Archivo de la etiqueta: seno de la suma

Geometría Moderna I: Trigonometría

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada presentaremos las razones trigonométricas respecto de un ángulo agudo en un triángulo rectángulo, estas pueden ser vistas como funciones si consideramos el ángulo como una variable, veremos como extender estas funciones a ángulos de cualquier magnitud y algunas identidades trigonométricas.

Razones trigonométricas

Definiciones. Consideremos un triángulo rectángulo $\triangle ABC$ donde $AB$ es la hipotenusa y sea $\alpha =  \angle BAC$, decimos que $BC$ es el cateto opuesto a $\alpha$ y $AC$ es el cateto adyacente a $\alpha$.

Definimos las razones trigonométricas respecto del ángulo $\alpha$ como sigue:

El seno del ángulo $\alpha$ como $\dfrac{c.opuesto}{hipotenusa}$ y lo denotamos como $\sin \alpha = \dfrac{BC}{AB}$.
El coseno del ángulo $\alpha$ como $\dfrac{c.adyacente}{hipotenusa}$ y lo denotamos como $\cos \alpha = \dfrac{AC}{AB}$.
La tangente del ángulo $\alpha$ como $\dfrac{c.opuesto}{c.adyacente}$ y lo denotamos como $\tan \alpha = \dfrac{BC}{AC}$.
La cosecante del ángulo $\alpha$ como como $\dfrac{hipotenusa}{c.opuesto}$ y lo denotamos como $\csc \alpha = \dfrac{AB}{BC}$.
La secante del ángulo $\alpha$ como $\dfrac{hipotenusa}{c.adyacente}$  y lo denotamos como $\sec \alpha = \dfrac{AB}{AC}$.
La cotangente del ángulo $\alpha$ como $\dfrac{c.adyacente}{c.opuesto}$ y lo denotamos como $\cot \alpha = \dfrac{AC}{BC}$.

Figura 1

Si consideramos el ángulo complementario a $\alpha$, $\beta = \angle CBA$, entonces de las definiciones se siguen las siguientes relaciones:

$\sin \alpha = \cos \beta$, $\cos \alpha = \sin \beta$, $\tan \alpha = \dfrac{\sin \alpha}{\cos \alpha}$, $\tan \alpha \tan \beta = 1$.

$\csc \alpha = \sec \beta$, $\sec \alpha = \csc \beta$, $\cot \alpha = \dfrac{\cos \alpha}{\sin \alpha}$, $\cot \alpha \cot \beta = 1$.

Círculo trigonométrico

Consideremos $(O, 1)$ un círculo con centro en $O$ de radio $1$, por $O$ trazamos dos rectas perpendiculares $x$ e $y$, tomamos un punto $P \in (O, 1)$ en el cuadrante formado por el rayo derecho $Ox$ y el rayo superior $Oy$ y trazamos las proyecciones $X$, $Y$ de $O$ a las rectas $x$, $y$ respectivamente.

El triángulo $\triangle OPX$ es rectángulo y su hipotenusa $OP = 1$, si consideramos el ángulo $\angle XOP = \gamma$ entonces
$\sin \gamma = PX$ y
$\cos \gamma = OX$.

Figura 2

Tracemos la tangente a $(O, 1)$ por $Q$, la intersección entre $x$ y $(O, 1)$, tomemos $R$ como la intersección entre la tangente y $OP$ entonces $RQ \parallel PX$ y los triángulos $\triangle OPX$ y $\triangle ORQ$ son semejantes por lo tanto
$\tan \gamma = \dfrac{PX}{OX} = \dfrac{RQ}{OQ} = RQ$ y
$\sec \gamma = \dfrac{OP}{OX} = \dfrac{OR}{OQ} = OR$.

Ahora trazamos la tangente a $(O, 1)$ por $S$, la intersección de $y$ con $(O, 1)$, tomamos $T$ como la intersección de la tangente con $OP$ entonces $ST \parallel x$, por lo tanto $\gamma = \angle STO$ y así $\triangle OPX$ y $\triangle TOS$ son semejantes, por lo tanto,
$\csc \gamma = \dfrac{OP}{PX} = \dfrac{OT}{OS} = OT$ y 
$\cot \alpha = \dfrac{OX}{PX} = \dfrac{ST}{OS} = ST$.

