Archivo de la etiqueta: álgebra lineal

Álgebra Lineal II: Unicidad de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan y demostramos la existencia de dicha forma bajo ciertas hipótesis. Como corolario, quedó pensar cuál es la versión para matrices. En esta entrada enunciamos la versión para matrices (totalmente equivalente a la de transformaciones lineales) y nos enfocamos en mostrar la unicidad de la forma canónica de Jordan.

Unicidad de la forma canónica de Jordan

El siguiente teorema es totalmente análogo al enunciado en la entrada anterior. Recuerda que $\leq$ es un orden total fijo de $F$ (en $\mathbb{R}$, es el orden usual).

Teorema. Sea $A$ una matriz $M_n(F)$ cuyo polinomio característico $\chi_A(X)$ se divide en $F$. Entonces, existen únicos valores $\lambda_1\leq \ldots \leq \lambda_n$ en $F$ y únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} para los cuales $A$ es similar a la siguiente matriz de bloques de Jordan:

$$\begin{pmatrix} J_{\lambda_1,k_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_d,k_d}\end{pmatrix}.$$

Usaremos esta versión para demostrar la unicidad, lo cual también implicará la unicidad para la versión de transformaciones lineales.

Mediante la demostración de existencia de la entrada anterior, llegamos a que si el polinomio característico de $A$ es

$$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r},$$

entonces $A$ es similar a una matriz conformada por matrices de bloques de Jordan $J_1,J_2,\ldots,J_r$, en donde cada $J_i$ es de tamaño $m_i$ y de bloques de Jordan de eigenvalor $\lambda_i$.

Si $A$ fuera similar a otra matriz $K$ de bloques de Jordan, podríamos agrupar por eigenvalores de los bloques $\kappa_1< \ldots < \kappa_s$ en matrices de bloques de Jordan tamaños $o_1,\ldots,o_s$, digamos $K_1,\ldots,K_s$. El polinomio característico de $K$ sería entonces

$$\chi_{K}(X)=(X-\kappa_1)^{o_1}(X-\kappa_2)^{o_2}\cdots(X-\kappa_s)^{o_s}.$$

Pero $K$ es similar a $A$, y entonces deben tener el mismo polinomio característico, así que conciden en raíces y multiplicidad. Esto demuestra que $r=s$ y como los $\lambda_i$ y los $\kappa_i$ están ordenados, también demuestra las igualdades $\lambda_i=\kappa_i$ y $m_i=o_i$ para todo $i\in\{1,\ldots,r\}.$

Sólo nos queda argumentar la igualdad entre cada $J_i$ y $K_i$ para $i\in\{1,\ldots,r\}$. Pero ambas una forma canónica de Jordan para la transformación nilpotente que se obtiene de restringir $T_{A-\lambda_i I}$ a $\ker(T_{A-\lambda_i I}^{m_i})$. Por la unicidad que demostramos para la forma canónica de Jordan para transformaciones nilpotentes, concluimos que $J_i=K_i$. Esto termina la demostración de la unicidad de la forma canónica de Jordan.

$\square$

Una receta para encontrar la forma canónica de Jordan

Ya con el teorema demostrado, ¿cómo juntamos todas las ideas para encontrar la forma canónica de Jordan de una matriz $A$ en $M_n(F)$ cuyo polinomio característico se divida en $F$? Podemos proceder como sigue.

  1. Encontramos el polinomio característico $\chi_A(X)$ y su factorización, digamos $$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r}.$$
  2. Nos enfocamos en encontrar las matrices de bloque de Jordan $J_i$ para cada eigenvalor $\lambda_i$. Sabemos que la matriz $J_i$ será de tamaño $m_i$.
  3. Para saber exactamente cuál matriz de bloques de Jordan es $J_i$, pensaremos en que tiene $b_1,b_2,\ldots,b_{m_i}$ bloques de Jordan de eigenvalor $\lambda_i$ de tamaños $1,2, \ldots,m_i$. Consideramos la matriz $A_i=A-\lambda_i I$. Los $b_1,\ldots,b_{m_i}$ son la solución al siguiente sistema de ecuaciones en las variables $x_1,\ldots,x_{m_i}$.
    \begin{align*}
    m_i&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + m_i \cdot x_{m_i}\\
    m_i-n+\text{rango}(A_i-\lambda_i I)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (m_i-1) \cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (m_i-2)\cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (m_i-3)\cdot x_{m_i}\\
    &\vdots\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^{m_i-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_{m_i}.
    \end{align*}
  4. Juntamos todos los $J_i$ en una misma matriz y los ordenamos apropiadamente.

El paso número $3$ está motivado por lo que sabemos de las matrices nilpotentes, y es bueno que pienses por qué se estudia específicamente ese sistema de ecuaciones para cada eigenvalor $\lambda_i$ y multiplicidad $m_i$.

Ejemplo de obtener la forma canónica de Jordan

Veamos un ejemplo del procedimiento descrito en la sección anterior.

Ejemplo. Encontraremos la forma canónica de Jordan de la siguiente matriz: $$A=\begin{pmatrix}-226 & -10 & -246 & 39 & 246\\234 & 23 & 236 & -46 & -236\\-198 & -20 & -192 & 41 & 195\\-93 & 10 & -122 & 10 & 122\\-385 & -30 & -393 & 74 & 396\end{pmatrix}.$$

Con herramientas computacionales, podemos darnos cuenta de que el polinomio característico de esta matriz es $$\chi_A(X)=X^{5} – 11 X^{4} + 46 X^{3} – 90 X^{2} + 81 X- 27.$$

Este polinomio se puede factorizar como $$(X-1)^2(X-3)^3.$$ Así, la submatriz de bloques de Jordan $J_1$ de eigenvalor $1$ tendrá tamaño $2$ y la $J_3$ de eigenvalor $3$ tendrá tamaño $3$. Pero, ¿de qué tamaño son cada uno de los bloques de Jordan en cada una de estas matrices?

Para respondernos esto para $J_1$, notamos que sus bloques son de tamaño $1$ y $2$ solamente. Si hay $b_1$ bloques de tamaño $1$ y $b_2$ bloques de tamaño $2$, por la teoría desarrollada arriba tendremos:

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-5+\text{rango}(A-I)=2-5+4=1.
\end{align*}

El rango de $A-I$ lo obtuvimos computacionalmente, pero recuerda que también puede ser obtenido con reducción gaussiana. Resolviendo el sistema, $b_2=1$ y entonces $b_1=0$. Concluimos que en $J_1$ hay un bloque de Jordan de tamaño $2$.

Para $J_3$, reciclemos las variables $b_i$ (para no introducir nuevas). Los bloques pueden ser de tamaño $1,2,3$. Supongamos que de estos tamaños respectivamente hay $b_1,b_2,b_3$ bloques. Los $b_i$ cumplen:

\begin{align*}
b_1+2b_2+3b_3&=3\\
b_2+2b_3&=3-5+\text{rango}(A-3I)=3-5+3=1\\
b_3&=3-5+\text{rango}((A-3I)^2)=3-5+2=0.
\end{align*}

Así, $b_3=0$, y en consecuencia $b_2=1$ y entonces $b_1=1$. Concluimos que $J_3$ tiene un bloque de tamaño $1$ y uno de tamaño $3$. Por lo tanto, la forma canónica de Jordan de $A$ es:

$$\begin{pmatrix} J_1 & 0 \\ 0 & J_3 \end{pmatrix} = \begin{pmatrix} J_{1,2} & 0 & 0 \\ 0 & J_{3,1} & 0 \\ 0 & 0 & J_{3,2} \end{pmatrix} = \begin{pmatrix}1 & 1 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0\\0 & 0 & 3 & 0 & 0\\0 & 0 & 0 & 3 & 1\\0 & 0 & 0 & 0 & 3\end{pmatrix}$$

$\triangle$

Otro problema sobre forma canónica de Jordan

La receta anterior funciona en general y da la forma canónica de Jordan. Esto es algo que probablemente en la práctica en aplicaciones no tendrás que hacer manualmente nunca, pues hay herramientas computacionales que te pueden ayudar. Sin embargo, es importante entender con profundidad el teorema y la receta de manera teórica, pues hay problemas conceptuales en los que no podrás usar herramientas computacionales. A continuación veremos un ejemplo.

Problema. Sea $A$ una matriz en $M_6(\mathbb{R})$ con polinomio característico $$\chi_A(X)=X^6-2X^4+X^2.$$

  • ¿Cuántas posibilidades hay para la forma canónica de Jordan de $A$?
  • Demuestra que si el rango de $A$ es $5$, entonces $A$ no es diagonalizable.

