Archivo de la etiqueta: álgebra lineal

1.8. CONJUNTOS LINEALMENTE (IN)DEPENDIENTES Y CONJUNTOS GENERADORES: relación entre sí

Por Jennyfer Paulina Bennetts Castillo

Lema (Dependencia lineal): Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista de vectores en $V$. Si $v_1,v_2,…,v_m$ es una lista l.d. y $v_1\not=\theta_V$, entonces existe $j\in\{2,3,…,m\}$ tal que
a) $v_j\in\langle\{v_1,v_2,…,v_{j-1}\}\rangle$ y
b) $\langle\{v_1,v_2,…,\widehat{v_j},…,v_m\}\rangle =\langle\{v_1,v_2,…,v_m\}\rangle$

Nota: $\langle\{v_1,v_2,…,v_{j-1},v_{j+1},…,v_m\}\rangle$ lo denotamos por $\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle$

Demostración: Sean $V$ un $K$ – espacio vectorial y $v_1,v_2,…,v_m$ una lista l.d. con $v_1\not=\theta_V$.

(*) Como la lista es l.d., entonces existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no todos nulos tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.

a) De (*) observemos que por no ser todos nulos, tenemos dos casos:

Caso 1. Únicamente $\lambda_1\not=0_K$.
Así, $\theta_V=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m$$=\lambda_1v_1+0_Kv_2+…+0_Kv_m$$=\lambda_1v_1+\theta_V+…+\theta_V=\lambda_1v_1$.
De donde, $\lambda_1v_1=\theta_V$ con $\lambda_1\not=0_K$ y $v_1\not=\theta_V$.
Por lo tanto, este caso no es posible.

Caso 2. Existe al menos un $\lambda_j\not=0_K$ con $j\in\{2,3,…,m\}$.
Consideremos $j=m\acute{a}x\{i\in\{2,3,…,m\}|\lambda_i\not=0_K\}$
Entonces $\lambda_{j+1}v_{j+1}+…+\lambda_mv_m=0_Kv_{j+1}+…+0_Kv_m$$=\theta_V+…+\theta_V=\theta_V$ y además, existe el inverso multiplicativo de $\lambda_j.$
De lo anterior tenemos que $\theta_V=\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m$$=\lambda_1v_1+\lambda_2v_2+…+\lambda_jv_j+\theta_V$$=\lambda_1v_1\lambda_2v_2+…+\lambda_jv_j.$
Así, $\lambda_1v_1+…+\lambda_jv_j=\theta_V$, por lo cual $\lambda_jv_j=-\lambda_1v_1-\lambda_2v_2…-\lambda_{j-1}v_{j-1},$
entonces

$\begin{array}{ll}v_j&=\lambda_j^{-1}(-\lambda_1v_1-\lambda_2v_2…-\lambda_{j-1}v_{j-1})\\&=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}\in\langle v_1,v_2,…,v_{j-1}\rangle\end{array}$

$\therefore v_j\in\langle v_1,v_2,…,v_{j-1}\rangle$

b) Veamos que se cumplen las dos contenciones entre los subconjuntos deseados, contemplando que la $j$ para este inciso debe ser la misma que en el inciso anterior.

En primer lugar:
Tenemos que $\{v_1,v_2,…,\widehat{v_j},…,v_m\}\subseteq \{v_1,v_2,…,v_j,…,v_m\}\subseteq\langle v_1,v_2,…,v_j,…,v_m\rangle$ y este último subconjunto es un subespacio de $V$.
Además, sabemos que si $S\subseteq W\subseteq V$ con $W$ un subespacio vectorial, entonces $\langle S\rangle\subseteq W$.
$\therefore\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle\subseteq\langle v_1,v_2,…,v_j,…,v_m\rangle$.

En segundo lugar:
Si $w\in\langle v_1,v_2,…v_j,…,v_m\rangle$, entonces existen $\mu_1,\mu_2,…,\mu_j,…,\mu_m\in K$ tales que $w=\mu_1v_1+\mu_2v_2+…+\mu_jv_j+…+\mu_mv_m$.
Sabemos que $v_j=(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}$.
De donde,

\begin{array}{ll}w&=\mu_1v_1+\mu_2v_2+…+\mu_{j-1}v_{j-1}+\\ &\mu_j[(-\lambda_j^{-1}\lambda_1)v_1+(-\lambda_j^{-1}\lambda_2)v_2+…+(-\lambda_j^{-1}\lambda_{j-1})v_{j-1}]+\\ &\mu_{j+1}v_{j+1}…+\mu_mv_m\\ &=(\mu_1-\mu_j\lambda_j^{-1}\lambda_1)v_1+(\mu_2-\mu_j\lambda_j^{-1}\lambda_2)v_2+\\ &…+(\mu_{j-1}-\mu_j\lambda_j^{-1}\lambda_{j-1})v_{j-1}+\mu_{j+1}v_{j+1}+…+\mu_mv_m\\ &\in\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle\end{array}
Así, $w\in\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle$.
$\therefore \langle v_1,v_2,…,v_j,…,v_m\rangle\subseteq\langle v_1,v_2,…,\widehat{v_j},…,v_m\rangle .$

Teorema: Sea $V$ un $K$ – espacio vectorial. Si $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$ con $m\in\mathbb{N}$, entonces todo conjunto generador de $V$ tiene al menos $m$ elementos.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $v_1,v_2,…,v_m$ es una lista l.i. de vectores en $V$, llamémosle $L$ a esta lista.
Sea $S$ tal que $\langle S\rangle = V$.

Caso 1. $S$ es infinito.
Entonces $S$ tiene más de $m$ elementos.

Caso 2. $S$ es finito.
Digamos que $S=\{w_1,w_2,…,w_k\}$ y probemos que $m\leq k$.

Observemos que como $L$ es una lista l.i. de vectores en $V$, entonces para cada $i\in\{1,2,…,m\}$ tenemos que $v_i\not=\theta_V$.

