Archivo de la etiqueta: álgebra lineal

Álgebra Superior I: Introducción a vectores y matrices con entradas reales

Por Eduardo García Caballero

Introducción

Los vectores y las matrices son algunos de los objetos matemáticos que nos encontraremos con mayor frecuencia durante nuestra formación matemática. Esto se debe a que nos permiten abordar con sencillez varios problemas de distintas áreas de las matemáticas, como lo son la geometría analítica y la teoría de gráficas. Además, nos ayudan a modelar con gran precisión fenómenos de otras disciplinas, como de la mecánica clásica, gráficos por computadora, circuitos eléctricos, robótica, entre otras.

A pesar de que el estudio a profundidad de los vectores y matrices lo realizaremos en los cursos de Álgebra Lineal I y Álgebra Lineal II, esto no es un impedimento para que nos familiaricemos con varios de los conceptos, técnicas y algoritmos que nos permitirán sacar provecho a esta maravillosa área de las matemáticas.

¿Qué son los vectores?

Dependiendo del área que estudiemos, nos podríamos encontrar con distintas definiciones de vectores. Por ejemplo, en la mecánica clásica se visualiza a los vectores como flechas en el plano o en el espacio, ancladas en un «origen» o en cualquier otro punto del plano. En ciencias de la computación, entenderemos que un vector consiste en un arreglo en el que todas sus entradas son datos del mismo tipo. Como veremos más adelante, las distintas formas de visualizar los vectores son equivalentes.

En este curso trabajaremos con un tipo específico de vectores: los vectores cuyas entradas son números reales. ¿Números reales? Sí. Aquí el temario de la asignatura de un brinco un poco grande. Hasta ahora, hemos intentado construir las matemáticas desde sus fundamentos: lógica, conjuntos, funciones, números naturales, etc. Sin embargo, ahora trabajaremos con el conjunto $\mathbb{R}$ de números reales.

Ya platicamos de que el conjunto de naturales $\mathbb{N}$ se puede pensar desde un sistema axiomático y que de hecho podemos «construir» a los naturales a partir de nociones de teoría de conjuntos. En el curso de Álgebra Superior 2 se platica de cómo construir al conjunto $\mathbb{Z}$ de enteros a partir de $\mathbb{N}$, al conjunto $\mathbb{Q}$ de racionales a partir de $\mathbb{Z}$ y finalmente de cómo construir a $\mathbb{R}$ desde $\mathbb{Q}$. Pero por ahora supondremos la existencia de $\mathbb{R}$ y que cumple todos los axiomas que se tratan por ejemplo en un curso de Cálculo Diferencial e Integral I.

Vectores con entradas reales

Un vector con entradas reales lo podemos entender como una lista ordenada de uno o más números (también conocida como tupla) en la que todos sus valores son números reales. Aquí «lista ordenada» lo pensamos no en el sentido de que sus entradas «van creciendo o decreciendo en orden», sino en el sentido «ordenado» como de parejas ordenadas de la segunda unidad de estas notas. Es decir, no nos importan no sólo los números usados, sino también en qué lugar quedaron.

Un ejemplo que seguramente ya has visto en tus clases de geometría analítica son los vectores en el plano o en el espacio. Recordemos que el vector $(5, \pi)$ determina una única posición en el plano, mientras que $\left(8, \sqrt{2}, \tfrac{4}{3}\right)$ determina una única posición en el espacio. Como ambas tuplas están formadas únicamente por números reales, podemos decir que son vectores con entradas reales. A cada uno de los números que aparecen en la lista le llamaremos entrada, y nos podemos referir a la posición de la entrada para decir cuál es su valor; por ejemplo, la primera entrada de $(5, \pi)$ es $5$, mientras que la tercera entrada de $\left(8, \sqrt{2}, \tfrac{4}{3}\right)$ es $\tfrac{4}{3}$.

Como recordarás, decimos que estos vectores se encuentran en $\mathbb{R}^2$ y $\mathbb{R}^3$, respectivamente. Analizando los ejemplos, te darás cuenta de que el número que acompaña a $\mathbb{R}$ se refiere a la cantidad de números reales que están enlistados en cada vector. Entonces, probablemente te preguntarás qué pasa con listas de más números. Aunque quizá sean más difíciles de visualizar (¡aunque no imposibles!), también existen vectores con cuatro, cinco o incluso más entradas. Esto nos lleva a la siguiente definición.

Definición. Para un número entero positivo $n$, un vector con $n$ entradas reales es una lista ordenada de $n$ elementos, el cual escribiremos $(x_1,x_2,\ldots,x_n)$. El conjunto $\mathbb{R}^n$ consiste de todos los vectores con $n$ entradas reales.

Así, podemos ver que tenemos que $(1,-3.5,e,1)$ es un vector en $\mathbb{R}^4$, mientras que $(1,1,2,3,5,7,13)$ es un vector en $\mathbb{R}^7$. En notación de conjuntos, $(1,-3.5,e,1)\in\mathbb{R}^4$ y $(1,1,2,3,5,7,13)\in\mathbb{R}^7$.

Una forma de empezar a ver cómo los vectores se relacionan entre ellos es preguntándonos cuándo estos son iguales. La primera condición que seguramente se nos vendrá a la mente es que los dos vectores deben tener la misma longitud; de este modo, podemos inmediatamente descartar que $(5, \pi)$ y $(8, \sqrt{2}, \tfrac{4}{3})$ sean iguales.

Otra condición que seguramente consideraremos es que todas sus entradas deben ser iguales. Así, podemos también descartar que $(5, \pi)$ y $(4, 8)$ sean iguales. Sin embargo, ¿son $(5,\pi)$ y $(\pi, 5)$ iguales? Como recordarás, los vectores son listas ordenadas, por lo que no sólo es importante que tengan las mismas entradas, sino que también aparezcan en el mismo orden. Así, podemos también descartar que $(5,\pi)$ y $(\pi, 5)$ sean iguales: basta ver con que la primera entrada del $(5,\pi)$ es $5$, mientras que la primera entrada de $(\pi,5)$ es $\pi$, y claramente $5\ne\pi$. Así mismo, $(1,5,8,1,3)$ es distinto de $(1,5,8,1,4)$ pues aunque compartan muchos elementos en varias de sus posiciones, en el primer vector la última entrada es $3$ y el el segundo la última entrada es $4$.

Definición. Diremos que dos vectores $(x_1,\ldots,x_n)$ y $(y_1,\ldots,y_n)$ de $\mathbb{R}^n$ son iguales si para toda $i=1,\ldots,n$ se tiene que $x_i=y_i$

Por otra parte, antes dijimos que los vectores tienen varias formas de ser representados. Como ejemplo de esto, podemos ver que el vector $(1,-3.5,e,1)$ puede ser representado como

\[
\begin{pmatrix}
1 \\
-3.5 \\
e \\
1
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
1 & -3.5 & e & 1
\end{pmatrix}.
\]

Al formato de la izquierda se le conoce como vector vertical o vector columna, mientras que al formato de la derecha se le conoce como vector horizontal o vector fila. Dependiendo del contexto, en ocasiones nos encontraremos con estas representaciones en vez de la que mostramos inicialmente, aunque es importante recordar que siguen siendo vectores con entradas reales, pues son listas ordenadas de números reales.

Matrices con entradas reales

Otro objeto matemático en el que también se enlistan varios números reales se conoce como matriz, con la diferencia de que esta lista tiene forma de arreglo rectangular.

Definición. Una matriz con entradas reales es un arreglo rectangular en donde en cada una de sus posiciones se coloca un número real.

Por ejemplo, las siguientes son matrices con entradas reales:

\[
\begin{pmatrix}
0 & 8 & -4.5 \\
2 & 9 & 0 \\
1 & \pi & 5
\end{pmatrix},
\qquad
\begin{pmatrix}
0 & -3 & 9 & 4.25 \\
100 & 0.1 & -2 & \sqrt{2}
\end{pmatrix}.
\]
Como podrás ver, para poder identificar a una entrada de una matriz debemos de hacer referencia a dos propiedades: el número de fila y el número de columna en el que se encuentra. Las filas se cuentan de arriba hacia abajo, y las columnas de izquierda a derecha. Así, vemos que la entrada que se encuentra en la fila 3 y columna 2 de la primera matriz es $\pi$. A cada entrada le asignamos una coordenada $(i,j)$, donde $i$ es el número de fila y $j$ es el número de columna. Así, $\pi$ se encuentra en la posición $(3,2)$ de la primera matriz.

Por convención, cuando mencionamos el tamaño de una matriz, primero se especifica el número de filas y posteriormente el número de columnas. Así, la primera matriz es de tamaño $3\times 3$, mientras que la segunda es de tamaño $2 \times 4$. Ya que elegimos el tamaño de una matriz, podemos considerar a todas las matrices de ese tamaño.

Definición. El conjunto $M_{m,n}(\mathbb{R})$ consiste de todas las matrices de $m$ filas, $n$ columnas y en donde cada entrada es un número real.

En el caso de que la cantidad de filas y de columnas de la matriz sean el mismo, diremos que se trata de una matriz cuadrada. De nuestros ejemplos anteriores, la primera sí es una matriz cuadrada, pero la segunda no. Para simplificar un poco la notación, introducimos lo siguiente.

Definición. El conjunto $M_n(\mathbb{R})$ consiste de todas las matrices de $n$ filas, $n$ columnas y en donde cada entrada es un número real.

Es decir, simplemente $M_n(\mathbb{R})=M_{n,n}(\mathbb{R})$.