Solución. Podemos factorizar el polinomio característico de $A$ como sigue:

$$\chi_A(X)=X^2(X+1)^2(X-1)^2.$$

Así, la forma canónica de Jordan está conformada por una matriz de bloques de Jordan $J_0$ de eigenvalor $0$ y tamaño $2$; una $J_1$ de eigenvalor $1$ y tamaño $2$; y una $J_{-1}$ de eigenvalor $-1$ y tamaño $2$.

Cada $J_i$ tiene dos chances: o es un bloque de Jordan de tamaño $2$, o son dos bloques de Jordan de tamaño $1$. Así, en total tenemos $2\cdot 2 \cdot 2=8$ posibilidades.

Si $A$ es de rango $5$, entonces tendríamos en las cuentas de cantidad de bloques $b_1$ y $b_2$ para eigenvalor $0$ que

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-6+\text{rango}(A)=2-6+5=1,
\end{align*}

de donde en $J_0$ tendría $1$ bloque de tamaño $2$ y ninguno de tamaño $1$. Si $A$ fuera diagonalizable, su diagonalización sería una forma canónica de Jordan donde para eigenvalor $0$ se tendrían $2$ bloques de tamaño $1$ y ninguno de tamaño $2$. Así, $A$ tendría dos formas canónicas de Jordan distintas, lo cual es imposible.

$\square$

Más adelante…

Con esta entrada terminamos de demostrar el teorema de la forma canónica de Jordan, uno de los teoremas más bonitos de álgebra lineal. ¿Te das cuenta de todo lo que utilizamos en su demostración? Forma matricial de transformaciones lineales, el teorema de Cayley-Hamilton, polinomio característico, subespacios estables, teoría de dualidad, sistemas de ecuaciones lineales, resultados auxiliares de polinomios, etc. Es un resultado verdaderamente integrador.

En la siguiente entrada, la última del curso, hablaremos de algunas de las consecuencias del teorema de la forma canónica de Jordan. Discutiremos cómo lo podemos utilizar para clasificar a las matrices por similaridad. Veremos una aplicación con respecto a una matriz y su transpuesta. También, esbozaremos un poco de por qué en cierto sentido el resultado no sólo vale para las matrices cuyo polinomio se divide sobre el campo, sino que para cualquier matriz. Con ello terminaremos el curso.

Tarea moral

  1. Calcula la forma canónica de Jordan $J$ de la matriz $$A=\begin{pmatrix} 1 & 0 & -3 \\ 1 & -1 & -6 \\ -1 & 2 & 5 \end{pmatrix}.$$ Además de encontrar $J$, encuentra de manera explícita una matriz invertible $P$ tal que $A=P^{-1}JP$.
  2. Calcula la forma canónica de Jordan de la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
  3. Explica y demuestra cómo obtener lo siguiente para una matriz de bloques de Jordan:
    • Su polinomio característico.
    • Su polinomio mínimo.
    • Su determinante.
    • Su traza.
    • Sus eigenespacios.
  4. Justifica con más detalle por qué la receta que se propone para calcular la forma canónica de Jordan en efecto funciona. Necesitarás varios de los argumentos que dimos en la entrada anterior.
  5. Demuestra que una matriz $A\in M_n(F)$ para la cual su polinomio característico se divide en $F$ es diagonalizable si y sólo si cada bloque de cada matriz de bloques de la forma canónica de Jordan tiene tamaño $1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Existencia de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que para cualquier matriz nilpotente existe (y es única) una matriz similar muy sencilla, hecha por lo que llamamos bloques de Jordan de eigenvalor cero. Lo que haremos ahora es mostrar una versión análoga de este resultado para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices.

Pensando en ello, lo que haremos en esta entrada es lo siguiente. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración. En la siguiente entrada terminaremos la demostración y hablaremos de aspectos prácticos para encontrar formas canónicas de Jordan.

Enunciado del teorema de la forma canónica de Jordan

A continuación definimos a los bloques de Jordan para cualquier eigenvalor y tamaño.

Definición. Sea $F$ un campo. El bloque de Jordan de eigenvalor $\lambda$ y tamaño $k$ es la matriz $J_{\lambda,k}$ en $M_k(F)$ cuyas entradas son todas $\lambda$, a excepción de las que están inmediatamente arriba de la diagonal superior, las cuales son unos. En símbolos, $J_{\lambda,k}=[a_{ij}]$ con $$a_{ij}=\begin{cases} 1 & \text{si $j=i+1$}\\ \lambda & \text{si $i=j$} \\ 0 & \text{en otro caso.} \end{cases}$$

También podemos expresarlo de la siguiente manera:

$$J_{\lambda,k}=\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix},$$ en donde estamos pensando que la matriz es de $k\times k$.

Una última manera en la que nos convendrá pensar a $J_{\lambda,k}$ es en términos de los bloques de Jordan de eigenvalor cero: $J_{\lambda,k}=\lambda I_k + J_{0,k}$.

Definición. Una matriz de bloques de Jordan en $M_n(F)$ es una matriz diagonal por bloques en la que cada bloque en la diagonal es un bloque de Jordan.

Lo que nos gustaría demostrar es el siguiente resultado. En él, piensa en $\leq$ como algún orden total fijo de $F$ (para $\mathbb{R}$ es el orden usual, pero otros campos no necesariamente tienen un orden natural asociado).

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ sobre el campo $F$ y $T:V\to V$ una transformación lineal tal que $\chi_T(X)$ se divide sobre $F$. Entonces, existen únicos valores $\lambda_1\leq \ldots \leq \lambda_n$ en $F$ y únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} para los cuales existe una base de $V$ en la cual $T$ tiene como forma matricial a la siguiente matriz de bloques de Jordan:

$$\begin{pmatrix} J_{\lambda_1,k_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_d,k_d}\end{pmatrix}.$$

Por supuesto, este teorema también tiene una versión matricial, la cuál tendrás que pensar cómo escribir.

Un teorema de descomposición de kernels

Ya tenemos uno de los ingredientes que necesitamos para dar la demostración de la existencia de la forma canónica de Jordan: su existencia para las transformaciones nilpotentes. Otro de los ingredientes que usaremos es el teorema de Cayley-Hamilton. El tercer ingrediente es un resultado de descoposición de kernels de transformaciones evaluadas en polinomios.

Proposición. Sea $V$ un espacio vectorial sobre $F$. Sea $T:V\to V$ una transformación lineal. Y sean $P_1(X),\ldots,P_r(X)$ polinomios en $F[x]$ cuyo máximo común divisor de cualesquiera dos de ellos es el polinomio $1$. Entonces, $$\ker((P_1P_2\cdots P_r)(T))=\bigoplus_{i=1}^r \ker(P_i(T)).$$

Demostración. Para cada $i\in \{1,2,\ldots,r\}$ consideraremos a $Q_i(X)$ como el polinomio que se obtiene de multiplicar a todos los polinomios dados, excepto $P_i(X)$. Y por comodidad, escribiremos $P(X)=(P_1\cdots P_r)(X)$. Notemos que entonces $P(X)=(Q_iP_i)(X)$ para cualquier $i\in\{1,2,\ldots,r\}$.

Primero probaremos un resultado polinomial auxiliar. Veremos que $Q_1(X),\ldots,Q_r(X)$ tienen como máximo común divisor al polinomio $1$. En caso de no ser así, un polinomio $D(X)$ no constante dividiría a todos ellos. Sin pérdida de generalidad, $D$ es irreducible (tomando, por ejemplo $D(X)$ de grado mínimo con esta propiedad). Como $D(X)$ es irreducible y divide a $Q_r(X)$, entonces debe dividir a alguno de los factores de $Q_r(X)$, que sin pérdida de generalidad (por ejemplo, reetiquetando), es $P_1(X)$. Pero $D(X)$ también divide a $Q_1(X)$, así que debe dividir a alguno de sus factores $P_2(X),\ldots,P_r(X)$, sin pérdida de generalidad a $P_2(X)$. Pero entonces $D(X)$ divide a $P_1(X)$ y $P_2(X)$, lo cual contradice las hipótesis. Así, $Q_1(X),\ldots,Q_r(X)$ tienen como máximo común divisor al polinomio $1$. Por el lema de Bézout para polinomios (ver tarea moral), existen entonces polinomios $R_1(X),\ldots,R_r(X)$ tales que

\begin{equation}
\label{eq:bezout}(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(X)=1.
\end{equation}

Estamos listos para pasar a los argumentos de álgebra lineal. Veamos primero que cualquier elemento en la suma de la derecha está en el kernel de $P(T)$. Tomemos $v=v_1+\ldots+v_r$ con $v_i\in \ker(P_i(T))$. Al aplicar $P$ obtenemos

\begin{align*}
P(v)&=P(v_1)+\ldots+P(v_r)\\
&=Q_1(P_1(v_1))+\ldots+Q_r(P_r(v_r))\\
&=0+\ldots+0=0.
\end{align*}

Esto muestra que $v\in \ker(P(T))$, de donde se obtiene la primera contención que nos interesa.