(1) Como $ v_1\in V=\langle S\rangle$, entonces $v_1,w_1,w_2,…,w_k$ es una lista l.d.
Dado que $v_1\not= \theta_V$, por el lema podemos concluir que existe $j_1\in\{1,2,…,k\}$ tal que $\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =\langle v_1,w_1,w_2,…,w_k\rangle =V.$

(2) Como $ v_2\in V=\langle \{v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle$, entonces $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es una lista l.d.
Dado que con $v_2\not= \theta_V$, por el lema podemos concluir que algún vector $v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$ es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, pero sabemos que $L$ es l.i., por lo que $v_2$ no puede ser combinación lineal de $v_1$. Así, existe algún vector $w_1,w_2,…,\widehat{w_{j_1}},…,w_k$, digamos $w_{j_2}$ con $j_2\in\{1,2,…,k\}\setminus\{j_1\}$, que es combinación lineal de los vectores que le anteceden en la lista $v_2,v_1,w_1,w_2,…,\widehat{w_{j_1}},…,w_{j_k}$, y tal que $\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1},w_{j_2}\}\rangle$$=\langle \{v_2,v_1,w_1,w_2,…,w_k\}\setminus\{w_{j_1}\}\rangle =V.$

Continuando de este modo, en cada paso quitamos un vector $w_{j_t}$ del conjunto generador, y lo sustituimos por $v_t$, obteniendo de esta manera un nuevo conjunto generador. Observemos entonces que después de $t$ pasos hemos quitado $t$ vectores de $S$, y los hemos sustituido por $v_t,\dots ,v_2,v_1$.

Veamos que $k\geq m$. Supongamos por reducción al absurdo que $k< m$.

Continuando con el proceso anterior, después de $k$ pasos hemos quitado $k$ vectores de $S$, $w_{j_1},w_{j_2},…,w_{j_k}$ que de hecho son precisamente $w_1,w_2,…,w_k$ sólo que quizás en otro orden, y los hemos sustituido por $v_k,\dots ,v_2,v_1$. Tenemos además que:
$V=\langle \{v_{k-1},v_{k-2},…,v_2,v_1,w_1,w_2,…,w_k\}-\{w_{j_1},w_{j_2},…,w_{j_k}\}\rangle$$=\langle \{v_{k-1},v_{k-2},…,v_2,v_1\}\rangle$
Pero si $V=\langle \{v_{k-1},…,v_2,v_1\}\rangle$, entonces $v_k\in \langle \{v_{k-1},…,v_2,v_1\}\rangle$ y por lo tanto, $v_1,v_2,…,v_k$ es l.d.
Entonces $v_1,v_2,…,v_m$ es l.d., lo cual contradice nuestra hipótesis.

Por lo tanto, $m\leq k$.

Corolario: Sea $V$ un $K$-espacio vectorial. Si existe $S$ un subconjunto finito de $V$ generador con $k$ elementos, entonces todo conjunto linealmente independiente es finito y tiene a lo más $k$ elementos.
En consecuencia, no existen conjuntos infinitos l.i. en $V$.

Demostración: Sea $V$ un $K$ – espacio vectorial.
Sea $S\subseteq V$ finito con $k$ elementos tal que $\langle S\rangle =V$.
Sea $T\subseteq V$ un subconjunto l.i. Supongamos por reducción al absurdo que $T$ es infinito, consideremos entonces $\hat{T}$ un subconjunto de $T$ con $k+1$ elementos. Tenemos que $\hat{T}$ es un conjunto l.i. con $k+1$ elementos, y $S$ es un conjunto generador con $k$ elementos, lo que contradice el teorema anterior. Concluimos entonces que $T$ debe ser finito.
Nuevamente por el teorema anterior se cumple que $|T|\leq |S|$, y como $|S|=k$ entonces $|T|\leq k$.

Tarea Moral

  1. Demuestra que, dado $V$ un $K$ – espacio vectorial con $K$ un campo, sólo existe un subconjunto $S$ unitario linealmente dependiente y exhíbelo.
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V.$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $v_j\in \langle S-{v_j}\rangle$
  3. Recordando que $\{e_1,e_2,e_3\}$ genera a $\mathbb{R}^3$ y el Teorema de esta entrada sabemos que cualquier conjunto de solo $1$ o $2$ elementos, no podrá generar a $\mathbb{R}^3$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ arbitrario si $|S|=1$.
    • Describe qué subespacio(s) de $\mathbb{R}^3$ se puede(n) generar con un $S\subseteq\mathbb{R}^3$ arbitrario si $|S|=2$.

Más adelante…

Ahora que sabemos la relación de cardinalidad que existe entre los conjuntos linealmente independientes y los conjuntos generadores, nos damos cuenta de que, dicho muy informalmente, los conjuntos generadores de un espacio vectorial $V$ tienen una cardinalidad mayor o igual a los l.i. en $V$.
Nos enfocaremos en aquellos conjuntos que son generadores del espacio vectorial $V$ al que pertenecen y linealmente independientes. Veremos algunas propiedades de sus cardinalidades.

Entradas relacionadas

1.7. (IN)DEPENDENCIA LINEAL: definición y ejemplos

Por Jennyfer Paulina Bennetts Castillo

INTRODUCCIÓN

En matemáticas es de mucho interés estudiar aquello que es único (por qué lo es, «quién» es y cómo encontrarlo). En este punto de la teoría, sabemos que el neutro aditivo de un campo $K$ cualquiera siempre existe y es único, al igual que el neutro de un $K$ – espacio vectorial $V$ cualquiera.

Sabemos que las combinaciones lineales son elementos del espacio vectorial donde estamos trabajando y ahora estudiaremos conjuntos de vectores y la(s) combinación(es) lineale(s) que podemos obtener igualadas al neutro de nuestro espacio vectorial. Este sutil detalle de que sea sólo una o resulten existir más combinaciones lineales que cumplan la igualdad será el centro del tema… al fin y al cabo, sí sabemos que al menos existe una: la trivial, obtenida si todos los escalares involucrados son el neutro aditivo del campo.