Al igual que pasa con los vectores, podemos comparar dos matrices para saber si estas son iguales. Como te podrás imaginar, hay algunas condiciones que dos matrices deben cumplir para ser iguales: en primera, ambas deben de tener el mismo tamaño; es decir, sus números de filas deben de ser iguales y sus números de columnas deben de ser iguales. Por lo tanto, vemos que las matrices mostradas anteriormente son diferentes. Además, sus correspondientes entradas deben de ser iguales. Podemos escribir esto en una definición como sigue.

Definición. Sean $A$ y $B$ matrices en $M_{m,n}(\mathbb{R})$. Diremos que estas matrices son iguales si para cada $i\in \{1,\ldots,m\}$ y cada $j\in \{1,\ldots,n\}$ se cumple que la entrada $(i,j)$ de $A$ es la misma que la entrada $(i,j)$ de $B$.

¿Puedes decir por qué las siguientes matrices son diferentes?
\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\ne
\begin{pmatrix}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{pmatrix}.
\]

Notación y algunos vectores y matrices especiales

En matemáticas, es usual que denotemos los vectores con letras minúsculas (siendo las más comunes la $u$, $v$ y $w$) aunque muchas veces te podrás encontrar con notaciones especiales que los hacen más fáciles de distinguir, por ejemplo, $\overrightarrow{a}$ o $\mathbf{a}$. Nosotros no haremos esta distinción y usaremos simplemente letras minúsculas. Por ejemplo podríamos tomar al vector $u=(1,2,3)$ de $\mathbb{R}^3$.

Por su parte, las matrices las solemos representar con letras mayúsculas (generalmente las primeras del abecedario: $A$, $B$, $C$). Si la entrada que se encuentra en la fila $i$ y colmuna $j$ de la matriz se le denota como con la correspondiente letra minúscula y con subíndices la posición de su entrada: $a_{ij}$. Así, tendríamos que en
\[
A=
\begin{pmatrix}
0 & 8 & -4.5 \\
2 & 9 & 0 \\
1 & \pi & 5
\end{pmatrix}
\]
la entrada $a_{13} = -4.5$ y la entrada $a_{31} = 1$. ¿Cuál es la entrada $a_{23}$?

Además, existen algunos vectores y matrices con entradas reales que nos encontraremos con bastante frecuencia, y por esta razón reciben nombres especiales:

  • El vector en el que todas sus entradas son el número cero se conoce como vector cero o vector nulo. Por ejemplo, el vector nulo en $\mathbb{R}^2$ es $ (0,0)$ mientras que el nulo en $\mathbb{R}^3$ es $(0,0,0)$. Generalmente, denotamos este vector como $0$ (o, en ocasiones, como $\overrightarrow{0}$ o $\mathbf{0}$) .Es importante observar que se usa el mismo símbolo para representar a los vectores nulos con números distintos de entradas (de modo que podremos encontrar que $0=(0,0)$, en el caso de $\mathbb{R}^2$, o que $0=(0,0,0)$, en el caso de $\mathbb{R}^3$). Esto es algo que debemos tener en cuenta, aunque no suele representar mayores complicaciones, pues el contexto nos dirá 1) Si el símbolo $0$ se usa para el real cero o el vector cero y 2) Con cuántas entradas estamos trabajando.
  • La matriz en el que todas sus entradas son cero se conoce como matriz cero o matriz nula. Ejemplos de matrices nulas son
    \[
    \begin{pmatrix}
    0 & 0 & 0 & 0 \\
    0 & 0 & 0 & 0 \\
    0 & 0 & 0 & 0
    \end{pmatrix}
    \qquad
    \text{y}
    \qquad
    \begin{pmatrix}
    0 & 0 \\
    0 & 0
    \end{pmatrix}.
    \]
    Estas matrices se suelen denotar con el símbolo $\mathcal{O}$, aunque en el caso de las matrices sí es común especificar las dimensiones de la matriz, de modo que la primera matriz escrita en este inciso se denota como $\mathcal{O}_{3\times 4}$ mientras que una matriz cuadrada, como la segunda de este inciso, se denota como $\mathcal{O}_2$.
  • El vector en $\mathbb{R}^n$ cuya $i$-ésima entrada es $1$ y el resto de sus entradas es $0$ se conoce como vector canónico, y se denota $\mathrm{e}_i$. Por ejemplo, el vector canónico $\mathrm{e}_3$ en $\mathbb{R}^4$ es $(0,0,1,0)$.
  • Además, al conjunto de todos los posibles vectores canónicos en $\mathbb{R}^n$ se conoce como la base canónica de $\mathbb{R}^n$; así, la base canónica de $\mathbb{R}^4$ es
    \[
    \{(1,0,0,0), \ (0,1,0,0), \ (0,0,1,0), (0,0,0,1)\} = \{\mathrm{e}_1, \mathrm{e}_2, \mathrm{e}_3, \mathrm{e}_4\}.
    \]
  • Llamamos diagonal de una matriz cuadrada a las componentes cuyos número de fila y número de columna coinciden. Además, diremos que una matriz es una matriz diagonal si es una matriz cuadrada en la que todas sus entradas que no están en la diagonal (es decir, que su número de fila es distinto a su número de columna) son cero. Ejemplos de matrices diagonales son
    \[
    \begin{pmatrix}
    5 & 0 & 0 \\
    0 & 8 & 0 \\
    0 & 0 & \pi
    \end{pmatrix}
    \qquad
    \text{y}
    \qquad
    \begin{pmatrix}
    6 & 0 & 0 & 0 \\
    0 & 7 & 0 & 0 \\
    0 & 0 & 0 & 0 \\
    0 & 0 & 0 & 9
    \end{pmatrix}
    \]
    (Observemos que aquellas entradas que se encuentran sobre su diagonal también pueden ser cero, aquí no tenemos ninguna restricción).
  • La matriz diagonal en la que todas sus entradas sobre la diagonal son 1 se conoce como matriz identidad. Ejemplos de matrices identidad son
    \[
    \begin{pmatrix}
    1 & 0 & 0\\
    0 & 1 & 0 \\
    0 & 0 & 1
    \end{pmatrix}
    \qquad
    \text{y} \\
    \qquad
    \begin{pmatrix}
    1
    \end{pmatrix}.
    \]
    A esta matriz la denotamos por $\mathcal{I}$ y especificamos su tamaño como subíndice. Así, las matrices anteriores son ${I}_3$ e $\mathcal{I}_1$.

Más adelante…

En esta entrada vimos las definiciones de vectores y matrices con entradas reales que usaremos para trabajar en este curso. También revisamos cuándo dos vectores (o matrices) son iguales. Además, vimos algunos ejemplos de vectores y matrices que nos encontraremos con bastante frecuencia en las matemáticas.

En las siguientes entradas veremos que también se pueden hacer operaciones entre vectores y matrices, aunque necesitaremos que se cumplan algunas condiciones especiales.

Tarea moral

  1. Basándonos en la definiciones, verifica las siguientes igualdades:
    • El vector $(4-4,1,3)$ es igual al vector $(0,2-1,2+1)$.
    • La matriz $A=\begin{pmatrix} 1 & 2 \\ 2 & 4\end{pmatrix}$ es igual a la matriz $B$ de $2\times 2$ cuyas entradas están dadas por $b_{ij}=i\cdot j$.
  2. Encuentra todos los posibles vectores que hay en $\mathbb{R}^3$ cuyas entradas sean únicamente los números $1$ y $2$. ¿Cuántos deben de ser?
  3. Seguramente algunos los nombres de los vectores y matrices especiales te recuerdan a algún tipo de operación. ¿Qué operaciones crees que podamos hacer con los vectores y/o matrices, y qué comportamiento tendrían aquellos que reciben un nombre especial?
  4. ¿Por qué podemos decir que una matriz nula cuadrada cumple con ser una matriz diagonal?
  5. Escribe todos los elementos de la base canónica de $\mathbb{R}^6$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Nota 26. Propiedades de $\mathbb R^n$

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

En la siguiente nota veremos algunas propiedades del $\mathbb R$-espacio vectorial $\mathbb R^n$. Probaremos la unicidad del neutro aditivo, así como la unicidad de los inversos aditivos, veremos que las propiedades de cancelación de la suma también se cumplen, se demostrará que la multiplicación del neutro aditivo de $\mathbb R$ por cualquier vector de $\mathbb R^n$ nos da el neutro aditivo, y que la multiplicación de cualquier escalar por el neutro aditivo, es el neutro aditivo. Finalizaremos viendo que el inverso aditivo de un vector $v$, que hemos denotado por $\tilde{v}$, es de hecho $(-1)v$.

Aunque denotamos las operaciones de suma y producto por escalar en $\mathbb R^n$ como $\oplus$ y $\odot$ para distinguirlas de la suma y el producto en $\mathbb R$, en general es claro por el contexto si se trata de unas u otras, así que a partir de aquí simplificaremos la notación y denotaremos a la suma de $u,v\in\mathbb R^n$ como $u+v$, y al producto de $\lambda\in\mathbb R $ por $v\in\mathbb R^n$ como $\lambda v$.

Proposición 1

En $\mathbb R^n$ el neutro aditivo es único.

Demostración

Supongamos que $\bar{0}$ y $\bar{0}’$ son dos neutros aditivos en $\mathbb R^n$.

Por demostrar que $\bar{0}=\bar{0}’$

Explicación
$\bar{0}=$Consideramos uno de los neutros.
$=\bar{0}+\bar{0}’$Gracias a que $\bar{0}’$ es un neutro.
$=\bar{0}’$Pues $\bar{0}$ es un neutro.

$\square$

Proposición 2

En $\mathbb R^n$ los inversos aditivos son únicos.

Demostración

Sea $v\in \mathbb R^n$, supongamos que $\tilde{v}$ y $\hat{v}$, son inversos aditivos de $v$.