Con esta construcción podemos extender las definiciones de función trigonométrica para ángulos agudos a ángulos de cualquier magnitud trasladando el punto $P$ alrededor de la circunferencia $(O, 1)$ y tomando las proyecciones de $P$, $X$ e $Y$ a las rectas $x$ e $y$ respectivamente que tomaremos como positivas si se encuentran en los rayos derecho y superior o negativas si se encuentran en los rayos izquierdos e inferior de las rectas $x$, $y$ respetivamente.

De esta manera todas las razones trigonométricas quedan determinadas por el valor de $\sin \gamma = PX$ y $\cos \gamma = OX$.

Teorema 1, identidad pitagórica. Sea $0 \leq \gamma < 2\pi$ entonces, $\sin^2 \gamma + \cos^2 \gamma = 1$.

Demostración. Aplicamos el teorema de Pitágoras al triángulo rectángulo $\triangle OPX$, (figura 2).

$1 = PX^2 + OX^2 = \sin^2 \gamma + \cos^2 \gamma$.

$\blacksquare$

Ley extendida de senos

Teorema 2, ley extendida de los senos. Sean $\triangle ABC$ y $(O, R)$ su circuncírculo, etiquetemos $\angle BAC = \alpha$, $\angle CBA = \beta$, $\angle ACB = \gamma$ y $a = BC$, $b = AC$, $c = AB$ las longitudes de sus lados, entonces
$\dfrac{\sin \alpha}{a} = \dfrac{\sin \beta}{b} = \dfrac{\sin \gamma}{c} = \dfrac{1}{2R}$.

Demostración. Tracemos $D$ el punto diametralmente opuesto a $C$, entonces $\angle BDC = \alpha$, pues subtienden el mismo arco.

$\angle CBD$ es un ángulo recto, pues $CD$ es diámetro, por lo tanto $\sin \alpha = \sin \angle BDC = \dfrac{a}{CD}$.

Por lo tanto, $\dfrac{\sin \alpha}{a} = \dfrac{1}{2R}$.

Figura 3

De manera análoga podemos ver que
$\sin \beta = \dfrac{b}{2R}$ y
$\sin \gamma = \dfrac{c}{2R}$.

Por lo tanto, $\dfrac{\sin \alpha}{a} = \dfrac{\sin \beta}{b} = \dfrac{\sin \gamma}{c} = \dfrac{1}{2R}$.

$\blacksquare$

Corolario. El seno de un ángulo inscrito en una circunferencia de diámetro $1$ es igual a la cuerda que abarca dicho ángulo.

Demostración. Se sigue de sustituir $2R = 1$ en el teorema anterior.

$\blacksquare$

Ley de cosenos

Teorema 3, ley de cosenos. Sean $\triangle ABC$, $\angle BAC = \alpha$, $\angle CBA = \beta$, $\angle ACB = \gamma$ y $a = BC$, $b = AC$, $c = AB$ las longitudes de sus lados, entonces se da la siguiente igualdad:
$c^2 = a^2 + b^2 – 2ab \cos \gamma$.

Demostración. Trazamos $D$ el pie de la perpendicular a $BC$ desde $A$ y aplicamos el teorema de Pitágoras a $\triangle ABD$ y $\triangle ADC,$ de donde obtenemos

$\begin{equation} c^2 = AD^2 + (a – DC)^2 = AD^2 + a^2 – 2a(DC) + DC^2, \end{equation}$
$b^2 = AD^2 + DC^2$
$\Leftrightarrow$ $\begin{equation} AD^2 = b^2 – DC^2. \end{equation}$

Figura 4

Sustituimos $(2)$ en $(1)$ y obtenemos $c^2 = b^2 + a^2 – 2a(DC)$.

Por otro lado $\cos \gamma = \dfrac{DC}{b}$ $\Leftrightarrow$ $b \cos \gamma = DC$.

Así que $c^2 = a^2 + b^2 – 2ab \cos \gamma$.

De manera similar se puede ver que
$a^2 = b^2 + c^2 – 2bc \cos \alpha$ y
$b^2 = a^2 + c^2 – 2ac \cos \beta$.

$\blacksquare$

El seno de la suma

Teorema 4, el seno de la suma de dos ángulos. Sean $\alpha$ y $\beta$ ángulos agudos entonces $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$.