LISTA LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Una lista $v_1,v_2,…,v_m$$\in V$ en una lista linealmente dependiente si existen $\lambda_1,\lambda_2,…,\lambda_m\in K$ no nulos tales que $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$.
Decimos que es una lista linealmente independiente en caso contrario. Es decir, si $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ con $\lambda_1,\lambda_2,…,\lambda_m\in K$, entonces $\lambda_1,\lambda_2,…,\lambda_m=0_K$ necesariamente.

Nota: Es común abreviar «linealmente dependiente» con l.d. y «linealmente independiente» con l.i.

Ejemplos

  • Sean $K=\mathbb{R}$, $V=\mathcal{P}_3[\mathbb{R}]$
    Sean $v_1=1+x-x^2+2x^3$, $v_2=2-3x+x^3$, $v_3=4-x-2x^2+5x^3$
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Se cumple que $2v_1+1v_2-1v_3=0x^3+0x^2+0x+0=\theta_V$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^n$
    La lista $e_1,e_2,…,e_n$ es l.i.

Justificación. Tenemos que $e_i$ se define como el vector de $n$ entradas donde la $i$-ésima es $1$ y las demás son $0$. Así, $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(\lambda_1,\lambda_2,…,\lambda_n)$. Por lo que, si $\lambda_1e_1+\lambda_2e_2+…+\lambda_ne_n=(0,0,…,0)=\theta_V$, entonces $(\lambda_1,\lambda_2,…,\lambda_n)=(0,0,…,0)$ y en consecuencia $\lambda_i=0$ para toda $i\in{1,2,…,n}.$

  • Sean $K=\mathbb{R}$, $V=\mathbb{R}^2$
    Sean $v_1=(x_1,0)$, $v_2=(x_2,0)$, $v_3=(x_3,y_3)$ con $x_i\not= 0$ para toda $i\in\{1,2,3\}$.
    La lista $v_1,v_2,v_3$ es l.d.

Justificación. Consideremos $\lambda_1,\lambda_2,\lambda_3$ tales que
$\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0).$
Entonces $\lambda_1(x_1,0)+\lambda_2(x_2,0)+\lambda_3(x_3,y_3)=(0,0).$
Desarrollando el lado izquierdo de esta igualdad tenemos que $(\lambda_1x_1+\lambda_2x_2+\lambda_3x_3,y_3)=(0,0).$ Por lo tanto $\lambda_1v_1+\lambda_2v_2+\lambda_3v_3=(0,0)$ si y sólo si
a) $\lambda_1x_1+\lambda_2x_2+\lambda_3x_3=0$ y b) $\lambda_3y_3=0$.
Si $\lambda_3=0$, b) se cumple para cualesquiera $\lambda_1,\lambda_2\in\mathbb{R}$. Veamos si se le puede asignar un valor distinto de cero a $\lambda_1$ o a $\lambda_2$ y que se cumpla a).
Tenemos que a) se cumple si y sólo si $\lambda_1x_1=-(\lambda_2x_2+\lambda_3x_3)$. Por lo tanto, si $\lambda_3=0$, tenemos que $\lambda_1x_1=-\lambda_2x_2$, y dado que $x_1$ es no nulo esto implica que $\lambda_1=-\lambda_2\frac{x_2}{x_1}$. Así, eligiendo $\lambda_2=1$, $\lambda_1=-\frac{x_2}{x_1}$ y $\lambda_3=0$ se cumplen a) y b), existiendo así una combinación lineal no trivial de $v_1,v_2$ y $v_3$ igualada al vector cero.

CONJUNTO LINEALMENTE (IN)DEPENDIENTE

Definición: Sea $V$ un $K$ – espacio vectorial. Un subconjunto $S$ de $V$ es un conjunto linealmente dependiente si existe $m\in\mathbb{N}^+$ tal que $S$ contiene $m$ elementos distintos que forman una lista dependiente.
Decimos que es un conjunto linealmente independiente en caso contrario. Es decir, si para cualquier $m\in\mathbb{N}^+$ todas las listas que se pueden formar con $m$ elementos distintos de $S$ son linealmente independientes.

Observación: Si $S$ es un conjunto finito con $m$ vectores distintos, digamos $\{v_1,v_2,…,v_m\}$, entonces:
i) Si se puede encontrar una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$ con al menos una $\lambda_j$ distinta de $0_K$ para alguna $j\in\{1,2,…,m\}$, entonces $S$ es l.d.
ii) Si el hecho de que se tenga una combinación lineal $\lambda_1v_1+\lambda_2v_2+…+\lambda_mv_m=\theta_V$ donde $\lambda_1, \dots, \lambda_m\in \mathbb{R}$, implica que $\lambda_j$ debe ser $0_K$ para toda $j\in\{1,2,…,m\}$, entonces $S$ es l.i.

Ejemplos

  • Sean $K$ un campo y $V=\mathcal{P}_m(K)$
    $S=\{1,x,x^2,…,x^m\}$$\subseteq\mathcal{P}_m(K)$ es l.i.