Por demostrar que $\tilde{v}=\hat{v}$.

Explicación
$\tilde{v}=\tilde{v}+\bar{0}=$Gracias a que $\bar{0}$ es el neutro.
$=\tilde{v}+(v+\hat{v})=$Como $\hat{v}$ es un inverso de $v$
$v+\hat{v}=\bar{0}$.
$=(\tilde{v}+v)+\hat{v}=$Gracias a la asociatividad.
=$\bar{0}+\hat{v}$$\tilde{v}$ también es un inverso de $v$ y entonces
$\tilde{v}+v=\bar{0}$.
$=\hat{v}$Pues $\bar{0}$ es el neutro.

$\square$

Propiedades de cancelación

Sean $u,v,w\in \mathbb R^n.$

i) Si $u+v=w+v$, entonces $u=w.$

ii) Si $v+u=v+w$, entonces $u=w.$

Demostración

Sean $u,v,w\in \mathbb R^n$.

Demostración de i)

Supongamos que $u+v=w+v$, si le sumamos el inverso de $v$, $\tilde{v}$, de ambos lados de la igualdad tenemos que:

$(u+v)+\tilde{v}=(w+v)+\tilde{v}.$

En virtud de la asociatividad tenemos que:

$u+(v+\tilde{v})=w+(v+\tilde{v})$

y como $\tilde{v}$ es el inverso de $v$ obtenemos

$u+\bar{0}=w+\bar{0}.$

Así, $u=w.$

Demostración de ii)

Observa que se obtiene de la demostración del inciso anterior y de la conmutatividad de la suma, ya que si $v+u=v+w$, por la conmutatividad de la suma tenemos que $u+v=w+v$ y debido al inciso anterior concluimos que $u=w.$

$\square$

Proposición 3

En $\mathbb R^n$ se cumple que:

1. $0v=\bar{0}\,\,\,\,\forall v\in \mathbb R^n.$

2. $\lambda \bar{0}\,\,\,\,\forall \lambda\in \mathbb R.$

Demostración

Demostración de 1

Explicación
$\bar{0}+0v=0v=$Gracias a que $\bar{0}$ es el neutro en $\mathbb R^n$.
$=(0+0)v$$0=0+0$, gracias a que $0$ es neutro en $\mathbb R.$
$=0v+0v$Gracias a la distributividad en $\mathbb R$.

Obtenemos de las igualdades en la tabla que $\bar{0}+0v=0v+0v$, por la propiedad de la cancelación mostrada anteriormente tenemos que $\bar{0}=0v$.

Demostración de 2

Explicación
$\bar{0}+\lambda\bar{0}=\lambda\bar{0}=$Gracias a que $\bar{0}$ es neutro en $\mathbb R^n$.
$\lambda(\bar{0}+\bar{0})$$\bar{0}=\bar{0}+\bar{0}$, gracias a que $\bar{0}$ es neutro en $\mathbb R^n$.
$\lambda\bar{0}+\lambda\bar{0}$Gracias a la distributividad en $\mathbb R^n$.

Obtenemos de las igualdades en la tabla que $\bar{0}+\lambda\bar{0}=\lambda\bar{0}+\lambda\bar{0}$, por la propiedad de la cancelación mostrada anteriormente tenemos que $\bar{0}=\lambda\bar{0}$.

$\square$

Proposición 4

Para todo $v\in \mathbb R^n,\,\,\,\,(-1)v$ es el inverso aditivo de $v$.

Demostración

Sea $v\in \mathbb R^n$. Veamos que $(-1)v$ es su inverso aditivo.

Explicación
$v+(-1)v=1v+(-1)v=$Pues $v=1v$.
$=(1+(-1))v$Por distributividad.
$=0v$Pues en $\mathbb R$ se tiene que $1+(-1)=0$.
$=\bar{0}$Por la proposición 3.

Hemos probado que $v+(-1)v=\bar{0}$ y por la conmutatividad de la suma también $(-1)v+v=\bar{0}$. En virtud de la unicidad de los inversos concluimos que $(-1)v$ es el inverso aditivo de $v$.

$\square$

Notación

Dado $v\in \mathbb R^n$ denotaremos por $-v$ a su inverso aditivo.

Corolario

En $\mathbb R^n$e cumple que:

$(-\lambda) v=-(\lambda v)=\lambda (-v),\,\,\,\,\forall \lambda\in \mathbb R\,\,\,\,\forall v\in \mathbb R^n$.

Explicación
$\lambda (-v)=\lambda((-1)v)$$-v=(-1)v$ por la proposición 4.
$=(\lambda(-1))v$Propiedades del producto escalar en $\mathbb R^n$.
$=(-\lambda)v$Gracias a que en $\mathbb R$ $\lambda(-1)=-\lambda$.
$=((-1)\lambda)v$Gracias a que en $\mathbb R$ $\lambda(-1)=-\lambda$.
$=(-1)(\lambda v)$Propiedades del producto escalar en $\mathbb R^n$.
$=-(\lambda v)$Por la proposición 4.

$\square$

Tarea Moral

Determina si dados $v\in \mathbb R^n$, $\lambda\in \mathbb R$, el hecho de que $\lambda v=\bar{0}$ implica necesariamente que $v=\bar{0}$ o que $\lambda =0$.

Más adelante

En la siguiente nota veremos el importante concepto de subespacio vectorial.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 25. Espacios vectoriales.

Enlace a la nota siguiente. Nota 27. Subespacios vectoriales.

Investigación de Operaciones: Forma canónica y forma estándar de un problema lineal (9)

Por Aldo Romero

Introducción

En las entradas anteriores hemos dado ejemplos de varios problemas de aplicación que pueden ser planteados mediante un problema de programación lineal. Una vez que llegamos a un modelo, se pueden tener restricciones de los tipos $\leq$, $=$ y $\geq$. Además, puede haber restricciones de signo sobre las variables. Puede que se les pida ser no positivas, no negativas o irrestrictas (no restringidas) en signo. Lo que haremos ahora es ver cómo podemos llegar a un cierto formato (forma estándar o forma canónica).

Forma canónica de un problema lineal

A continuación introducimos el primer formato que nos facilitará el trabajo.

Definición. Se dice que un problema de programación lineal está en forma canónica si cumple simultáneamente las siguientes tres propiedades:

  1. El problema es de maximización.
  2. Las restricciones del problema son todas del tipo $\leq$ (menor o igual).
  3. Las variables de decisión son no negativas.

Así, tenemos entonces que un problema en forma canónica se ve como sigue:

\begin{align*}
Max \quad z &= c_1x_1+\ldots+c_nx_n\\
s.a.&\\
&\left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \leq b_1\\
a_{21}x_1+a_{22}x_2+\ldots + a_{2n}x_n \leq b_2\\
\vdots \\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n\leq b_n. \\
x_1\geq 0, x_2\geq 0, \ldots, x_n\geq 0.\end{matrix}\right.
\end{align*}

En términos matriciales, esto podemos reescribirlo de manera mucho más compacta como sigue:

\begin{align*}
Max \quad z &= c\cdot x\\
s.a.&\\
Ax &\leq b\\
x &\geq 0,\\
\end{align*}

en donde:

  • $c=(c_1,\ldots,c_n)\in \mathbb R^n$ es el vector de costos (vector renglón)
  • $x = (x_1,\ldots,x_n)\in \mathbb R^n$ es el vector de variables de decisión (vector columna),
  • $A=[a_{ij}]$ es la matriz de restricciones, que es una matriz de $m \times n$ y
  • $b=(b_1,\ldots,b_m) \in \mathbb R^m$ es el vector de constantes que acotan las combinaciones lineales de variables.

Todo problema de programación lineal puede ser expresado en forma canónica; es decir, puede definirse un problema en forma canónica equivalente a él. En efecto:

  • Si el problema es de minimización, puede considerarse en vez de $z$ la función $z’ = -z$ y en el problema equivalente se busca maximizar $z’$.
  • Si una restricción es del tipo $\geq$ puede ser mutiplicada por -1 para obtener una del tipo $\leq$.
  • Una ecuación puede ser substituida por una desigualdad del tipo $\leq$ y otra del tipo $\geq$. Luego, la del tipo $\geq$ puede ser substituida por una del tipo $\leq$ como en el punto anterior.
  • Para una variable $x_i\leq 0$ puede definirse $x_i’ = -x_i$, resultando $x_i’ \geq 0$. Claramente hay una biyección entre elegir el valor de $x_i$ y $x_i’$.
  • Para una $x_i$ no restringida pueden ser definidas dos variables no negativas $x_i’$ y $x_i^\ast$ tales que $x_i’-x_i^\ast = x_i$. Para cualquier $x_i$ dado podemos construir dichas variables, y viceversa, para $x_i’$ y $x_i^\ast$ se puede construir $x_i$.