Veamos ahora la segunda contención, que $\ker(P(T))=\bigoplus_{i=1}^r \ker(P_i(T))$. Tomemos $v\in \ker(P(T))$. Al aplicar \eqref{eq:bezout} en $T$ y evaluar en $v$ obtenemos que

\begin{align*}
v&=\text{Id}(v)=(1)(T)(v)\\
&=(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(T)(v)\\
&=(R_1Q_1)(T)(v)+\ldots+(R_rQ_r)(T)(v).
\end{align*}

Pero esto justo expresa a $v$ como elemento de $\ker(P_i(T))$ pues para cada $i$ tenemos

\begin{align*}
P_i(T)((R_iQ_i)(T)(v))&=(P_iR_i Q_i )(T)(v)\\
&=(R_i Q_i P_i)(T)(v)\\
&=R_i(T)P(T)(v)\\
&=R_i(0)=0,
\end{align*}

de modo que expresamos a $v$ como suma de vectores en $\ker(P_1(T)),\ldots,\ker(P_r(T))$.

Ya demostramos la igualdad de conjuntos, pero recordemos que en la igualdad de suma directa hay otra cosa que hay que probar: que el cero tiene una forma única de expresarse como suma de elementos de cada subespacio (aquella en donde cada elemento es cero). Supongamos entonces que $$0=v_1+\ldots+v_r$$ con $v_i\in \ker(P_i(T))$ para cada $i$. Si aplicamos $Q_i$ en esta igualdad, como tiene todos los factores $P_j$ con $j\neq i$ obtenemos $$0=Q_i(0)=Q_i(v_i).$$

Por otro lado, al aplicar nuevamente \eqref{eq:bezout} en $T$ y evaluar en $v_i$

\begin{align*}
v_i&=\text{Id}(v_i)=(1)(T)(v_i)\\
&=(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(T)(v_i)\\
&=(R_1Q_1)(T)(v_1)+\ldots+(R_rQ_r)(T)(v_i)\\
&=(R_iQ_i)(T)(v_i)\\
&=0.
\end{align*}

De esta forma, en efecto tenemos que los espacios están en posición de suma directa, que era lo último que nos faltaba verificar.

$\square$

Existencia de la forma canónica de Jordan

Estamos listos para demostrar la existencia de la forma canónica de Jordan. Supongamos que $V$ es un espacio vectorial de dimensión finita $n$ sobre $F$ y que $T:V\to V$ es una transformación lineal cuyo polinomio característico se divide en $F[x]$. Sabemos entonces que es de la siguiente forma:

$$\chi_T(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r},$$

donde $\lambda_1,\ldots,\lambda_r$ son eigenvalores distintos de $T$ y $m_1,\ldots,m_r$ son las multiplicidades algebraicas respectivas de estos eigenvalores como raíces de $\chi_T(X)$.

Por el teorema de Cayley-Hamilton, sabemos que $\chi_T(T)=0$, de modo que $\ker(\chi_T(T))=V$. Por la proposición de descomposición de la sección anterior aplicada a los polinomios $P_i(X)=(X-\lambda_i)^{m_i}$ (verifica que son primos relativos dos a dos) para $i\in\{1,\ldots,r\}$ tenemos entonces que $$V=\bigoplus_{i=1}^r \ker((T-\lambda_i \text{id})^{m_i}).$$

Pero, ¿cómo es la transformación $T-\lambda_i \text{id}$ restringida a cada $\ker((T-\lambda_i \text{id})^{m_i})$? ¡Es nilpotente! Precisamente por construcción, $(T-\lambda_i \text{id})^{m_i}$ se anula totalmente en este kernel. Así, por la existencia de la forma canónica de Jordan para matrices nilpotentes, hay una base $\beta_i$ para cada $\ker((T-\lambda_i \text{id})^{m_i})$ tal que $T-\lambda_i \text{id}$ restringida a ese kernel tiene como forma matricial una matriz $J_i$ de bloques de Jordan de eigenvalor cero. Pero entonces $T$ (restringida a dicho kernel) tiene como forma matricial a $J_i+\lambda_i I_{m_i}$, que es una matriz de bloques de Jordan de eigenvalor $\lambda$.

Con esto terminamos: como $V$ es la suma directa de todos esos kernel, la unión de bases $\beta_1,\ldots,\beta_r$ es una base para la cual $T$ tiene como forma matricial a una matriz de bloques de Jordan.

$\square$

Más adelante…

Hemos demostrado la existencia de la forma canónica de Jordan, pero aún nos falta demostrar su unicidad. Además de esto, también necesitaremos un mejor procedimiento para encontrarla. Haremos eso en la siguiente entrada.

Tarea moral

  1. Enuncia el teorema de la forma canónica de Jordan versión matrices.
  2. Investiga más sobre el lema de Bézout para polinomios y cómo se demuestra. Después de esto, expresa al polinomio $1$ como combinación lineal de los polinomios $x^2-1, x^3+1, x^2+5x+4$.
  3. Verifica que los polinomios $P_i(X)=(X-\lambda_i)^{k_i}$ de la demostración de la existencia de la forma canónica de Jordan cumplen las hipótesis de la proposición de descomposición de kernels.
  4. Sea $F$ un campo y $r,s$ elementos en $F$. Sea $n$ un entero. Demuestra que los bloques de Jordan $J_{r,n}$ y $J_{s,n}$ en $M_n(F)$ conmutan.
  5. Siguiendo las ideas de la demostración de existencia, encuentra la forma canónica de Jordan de la matriz $$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Superior I: Determinante de matrices y propiedades

Por Eduardo García Caballero

Introducción

Uno de los conceptos más importantes en el álgebra lineal es la operación conocida como determinante. Si bien este concepto se extiende a distintos objetos, en esta entrada lo revisaremos como una operación que se puede aplicar a matrices cuadradas. Como veremos, el determinante está muy conectado con otros conceptos que hemos platicado sobre matrices

Definición para matrices de $2\times 2$

A modo de introducción, comenzaremos hablando de determinantes para matrices de $2\times 2$. Aunque este caso es sencillo, podremos explorar algunas de las propiedades que tienen los determinantes, las cuales se cumplirán de manera más genera. Así, comencemos con la siguiente definición.

Definición. Para una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, definimos su determinante como
\[
\operatorname{det}(A) = ad – bc.
\]

Basándonos en esta definición, podemos calcular los determinantes
\[
\operatorname{det}
\begin{pmatrix} 9 & 3 \\ 5 & 2 \end{pmatrix}=9\cdot 2 – 3\cdot 5 = 3
\]
y
\[
\operatorname{det}
\begin{pmatrix} 4 & -3 \\ 12 & -9 \end{pmatrix}
=
4\cdot (-9)-(-3)\cdot 12= 0.
\]

Otra notación que podemos encontrar para determinantes es la notación de barras. Lo que se hace es que la matriz se encierra en barras verticales, en vez de paréntesis. Así, los determinantes anteriores también se pueden escribir como
\[
\begin{vmatrix} 9 & 3 \\ 5 & 2 \end{vmatrix} = 3
\qquad
\text{y}
\qquad
\begin{vmatrix} 4 & -3 \\ 12 & -9 \end{vmatrix} = 0.
\]

Primeras propiedades del determinante

El determinante de una matriz de $2\times 2$ ayuda a detectar cuándo una matriz es invertible. De hecho, esto es algo que vimos previamente, en la entrada de matrices invertibles. En ella, dijimos que una matriz $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si se cumple que $ad – bc \ne 0$. ¡Aquí aparece el determinante! Podemos reescribir el resultado de la siguiente manera.