Justificación. Sean $\lambda_0,\lambda_1,\lambda_2,…,\lambda_m\in\mathbb{R}$ tales que $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=\theta_V$, es decir $\lambda_01+\lambda_1x+\lambda_2x^2+…+\lambda_mx^m=0+0x+0x^2+…+0x^m$.
Recordando que dos polinomios so iguales si y sólo si coinciden coeficiente a coeficiente concluimos que $\lambda_i=0$ para toda $i\in\{0,1,2,…,m\}.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(1,3,-7),(2,1,-2),(5,10,-23)\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1(1,3,-7)+\lambda_2(2,1,-2)+\lambda_3(5,10,-23)=(0,0,0)$.
Entonces $(\lambda_1+2\lambda_2+5\lambda_3,3\lambda_1+\lambda_2+10\lambda_3,-7\lambda_1-2\lambda_2-23\lambda_3)=(0,0,0)$. De donde:
\begin{align*}
\lambda_1+2\lambda_2+5\lambda_3&=0…(1)\\
3\lambda_1+\lambda_2+10\lambda_3&=0…(2)\\
-7\lambda_1-2\lambda_2-23\lambda_3&=0…(3)\\
\end{align*}
De $(1)$: $\lambda_1=-2\lambda_2-5\lambda_3…(4)$
Sustituyendo $(4)$ en $(2)$: $3(-2\lambda_2-5\lambda_3)+\lambda_2+10\lambda_3=0$
$\Longrightarrow-5\lambda_2-5\lambda_3…(5)\Longrightarrow\lambda_2=-\lambda_3…(5)$
Sustituyendo $(5)$ en $(4)$: $\lambda_1=-2(-\lambda_3)-5\lambda_3$
$\Longrightarrow\lambda_1=-3\lambda_3…(6)$
En particular, si $\lambda_3=1$tenemos que $\lambda_2=-1$ y $\lambda_1=-3$, y encontramos así una solución no trivial del sistema dado por $(1)$, $(2)$ y $(3)$.

  • Sean $K=\mathbb{R}$ y $V=\mathcal{M}_{2\times 2}(\mathbb{R})$
    $S=\left\{ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} , \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} , \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \right\}$$\subseteq\mathcal{M}_{2\times 2}(\mathbb{R})$ es l.i.

Justificación. Sean $\lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ tales que $\lambda_1 \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} +\lambda_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}+\lambda_3\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Entonces $\begin{pmatrix} \lambda_1 & \lambda_1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & \lambda_2 \\ 0 & \lambda_2 \end{pmatrix}+ \begin{pmatrix} 0 & 0 \\ \lambda_3 & \lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$

Así, $\begin{pmatrix} \lambda_1 & \lambda_1+\lambda_2 \\ \lambda_3 & \lambda_2+\lambda_3 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. De donde:
\begin{align*}
\lambda_1&=0…(1)\\
\lambda_1+\lambda_2&=0…(2)\\
\lambda_3&=0…(3)\\
\lambda_2+\lambda_3&=0…(4)\\
\end{align*}
Sustituyendo $(1)$ en $(2)$: $\lambda_2=0$
Por lo tanto, $\lambda_1,\lambda_2,\lambda_3=0.$

  • Sean $K=\mathbb{R}$ y $V=\mathbb{R}^3$
    $S=\{(n,n,n)|n\in\mathbb{Z}\}$$\subseteq\mathbb{R}^3$ es l.d.

Justificación. La lista en $S$ dada por $(1,1,1),(5,5,5)$ es l.d. porque $-5(1,1,1)+(5,5,5)=(0,0,0)$.

Tarea Moral

Sean $K$ un campo y $V$ un $K$ – espacio vectorial.

  1. Sean $S,\tilde{S}\subseteq V$ tales que $S\subseteq\tilde{S}$.
    Para cada inciso, responde y justifica tu respuesta demostrándolo o dando un contraejemplo.
    • Si $S$ es l.d., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $S$ es l.i., ¿es posible determinar si $\tilde{S}$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.d., ¿es posible determinar si $S$ es l.d. o l.i.?
    • Si $\tilde{S}$ es l.i., ¿es posible determinar si $S$ es l.d. o l.i.?
  2. Sea $S=\{v_1,v_2,…,v_m\}\subseteq V$
    Demuestra que son equivalentes:
    • $S$ es l.d.
    • Existe $v_j\in S$ tal que $\langle S\rangle=\langle S-\{v_j\}\rangle$

Más adelante…

El segundo ejercicio de la tarea moral se refiere al subespacio generado por un conjunto linealmente dependiente.
Veamos ahora más relaciones que existen entre los conjuntos linealmente dependientes, los linealmente independientes y los espacios que estos conjuntos generan.

Entradas relacionadas

Álgebra Superior I: Reducción de Gauss-Jordan

Por Eduardo García Caballero

Introducción

En la entrada anterior vimos que los sistemas de ecuaciones se encuentran íntimamente relacionados con los vectores y las matrices. Teniendo esto en cuenta, en esta entrada abordaremos una estrategia que nos permitirá encontrar soluciones de los sistemas de ecuaciones lineales.

Operaciones elementales por filas

Antes de pasar a describir el algoritmo con el cual podremos resolver un sistema de ecuaciones lineales, deberemos definir algunas operaciones y conceptos que nos ayudaran a efectuarlo. Empecemos con una lista de operaciones que se pueden aplicar a las matrices, las cuales son con conocidas como operaciones elementales por filas.

Para esto, consideremos una matriz
\[
A=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix},
\]
y veamos cómo la afecta cada una de estas operaciones.

La primera de estas operaciones es el reescalamiento. Esta operación consiste en seleccionar una fila de una matriz, y multiplicar cada una de las entradas de esta fila por un mismo número real distinto de cero. Por ejemplo, si reescalamos la tercera fila de $A$ por el número $-3$, obtendremos la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
(-3)(-1/3) & (-3)(4) & (-3)(0) \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
5 & \pi & 3 \\
\sqrt{2} & -1 & 2 \\
1& -12 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Otra operación que podemos aplicar a las matrices es la trasposición, la cual consiste en intercambiar el contenido de dos filas distintas. Por ejemplo, si transponemos las filas 2 y 4 de $A$, el resultado será la matriz
\[
\begin{pmatrix}
5 & \pi & 3 \\
9 & -3 & 2/3 \\
-1/3 & 4 & 0 \\
\sqrt{2} & -1 & 2
\end{pmatrix}.
\]

La última de las operaciones que nos interesa es la transvección. Esta consiste en sumar el múltiplo de una fila (el resultado de multiplicar cada entrada de una fila por un mismo escalar) a otra fila (la suma se realiza entrada por entrada). Por ejemplo, si en $A$ realizamos la transvección que corresponde a “sumar 3/2 de la cuarta fila a la primera fila”, obtendremos la matriz
\[
\begin{pmatrix}
5 + (3/2)(9) & \pi+(3/2)(-3) & 3+(3/2)(2/3) \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}
=
\begin{pmatrix}
37/2 & -9/2+\pi & 4 \\
\sqrt{2} & -1 & 2 \\
-1/3 & 4 & 0 \\
9 & -3 & 2/3
\end{pmatrix}.
\]

