x.

Tomando el límite cuando xx0, tenemos que el primer sumando converge a Ax0, por la diferenciabilidad de xf(x) y que el segundo sumando converge a f(x0)x0. De esta forma, f es diferenciable en x0.

◻

Problema. Sea n un entero positivo y a1,,an números reales. Consideremos la función f(x)=a1sinx+a2sin2x++ansinnx. Muestra que si |f(x)||sinx| para todos los reales x, entonces |a1+2a2++nan|1.

Sugerencia pre-solución. Se puede hacer una prueba por inducción. Intenta hacerlo así. Luego, intenta modificar el problema poniendo a la expresión final del enunciado en términos de la derivada de f en algún valor específico.

Solución. La derivada de f es a1cosx+2a2cos2x++nancosnx, que en 0 es a1+2a2++nan, que es precisamente el lado izquierdo de la desigualdad que queremos.

Por definición de derivada, tenemos que
|f(0)|=limx0|f(x)f(0)x0|=limx0|f(x)x|.

Por la hipótesis del problema, la última expresión dentro del límite es menor o igual a |sinxx|. Como el límite de sinxx cuando x0 es 1, tenemos que |f(0)|1, como queríamos.

◻

Problema. Supongamos que f:RR es una función que satisface la ecuación funcional f(x+y)=f(x)+f(y) para todo x y y en R y que f es diferenciable en 0. Muestra que f es una función de la forma f(x)=cx para c un real.

Sugerencia pre-solución. Usa como paso intermedio para el problema mostrar que f es diferenciable en todo real. Recuerda que una función que satisface la ecuación funcional del problema debe satisfacer que f(x)=f(1)x para todo racional x. Esto se probaba con división por casos e inducción. Usa propiedades de funciones continuas.

Solución. Tomando x=y=0, tenemos que f(0)=2f(0), de modo que f(0)=0. Mostremos que f es diferenciable en todo real.

Como f es diferenciable en 0, tenemos que L:=limh0f(h)f(0)h=limh0f(h)h existe y es finito. Tomemos ahora cualquier real r. Por la ecuación funcional, tenemos que
f(r+h)f(r)=f(r)+f(h)f(h)=f(r),
de modo que limh0f(r+h)f(r)h=limh0f(h)=L.

Así, f es diferenciable en todo real r. Por lo tanto, f es contínua en todo real.

Anteriormente, cuando hablamos de inducción y de división por casos, vimos que una función que satisface la ecuación funcional f(x+y)=f(x)+f(y) debe satisfacer que f(x)=f(1)x para todo número racional x. Para cualquier real r podemos encontrar una sucesión de racionales {xn} que convergen a r. Como f es continua, tenemos que
f(r)=limnf(xn)=limnf(1)xn=f(1)r.

Esto muestra lo que queremos.

◻

Más problemas

Hay más ejemplos de problemas relacionados con la derivada en la Sección 6.3 del libro Problem Solving through Problems de Loren Larson.