Teorema. Una matriz de la forma $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ es invertible si y sólo si $\det(A) \ne 0$. Cuando el determinante es distinto de cero, la inversa es $A^{-1} = \frac{1}{\det(A)}\begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Otra propiedad muy importante que cumple el determinante para matrices de $2\times 2$ es la de ser multiplicativo; es decir, para matrices $A$ y $B$ se cumple que $\operatorname{det}(AB) = \operatorname{det}(A) \operatorname{det}(B)$. La demostración de esto se basa directamente en las definiciones de determinante y de producto de matrices. Hagamos las cuentas a continuación para matrices $A=\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}$ y $B=\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}.$

Tenemos que:
\begin{align*}
\operatorname{det}(AB)
&=
\operatorname{det}
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}
\\[5pt]
&=
(a_{11}b_{11} + a_{12}b_{21})(a_{21}b_{12} + a_{22}b_{22})-(a_{11}b_{12} + a_{12}b_{22})(a_{21}b_{11} + a_{22}b_{21})
\\[5pt]
&=
a_{11}a_{22}b_{11}b_{22} – a_{12}a_{21}b_{11}b_{22} – a_{11}a_{22}b_{12}b_{21} + a_{12}a_{21}b_{12}b_{21}
\\[5pt]
&=
(a_{11}a_{22} – a_{12}a_{21})(b_{11}b_{22} – b_{12}b_{21})
\\[5pt]
&=
\operatorname{det}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\operatorname{det}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\\[5pt]
&=
\operatorname{det}(A)\operatorname{det}(B).
\end{align*}

Interpretación geométrica del determinante de $2\times 2$

El determinante también tiene una interpretación geométrica muy interesante. Si tenemos una matriz de $2\times 2$, entonces podemos pensar a cada una de las columnas de esta matriz como un vector en el plano. Resulta que el determinante es igual al área del paralelogramo formado por estos vectores.

Por ejemplo, si consideramos la matriz
\[
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix},
\]
podemos ver que el vector asociado a su primera columna es el vector $(4,1)$, mientras que el vector asociado a su segunda columna es $(2,3)$:

Así, el paralelogramo $ABDC$ de la figura anterior formado por estos dos vectores tiene área igual a
\[
\operatorname{det}
\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}
= 4\cdot 3 – 2\cdot 1 = 10.
\]

No daremos la demostración de este hecho, pues se necesita hablar más sobre la geometría del plano. Sin embargo, las ideas necesarias para este resultado pueden consultarse en un curso de Geometría Analítica I.

Definición recursiva

También nos interesa hablar de determinantes de matrices más grandes. De hecho, nos interesa hablar del determinante de cualquier matriz cuadrada. La definición formal requiere de varios conocimientos de Álgebra Lineal I. Sin embargo, por el momento podemos platicar de cómo se obtienen los determinantes de matrices recursivamente. Con esto queremos decir que para calcular el determinante de matrices de $3\times 3$, necesitaremos calcular varios de matrices de $2\times 2$. Así mismo, para calcular el de matrices de $4\times 4$ requeriremos calcular varios de matrices de $3\times 3$ (que a su vez requieren varios de $2\times 2$).

Para explicar cómo es esta relación de poner determinantes de matrices grandes en términos de matrices más pequeñas, primeramente definiremos la función $\operatorname{sign}$, la cual asigna a cada pareja de enteros positivos $(i,j)$ el valor
\[
\operatorname{sign}(i,j) = (-1)^{i+j}.
\]
A partir de la función $\operatorname{sign}$ podemos hacer una matriz cuya entrada $a_{ij}$ es $\operatorname{sign}(i,j)$. Para visualizarla más fácilmente, podemos pensar que a la entrada $a_{11}$ (la cual se encuentra en la esquina superior izquierda) le asigna el signo “$+$”, y posteriormente va alternando los signos del resto de entradas. Por ejemplo, los signos correspondientes a las entradas de la matriz de $3 \times 3$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + \\
– & + & – \\
+ & – & +
\end{pmatrix},
\]
mientras que los signos correspondientes a las entradas de la matriz de $4 \times 4$
\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{pmatrix}
\]
serían
\[
\begin{pmatrix}
+ & – & + & – \\
– & + & – & + \\
+ & – & + & – \\
– & + & – & +
\end{pmatrix}.
\]

Ya que entendimos cómo se construyen estas matrices, el cálculo de determinantes se realiza como sigue.

Estrategia. Realizaremos el cálculo de determinante de una matriz de $n \times n$ descomponiéndola para realizar el cálculo de determinantes de matrices de $(n-1) \times (n-1)$. Eventualmente llegaremos al calcular únicamente determinantes de matrices de $2 \times 2$, para las cuales ya tenemos una fórmula. Para esto, haremos los siguientes pasos repetidamente.

  1. Seleccionaremos una fila o columna arbitraria de la matriz original (como en este paso no importa cuál fila o columna seleccionemos, buscaremos una que simplifique las operaciones que realizaremos; generalmente nos convendrá seleccionar una fila o columna que cuente en su mayoría con ceros).
  2. Para cada entrada $a_{ij}$ en la fila o columna seleccionada, calculamos el valor de
    \[
    \operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
    \]
    donde $A_{ij}$ es el la matriz que resulta de quitar la fila $i$ y la columna $j$ a la matriz original.
  3. El determinante de la matriz será la suma de todos los términos calculados en el paso anterior.

Veamos algunos ejemplos de cómo se utiliza la estrategia recién descrita.

Ejemplo con matriz de $3\times 3$

Consideremos la matriz de $3 \times 3$
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

A primera vista no hay alguna fila o columna que parezca simplificar los cálculos, por lo cual podemos proceder con cualquiera de estas; nosotros seleccionaremos la primera fila.
\[
\begin{pmatrix}
\fbox{3} & \fbox{1} & \fbox{-1} \\
6 & -1 & -2 \\
4 & -3 & -2
\end{pmatrix}.
\]

Para cada término de la primera fila, calculamos el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{i,j}),
\]
obteniendo
\begin{align*}
\operatorname{sign}(1,1) \cdot (a_{11}) \cdot \operatorname{det}(A_{11})
&= +(3)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
\blacksquare & -1 & -2 \\
\blacksquare & -3 & -2
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det} \begin{pmatrix} -1 & -2 \\ -3 & -2 \end{pmatrix}
\\[5pt]
&= +(3)[(-1)(-2) – (-2)(-3)]
\\[5pt]
&= +(3)(-4)
\\[5pt]
&= -12,
\\[10pt]
\operatorname{sign}(1,2) \cdot (a_{12}) \cdot \operatorname{det}(A_{12})
&= -(1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & \blacksquare & -2 \\
4 & \blacksquare & -2
\end{pmatrix}
\\[5pt]
&= -(1)\operatorname{det}
\begin{pmatrix} 6 & -2 \\ 4 & -2 \end{pmatrix}
\\[5pt]
&=-(1)[(6)(-2) – (-2)(4)]
\\[5pt]
&=-(1)(-4)
\\[5pt]
&=4,
\\[10pt]
\operatorname{sign}(1,3) \cdot (a_{13}) \cdot \operatorname{det}(A_{13})
&= +(-1)\operatorname{det}
\begin{pmatrix}
\blacksquare & \blacksquare & \blacksquare \\
6 & -1 & \blacksquare \\
4 & -3 & \blacksquare
\end{pmatrix}
\\[5pt]
&= +(-1)\operatorname{det} \begin{pmatrix} 6 & -1 \\ 4 & -3 \end{pmatrix}
\\[5pt]
&= +(-1)[(6)(-3) – (-1)(4)]
\\[5pt]
&= +(-1)(-14)
\\[5pt]
&= 14.
\end{align*}

Finalmente, el determinante de nuestra matriz original será la suma de los términos calculados; es decir,
\[
\begin{pmatrix}
3 & 1 & -1 \\
6 & -1 & -2 \\
4 & -3 & -1
\end{pmatrix}
=
(-12) + (4) + (14) = 6.
\]

Ejemplo con matriz de $4\times 4$

En el siguiente ejemplo veremos cómo el escoger una fila o columna en específico nos puede ayudar a simplificar mucho los cálculos.

Consideremos la matriz
\[
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}.
\]

Observemos que el valor de tres de las entradas de la segunda columna es $0$. Por esta razón, seleccionaremos esta columna para descomponer la matriz:
\[
\begin{pmatrix}
4 & \fbox{0} & 2 & 2 \\
-1 & \fbox{3} & -2 & 5 \\
-2 & \fbox{0} & 2 & -3 \\
1 & \fbox{0} & 4 & -1
\end{pmatrix}.
\]

El siguiente paso será calcular el producto
\[
\operatorname{sign}(i,j) \cdot a_{ij} \cdot \operatorname{det}(A_{ij}),
\]
para cada entrada de esta columna. Sin embargo, por la elección de columna que hicimos, podemos ver que el valor de $a_{ij}$ es 0 para tres de las entradas, y por tanto también lo es para el producto que deseamos calcular. De este modo, únicamente nos restaría calcular el producto
\begin{align*}
\operatorname{sign}(2,2) \cdot a_{22} \cdot \operatorname{det}(A_{22})
&=
+(3)\operatorname{det}
\begin{pmatrix}
4 & \blacksquare & 2 & 2 \\
\blacksquare & \blacksquare & \blacksquare & \blacksquare \\
-2 & \blacksquare & 2 & -3 \\
1 & \blacksquare & 4 & -1
\end{pmatrix}
\\[5pt]
&= +(3)\operatorname{det}
\begin{pmatrix}
4 & 2 & 2 \\
-2 & 2 & -3 \\
1 & 4 & -1
\end{pmatrix}.
\end{align*}
Se queda como ejercicio al lector concluir que el resultado de este último producto es 30.