Ejemplo de pasar un problema a forma canónica

Transformaremos el siguiente modelo a su forma canónica
\begin{align*}
Min \quad z &= x_1-3x_2+7x_3\\
&s.a.\\
3x_1+&x_2+3x_3 &\leq 40\\
x_1+&9x_2-7x_3 &\geq 50\\
5x_1+&3x_2 &= 20\\
&5x_2 + 8x_3 &\leq 80\\
x_1, x_2 &\geq 0, \quad x_3 \quad libre.\\
\end{align*}

Primeramente se definen las variables no negativas $x_3’$ y $x_3^{\ast}$, tales que $x’_3-x_3^{\ast} = x_3$, con objeto de satisfacer el punto (3) de la definición. Para satisfacer el punto (1) se considera la función:
\begin{align*}
z’ &= -z \\&= -x_1+3x_2-7x_3\\&=-x_1+3 x_2-7 x’_3+7x_3^{\ast}
\end{align*}

y se busca maximiza ésta (equivalente a minimizar $z$). Finalmente se realizan cambios en las restricciones para satisfacer el punto (2). La primera y cuarta desigualdad cumplen con la definición por lo que no se modifican (más allá de la sustitución de $x_3$ por $x’_3-x_3^{\ast}$); la segunda desigualdad se multiplica por $-1$ para obtener una del tipo $\leq$: $$ x_1 + 9x_2 – 7x_3 \geq 50 \quad \Leftrightarrow \quad -x_1 – 9x_2 + 7x_3 \leq -50.$$

Substituyendo las nuevas variables se obtiene: $$-x_1-9x_2+7x’_3-7x_3^{\ast}\leq -50.$$

Para la tercera desigualdad se tiene lo siguiente:

\begin{align*}
5x_1+3x_2 &= 20\\
&\Leftrightarrow\\
5x_1 + 3x_2 \leq 20 \quad& y \quad 5x_1 + 3x_2 \geq 20\\
&\Leftrightarrow\\
5x_1 + 3x_2 \leq 20 \quad& y \quad -5x_1 – 3x_2 \leq -20.\\
\end{align*}

Finalmente el problema queda expresado en forma canónica como:

\begin{align*}
Max \quad z’ &= -x_1+3x_2-7x’_3+7x_3^{\ast}\\
&s.a.\\
3x_1+&x_2+3x’_3-3x_3^{\ast} &\leq 40\\
-x_1-&9x_2+7x’_3-7x_3^{\ast} &\leq -50\\
5x_1+&3x_2 &\leq 20\\
-5x_1-&3x_2 &\leq -20\\
&5x_2+8x’_3-8x_3^{\ast} &\leq 80\\
x_1, x_2&, x’_3, x_3^{\ast} \geq 0.\\
\end{align*}

Forma estándar de un problema lineal

Definición. Se dice que un problema de programación lineal está en forma estándar si

  1. Todas las restricciones son ecuaciones.
  2. Todas las variables son no negativas.
  3. La función objetivo puede pedirse que se optimice maximizándola, o minimizándola.

De esta manera, un problema en forma estándar se ve como sigue:

\begin{align*}
Max\, (\text{o } Min) \quad z &= c_1x_1+\ldots+c_nx_n\\
s.a.&\\
&\left\{\begin{matrix} a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1\\
a_{21}x_1+a_{22}x_2+\ldots + a_{2n}x_n = b_2\\
\vdots \\
a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n= b_n\\
x_1\geq 0, x_2\geq 0, \ldots, x_n\geq 0.
\end{matrix}\right.\\
\end{align*}

En notación matricial, el problema en forma canónica queda expresado de la siguiente manera:

\begin{align*}
Max\, (\text{o } Min) \quad z &= cx\\
&s.a.\\
Ax &= b\\
x &\geq 0\\
\end{align*}

en donde $c, x, A$ y $b \geq 0$ son como se mencionó antes.

Así como cualquier problema de programación lineal puede ser expresado en forma canónica, también cualquier problema de programación lineal puede expresarse en forma estándar. Una restricción del tipo $\leq$ ($\geq$) puede ser transformada en una ecuación sumando (o restando) una variable no negativa que recibe el nombre de variable de holgura.

Ejemplo de pasar un problema a forma estándar

Retomemos el problema ejemplo anterior, antes de expresarlo en forma canónica.

\begin{align*}
Min \quad z &= x_1-3x_2+7x_3\\
&s.a.\\
3x_1+&x_2+3x_3 &\leq 40\\
x_1+&9x_2-7x_3 &\geq 50\\
5x_1+&3x_2 &= 20\\
&5x_2 + 8x_3 &\leq 80\\
x_1, x_2 &\geq 0, \quad x_3 \quad libre.\\
\end{align*}

Vamos a expresarlo ahora en forma estándar. Como lo hicimos anteriormente, hacemos la sustitución $x=x’_3-x_3^\ast$ para que la variable libre se convierta en dos con restricciones de ser no negativas.

Para satisfacer (1) se introducen las variables de holgura, $x_4$, $x_5$ y $x_6$ que pediremos que sean no negativas. A la primera desigualdad le sumamos $x_4$. A la quinta le sumamos $x_6$. Y finalment, a la segunda le restamos $x_5$. Esto transforma las desigualdades en igualdades. De esta manera, el problema queda expresado de la siguiente manera:

\begin{align*}
Min \quad z &= x_1 – 3x_2+7x’_3-7x_3^\ast\\
&s.a.\\
3x_1 + &x_2 + 3x’_3 – 3x_3^\ast + x_4 &= 40\\
x_1 + &9x_2 – 7x’_3 + 7x_3^\ast – x_5 &= 50\\
5x_1 + &3x_2 &= 20\\
&5x_2 + 8x’_3 – 8x_3^\ast + x_6 &= 80\\
x_1,&x_2,x’_3,x_3^\ast,x_4,x_5,x_6 \geq 0.\\
\end{align*}

Más adelante…

Las formas que estudiamos en esta entrada nos ayudarán posteriormente para plantear soluciones para problemas de programación lineal.

Mientras tanto, en la siguiente entrada hablaremos de algunos otros conceptos relativos a la teoría de problemas lineales y posibles propiedades que puede tener una asignación de variables. Diremos qué es una solución básica, una solución factible y un punto extremo para un problema lineal.

Tarea moral

  1. ¿Cuál sería la forma estándar del problema de maximizar $x+y$ sujeto a $x-y\leq 8$ y $y\leq 0$? ¿Y su forma canónica?
  2. Transforma el siguiente problema de programación lineal a su forma canónica y a su forma estándar:
    \begin{align*}
    Max \quad z &= -2x_1 + 3x_2 – 2x_3\\
    &s.a.\\
    4x_1 – &x_2 – 5x_3 &= 10\\
    2x_1 + &3x_2 + 2x_3 &\geq 12\\
    x_1 &\geq 0, \quad x_2, x_3 \quad irrestrictas\\
    \end{align*}
  3. Revisa nuevamente las entradas anteriores y encuentra las formas canónicas y formas estándar de los problemas que hemos planteado hasta ahora.
  4. La forma estándar (o bien la forma canónica) de un programa lineal «es equivalente» al problema original. Justifica esta afirmación formalmente. Es decir, explica por qué una solución $x_1,\ldots,x_n$ que optimiza el problema original está asociada a una solución de su forma estándar (o canónica) y viceversa.
  5. Imagina que tenemos un sistema de ecuaciones de la forma $Ax=B$ con $A$ matriz en $M_{m,n}(\mathbb{R})$ y $b$ vector en $\mathbb{R}^m$. Queremos encontrar de todas las posibles soluciones al sistema aquella que minimiza la suma de las entradas de $x$. Plantea esto como un problema lineal y transfórmalo a su forma canónica y a su forma estándar.

Entradas relacionadas

Cálculo Diferencial e Integral III: Polinomio característico

Por Alejandro Antonio Estrada Franco

Introducción

En la entrada anterior estudiamos las representaciones matriciales de una transformación lineal. Vimos cómo dadas ciertas bases del espacio dominio y codominio, existe un isomorfismo entre matrices y transformaciones lineales. Así mismo, planteamos la pregunta de cómo encontrar bases para que dicha forma matricial sea sencilla. Vimos que unos conceptos cruciales para entender esta pregunta son los de eigenvalor, eigenvector y eigenespacio. Lo que haremos ahora es introducir una nueva herramienta que nos permitirá encontrar los eigenvalores de una transformación: el polinomio característico.

A partir del polinomio característico daremos un método para encontrar también a los eigenvectores y, en algunos casos especiales, encontrar una representación de una transformación lineal como matriz diagonal. Todo lo que hacemos es una versión resumida de lo que se puede encontrar en un curso más completo de álgebra lineal. Dentro del blog, te recomendamos consultar las siguientes entradas:

Polinomio característico

Pensemos en el problema de hallar los eigenvalores de una transformación lineal $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$. Si $\lambda \in \mathbb{R}$ es uno de estos eigenvalores, queremos poder encontrar vectores $\bar{v}\neq \bar{0}$ tales que $T(\bar{v})=\lambda \bar{v}$. Esto sucede si y sólo si $\lambda \bar{v}-T(\bar{v})=\bar{0}$, lo cual sucede si y sólo si $(\lambda \text{Id}-T)(\bar{v})=\bar{0}$, en donde $\text{Id}:\mathbb{R}^n\to \mathbb{R}^n$ es la transformación identidad de $\mathbb{R}^n$ en $\mathbb{R}^n$. Tenemos de esta manera que $\bar{v}$ es un eigenvector si y sólo si $\bar{v}\in \ker(\lambda\text{Id}-T)$.

Si existe $\bar{v}\neq \bar{0}$ tal que $\bar{v}\in \ker(\lambda \text{Id}-T)$; entonces $\ker(\lambda \text{Id}-T)\neq \{ \bar{0}\}$ por lo cual la transformación $\lambda \text{Id}-T$ no es invertible, pues no es inyectiva. Así, en ninguna base $\text{Mat}_\beta(\lambda \text{Id}-T)$ es invertible, y por tanto su determinante es $0$. Estos pasos son reversibles. Concluimos entonces que $\lambda\in \mathbb{R}$ es un eigenvalor de $T$ si y sólo si en alguna base $\beta$ se cumple que $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0.$ Esto motiva la siguiente definición.

Definición. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Llamamos a $\det(\text{Mat}_\beta(\lambda \text{Id} – T))$ al polinomio característico de $T$ en la base $\beta$.