Si recuerdas, todos los sistemas de ecuaciones se pueden escribir como $Ax=b$. Las operaciones elementales son muy importantes por las siguientes dos razones:

  • Si aplicamos la misma operación elemental a $A$ y $b$ para obtener la matriz $A’$ y el vector $b’$, entonces $Ax=b$ y $A’x=b’$ tienen exactamente el mismo conjunto solución. Decimos que «las operaciones elementales no cambian las soluciones del sistema».
  • Usando operaciones elementales se puede llevar el sistema $Ax=b$ a un sistema mucho más sencillo $A_{red}x=b_{red}$ (que discutiremos más abajo). Entonces «las operaciones ayudan a simplificar un sistema de ecuaciones».

Juntando ambas observaciones, con operaciones elementales podemos llevar cualquier sistema de ecuaciones a uno mucho más sencillo y con el mismo conjunto solución.

Puedes intentar convencerte de la primera afirmación pensando en lo siguiente. En un reescalamiento de filas corresponde a multiplicar por una constante no nula ambos lados de una ecuación; la transposición corresponde a cambiar el orden en el que aparecen dos ecuaciones diferentes; mientras que la transvección corresponde a sumar un múltiplo de una ecuación a otra ecuación, y el sistema tiene las mismas soluciones pues, si un conjunto de valores es solución para dos ecuaciones, entonces es solución para cualquier combinación lineal de estas. En un curso de Álgebra Lineal I puedes encontrar las justificaciones con mucho más detalle.

En las siguientes secciones hablamos un poco más de la segunda afirmación.

Forma escalonada y escalonada reducida para una matriz

Además de las operaciones elementales por filas, es importante definir algunos conceptos.

Comencemos con el concepto de pivote: diremos que una entrada de una matriz es un pivote si es el primer elemento distinto de cero en una fila.

Diremos que una matriz se encuentra en forma escalonada si se cumple: 1. Todas las filas nulas se encuentran hasta abajo; 2. Todos los pivotes de filas no-nulas tienen valor 1; 3. El pivote de cada fila se encuentra la derecha del pivote de una fila superior. Es fácil identificar las matrices en forma escalonada porque parecen “estar en escalerita”. Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 9 & 1 & 1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1
\end{pmatrix}
\]
se encuentra en forma escalonada, mientras que las matrices
\[
\begin{pmatrix}
1 & 0 & 2 & 4 \\
0 & 0 & 9 & 2 \\
0 & 3 & 0 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
0 & 6 & 8 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 9 & 2
\end{pmatrix}
\]
no lo están. ¿Puedes justificar por qué?

Por su parte, diremos que una matriz se encuentra en forma escalonada reducida si está en forma escalonada y, además, si hay un pivote en alguna fila, todas las entradas que no sean pivote en la misma columna del pivote son iguales a $0$ (Ojo. Siempre hablamos de pivotes de renglones).

Por ejemplo, la matriz
\[
\begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\]
está en forma escalonada reducida.

Como recordarás de la entrada anterior, un sistema de ecuaciones lineales
\[
\begin{cases}
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = b_1 \\
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = b_2 \\
& \vdotswithin{\mspace{15mu}} \\
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n &= b_m
\end{cases}
\]
se puede codificar como
\[
\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{pmatrix}.
\]

Como podemos cambiar el nombre de las variables, pero el vector de soluciones sigue siendo el mismo, es común codificar el sistema como una única matriz aumentada
\[
\left(
\begin{matrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{matrix}
\
\middle|
\
\begin{matrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{matrix}
\right).
\]

Aquí pusimos una línea vertical, pero sólo es por ayuda visual. Esa matriz la puedes tratar como cualquier matriz que hemos platicado.

Teniendo esto en cuenta, las matrices en forma escalonada reducida nos son de gran utilidad al resolver sistemas de ecuaciones lineales. Por ejemplo, consideremos el sistema
\[
\begin{cases}
x + 3y + 2w &= 8 \\
z + w &= 9,
\end{cases}
\]
el cual tiene como matriz aumentada a
\[
\left(
\begin{matrix}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
8 \\
9
\end{matrix}
\right),
\]
la cual se encuentra en forma escalonada.

Gracias a que la matriz está en forma escalonada, podemos elegir en orden inverso $w$, $z$, $y$, $x$ a las variables libres y pivote como en la entrada anterior. En este caso, podemos elegir como queramos el valor de $w$ ($w$ es variable libre). Usando la segunda ecuación, podemos despejar $z$ en términos de $w$ ($z$ es variable pivote). Estos dos valores los sustituimos en la primera ecuación y notamos que $y$ puede ser lo que queramos ($y$ es variable libre). Finalmente, $x$ queda totalmente determinado por las demás variables ($x$ es pivote). Las variables pivote justo corresponden a columnas de la matriz que tengan pivote de alguna fila.

La ventaja de la forma escalonada es que podremos ir obteniendo fácilmente el valor de cada variable “de abajo hacia arriba”. En el caso de un sistema cuya matriz se encuentre en forma escalonada reducida, será aún más sencillo pues ya no tendremos que sustituir valores y obtenemos el despeje directamente.

Teorema de reducción de Gauss-Jordan

El siguiente teorema relaciona las operaciones elementales por filas con la forma escalonada reducida de una matriz.

Teorema (de reducción de Gauss-Jordan o reducción gaussiana). Cualquier matriz con entradas reales se puede a una forma escalonada reducida aplicando una cantidad finita de pasos.