De este modo, obtenemos que
\[
\operatorname{det}
\begin{pmatrix}
4 & 0 & 2 & 2 \\
-1 & 3 & -2 & 5 \\
-2 & 0 & 2 & -3 \\
1 & 0 & 4 & -1
\end{pmatrix}
= 0 + 30 + 0 + 0 = 30.
\]

Aunque esta definición recursiva nos permite calcular el determinante de una matriz cuadrada de cualquier tamaño, rápidamente se vuelve un método muy poco práctico (para obtener el determinante de una matriz de $6 \times 6$ tendríamos que calcular hasta 60 determinantes de matrices de $2 \times 2$). En el curso de Álgebra Lineal I se aprende otra definición de determinante a través de permutaciones, de las cuales se desprenden varios métodos más eficientes para calcular determinante. Hablaremos un poco de estos métodos en la siguiente entrada.

Las propiedades de $2\times 2$ también se valen para $n\times n$

Las propiedades que enunciamos para matrices de $2\times 2$ también se valen para determinantes de matrices más grandes. Todo lo siguiente es cierto, sin embargo, en este curso no contamos con las herramientas para demostrar todo con la formalidad apropiada:

  • El determinante es multiplicativo: Si $A$ y $B$ son matrices de $n\times n$, entonces $\operatorname{det}(AB) = \operatorname{det}(A)\operatorname{det}(B)$.
  • El determinante detecta matrices invertibles: Una matriz $A$ de $n\times n$ es invertible si y sólo si su determinante es distinto de $0$.
  • El determinante tiene que ver con un volumen: Los vectores columna de una matriz $A$ de $n\times n$ hacen un paralelepípedo $n$-dimensional cuyo volumen $n$-dimensional es justo $\det{A}$.

Más adelante…

En esta entrada conocimos el concepto de determinante de matrices, vimos cómo calcularlo para matrices de distintos tamaños y revisamos cómo se interpreta cuando consideramos las matrices como transformaciones de flechas en el plano. En la siguiente entrada enunciaremos y aprenderemos a usar algunas de las propiedades que cumplen los determinantes.

Tarea moral

  1. Calcula los determinantes de las siguientes matrices:
    • $\begin{pmatrix} 5 & 8 \\ 3 & 9 \end{pmatrix}, \begin{pmatrix} 10 & 11 \\ -1 & 9 \end{pmatrix}, \begin{pmatrix} 31 & 38 \\ 13 & -29 \end{pmatrix}$
    • $\begin{pmatrix} 1 & 5 & 2 \\ 3 & -1 & 8 \\ 0 & 2 & 5 \end{pmatrix}, \begin{pmatrix} 1 & 8 & 4 \\ 0 & 5 & -3 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ 3 & 3 & 3 \end{pmatrix}$
    • $\begin{pmatrix} 5 & 7 & -1 & 2 \\ 3 & 0 & 1 & 0 \\ 2 & -2 & 2 & -2 \\ 5 & 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{pmatrix}$
  2. Demuestra que para una matriz $A$ y un entero positivo $n$ se cumple que $\det(A^n)=\det(A)^n$.
  3. Sea $A$ una matriz de $3\times 3$. Muestra que $\det(A)=\det(A^T)$.
  4. Sea $A$ una matriz invertible de $2\times 2$. Demuestra que $\det(A)=\det(A^{-1})^{-1}$.
  5. ¿Qué le sucede al determinante de una matriz $A$ cuando intercambias dos filas? Haz algunos experimentos para hacer una conjetura, y demuéstrala.

Entradas relacionadas

Álgebra Superior I: Producto de matrices con vectores

Por Eduardo García Caballero

Introducción

Anteriormente conocimos dos operaciones que podemos realizar utilizando vectores o matrices: la suma entre vectores/matrices y el producto escalar. Como recordarás, estas operaciones involucran exclusivamente vectores o exclusivamente matrices. En esta entrada veremos una operación que involucra a ambos objetos matemáticos a la vez: el producto de una matriz por un vector.

Definición de producto de matrices con vectores

Una condición indispensable para poder realizar el producto matriz-vector es que la cantidad de columnas de la matriz sea la misma que la cantidad de entradas del vector. Basándonos en esto, podríamos multiplicar
\[
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 5
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}
\qquad
\text{o}
\qquad
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix},
\]
pero no podríamos realizar la operación
\[
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
\pi \\
4
\end{pmatrix}.
\]

Como te habrás podido dar cuenta, en este tipo de producto es usual representar los vectores en su forma de “vector vertical” o “vector columna”.

El resultado de multiplicar una matriz por un vector será un nuevo vector, cuyo tamaño corresponde a la cantidad de filas de la matriz original.

Para obtener este nuevo vector, se sigue un algoritmo especial, el cual conocerás en entradas futuras. Sin embargo, a continuación te presentamos las fórmulas que definen a algunos casos especiales de esta operación, lo cual te permitirá obtener el producto en casos con una cantidad pequeña de entradas.

  • Producto de una matriz de tamaño $2 \times 2$ por un vector de tamaño $2$:

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $3 \times 2$ por un vector de tamaño $2$:

\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 \\
a_{21}u_1 + a_{22}u_2 \\
a_{31}u_1 + a_{32}u_2
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $2 \times 3$ por un vector de tamaño $3$:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}.
\]

  • Producto de una matriz de tamaño $3 \times 3$ por un vector de tamaño $3$:

\[
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3 \\
a_{31}u_1 + a_{32}u_2 + a_{33}u_3
\end{pmatrix}.
\]

¿Observas algún patrón en estas fórmulas?

Veamos algunos ejemplos numéricos de cómo usar estas fórmulas:

\(
\bullet
\begin{pmatrix}
3 & \tfrac{1}{2} \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
-\tfrac{1}{3} \\
4
\end{pmatrix}
=
\begin{pmatrix}
(3)(-\tfrac{1}{3}) + (\tfrac{1}{2})(4) \\
(2)(-\tfrac{1}{3}) + (1)(4)
\end{pmatrix}
=
\begin{pmatrix}
-1 + 2 \\
-\tfrac{2}{3} + 4
\end{pmatrix}
=
\begin{pmatrix}
1 \\
\tfrac{10}{3}
\end{pmatrix}
\)

\(
\bullet
\begin{pmatrix}
1 & 7 & \sqrt{2} \\
9 & \tfrac{1}{3} & -2
\end{pmatrix}
\begin{pmatrix}
-3 \\
\tfrac{2}{3} \\
5
\end{pmatrix}
=
\begin{pmatrix}
(1)(-3) + (7)(\tfrac{2}{3}) + (\sqrt{2})(5) \\
(9)(-3) + (\tfrac{1}{3})(\tfrac{2}{3}) + (-2)(5)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5+15\sqrt{2}}{3} \\
-\tfrac{331}{3}
\end{pmatrix}.
\)

Breve exploración geométrica

Como probablemente hayas visto en tu curso de Geometría Analítica I, el producto de matrices por vectores se puede emplear para representar distintas transformaciones de vectores en el plano y en el espacio.

Si multiplicamos una matriz diagonal por un vector, entonces el resultado corresponderá a “redimensionar” el vector en sus distintas direcciones. Por ejemplo, observamos que el producto
\[
\begin{pmatrix}
3 & 0 \\
0 & 2
\end{pmatrix}
\begin{pmatrix}
3 \\
3
\end{pmatrix}
=
\begin{pmatrix}
9 \\
6
\end{pmatrix}
\]
corresponde a redimensionar el vector original al triple de manera horizontal y al doble de manera vertical.

Por otra parte, multiplicar por una matriz de la forma
\[
\begin{pmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta)
\end{pmatrix}
\]
ocasiona que el vector rote un ángulo $\theta$ en sentido contrario a las manecillas del reloj; por ejemplo,
\[
\begin{pmatrix}
\cos(30º) & -\sin(30º) \\
\sin(30º) & \cos(30º)
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{\sqrt{3}}{2} & -\tfrac{1}{2} \\
\tfrac{1}{2} & \tfrac{\sqrt{3}}{2}
\end{pmatrix}
\begin{pmatrix}
5 \\
4
\end{pmatrix}
=
\begin{pmatrix}
(\tfrac{\sqrt{3}}{2})(5) + (-\tfrac{1}{2})(4) \\
(\tfrac{1}{2})(5) + (\tfrac{\sqrt{3}}{2})(4)
\end{pmatrix}
=
\begin{pmatrix}
\tfrac{5\sqrt{3}-4}{2} \\
\tfrac{5+4\sqrt{3}}{2}
\end{pmatrix}.
\]

Propiedades algebraicas del producto de una matriz por un vector

A continuación, exploraremos algunas de las propiedades que cumple el producto matriz-vector. Estas propiedades las deduciremos para matrices de $2 \times 3$ por vectores de tamaño $3$, pero la deducción para otros tamaños de matrices y vectores se realiza de manera análoga.