Demostración. Sea $\square ABCD$ cíclico tal que $BD = 1$ es diámetro del circuncírculo, $\angle DBA = \alpha$ y $\angle CBD =\beta$.

Figura 5

Como consecuencia del corolario tenemos que $AC = \sin (\alpha + \beta)$, ademas $\triangle BAD$ y $\triangle DCB$ son triángulos rectángulos pues $DB$ es diámetro.

Se sigue que
$AB = \cos \alpha$,
$CD = \sin \beta$,
$AD = \sin \alpha$ y
$BC = \cos \beta$.

El teorema de Ptolomeo nos dice que
$\begin{equation} AC \times BD = AB \times CD + BC \times AD. \end{equation}$

Por lo tanto, $\sin (\alpha + \beta) = \cos \alpha \sin \beta +\sin \alpha \cos \beta$.

$\blacksquare$

El coseno de la suma

Teorema 5, el coseno de la suma de dos ángulos. Sean $\alpha \ne 0$ y $\beta$ ángulos agudos tales que $\alpha + \beta < \dfrac{\pi}{2}$ entonces $\cos (\alpha + \beta) = \cos \alpha \cos \beta – \sin \alpha \sin \beta$.

Demostración. Sea $\square ABCD$ cíclico tal que $BC = 1$ es diámetro del circuncírculo, $\angle CBD = \alpha$ y $\angle DBA = \beta$.

Figura 6

Como $\triangle BAC$ y $\triangle BDC$ son triángulos rectángulos y $BC = 1$ tenemos que
$AC = \sin (\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$ (teorema 4),
$BD = \cos \alpha$,
$AB = \cos (\alpha + \beta)$,
$CD = \sin \alpha$,
$AD = \sin \angle DCA = \sin \beta$ (corolario).

Por el teorema de Ptolomeo $(3)$, aplicado a $\square ABCD$ obtenemos:
$\cos (\alpha + \beta) \sin \alpha + \sin \beta$
$= (\sin \alpha \cos \beta + \sin \beta \cos \alpha) \cos \alpha$
$= \sin \alpha \cos \beta \cos \alpha + \sin \beta \cos^2 \alpha$
$ = \sin \alpha \cos \beta \cos \alpha + (\sin \beta)(1 – \sin^2 \alpha)$ (teorema 1)
$= \sin \alpha \cos \beta \cos \alpha – \sin \beta \sin^2 \alpha + \sin \beta$.

$\Leftrightarrow$$\cos (\alpha + \beta) \sin \alpha = \sin \alpha \cos \beta \cos \alpha – \sin \beta \sin^2 \alpha$.

Por lo tanto, $\cos (\alpha + \beta) = \cos \beta \cos \alpha -\sin \beta \sin \alpha$.

$\blacksquare$

Seno y coseno del ángulo medio

Teorema 6, el seno y el coseno del ángulo medio. Sea $\alpha \ne 0$ un ángulo agudo entonces
$\sin \dfrac{\alpha}{2} = \sqrt{\dfrac{1 – \cos \alpha}{2}}$ y $\cos \dfrac{\alpha}{2} = \sqrt{\dfrac{1 + \cos \alpha}{2}}$.

Demostración. Sea $\square ABCD$ cíclico tal que $BC = 1$ es diámetro y $\angle CBD = \angle DBA = \dfrac{\alpha}{2}$.

Figura 7

Ya que $\triangle BAC$ y $\triangle BDC$ son triángulos rectángulos podemos ver que
$AC = \sin \alpha$,
$BD = \cos \dfrac{\alpha}{2}$,
$AB = \cos \alpha$,
$CD = \sin \dfrac{\alpha}{2}$,
$AD = \sin \angle DCA = \sin \dfrac{\alpha}{2}$ (corolario).

Aplicando Ptolomeo $(3)$ y el teorema 4 obtenemos:
$\cos \alpha \sin \dfrac{\alpha}{2} + \sin \dfrac{\alpha}{2} = \sin \alpha \cos \dfrac{\alpha}{2} $
$= \sin (\dfrac{\alpha}{2} +\dfrac{\alpha}{2}) \cos \dfrac{\alpha}{2} = 2 \sin \dfrac{\alpha}{2} \cos^2 \dfrac{\alpha}{2}$.