A continuación presentamos un algoritmo con el cual podemos pasar de una matriz arbitraria a una matriz en su forma escalonada reducida. Para hacer más sencilla su aplicación, nos enfocaremos en comprender la estrategia que sigue el algoritmo. La descripción formal del algoritmo y demostración de que en efecto funciona como esperamos es un tema que abordarás en el curso de Álgebra Lineal I (puedes echarle un ojo a esta entrada).

Primeramente, describiremos los pasos del algoritmo, al que se le conoce como reducción de Gauss-Jordan o reducción gaussiana.

Estrategia: Iremos arreglando la matriz de izquierda a derecha. Para ello, haremos los siguientes pasos repetidamente.

  1. Buscamos la primera columna de la matriz (de izquierda a derecha) que no tenga puros ceros.
  2. Una vez encontrada dicha columna, buscamos la primera entrada (de arriba hacia abajo) que no sea cero.
  3. Pasamos la fila que contiene a dicha entrada hasta arriba mediante la operación de transposición.
  4. Multiplicamos cada entrada de la fila que acabamos de mover hasta arriba por el inverso multiplicativo de su primera entrada (aquí usamos la operación de reescalamiento). La primera entrada de esta fila ahora será 1.
  5. Mediante la operación de transvección, sustraemos múltiplos de la primera fila al resto de renglones de la matriz, de modo que el resto de los valores en la columna correspondiente a la primera entrada de la fila en la que estamos trabajando pasen a ser 0 (como puedes observar, la entrada primera entrada no-nula de la fila en la que estamos trabajando ahora será un pivote).
  6. Ignorando la primera fila, buscamos la primera columna (de izquierda a derecha) que no tenga puros ceros.
  7. Repetimos los pasos anteriores (2 a 6), pero ahora, en vez de mover la fila con la que estamos trabajando “hasta arriba”, la moveremos inmediatamente después de la última fila con la que trabajamos.
  8. Hacemos esto hasta haber arreglado todas las columnas.

Ejemplo de reducción de Gauss-Jordan

Ahora, como ejemplo, veamos cómo podemos implementar este algoritmo en la matriz
\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
-1 & 0 & 1 & 2 & 3 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
la cual, si la consideramos como la matriz aumentada
\[
\left(
\begin{matrix}
0 & 1 & 2 & 3 \\
-1 & 0 & 1 & 2 \\
3 & 1 & -1 & 0 \\
0 & 1 & 1 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
4 \\
3 \\
2 \\
1
\end{matrix}
\right),
\]
corresponde al sistema de ecuaciones
\[
\begin{cases}
y + 2z + 3w &= 4 \\
-x + z + 2w &= 2 \\
3x + y -z &= 0 \\
y + z + w &= 1.
\end{cases}
\]

Buscamos la primera la primera columna no nula, la cual resulta ser la primera columna de la matriz. En esta columna, vemos que la segunda entrada es la primera entrada distinta de cero. Entonces, mediante trasposicón, intercambiamos las filas 1 y 2 (“movemos la segunda columna hasta arriba”):
\[
\begin{pmatrix}
-1 & 0 & 1 & 2 & 3 \\
0 & 1 & 2 & 3& 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, nos fijamos en la primera entrada no nula de la primera fila, que es $-1$, y reescalamos la fila por su inverso multiplicativo, que es $-1$:
\[
\begin{pmatrix}
(-1)(-1) & (-1)(0) & (-1)(1) & (-1)(2) & (-1)(3) \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3 & 1 & -1 & 0 & 2 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}.
\]

Ahora, observamos el valor de la primera entrada de la tercera fila, el cual es $3$. Entonces, mediante transvección, sumamos $-3$ veces la fila 1 a la fila 3:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
3+(-3)(1) & 1+(-3)(0) & -1+(-3)(-1) & 0+(-3)(-2) & 2+(-3)(-3) \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix},
\]
y realizamos lo mismo, pero ahora considerando la fila 4.
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0+(0)(1) & 1+(0)(0) & 1+(0)(-1) & 1+(0)(-2) & 1+(0)(-3)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
Como puedes observar, ninguna de las transvecciones influye en la otra, de manera que las podemos enlistar en un único paso. Además, al hacer una transvección con escalar $0$ no cambia nada de la fila, así que estas no se necesita hacerlas.

Ahora, ignorando la última fila con la que trabajamos (que es la primera), buscamos la primera columna no-nula, que en este caso será la segunda, posteriormente buscamos el primer elemento no nulo de la columna, el cual se encuentra en la segunda fila, y la “movemos enseguida de la última fila con la que trabajamos” (en este caso no tendríamos que realizar ninguna transposición, o bien, la transposición sería la de la segunda fila consigo misma, ya que ya se encuentra en seguida de la última fila con la que trabajamos). Después, reescalamos por el inverso multiplicativo del primer elemento no nulo de la fila, que es $1$:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
(1)(0) & (1)(1) & (1)(2) & (1)(3) & (1)(4) \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 6 & 11 \\
0 & 1 & 1 & 1 & 1
\end{pmatrix}
\]
(observa que reescalar por $1$ deja todas las entradas iguales) y posteriormente realizamos las transvecciones necesarias para que el resto de entradas de la segunda columna sean cero.
\[
\begin{pmatrix}
1 & 0+(0)(1) & -1+(0)(2) & -2+(0)(3) & -3+(0)(4) \\
0 & 1 & 2 & 3 & 4 \\
0 & 1+(-1)(1) & 2+(-1)(2) & 6+(-1)(3) & 11+(-1)(4) \\
0 & 1+(-1)(1) & 1+(-1)(2) & 1+(-1)(3) & 1+(-1)(4)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 3 & 7 \\
0 & 0 & -1 & -2 & -3
\end{pmatrix}
\]