Primeramente, observemos que para matrices $A$ y $B$ de tamaño $2\times 3$, y para un vector $u$, se cumple que
\begin{align*}
(A+B)u
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13}\\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}+b_{11})u_1 + (a_{12}+b_{12})u_2+(a_{13}+b_{13})u_3 \\
(a_{21}+b_{21})u_1 + (a_{22}+b_{22})u_2+(a_{23}+b_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+b_{11}u_1 + a_{12}u_2+b_{12}u_2 + a_{13}u_3+b_{13}u_3 \\
a_{21}u_1+b_{21}u_1 + a_{22}u_2+b_{22}u_2 + a_{23}u_3+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}u_1+a_{12}u_2+a_{13}u_3 \\
a_{21}u_1+a_{22}u_2+a_{23}u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11}u_1+b_{12}u_2+b_{13}u_3 \\
b_{21}u_1+b_{22}u_2+b_{23}u_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
+
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
Au + Bu,
\end{align*}
es decir, el producto matriz-vector se distribuye sobre la suma de matrices (esto también se conoce como que el producto matriz-vector abre sumas).

Por otra parte, podemos probar que el producto matriz-vector se distribuye sobre la suma de vectores; es decir, si $A$ es una matriz de $2 \times 3$, y $u$ y $v$ son vectores de tamaño $3$, entonces
\[
A(u+v) = Au + Av.
\]

Además, veamos que si $A$ es una matriz de $2 \times 3$, $r$ es un escalar, y $u$ un vector de tamaño $3$, entonces
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
r(a_{11}u_1) + r(a_{12}u_2) + r(a_{13}u_3) \\
r(a_{21}u_1) + r(a_{22}u_2) + r(a_{23}u_3)
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11}u_1 + a_{12}u_2 + a_{13}u_3 \\
a_{21}u_1 + a_{22}u_2 + a_{23}u_3
\end{pmatrix}
\\[5pt]
&=
r
\left(
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
r(Au)
\end{align*}
y, más aún,
\begin{align*}
A(ru)
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\left(
r
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
ru_1 \\
ru_2 \\
ru_3 \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}ru_1 + a_{12}ru_2 + a_{13}ru_3 \\
a_{21}ru_1 + a_{22}ru_2 + a_{23}ru_3
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(ra_{11})u_1 + (ra_{12})u_2 + (ra_{13})u_3 \\
(ra_{21})u_1 + (ra_{22})u_2 + (ra_{23})u_3
\end{pmatrix}
\\[5pt]
&=
\left(
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\right)
\\[5pt]
&=
\left(
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\right)
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\\[5pt]
&=
(rA)u.
\end{align*}

Por lo tanto $A(ru) = r(Au) = (rA)u$. Esta propiedad se conoce como que el producto matriz-vector saca escalares.

Como el producto de matrices por vectores abre sumas y saca escalares, se dice que es lineal. Un hecho bastante interesante, cuya demostración se dejará hasta los cursos de álgebra lineal, es que el regreso de esta afirmación también se cumple: ¡A cualquier transformación lineal se le puede asociar una matriz $A$ de modo que aplicar la transformación a un vector $v$ es lo mismo que hacer el producto $Av$!

Otras propiedades de este producto

En entradas anteriores definimos algunos vectores y matrices especiales.

Como recordarás, definimos la matriz identidad de tamaño $3 \times 3$ como
\[
\mathcal{I}_3
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

Observemos que al multiplicar $\mathcal{I}_3$ por el vector
\[
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
\]
obtendremos
\[
\mathcal{I}_3 u
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
\begin{pmatrix}
1u_1 + 0u_2 + 0u_3 \\
0u_1 + 1u_2 + 0u_3 \\
0u_1 + 0u_2 + 1u_3
\end{pmatrix}
=
\begin{pmatrix}
u_1 \\
u_2 \\
u_3
\end{pmatrix}
=
u.
\]
Como su nombre lo sugiere, la matriz $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarlo por un vector de tamaño $n$ (de hecho, como veremos en la siguiente entrada, ¡la matriz $I_n$ también cumple esta propiedad en otras operaciones!).

Por otra parte, recordemos que definimos el vector canónico $\mathrm{e}_i$ de tamaño $n$ como el vector en el que su $i$-ésima entrada es $1$ y sus demás entradas son $0$. Como ejemplo, veamos que
\begin{align*}
A\mathrm{e}_1
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
1 \\
0 \\
0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} +0a_{12} +0a_{13} \\
1a_{21} +0a_{22} +0a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} \\
a_{21}
\end{pmatrix},
\end{align*}
donde este resultado corresponde a al primera columna de la matriz.

De manera análoga, podemos ver que
\[
A\mathrm{e}_2 =
\begin{pmatrix}
a_{12} \\
a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
A\mathrm{e}_3 =
\begin{pmatrix}
a_{13} \\
a_{23}
\end{pmatrix}
\]
corresponden a la segunda y tercera columna de la matriz, respectivamente.

En general, para matrices de tamaño $m \times n$ y el vector $\mathrm{e}_i$ de tamaño $n$, el resultado de $A\mathrm{e}_i$ corresponde al vector cuyas entradas son las que aparecen en la $i$-ésima columna de la matriz.

Más adelante…

En esta entrada conocimos el producto de matrices con vectores, exploramos su interpretación geométrica y revisamos algunas de las propiedades algebraicas que cumple. Esta operación se añade a las que aprendimos en entradas anteriores, ampliando nuestra colección de herramientas.

En la siguiente entrada descubriremos una operación que nos permitirá sacar aún más poder a las operaciones que hemos conocido hasta ahora: el producto de matrices.

Tarea moral

  1. Obtén el resultado de las siguientes multipicaciones:

\(
\begin{pmatrix}
1 & -2 & 3 \\
1 & 0 & -1
\end{pmatrix}
\begin{pmatrix}
4 \\
5 \\
6
\end{pmatrix},
\)

\(
\begin{pmatrix}
2 & 5 \\
3 & \tfrac{1}{2}
\end{pmatrix}
\begin{pmatrix}
4 \\
2
\end{pmatrix}.
\)

  1. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza la siguiente operación: $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
  2. ¿Cuál matriz permite rotar un vector en el plano 45º? ¿Cuál 60º?
  3. Deduce las propiedades del producto matriz-vector para matrices de $3 \times 2$ y vectores de tamaño $2$.
  4. Una matriz desconocida $A$ de $3\times 3$ cumple que $Ae_1=\begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$, que $Ae_2=\begin{pmatrix} 5 \\ 1 \\ -1 \end{pmatrix}$ y que $Ae_3=\begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$. ¿Cuánto es $A\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$?

Entradas relacionadas

Álgebra Superior I: Producto de matrices con matrices

Por Eduardo García Caballero

Introducción

Hasta ahora hemos conocido varias operaciones que involucran escalares, vectores y matrices. En esta entrada aprenderemos sobre una de las operaciones más importantes en el álgebra lineal: el producto de matrices con matrices.

Definición de producto de matrices

Para poder efectuar el producto de dos matrices, hay que asegurarnos de que el número de columnas de la primera matriz sea igual al número de filas de la segunda matriz.

El resultado de una matriz $A$ de tamaño $m \times n$ por una matriz $B$ de tamaño $n \times \ell$ será la matriz $C = AB$ de tamaño $m \times \ell$, donde la entrada $c_{ij}$ de $C$ está dada por la fórmula
\[
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.
\]

A primera vista esta fórmula puede parecer complicada, sin embargo, practicando con algunos ejemplos verás que es muy fácil de implementar.

  • Producto de matrices de tamaño $2 \times 2$:

Sean
\[
A
=
\begin{pmatrix}
1 & 3 \\
5 & 7
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & 4 \\
6 & 8
\end{pmatrix}.
\]

Como estamos multiplicando una matriz de tamaño $2 \times 2$ por una matriz de tamaño $2 \times 2$, sabemos que el resultado será otra matriz de tamaño $2 \times 2$. Ahora, iremos calculando una por una sus entradas.