Por la discusión anterior, los escalares que cumplen $\det(\text{Mat}_\beta(\lambda \text{Id} – T))=0$ son los eigenvalores $T$. Para obtener los correspondientes eigenvectores, basta con resolver $\text{Mat}_\beta(T)X=\lambda X$, lo cual es un sistema de ecuaciones en el vector de variables $X$. Las soluciones $X$ nos darán las representaciones matriciales de vectores propios $\bar{v}\in \mathbb{R}^n$ en la base $\beta$.

Por el momento parece ser que tenemos mucha notación, pues debemos considerar la base en la que estamos trabajando. Un poco más adelante veremos que en realidad la base no importa mucho para determinar el polinomio característico. Pero por ahora, veamos un ejemplo concreto de las ideas platicadas hasta ahora.

Ejemplo: Consideremos $T:\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}$ dada por $T(x,y,z)=(2x+z,y+x,-z)$. Calculemos su representación matricial con respecto a la base canónica $\beta$. Para ello, realizamos las siguientes evaluaciones:
\begin{align*}
T(1,0,0)&=(2,1,0)\\
T(0,1,0)&=(0,1,0)\\
T(0,0,1)&=(1,0,-1),
\end{align*}

de donde: $$\text{Mat}_\beta=\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Calculando el polinomio característico obtenemos: \[ det\begin{pmatrix} \lambda-2 & 0 & -1 \\ -1 & \lambda-1 & 0 \\ 0 & 0 & \lambda+1 \end{pmatrix}= (\lambda-2)(\lambda-1)(\lambda+1). \]

Las raíces de $(\lambda-2)(\lambda-1)(\lambda+1)$ son $\lambda_{1}=2$, $\lambda_{2}=1$ y $\lambda_{3}=-1$. Pensemos ahora en quiénes son los eigenvectores asociados a cada eigenvalor. Tomemos como ejemplo el eigenvalor $\lambda=2$. Para que $(x,y,z)$ represente a un eigenvector en la base canónica, debe pasar que:

\[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2\begin{pmatrix} x \\ y \\ z \end{pmatrix},\]

lo cual sucede si y sólo si:

\[\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} – 2\begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};\]

\[\left[ \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} – 2\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\right] \begin{pmatrix} x \\ y \\ z \end{pmatrix}= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};\]

\[\begin{pmatrix} 0 & 0 & 1 \\ 1 & -1& 0 \\ 0 & 0 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

De aquí, podemos llegar a la siguiente forma escalonada reducida del sistema de ecuaciones:

\[\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.\]

En esta forma es sencillo leer las soluciones. Tenemos que $z$ es variable pivote con $z=0$, que $y$ es variable libre, y que $x$ es variable pivote dada por $x=y$. Concluimos entonces que todos los posibles eigenvectores para el eigenvalor $2$ son de la forma $(y,y,0)$, es decir $E_2=\{(y,y,0): y \in \mathbb{R}\}$.

Queda como tarea moral que encuentres los eigenvectores correspondientes a los eigenvalores $1$ y $-1$.

$\triangle$

Matrices similares

En la sección anterior definimos el polinomio de una transformación lineal en términos de la base que elegimos para representarla. En realidad, la base elegida no es muy importante. Demostraremos un poco más abajo que dos representaciones matriciales cualesquiera de una misma transformación lineal tienen el mismo polinomio característico. Para ello, comencemos con la siguiente discusión.

Sea $T:\mathbb{R}^n\rightarrow \mathbb{R}^n$ una transformación lineal y sean $\beta_1=\{ \bar{e}_{1}, \dots , \bar{e}_{n}\}$, $\beta_2=\{ \bar{u}_{1}, \dots , \bar{u}_{n}\}$ dos bases (ordenadas) de $\mathbb{R}^n$. Supongamos que:

\begin{align*}
A&=\text{Mat}_{\beta_1}(T)=[a_{ij}]\\
B&=\text{Mat}_{\beta_2}(T)=[b_{ij}].
\end{align*}

Por cómo se construyen las matrices $A$ y $B$, tenemos que:

\begin{align*}
T(\bar{e}_j)&=\sum_{i=1}^n a_{ij} \bar{e}_i\quad\text{para $j=1,\ldots,n$}\\
T(\bar{u}_k)&=\sum_{j=1}^n b_{jk} \bar{u}_j\quad\text{para $k=1,\ldots,n$}.
\end{align*}

Como $\beta_{1}$ es base, podemos poner a cada un de los $\bar{u}_k$ de $\beta_{2}$ en términos de la base $\beta_{1}$ mediante combinaciones lineales, digamos:

\begin{equation}
\bar{u}_{k}=\sum_{j=1}^{n}c_{jk}\bar{e}_{j}
\label{eq:valor-u}
\end{equation}

en donde los $c_{jk}$ son escalares para $j=1,\ldots, n$ y $k=1,\ldots,n$. La matriz $C$ de $n\times n$, con entradas $c_{jk}$ representa a una transformación lineal invertible, ya que es una transformación que lleva uno a uno los vectores de una base a otra. Afirmamos que $CB=AC$. Para ello, tomaremos una $k$ en $[n]$ y expresaremos $T(\bar{u}_k)$ de dos formas distintas.

Por un lado, usando \eqref{eq:valor-u} y por como es cada $T(\bar{e}_k)$ en la base $\beta_{1}$ tenemos que:

\begin{align*}
T(\bar{u}_k)&=\sum_{j=1}^n c_{jk} T(\bar{e}_j)\\
&=\sum_{j=1}^n c_{jk} \sum_{i=1}^n a_{ij} \bar{e}_i\\
&=\sum_{j=1}^n \sum_{i=1}^n (c_{jk} a_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (c_{jk} a_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} c_{jk}\right) \bar{e}_i.
\end{align*}

Por otro lado, usando $\eqref{eq:valor-u}$ y por como es cada $T(\bar{u}_k)$ en la base $\beta_{2}$:

\begin{align*}
T(\bar{u}_k)&=\sum_{j=1}^nb_{jk} \bar{u}_j\\
&=\sum_{j=1}^n b_{jk} \sum_{i=1}^{n}c_{ji}\bar{e}_{j} \\
&=\sum_{j=1}^n \sum_{i=1}^n (b_{jk} c_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \sum_{j=1}^n (b_{jk} c_{ij} \bar{e}_i)\\
&=\sum_{i=1}^n \left(\sum_{j=1}^n c_{ij} b_{jk} \right) \bar{e}_i.
\end{align*}

Comparemos ambas expresiones para $T(\bar{u}_k)$. La primera es una combinación lineal de los $\bar{e}_i$ y la segunda también. Como $T(\bar{u}_k)$ tiene una única expresión como combinación lineal de los $\bar{e}_i$, entonces los coeficientes de la combinación lineal deben coincidir. Concluimos que para cada $i$ se cumple:

$$\sum_{j=1}^n a_{ij} c_{jk}=\sum_{j=1}^n c_{ij} b_{jk}.$$

Pero esto precisamente nos dice que la entrada $(i,k)$ de la matriz $AC$ es igual a la entrada $(i,k)$ de la matriz $CB$. Con esto concluimos que $AC=CB$, como queríamos.

En resumen, obtuvimos que para dos matrices $A$ y $B$ que representan a la misma transformación lineal, existe una matriz invertible $C$ tal que: $B=C^{-1}AC$. Además $C$ es la matriz con entradas dadas por \eqref{eq:valor-u}.

Introduciremos una definición que nos permitirá condensar en un enunciado corto el resultado que hemos obtenido.

Definición. Dos matrices $A$ y $B$ se llamarán similares (o semejantes), cuando existe otra matriz $C$ invertible tal que $B=C^{-1}AC$.

Sintetizamos nuestro resultado de la siguiente manera.

Proposición. Si dos matrices representan a la misma transformación lineal, entonces estas matrices son similares.

El recíproco de la proposición también se cumple, tal y como lo afirma el siguiente resultado.

Proposición. Sean $A$ y $B$ matrices similares. Entonces $A$ y $B$ representan a una misma transformación lineal $T$, quizás bajo distintas bases.

Demostración: Supongamos que las matrices $A$ y $B$ son similares con $B=C^{-1}AC$, donde las matrices $A$, $B$, $C$ están dadas por entradas $A=[a_{ij}]$ $B=[b_{ij}]$, $C=[c_{jk}]$. Tomemos una base ordenada $\beta=\{\bar{e}_{1}, \dots ,\bar{e}_{n}\}$ de $\mathbb{R}^n$. Consideremos la transformación lineal $T\in \mathcal{L}(\mathbb{R}^n,\mathbb{R}^n)$ dada por $$T(\bar{e}_j)=\sum_{i=1}^n a_{ij} \bar{e}_i.$$

De esta manera $T$ tiene forma matricial $A$ en la base $\beta$.

Construyamos ahora una nueva base ordenada de $\mathbb{R}^n$ dada por vectores $\bar{u}_k$ para $k=1,\ldots,n$ construidos como sigue:

$$\bar{u}_{k}=\sum_{j=1}^{n}c_{jk}\bar{e}_{j}.$$

Como $C$ es invertible, en efecto tenemos que $\beta’:=\{\bar{u}_1,\ldots,\bar{u}_n\}$ también es base de $\mathbb{R}^n$. Además, de acuerdo con las cuentas que hicimos anteriormente, tenemos que precisamente la forma matricial de $T$ en la base $\beta’$ será $B$.

Así, hemos exhibido una transformación $T$ que en una base tiene representación $A$ y en otra tiene representación $B$.

$\square$

Juntando ambos resultados en uno solo, llegamos a lo siguiente.