De manera similar, ignorando ahora las primeras dos filas, buscamos la primera columna no-nula, la cual corresponde ahora a la tercera, y buscamos el primer elemento no-nulo de esta columna, el cual se encuentra en la cuarta fila. Entonces, transponemos las filas 3 y 4 para que el primer elemento no-nulo quede inmediatamente después de la última fila con la que trabajamos:
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & -1 & -2 & -3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Seguidamente, reescalamos la tercera fila,
\[
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
(-1)(0) & (-1)(0) & (-1)(-1) & (-1)(-2) & (-1)(-3) \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & -1 & -2 & -3 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
\]
y relizamos las transvecciones necesarias:
\[
\begin{pmatrix}
1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(2) & -3+(1)(3) \\
0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(2) & 4+(-2)(3) \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 3 & 7
\end{pmatrix}.
\]

Finalmente, como nuestra última columna no cero es la cuarta y la primera fila no cero (ignorando las filas que ya tienen pivote) tiene un $3$, reescalamos de la siguiente manera:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
(1/3)(0) & (1/3)(0) & (1/3)(0) & (1/3)(3) & (1/3)(7)
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -2 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix},
\]

Y hacemos las transvecciones necesarias:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0+(1)(0) & 1+(1)(0) & 0+(1)(0) & -1+(1)(1) & -2+(1)(7/3) \\
0+(-2)(0) & 0+(-2)(0) & 1+(-2)(0) & 2+(-2)(1) & 3+(-2)(7/3) \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1/3 \\
0 & 0 & 1 & 0 & -5/3 \\
0 & 0 & 0 & 1 & 7/3
\end{pmatrix}.
\]

Notemos que si consideramos esta matriz como la matriz aumentada
\[
\left(
\begin{matrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{matrix}
\
\middle|
\
\begin{matrix}
0 \\
1/3 \\
-5/3 \\
7/3
\end{matrix}
\right),
\]
este corresponde al sistema
\[
\begin{cases}
x = 0 \\
y = 1/3 \\
z = -5/3 \\
w = 7/3,
\end{cases}
\]
del cual sabemos inmediatamente su solución. Como mencionamos anteriormente, los sistemas de ecuaciones asociados a la matriz original y la matriz escalonada reducida resultante de aplicar operaciones elementales por filas, consideradas como matrices aumentadas, tienen las mismas soluciones. Entonces, ¡este último sistema es la solución para nuestro sistema de ecuaciones original!

Como podemos ver, los sistemas de ecuaciones asociados a una matriz en su forma escalonada reducida son fáciles de resolver por que vamos escogiendo valores arbitrarios para las variables en posición que no es pivote, mientras que podemos obtener el valor de las variables que son pivote mediante despejes sencillos.

Recuerda que este algoritmo funciona para cualquier matriz con entradas reales. ¿Podrías proponer otro sistema de ecuaciones e implementar la misma estrategia para resolverlo?

Más adelante…

Ahora vimos una estrategia para resolver sistemas de ecuaciones lineales de distintos tamaños. En las siguientes entradas conoceremos más propiedades sobre las matrices. Estas nuevas propiedades también juegan un rol fundamental en poder determinar de manera más rápida cuándo un sistema de ecuaciones lineales tiene solución, y tener otras alternativas para resolverlo bajo ciertas condiciones.

Tarea moral

  1. Aplica reducción gaussiana a las siguientes matrices:
    $$\begin{pmatrix} 5 & 2 \\ 13 & 5 \end{pmatrix},\quad \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$
  2. Resuelve el siguiente sistema de ecuaciones llevándolo a forma escalonada reducida, y luego aplicando a técnica de variables libres y pivote:
    $$\begin{cases} a + b + c + d + e &= -5\\2a+2b-3c-3d+e&=5 \\ a – b + c – d + e &= 0. \end{cases}$$
  3. Sea $I$ la matriz identidad de $n\times n$ y $A$ otra matriz de $n\times n$. Sea $E$ la matriz obtenida de aplicar una transvección a $I$. Sea $B$ la matriz de aplicar esa misma transvección a $A$. Demuestra que $EA=B$.
  4. Demuestra que una matriz $A$ de $2\times 2$ es invertible si y sólo si al aplicar reducción de Gauss-Jordan al final se obtiene la matriz identidad $I$. ¿Puedes hacerlo para matrices de $3\times 3$? ¿De $n\times n$?
  5. Sea $A$ una matriz de $2\times 2$ invertible. A $A$ le «pegamos» una identidad del mismo tamaño a la derecha para llegar a $(A|I)$, por ejemplo $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ se convertiría en $\begin{pmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{pmatrix}$. Muestra que si aplicamos reducción de Gauss-Jordan a $(A|I)$, se llega a $(I|A^{-1})$. Intenta extender tu demostración a matrices de $3\times 3$ ó $n\times n$.

Entradas relacionadas

Álgebra Lineal II: Unicidad de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En la entrada anterior enunciamos el teorema de la forma canónica de Jordan y demostramos la existencia de dicha forma bajo ciertas hipótesis. Como corolario, quedó pensar cuál es la versión para matrices. En esta entrada enunciamos la versión para matrices (totalmente equivalente a la de transformaciones lineales) y nos enfocamos en mostrar la unicidad de la forma canónica de Jordan.

Unicidad de la forma canónica de Jordan

El siguiente teorema es totalmente análogo al enunciado en la entrada anterior. Recuerda que $\leq$ es un orden total fijo de $F$ (en $\mathbb{R}$, es el orden usual).

Teorema. Sea $A$ una matriz $M_n(F)$ cuyo polinomio característico $\chi_A(X)$ se divide en $F$. Entonces, existen únicos valores $\lambda_1\leq \ldots \leq \lambda_n$ en $F$ y únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} para los cuales $A$ es similar a la siguiente matriz de bloques de Jordan:

$$\begin{pmatrix} J_{\lambda_1,k_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_d,k_d}\end{pmatrix}.$$

Usaremos esta versión para demostrar la unicidad, lo cual también implicará la unicidad para la versión de transformaciones lineales.

Mediante la demostración de existencia de la entrada anterior, llegamos a que si el polinomio característico de $A$ es

$$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r},$$

entonces $A$ es similar a una matriz conformada por matrices de bloques de Jordan $J_1,J_2,\ldots,J_r$, en donde cada $J_i$ es de tamaño $m_i$ y de bloques de Jordan de eigenvalor $\lambda_i$.