Por lo tanto, $2 \sin \dfrac{\alpha}{2} \cos^2 \dfrac{\alpha}{2} = \sin \dfrac{\alpha}{2} (\cos \alpha + 1)$ $\Rightarrow$  
$\begin{equation} \cos^2 \dfrac{\alpha}{2} = \dfrac{\cos \alpha + 1}{2}. \end{equation}$

De donde se sigue que $\cos \dfrac{\alpha}{2} = \sqrt{\dfrac{\cos \alpha + 1}{2}}$.

Ahora sustituimos la identidad pitagórica en la ecuación $(4)$ y obtenemos:
$1 – \sin^2 \dfrac{\alpha}{2} = \dfrac{\cos \alpha + 1}{2}$
$\Leftrightarrow$
$\sin \dfrac{\alpha}{2} = \sqrt{\dfrac{1 – \cos \alpha}{2}}$.

$\blacksquare$

Tarea moral

  1. $i)$ A partir de un triangulo equilátero deriva los valores de las seis razones trigonométricas para los ángulos $\dfrac{\pi}{3}$ y $\dfrac{\pi}{6}$,
    $ii)$ A partir de un triángulo rectángulo isósceles deduce los valores de las seis razones trigonométricas para el ángulo $\dfrac{\pi}{4}$.
  2. Recordemos que consideramos la magnitud de un ángulo central como positiva, si recorremos el arco de circunferencia que subtiende dicho ángulo en el sentido contrario al de las manecillas del reloj y negativa en caso contario, muestra que para cualquier valor de $\alpha$ se cumple que:
    $i)$ $\sin (-\alpha) = -\sin \alpha$,
    $ii)$ $\cos (-\alpha) = \cos \alpha$,
    $iii)$ $\sin (\pi – \alpha) = \sin \alpha$,
    $iv)$ $\cos (\pi – \alpha) = -\cos \alpha$,
    $v)$ $\sec^2 \alpha = 1 + \tan^2 \alpha$.
  3. Sean $\alpha$ y $\beta$ ángulos agudos tales que $\alpha \geq \beta$, muestra geométricamente:
    $i)$ el seno de la diferencia de dos ángulos, $\sin (\alpha – \beta) = \sin \alpha \cos \beta – \sin \beta \cos \alpha$,
    $ii)$ el coseno de la diferencia de dos ángulos, $\cos (\alpha – \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$.
  4.  Sean $\alpha$ y $\beta$ ángulos agudos prueba que:
    $i)$ $\sin \alpha \cos \beta = \dfrac{\sin (\alpha + \beta) + \sin (\alpha – \beta)}{2}$,
    $ii)$ $\cos \alpha \sin \beta = \dfrac{\sin (\alpha + \beta) – \sin (\alpha – \beta)}{2}$.
  5. Sea $\triangle ABC$, por $A$ traza cualquier recta que corte a $BC$ en $L$, muestra que $\dfrac{BL}{LC} = \dfrac{AB \sin \angle BAL}{AC \sin \angle LAC}$.
Figura 8
  1. Demuestra que si $\dfrac{\sin \alpha}{\sin \beta} = \dfrac{\sin \delta}{\sin \gamma}$ y $\alpha + \beta = \delta + \gamma < \pi$ entonces $\alpha = \delta$ y $\beta = \gamma$.
  2. Sea $\triangle ABC$ con $a = BC$, $b = AC$, $c = AB$, $\alpha = \angle BAC$, $\beta = \angle CBA$, $\gamma = \angle ACB$, demuestra las siguientes formulas para calcular el área de $\triangle ABC$:
    $i)$ $(\triangle ABC) = \dfrac{ac \sin \beta}{2} = \dfrac{ab \sin \gamma}{2} = \dfrac{bc \sin \alpha}{2}$,
    $ii)$ $(\triangle ABC) = \dfrac{a^2 \sin \beta \sin \gamma}{2 \sin (\beta + \gamma)} = \dfrac{b^2 \sin \alpha \sin \gamma}{2 \sin (\alpha + \gamma)} = \dfrac{c^2 \sin \alpha \sin \beta}{2 \sin (\alpha + \beta)}$.

Más adelante…

En la siguiente entrada estudiaremos algunas propiedades relacionadas con el incírculo y los excÍrculos de un triángulo, así como también sobre sus centros y radios.

Entradas relacionadas

Fuentes

  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 69-78.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 55-62.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 89-95.