Teorema. Dos matrices $A$ y $B$ en $M_n(\mathbb{R})$ son similares si y sólo si representan a una misma transformación lineal $T:\mathbb{R}^n\to \mathbb{R}^n$, quizás bajo distintas bases.

El polinomio característico no depende de la base

Si dos matrices son similares, entonces comparten varias propiedades relevantes para el álgebra lineal. Veamos un ejemplo de esto.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal en un espacio sobre $\mathbb{R}$ de dimensión finita. Sean $\beta$ y $\beta’$ bases de $\mathbb{R}^n$. Entonces se obtiene lo mismo calculando el polinomio característico de $T$ en la base $\beta$, que en la base $\beta’$.

Demostración. Tomemos $A=\text{Mat}_{\beta}(T)$ y $B=\text{Mat}_{\beta’}(T)$. Como $A$ y $B$ representan a la misma transformación lineal $T$, entonces son similares y por lo tanto existe $C$ invertible con $B=C^{-1}AC$.

Para encontrar el polinomio característico de $T$ en la base $\beta$, necesitamos $\Mat_{\beta}(\lambda\text{Id}-T)$, que justo es $\lambda I -A$. Así mismo, en la base $\beta’$ tenemos $\lambda I – B$. Debemos mostrar que el determinante de estas dos matrices es el mismo. Para ello, procedemos como sigue:

\begin{align*}
\det(\lambda I -B) &= \det (\lambda C^{-1}C – C^{-1} A C)\\
&=\det(C^{-1}(\lambda I – A) C)\\
&=\det(C^{-1})\det(\lambda I – A) \det(C)\\
&=\det(C^{-1})\det(C)\det(\lambda I-A)\\
&=\det(I)\det(\lambda I-A)\\
&=\det(\lambda I-A).
\end{align*}

Aquí estamos usando que el determinante es multiplicativo. Cuando reordenamos expresiones con $\det$, lo hicimos pues los determinantes son reales, cuyo producto es conmutativo.

$\square$

Este teorema nos permite hablar del polinomio característico de una transformación lineal.

Concluimos esta entrada con un resultado que relaciona al polinomio característico de una transformación lineal, con la posibilidad de que exista una base cuya representación matricial sea diagonal.

Teorema. Sea $T:\mathbb{R}^n\to \mathbb{R}^n$ una transformación lineal. Supongamos que el polinomio característico de $T$ tiene raíces distintas $\lambda_{1}, \dots ,\lambda_{n}$. Entonces se cumple lo siguiente:

  1. Si tomamos un eigenvector $\bar{u}_i$ para cada eigenvalor $\lambda_i$, entonces $\bar{u}_{1},\dots ,\bar{u}_{n}$ forman una base $\beta$ para $\mathbb{R}^n$.
  2. Con dicha base $\beta$, se cumple que $\text{Mat}_\beta(T)$ es una matriz diagonal con entradas $\lambda_{1},\dots ,\lambda_{n}$ en su diagonal.
  3. Si $\beta’$ es otra base de $\mathbb{R}^n$ y $A=\text{Mat}_{\beta’}(T)$, entonces $\text{Mat}_\beta(T) = C^{-1}AC$ para una matriz invertible $C$ con entradas dadas por \eqref{eq:valor-u}.

La demostración de este resultado queda como tarea moral.

Más adelante…

En la entrada planteamos entonces un método para encontrar los eigenvectores de una transformación $T$: 1) la transformamos en una matriz $A$, 2) encontramos el polinomio característico mediante $\det(\lambda I – A)$, 3) encontramos las raíces de este polinomio, 4) cada raíz es un eigenvalor y las soluciones al sistema lineal de ecuaciones $(\lambda I – A) X=0$ dan los vectores coordenada de los eigenvectores.

Como platicamos en la entrada, una condición suficiente para que una transformación de $\mathbb{R}^n$ a sí mismo sea diagonalizable es que tenga $n$ eigenvalores distintos. Otro resultado muy bonito de álgebra lineal es que si la transformación tiene alguna forma matricial simétrica, entonces también es diagonalizable. A esto se le conoce como el teorema espectral para matrices simétricas reales. En otros cursos de álgebra lineal se estudia la diagonalizabilidad con mucho detalle. Aquí en el blog puedes consultar el curso de Álgebra Lineal II.

Otra herramienta de álgebra lineal que usaremos en el estudio de la diferenciabilidad y continuidad de las funciones de $\mathbb{R}^{n}$ a $\mathbb{R}^{m}$ son las formas bilineales y las formas cuadráticas. En la siguiente entrada comenzaremos con estos temas.

Tarea moral

  1. Encuentra los eigenvectores faltantes del ejemplo de la sección de polinomio característico.
  2. Considera la transformación lineal $T(x,y,z)=(2x+z,y+x,-z)$ de $\mathbb{R}^3$ en $\mathbb{R}^3$. Nota que es la misma que la del ejemplo de la entrada. Encuentra su representación matricial con respecto a la base $\{(1,1,1),(1,2,3),(0,1,1)\}$ de $\mathbb{R}^3$. Verifica explícitamente que, en efecto, al calcular el polinomio característico con esta base se obtiene lo mismo que con la dada en el ejemplo.
  3. Demuestra que si $A$ y $B$ son dos representaciones matriciales de una misma transformación lineal $T$, entonces $\det(A)=\det(B)$.
  4. Sea $T:\mathbb{R}^{3}\to \mathbb{R}^{3}$ dada por $T(x,y,z)=(x+y+z,x,y)$. Encuentra los eigenvalores correspondientes a la transformación, y responde si es posible representarla con una matriz diagonal. En caso de que sí, encuentra explícitamente la base $\beta$ en la cual $\text{Mat}_{\beta}(T)$ es diagonal.
  5. Demuestra el último teorema de la entrada. Necesitarás usar resultados de la entrada anterior.

Entradas relacionadas

Álgebra Lineal I: Algunas aclaraciones sobre las formas lineales

Por Leonardo Ignacio Martínez Sandoval

Introducción

Uno de los momentos del curso de Álgebra Lineal I en el que se da un brinco de abstracción es cuando se introduce el espacio dual. En ese momento, empiezan a aparecer objetos que tratamos simultáneamente como funciones y como vectores: las formas lineales. De repente puede volverse muy difícil trasladar incluso conceptos muy sencillos (como el de suma vectorial, o el de independencia lineal) a este contexto. En esta entrada intentaremos dejar esto mucho más claro.

Igualdad de funciones

Para hablar del dual de un espacio vectorial $V$ sobre un campo $F$, necesitamos hablar de las funciones $l:V\to F$. Antes de cualquier cosa, debemos de ponernos de acuerdo en algo crucial. ¿Cuándo dos funciones son iguales?

Definición. Dos funciones $f:A\to B$ y $g:C\to D$ son iguales si y sólo si pasan las siguientes tres cosas:

  • $A=C$, es decir, tienen el mismo dominio.
  • $B=D$, es decir, tienen el mismo codominio
  • $f(a)=g(a)$ para todo $a\in A$, es decir, tienen la misma regla de asignación.

Los dos primeros puntos son importantes. El tercer punto es crucial, y justo es lo que nos permitirá trabajar y decir cosas acerca de las funciones. Implica dos cosas:

  • Que si queremos demostrar la igualdad de dos funciones, en parte necesitamos demostrar que se da la igualdad de las evaluaciones para todos los elementos del conjunto.
  • Que si ya nos dan la igualdad de las funciones, entonces nos están dando muchísima información, pues nos están diciendo la igualdad de todas las evaluaciones posibles.

Veamos algunos ejemplos.

Ejemplo 1. Tomemos las funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las reglas de asignación $f(x,y)=2x+3y$ y $g(x,y)=6x-y$. ¿Son iguales? Los primeros dos puntos en la definición de igualdad se cumplen, pues tienen el mismo dominio y codominio. Entonces, debemos estudiar si tienen la misma regla de asignación.

Al evaluar en $(1,1)$ obtenemos que $f(1,1)=2+3=5$ y que $g(1,1)=6-1=5$. Al evaluar en $(2,2)$ obtenemos que $f(2,2)=4+6=10$ y que $g(2,2)=12-2=10$. Hasta aquí parecería que todo va bien, pero dos ejemplos no son suficientes para garantizar que $f=g$. Necesitaríamos la igualdad en todos los valores del dominio, es decir, en todas las parejas $(x,y)$.

Al evaluar en $(2,0)$ obtenemos que $f(2,0)=4+0=4$ y que $g(2,0)=12-0=12$. Los valores de las funciones fueron distintos, así que las funciones son distintas.