Sea $C = AB$. Para calcular la entrada $c_{11}$ observamos la primera fila de $A$ y la primera columna de $B$, las cuales son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
de modo que $c_{11} = (1)(2)+(3)(6) = 20$:
\[
AB
=
\begin{pmatrix}
20 & \phantom{28} \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

Para la entrada $c_{12}$, nos fijamos en la primera columna de $A$ y en la segunda columna de $B$, que son
\[
A
=
\begin{pmatrix}
1 & 3\\
\phantom{5} & \phantom{7}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{12} = (1)(4) + (3)(8) = 28$:
\[
AB
=
\begin{pmatrix}
20 & 28 \\
\phantom{52} & \phantom{76}
\end{pmatrix}.
\]

De manera similar, observemos la segunda fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
2 & \phantom{4} \\
6 & \phantom{8}
\end{pmatrix},
\]
obteniendo $c_{21} = (5)(2) + (7)(6) = 52$, mientras que la segunda fila de $A$ y la segunda columna de $B$ son
\[
A
=
\begin{pmatrix}
\phantom{1} & \phantom{3} \\
5 &7
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{2} & 4 \\
\phantom{6} & 8
\end{pmatrix},
\]
obteniendo $c_{22} = (5)(4) + (7)(8) = 76$.

Por lo tanto,
\[
AB
=
\begin{pmatrix}
20 & 28 \\
52 & 76
\end{pmatrix}.
\]

En general, el resultado del producto de las matrices
\[
A
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\]
es
\[
AB
=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $3 \times 2$ por matriz de $2 \times 2$:

Supongamos que
\[
A
=
\begin{pmatrix}
3 & 5 \\
1 & 0 \\
4 & 3
\end{pmatrix}
\qquad
\text{y}
\qquad
B
=
\begin{pmatrix}
7 & 8 \\
5 & 2
\end{pmatrix}.
\]

En este caso, como estamos multiplicando una matriz de tamaño $3 \times 2$ por una matriz de tamaño $2 \times 2$, la matriz resultante tendrá tamaño $3 \times 2$.

Podemos obtener sus entradas de manera similar al caso anterior. Si $C = AB$, entonces la entrada $c_{12}$ la podemos encontrar revisando la primera fila de $A$ y la segunda columna de $B$,
\[
A
=
\begin{pmatrix}
3 & 5 \\
\phantom{1} & \phantom{0} \\
\phantom{4} & \phantom{3}
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
\phantom{7} & 8 \\
\phantom{5} & 2
\end{pmatrix}.
\]
de modo que $c_{12} = (3)(8) + (5)(2) = 34$. Por su parte, para obtener la entrada $c_{31}$ nos fijamos en la tercera fila de $A$ y la primera columna de $B$,
\[
A
=
\begin{pmatrix}
\phantom{3} & \phantom{5} \\
\phantom{1} & \phantom{0} \\
4 & 3
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
7 & \phantom{8} \\
5 & \phantom{2}
\end{pmatrix}.
\]
obteniendo $c_{31} = (4)(7) + (3)(5) = 43$.

¿Podrías comprobar que
\[
AB
=
\begin{pmatrix}
46 & 34 \\
7 & 8 \\
43 & 38
\end{pmatrix}?
\]

Así, para el caso general de matrices de $3 \times 2$ por $2 \times 2$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}.
\]

  • Producto de matriz de $4 \times 2$ por matriz de $2 \times 3$:

¿Podrías verificar que la siguiente fórmula es correcta?
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32} \\
a_{41} & a_{42}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} & a_{11}b_{13} + a_{12}b_{23} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} & a_{21}b_{13} + a_{22}b_{23} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} & a_{31}b_{13} + a_{32}b_{23} \\
a_{41}b_{11} + a_{42}b_{21} & a_{41}b_{12} + a_{42}b_{22} & a_{41}b_{13} + a_{42}b_{23}
\end{pmatrix}.
\]

Propiedades del producto de matrices

A continuación revisaremos algunas de las propiedades que cumple la multiplicación de matrices. Para demostrar las siguientes propiedades, consideraremos la matriz $A$ de tamaño $3 \times 2$ y las matrices $B$ y $C$ de tamaño $2 \times 2$, aunque se pueden probar para matrices de cualesquier otro tamaño entre las cuales se puedan efectuar las operaciones.

Veamos que si efectuamos la multiplicación de una matriz de tamaño $m \times n$ por una matriz de tamaño $n \times 1$ siguiendo el algoritmo descrito anteriormente, el resultado coincide con el de multiplicar la matriz de tamaño $m \times n$ por un vector de tamaño $n$. Por ejemplo, si multiplicamos $A$ por una matriz $U$ de tamaño $2 \times 1$, obtendremos
\[
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
u_{11} \\
u_{12}
\end{pmatrix}
=
\begin{pmatrix}
a_{11}u_{11} + a_{12}u_{21} \\
a_{21}u_{11} + a_{22}u_{21} \\
a_{31}u_{11} + a_{32}u_{21}
\end{pmatrix}.
\]

Esta es una observación importante pues todo lo que demostremos para el producto de matrices también lo tendremos para el producto de matriz por vector.

Veamos que la multiplicación de matrices es asociativa:

\begin{align*}
(AB)C
&=
\left(
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\right)
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22} \\
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(a_{11}b_{11} + a_{12}b_{21})c_{11} + (a_{11}b_{12} + a_{12}b_{22})c_{21}
& (a_{11}b_{11} + a_{12}b_{21})c_{12} + (a_{11}b_{12} + a_{12}b_{22})c_{22} \\
(a_{21}b_{11} + a_{22}b_{21})c_{11} + (a_{21}b_{12} + a_{22}b_{22})c_{21}
& (a_{21}b_{11} + a_{22}b_{21})c_{12} + (a_{21}b_{12} + a_{22}b_{22})c_{22} \\
(a_{31}b_{11} + a_{32}b_{21})c_{11} + (a_{31}b_{12} + a_{32}b_{22})c_{21}
& (a_{31}b_{11} + a_{32}b_{21})c_{12} + (a_{31}b_{12} + a_{32}b_{22})c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}c_{11} + b_{12}c_{21}) + a_{12}(b_{21}c_{11} + b_{22}c_{21})
& a_{11}(b_{11}c_{12} + b_{12}c_{22}) + a_{12}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{21}(b_{11}c_{11} + b_{12}c_{21}) + a_{22}(b_{21}c_{11} + b_{22}c_{21})
& a_{21}(b_{11}c_{12} + b_{12}c_{22}) + a_{22}(b_{21}c_{12} + b_{22}c_{22}) \\
a_{31}(b_{11}c_{11} + b_{12}c_{21}) + a_{32}(b_{21}c_{11} + b_{22}c_{21})
& a_{31}(b_{11}c_{12} + b_{12}c_{22}) + a_{32}(b_{21}c_{12} + b_{22}c_{22})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}c_{11} + b_{12}c_{21} & b_{11}c_{12} + b_{12}c_{22} \\
b_{21}c_{11} + b_{22}c_{21} & b_{21}c_{12} + b_{22}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
A(BC).
\end{align*}

De manera muy similar, si $u$ es un vector de tamaño 2, podemos ver que se cumple que $A(Bu) = (AB)u$. ¿Puedes demostrarlo? Hazlo por lo menos para matrices $A$ y $B$ ambas de $2\times 2$.

Quizás tengas la impresión de que hay que hacer demasiadas cuentas y que sería sumamente difícil demostrar estas propiedades para matrices más grandes. Sin embargo, en cursos posteriores verás cómo trabajar apropiadamente con la notación para poder hacer estas demostraciones más fácilmente.