$\triangle$

Ejemplo 2. Imagina que $A$ y $B$ son dos números tales que las dos funciones $f:\mathbb{R}^2\to \mathbb{R}$ y $g:\mathbb{R}^2\to\mathbb{R}$ con las siguientes reglas de asignación son iguales:

\begin{align*}
f(x,y)&=2x-5y+A\\
g(x,y)&=Bx-5y+3.
\end{align*}

¿Cuáles tendrían que ser los valores de $A$ y $B$? Por supuesto, una exploración «a simple vista» sugiere que tendríamos que poner $B=2$ y $A=3$. Pero, ¿cómo vemos formalmente esto? ¿Cómo nos aseguramos de que sea la única posibilidad? Lo que tenemos que hacer es usar nuestra definición de igualdad de funciones. Para ello, podemos utilizar los valores $(x,y)$ que nosotros queremos pues la igualdad de funciones garantiza la igualdad en todas las evaluaciones. Así, podemos ponernos creativos y proponer $(3,5)$ para obtener que:

\begin{align*}
f(3,5)&=6-25+A=-19+A\\
g(3,5)&=3B-25+3=3B-22.
\end{align*}

Como las funciones son iguales, debe pasar que $f(3,5)=g(3,5)$, por lo que $-19+A=3B-22$. ¿Esto es suficiente para saber quién es $A$ y $B$? Todavía no, aún hay muchas posibilidades. Propongamos entonces otro valor de $(x,y)$ para evaluar. Veamos qué sucede con $(-2,1)$. Obtenemos:

\begin{align*}
f(-2,1)&=-4-5+A=-9+A\\
g(-2,1)&=-2B-5+3=-2B-2.
\end{align*}

Ahora tenemos más información de $A$ y $B$. Sabemos que $-9+A=-2B-2$. Reordenando ambas cosas que hemos obtenido hasta ahora, tenemos el siguiente sistema de ecuaciones:

\begin{align*}
A-3B=-3\\
A+2B=7.
\end{align*}

Restando la primera de la segunda obtenemos $5B=10$, de donde $B=2$. Sustituyendo en la segunda obtenemos $A+4=7$, de donde $A=3$, justo como queríamos.

$\triangle$

En el ejemplo anterior pudimos haber sido más astutos y evitarnos el sistema de ecuaciones. Recordemos que la igualdad $f(x,y)=g(x,y)$ se tiene para todas todas las parejas $(x,y)$, así que nos conviene usar parejas que 1) Sean sencillas de usar y 2) Nos den suficiente información.

Ejemplo 3. En el ejemplo anterior hicimos un par de sustituciones que finalmente sí nos llevaron a los valores que queríamos. Pero hay «mejores» sustituciones. Si hubiéramos usado la pareja $(0,0)$ obtendríamos inmediatemente $A$ pues: $$A=0-0+A=f(0,0)=g(0,0)=0-0+3=3,$$ de donde $A=3$. Ya sabiendo $A$, pudimos usar la pareja $(1,0)$ para obtener $$B+3=B-0+3=g(1,0)=2-0+3=5.$$ De aquí se obtiene nuevamente $B=2$.

$\triangle$

Veamos un último ejemplo, en el que es imposible encontrar un valor fijo que haga que dos funciones que nos dan sean iguales.

Ejemplo 4. Veamos que es imposible encontrar un número real $A$ para el cual las dos funciones $f:\mathbb{R}^2\to\mathbb{R}$ y $g:\mathbb{R}^2\to \mathbb{R}$ con las siguientes reglas de asignación sean iguales:

\begin{align*}
f(x,y)&=x^2+Ay^2\\
g(x,y)&=Axy.
\end{align*}

Imaginemos, de momento, que esto sí es posible. Entonces, tendríamos la igualdad de funciones y por lo tanto tendríamos la igualdad para todas las evaluaciones. Evaluando en $(1,0)$ obtendríamos que $$0=A\cdot 1 \cdot 0 = g(1,0)=f(1,0)=1^2+A\cdot 0^2=1.$$ Esto nos lleva a la contradicción $0=1$, lo cual muestra que ningún valor de $A$ podría funcionar.

$\triangle$

La forma lineal cero

Otra noción básica, pero que es importante de entender, es la noción de la forma lineal cero.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $0$ el neutro aditivo del campo $F$. La forma lineal cero es la función $L_0:V\to F$ que manda a cualquier vector $v$ de $V$ a $0$, es decir, cuya regla de asignación es $L_0(v)=0$ para todo $v$ en $V$.

En álgebra lineal rápidamente nos queremos deshacer de notación estorbosa, pues muchas cosas son claras a partir del contexto. Pero esto tiene el problema de introducir ambigüedades que pueden ser confusas para alguien que apenas está comenzando a estudiar la materia. Lo que prácticamente siempre se hace es que a la forma lineal cero le llamamos simplemente $0$, y dejamos que el contexto nos diga si nos estamos refiriendo al neutro aditivo de $F$, o a la forma lineal cero $L_0$.

En esta entrada intentaremos apegarnos a llamar a la forma lineal cero siempre como $L_0$, pero toma en cuenta que muy probablemente más adelante te la encuentres simplemente como un $0$. Combinemos esta noción con la de igualdad.

Ejemplo. ¿Cómo tienen que ser los valores de $A$, $B$ y $C$ para que la función $l:\mathbb{R}^3\to \mathbb{R}$ con la siguiente regla de asignación sea igual a la forma lineal cero $L_0$? $$f(x,y,z)=(A+1)x+(B+C)y+(A-C)z$$

Debemos aprovechar la definición de igualdad de funciones: sabemos que la igualdad se da para las ternas que nosotros queramos. Evaluando en $(1,0,0)$ obtenemos $$A+1 = f(1,0,0)=L_0(1,0,0)=0.$$

Aquí a la derecha estamos usando que la forma lineal cero siempre es igual a cero. De manera similar, evaluando en $(0,1,0)$ y $(0,0,1)$ respectivamente obtenemos que \begin{align*}B+C&=f(0,1,0)=L_0(0,0,0)=0\\A-C&=f(0,0,1)=L_0(0,0,0)=0.\end{align*}

Ya tenemos información suficiente para encontrar $A$, $B$ y $C$. De la primer ecuación que obtuvimos, se tiene $A=-1$. De la tercera se tiene $C=A=-1$ y de la segunda se tiene $B=-C=1$.

Pero, ¡momento! Estos valores de $A$, $B$, $C$ funcionan para las tres ternas que dimos. ¿Funcionarán para cualquier otra terna? Si elegimos $A=-1$, $B=1$ y $C=-1$ entonces tendríamos $$f(x,y,z)=0\cdot x + 0\cdot y + 0\cdot z.$$ En efecto, sin importar qué valores de $(x,y,z)$ pongamos, la expresión anterior dará cero. Así, se daría la igualdad de reglas de correspondencia entre $f$ y $L_0$ y como tienen el mismo dominio y codominio concluiríamos que $f=L_0$.

$\triangle$

Suma y producto escalar de formas lineales

Otro aspecto que puede causar confusión es la suma de funciones y el producto escalar. En la duda, siempre hay que regresar a la definición. Enunciaremos los conceptos para formas lineales. Pero en realidad podemos definir la suma de funciones de manera similar siempre que el codominio sea un lugar en donde «se puede sumar». Similarmente, podríamos definir el producto escalar de un elemento con una función siempre que sepamos cómo multiplicar a ese elemento con cada elemento del codominio.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sean $l:V\to F$ y $m:V\to F$ formas lineales. Definimos la suma de $l$ con $m$, a la cual denotaremos por $l+m$, como la función $l+m:V\to F$ con la siguiente regla de asignación:$$(l+m)(v)=l(v)+m(v),$$ para cualquier $v$ en $V$.

De nuevo nos estamos enfrentando a un posible problema de ambigüedad de símbolos: por un lado estamos usando $+$ para referirnos a la suma en el campo $F$ y por otro lado para referirnos a la suma de funciones que acabamos de definir.

Definición. Sea $V$ un espacio vectorial sobre un campo $F$. Sea $l:V\to F$ una forma lineal y sea $r$ un elemento de $F$. Definimos el producto escalar de $r$ con $F$, al cual denotaremos por $r\cdot l$ como la función $r\cdot l:V\to F$ con la siguiente regla de asignación:$$(r\cdot l)(v)=r\cdot (l(v))$$ para cualquier $v$ en $V$.

Así, estamos usando tanto la suma en $F$ como el producto en $F$ para definir una nueva suma de funciones y un nuevo producto entre un real y una función. En el caso del producto escalar, como con muchos otros productos, usualmente quitamos el punto central y ponemos $rl$ en vez de $r\cdot l$.

Ejemplo. Tomemos las funciones $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3\to \mathbb{R}$ con las siguientes reglas de asignación:

\begin{align*}
f(x,y,z)&=2x-y+z\\
g(x,y,z)&=3x+y-5z.
\end{align*}

Mostraremos que la función $3f+(-2)g$ es igual a la función $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z)=-5y+13z$. Lo haremos con todo el detalle posible. Primero, notamos que las dos funciones tienen dominio $\mathbb{R}^3$ y codominio $\mathbb{R}$ así que nos podemos enfocar en la regla de asignación. Debemos ver que ambas coinciden para todas las ternas $(x,y,z)$ en $\mathbb{R}^3$. Tomemos entonces una de estas ternas $(x,y,z)$.

Por definición de producto escalar de funciones, tenemos que $$(3f)(x,y,z)=3(f(x,y,z))=3(2x-y+z)=6x-3y+3z.$$. Aquí estamos usando la distributividad en los reales. Por definición de producto escalar de funciones, tenemos que $$ ((-2)g)(x,y,z)=(-2)(g(x,y,z))=(-2)(3x+y-5z)=-6x-2y+10z.$$ Una vez más estamos usando distributividad. Luego, por definición de suma de funciones obtenemos que

\begin{align*}
(3f+(-2)g)(x,y,z)&=(3f)(x,y,z)+(-2g)(x,y,z)\\
&= (6x-3y+3z)+(-6x-2y+10z)\\
& = -5y+13z\\
&= h(x,y,z).
\end{align*}

$\square$

Usualmente tomamos atajos para seguir simplificando la notación. Por ello, típicamente a veces vemos escrito todo lo anterior simplemente como: $$3(2x-y+z)-2(2x+y-5z)=-5y+13z.$$ De hecho esto es muy práctico, pues se puede mostrar que las funciones «sí podemos operarlas como si fueran expresiones en $x$, $y$, $z$ y usáramos las reglas usuales». Así, podemos «trabajar simbólicamente» y concluir rápidamente que $$(x+y)+(3x+2z)-3(x+y-z)$$ en verdad tiene la misma regla de asignación que $-2y+5z$.