El producto de matrices es asociativo. Sin embargo, no es conmutativo. Por ejemplo, consideremos las matrices
\[
E=
\begin{pmatrix}
5 & 7 \\
-3 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
F=
\begin{pmatrix}
1 & 2 \\
9 & -1
\end{pmatrix}.
\]


Veamos que
\[
EF =
\begin{pmatrix}
68 & 3 \\
-3 & -6
\end{pmatrix}
\ne
\begin{pmatrix}
-1 & 7 \\
48 & 63
\end{pmatrix}
=
FE.
\]

En términos de combinar el producto de matrices con otras operaciones, tenemos que el producto de matrices por la izquierda se distribuye sobre la suma de matrices:
\begin{align*}
A(B+C)
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\left(
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\right)
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11}+c_{11} & b_{12}+c_{12} \\
b_{21}+c_{21} & b_{22}+c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}(b_{11}+c_{11}) + a_{12}(b_{21}+c_{21})
& a_{11}(b_{12}+c_{21}) + a_{12}(b_{22}+c_{22}) \\
a_{21}(b_{11}+c_{11}) + a_{22}(b_{21}+c_{21})
& a_{21}(b_{12}+c_{21}) + a_{22}(b_{22}+c_{22}) \\
a_{31}(b_{11}+c_{11}) + a_{32}(b_{21}+c_{21})
& a_{31}(b_{12}+c_{21}) + a_{32}(b_{22}+c_{22}) \\
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11}+a_{11}c_{11} + a_{12}b_{21}+a_{12}c_{21}
& a_{11}b_{12}+a_{11}c_{11} + a_{12}b_{22}+a_{12}c_{22} \\
a_{21}b_{11}+a_{21}c_{11}+ a_{22}b_{21}+a_{22}c_{21}
& a_{21}b_{12}+a_{21}c_{12}+ a_{22}b_{22}+a_{22}c_{22} \\
a_{31}b_{11}+a_{31}c_{11} + a_{32}b_{21}+a_{32}c_{21}
& a_{31}b_{12}+a_{31}c_{12} + a_{32}b_{22}+a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\
a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \\
a_{31}b_{11} + a_{32}b_{21} & a_{31}b_{12} + a_{32}b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11}c_{11} + a_{12}c_{21} & a_{11}c_{12} + a_{12}c_{22} \\
a_{21}c_{11} + a_{22}c_{21} & a_{21}c_{12} + a_{22}c_{22} \\
a_{31}c_{11} + a_{32}c_{21} & a_{31}c_{12} + a_{32}c_{22}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{pmatrix}
+
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\begin{pmatrix}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{pmatrix}
\\[5pt]
&=
AB + AC.
\end{align*}

El producto también se distribuye sobre la suma cuando la suma aparece a la izquierda. ¿Podrías probar que si $D$ es una matriz de tamaño $3 \times 2$, entonces se cumple $(A+D)B = AB + DB$?

En entradas anteriores vimos que $\mathcal{I}_n$ tiene la propiedad de ser neutro al multiplicarla por un vector de tamaño $n$. Resulta que $\mathcal{I}_n$ también tiene esta propiedad al multiplicarla por la izquierda por una matriz de tamaño $n\times m$. Por ejemplo, veamos que al multiplicar $\mathcal{I}_3$ por la izquierda por $A$, obtenemos
\begin{align*}
\mathcal{I}_3 A
&=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
1a_{11} + 0a_{21} + 0a_{31} & 1a_{12} + 0a_{22} + 0a_{32} \\
0a_{11} + 1a_{21} + 0a_{31} & 0a_{12} + 1a_{22} + 0a_{32} \\
0a_{11} + 0a_{21} + 1a_{31} & 0a_{12} + 0a_{22} + 1a_{32}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{pmatrix}
\\[5pt]
&=
A.
\end{align*}

¿Podrías probar que $A\mathcal{I}_2 = A$ (es decir, que $\mathcal{I}_2$ es neutro por la derecha para $A$)?

Habiendo visto que el producto de matrices es asociativo, conmutativo y tiene neutros, probablemente te estarás preguntando si existen inversos en la multiplicación de matrices. Este cuestionamiento lo dejaremos para la siguiente entrada.

Relación con la composición de transformaciones

Como vimos en la entrada anterior, una forma de visualzar el producto de una matriz $A$ por un vector $u$ es como una transformación que envía el vector $u$ a un único vector $Au$.

Teniendo en mente esto, veamos que la propiedad de que $A(Bu) = (AB)u$ resulta aún más interesante. Para esto, veamos que el siguiente ejemplo: sean
\[
A
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix},
\qquad
B
=
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix},
\qquad
\text{y}
\qquad
u
=
\begin{pmatrix}
1 \\
2
\end{pmatrix}.
\]

Si multiplicamos $B$ por $u$, vemos que corresponde a la transformación que envía $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ al vector $Bu = \begin{pmatrix} 5 \\ 3 \end{pmatrix}$.

Ahora, si multiplicamos $A$ por el vector $Bu$, vemos que corresponde a la transformación que envía $Bu$ al vector $A(Bu) = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$ (Acabamos de obtener el resultado de aplicar a $u$ la composición de las transformaciones $B$ y $A$).

Por otra parte, si realizamos la multiplicación
\[
AB
=
\begin{pmatrix}
0 & 2 \\
1 & 1
\end{pmatrix}
\begin{pmatrix}
1 & 2 \\
3 & 0
\end{pmatrix}
=
\begin{pmatrix}
6 & 0 \\
4 & 2
\end{pmatrix},
\]
la transformación asociada a $AB$ envía $u$ al vector $(AB)u = \begin{pmatrix} 6 \\ 8 \end{pmatrix}$.

¡La composición de las transformaciones asociadas a $B$ y $A$ aplicada al vector $u$ coincide con la transformación asociada a la matriz $AB$ aplicada al mismo vector!

Si probamos esto para un vector arbitrario, nos daremos cuenta de que en todos los casos se cumple lo mismo. En realidad, esto no es una coincidencia: como aprenderás en tus cursos de álgebra lineal, la composición de transformaciones lineales está directamente asociada al producto de matrices.

Potencias de matrices

Podemos ver que si una matriz $A$ es cuadrada, al tener el mismo número de filas que de columnas, entonces podemos realizar la multiplicaciones $AA$, $AAA$, $AAAA$, etc., que por asociatividad no importa en qué orden multipliquemos. Esto nos sugiere que podemos cacular potencias de matrices.

Para una matriz cuadrada $A$, definiremos de manera recursiva la potencia $A^n$:

  • Definimos $A^0 = \mathcal{I}$.
  • Dada $A^n$, con $n$ un número natural, definimos $A^{n+1} = A^n A$.

Por ejemplo, si
\[
A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\]
calculemos $A^3$ empleando la definición recursiva. Para esto, iremos calculando una por una las potencias de $A$, hasta llegar a $A^3$:
\begin{align*}
A^0
&=
\mathcal{I}
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\\[5pt]
A^1
&=
A^0A
=
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix},
\\[5pt]
A^2
&=
A^1 A
=
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(2)(2) + (1)(3) & (2)(1) + (1)(4) \\
(3)(2) + (4)(3) & (3)(1) + (4)(4)
\end{pmatrix}
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix},
\\[5pt]
A^3
&=
A^2A
=
\begin{pmatrix}
7 & 6 \\
18 & 19
\end{pmatrix}
\begin{pmatrix}
2 & 1 \\
3 & 4
\end{pmatrix}
=
\begin{pmatrix}
(7)(2) + (6)(3) & (7)(1) + (6)(4) \\
(18)(2) + (19)(3) & (18)(1) + (19)(4)
\end{pmatrix}
=
\begin{pmatrix}
32 & 31 \\
93 & 94
\end{pmatrix}.
\end{align*}

Prueba calcular algunas potencias de la matriz \(
\begin{pmatrix}
2 & 0 \\
0 & 3
\end{pmatrix}.
\) ¿Notas algún patrón especial?

Más adelante…

En esta entrada aprendimos sobre el producto de matrices con matrices y conocimos algunas de sus propiedades. En la siguiente entrada abordaremos la pregunta sobre si existen los inversos en la multiplicación de matrices.

Tarea moral

  1. Realiza el producto de matrices $$\begin{pmatrix} -1 & -2 & -3 \\ 0 & 1 & 2 \\ 1 & -1 & 3 \end{pmatrix}\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$
  2. Considera la matriz $A=\begin{pmatrix} 3 & -4 \\ 4 & -5 \end{pmatrix}$. Realiza las siguientes operaciones por separado, sin usar la asociatividad del producto de matrices. ¿Cuál de las dos operaciones te resultó más fácil de hacer?
    • $$A\left(A\left(A\left(A\begin{pmatrix} 2 \\ 3 \end{pmatrix}\right)\right)\right).$$
    • $$(((AA)A)A)\begin{pmatrix} 2 \\ 3 \end{pmatrix}.$$
  3. Completa las pruebas faltantes de las propiedades de la multiplicación de matrices.
  4. Demuestra la siguiente ley de exponentes para matrices: $A^mA^n=A^{m+n}$.
  5. Prueba que si
    \[
    A =
    \begin{pmatrix}
    a_{11} & 0 \\
    0 & a_{22}
    \end{pmatrix},
    \]
    y $k$ es un entero mayor o igual que $0$, entonces
    \[
    A^k
    =
    \begin{pmatrix}
    {a_{11}}^k & 0 \\
    0 & {a_{22}}^k
    \end{pmatrix}
    \]
    (Sugerencia: realizarlo por inducción sobre $k$, utilizando la definición recursiva).
  6. Encuentra matrices $A$ y $B$ de $2\times 2$ para las cuales $A^2-B^2\neq (A+B)(A-B)$.

Entradas relacionadas