Ahora sí, ¿quién es el espacio dual?

Si tenemos un espacio vectorial $V$ sobre un campo $F$ podemos construirnos otro espacio vectorial con otro conjunto base y otras operaciones que no son las del espacio original. Una forma de hacer esto es construir el espacio dual, al que llamaremos $V^\ast$. Los elementos de $V^\ast$ son las formas lineales de $V$, es decir, funciones lineales con dominio $V$ y codominio $F$. Debemos acostumbrarnos a pensar simultáneamente a un elemento de $V^\ast$ tanto como un vector (de $V^\ast$) como una función (de $V$ a $F$).

Para verdaderamente pensar a $V^\ast$ como un espacio vectorial, debemos establecer algunas cosas especiales:

  • La suma vectorial de $V^\ast$ será la suma de funciones que platicamos en la sección anterior.
  • El producto escalar vectorial de $V^\ast$ será el producto escalar que platicamos en la sección anterior.
  • El neutro aditivo vectorial de $V^\ast$ será la forma lineal $L_0$, y se puede verificar que en efecto $l+L_0=l$ para cualquier forma lineal $l$.

Por supuesto, típicamente a la suma vectorial le llamaremos simplemente «suma» y al producto escalar vectorial simplemente «producto escalar». Aquí estamos haciendo énfasis en lo de «vectorial» sólo para darnos cuenta de que nuestras operaciones de funciones se transformaron en operaciones para el espacio vectorial que estamos definiendo.

El espacio dual cumple muchas propiedades bonitas, pero ahorita no nos enfocaremos en enunciarlas y demostrarlas. Esto se puede encontrar en la página del curso de Álgebra Lineal I en el blog. Lo que sí haremos es irnos a los básicos y entender cómo se verían algunas definiciones básicas de álgebra lineal en términos de lo que hemos discutido hasta ahora.

Combinaciones lineales de formas lineales

Para hablar de las nociones de álgebra lineal para formas lineales, hay que pensarlas como vectores y como funciones. ¿Qué sería una combinación lineal de las formas lineales $l_1,\ldots,l_r$ del espacio vectorial, digamos, $\mathbb{R}^n$. Debemos tomar elementos $\alpha_1,\ldots,\alpha_r$ en $\mathbb{R}$ y construir la función $\ell=\alpha_1l_1+\ldots+\alpha_rl_r$. Aquí estamos usando la suma vectorial y el producto escalar vectorial que quedamos que serían la suma como funciones y el producto escalar como funciones. Así, obtenemos un elemento $\ell$ que por un lado es un vector del espacio dual, y por otro es una función $\ell:\mathbb{R}^n\to \mathbb{R}$. ¿Cuál es la regla de asignación? Es precisamente la dada por las definiciones de suma y producto escalar para funciones. Para ser muy precisos, se puede mostrar inductivamente que su regla de asignación es:

\begin{align*}
(\alpha_1l_1+&\ldots+\alpha_rl_r)(x_1,\ldots,x_n)=\\
&\alpha_1(l_1(x_1,\ldots,x_n))+\ldots+\alpha_r(l_r(x_1,\ldots,x_n)).
\end{align*}

Entendiendo esto, ahora sí podemos preguntarnos si una forma lineal es combinación lineal de otras.

Ejemplo. La forma lineal $h:\mathbb{R}^2\to\mathbb{R}$ con regla de asignación $h(x,y)=2x-y$ es combinación lineal de las formas lineales $f(x,y):\mathbb{R}^2\to\mathbb{R}$ y $g(x,y):\mathbb{R}^2\to\mathbb{R}$ con reglas de asignación

\begin{align*}
f(x,y)&=x+y\\
g(x,y)&=x-y.
\end{align*}

En efecto, tenemos que es igual a la combinación lineal $\frac{1}{2}f + \frac{3}{2} g$, pues su regla de asignación es:

$$\left(\frac{1}{2}f + \frac{3}{2} g\right)(x,y)=\left(\frac{x+y}{2}\right)+\left(\frac{3x-3y}{2}\right)=2x-y,$$

que es justo la regla de asignación de $h$. Así, $h=\frac{1}{2}f+\frac{3}{2}g$.

$\triangle$

Independencia lineal de formas lineales

Veamos un ejemplo más de cómo entender nociones de álgebra lineal cuando hablamos de formas lineales (o funciones en general). ¿Cómo sería el concepto de independencia lineal para formas lineales $l_1,\ldots,l_r$? A partir de una combinación lineal de ellas igualada a la forma lineal cero $L_0$, debemos mostrar que todos los coeficientes son iguales a cero. Es decir, a partir de $$\alpha_1l_1+\ldots+\alpha_rl_r=L_0,$$ debemos mostrar que $\alpha_1=\ldots=\alpha_r=0.$$ Usualmente el truco en estas situaciones es que ya nos están dando una igualdad de funciones. Entonces, podemos evaluar en los valores que nosotros queramos de ambos lados de la igualdad pues funciones iguales tienen todas sus evaluaciones iguales. Esto se parece a los ejemplos de la sección de igualdad de funciones.

Ejemplo. Vamos a demostrar que las formas lineales de $\mathbb{R}^4$ dadas por $f(w,x,y,z)=4w+2x+z$, $g(w,x,y,z)=4w+2z+y$, $h(w,x,y,z)=4w+2y+x$, $k(w,x,y,z)=w+x+y+z$ son linealmente independientes. Tomemos una combinación lineal de ellas igualda a cero (¡recordemos que en este espacio vectorial el cero es la forma lineal $L_0$!):

$$Af+Bg+Ch+Dk=L_0.$$

Debemos demostrar que $A=B=C=D=0$. ¿Cómo hacemos esto? Lo que haremos es evaluar: pondremos valores convenientes de $(w,x,y,z)$ en la igualdad anterior para obtener información de $A$, $B$, $C$, $D$. Poniendo $(1,0,0,0)$ obtenemos que:

\begin{align*}
0&=L_0(1,0,0,0)\\
&= (Af+Bg+Ch+Dk)\\
&=Af(1,0,0,0)+ Bg(1,0,0,0) +Ch(1,0,0,0) +Dk(1,0,0,0) \\
&=4A + 4B + 4C + D.
\end{align*}

Así, $4A+4B+4C+D=0$. Usando esta ecuación y las evaluaciones $(0,1,0,0)$, $(0,0,1,0)$ y $(0,0,0,1)$, obtenemos todo lo siguiente:

\begin{align*}
4A+4B+4C+D&=0\\
2A+C+D&=0\\
B+2C+D&=0\\
A+2B+D&=0.
\end{align*}

De aquí se puede mostrar (como puedes verificar como ejercicio) que la única solución posible es $A=B=C=D=0$. De este modo, las formas lineales $f,g,h,k$ son linealmente independientes.

$\square$

Más adelante

Esta es más una entrada auxiliar que una entrada que forma parte del flujo de la teoría principal. Sin embargo, espero que te haya servido para dejar más claros los conceptos de cuándo tenemos formas lineales iguales, cómo se operan, cuándo varias formas lineales son linealmente independientes, etc.

Tarea moral…

  1. Verifica que para cualquier forma lineal $l:\mathbb{R}^n\to \mathbb{R}$ y la forma lineal cero $L_0:\mathbb{R}^n\to\mathbb{R}$ en efecto se tiene que $l+L_0=l$. Usa las definiciones de la forma lineal cero, de la igualdad de funciones y de la suma de funciones.
  2. Verifica que $V^\ast$ con las operaciones de suma, producto escalar y el neutro aditivo que dimos en efecto es un espacio vectorial. ¿Cómo tendrían que ser los inversos aditivos?
  3. Considera las formas lineales $f:\mathbb{R}^3\to \mathbb{R}$ y $g:\mathbb{R}^3 \to \mathbb{R}$ dadas por $f(x,y,z)=x+3y+z$ y $g(x,y,z)=-x+5y-z$.
    1. Demuestra que es imposible encontrar reales $A$ y $B$ ambos distintos de cero tales que $Af+Bg$ sea la forma lineal cero.
    2. Encuentra reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $h:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $h(x,y,z) = -x + 21 – z$.
    3. Demuestra que es imposible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $j:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $j(x,y,z)= -2x + 4y -3z$.
    4. ¿Será posible encontrar reales $A$ y $B$ tales que $Af+Bg$ sea la forma lineal $k:\mathbb{R}^3\to \mathbb{R}$ con regla de asignación $k(x,y,z)=5x+5y+5z$?
  4. Para cada uno de los siguientes casos, determina si las formas lineales son linealmente independientes:
    1. $f(x,y)=5x+3y$, $g(x,y)=x-3y$.
    2. $f(x,y,z)=5x+2y-z$, $g(x,y,z)=z$, $h(x,y,z)=x-y-z$.
    3. $f(w,x,y,z)=w+y$, $g(w,x,y,z)=3x-2z$, $h(w,x,y,z)=x+y+z$, $k=(w,x,y,z)=w+2x-3z$.
  5. Considera el espacio vectorial de polinomios con coeficientes reales $\mathbb{R}[x]$. Considera la función $\text{ev}_k:\mathbb{R}[x]\to \mathbb{R}$ que a cada polinomio lo manda a su evaluación en $k$, es decir, con regla de asignación $\text{ev}_k(p)=p(k)$.
    1. Demuestra que cualquier $\text{ev}_k$ es una forma lineal.
    2. Sean $k_1,\ldots,k_r$ reales distintos. Muestra que $\text{ev}_{k_1},\ldots,\text{ev}_{k_r}$ son formas lineales linealmente independientes.

Entradas relacionadas