Si $A$ fuera similar a otra matriz $K$ de bloques de Jordan, podríamos agrupar por eigenvalores de los bloques $\kappa_1< \ldots < \kappa_s$ en matrices de bloques de Jordan tamaños $o_1,\ldots,o_s$, digamos $K_1,\ldots,K_s$. El polinomio característico de $K$ sería entonces

$$\chi_{K}(X)=(X-\kappa_1)^{o_1}(X-\kappa_2)^{o_2}\cdots(X-\kappa_s)^{o_s}.$$

Pero $K$ es similar a $A$, y entonces deben tener el mismo polinomio característico, así que conciden en raíces y multiplicidad. Esto demuestra que $r=s$ y como los $\lambda_i$ y los $\kappa_i$ están ordenados, también demuestra las igualdades $\lambda_i=\kappa_i$ y $m_i=o_i$ para todo $i\in\{1,\ldots,r\}.$

Sólo nos queda argumentar la igualdad entre cada $J_i$ y $K_i$ para $i\in\{1,\ldots,r\}$. Pero ambas una forma canónica de Jordan para la transformación nilpotente que se obtiene de restringir $T_{A-\lambda_i I}$ a $\ker(T_{A-\lambda_i I}^{m_i})$. Por la unicidad que demostramos para la forma canónica de Jordan para transformaciones nilpotentes, concluimos que $J_i=K_i$. Esto termina la demostración de la unicidad de la forma canónica de Jordan.

$\square$

Una receta para encontrar la forma canónica de Jordan

Ya con el teorema demostrado, ¿cómo juntamos todas las ideas para encontrar la forma canónica de Jordan de una matriz $A$ en $M_n(F)$ cuyo polinomio característico se divida en $F$? Podemos proceder como sigue.

  1. Encontramos el polinomio característico $\chi_A(X)$ y su factorización, digamos $$\chi_A(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r}.$$
  2. Nos enfocamos en encontrar las matrices de bloque de Jordan $J_i$ para cada eigenvalor $\lambda_i$. Sabemos que la matriz $J_i$ será de tamaño $m_i$.
  3. Para saber exactamente cuál matriz de bloques de Jordan es $J_i$, pensaremos en que tiene $b_1,b_2,\ldots,b_{m_i}$ bloques de Jordan de eigenvalor $\lambda_i$ de tamaños $1,2, \ldots,m_i$. Consideramos la matriz $A_i=A-\lambda_i I$. Los $b_1,\ldots,b_{m_i}$ son la solución al siguiente sistema de ecuaciones en las variables $x_1,\ldots,x_{m_i}$.
    \begin{align*}
    m_i&= 1\cdot x_1 + 2\cdot x_2 + 3 \cdot x_3 + \ldots + m_i \cdot x_{m_i}\\
    m_i-n+\text{rango}(A_i-\lambda_i I)&=0\cdot x_1 + 1\cdot x_2 + 2 \cdot x_3 + \ldots + (m_i-1) \cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^2)&= 0 \cdot x_1 + 0 \cdot x_2 + 1 \cdot x_3 + \ldots + (m_i-2)\cdot x_{m_i}\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^3)&= 0 \cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + (m_i-3)\cdot x_{m_i}\\
    &\vdots\\
    m_i-n+\text{rango}({A_i-\lambda_i I}^{m_i-1})&= 0\cdot x_1 + 0 \cdot x_2 + 0 \cdot x_3 + \ldots + 1 \cdot x_{m_i}.
    \end{align*}
  4. Juntamos todos los $J_i$ en una misma matriz y los ordenamos apropiadamente.

El paso número $3$ está motivado por lo que sabemos de las matrices nilpotentes, y es bueno que pienses por qué se estudia específicamente ese sistema de ecuaciones para cada eigenvalor $\lambda_i$ y multiplicidad $m_i$.

Ejemplo de obtener la forma canónica de Jordan

Veamos un ejemplo del procedimiento descrito en la sección anterior.

Ejemplo. Encontraremos la forma canónica de Jordan de la siguiente matriz: $$A=\begin{pmatrix}-226 & -10 & -246 & 39 & 246\\234 & 23 & 236 & -46 & -236\\-198 & -20 & -192 & 41 & 195\\-93 & 10 & -122 & 10 & 122\\-385 & -30 & -393 & 74 & 396\end{pmatrix}.$$

Con herramientas computacionales, podemos darnos cuenta de que el polinomio característico de esta matriz es $$\chi_A(X)=X^{5} – 11 X^{4} + 46 X^{3} – 90 X^{2} + 81 X- 27.$$

Este polinomio se puede factorizar como $$(X-1)^2(X-3)^3.$$ Así, la submatriz de bloques de Jordan $J_1$ de eigenvalor $1$ tendrá tamaño $2$ y la $J_3$ de eigenvalor $3$ tendrá tamaño $3$. Pero, ¿de qué tamaño son cada uno de los bloques de Jordan en cada una de estas matrices?

Para respondernos esto para $J_1$, notamos que sus bloques son de tamaño $1$ y $2$ solamente. Si hay $b_1$ bloques de tamaño $1$ y $b_2$ bloques de tamaño $2$, por la teoría desarrollada arriba tendremos:

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-5+\text{rango}(A-I)=2-5+4=1.
\end{align*}

El rango de $A-I$ lo obtuvimos computacionalmente, pero recuerda que también puede ser obtenido con reducción gaussiana. Resolviendo el sistema, $b_2=1$ y entonces $b_1=0$. Concluimos que en $J_1$ hay un bloque de Jordan de tamaño $2$.

Para $J_3$, reciclemos las variables $b_i$ (para no introducir nuevas). Los bloques pueden ser de tamaño $1,2,3$. Supongamos que de estos tamaños respectivamente hay $b_1,b_2,b_3$ bloques. Los $b_i$ cumplen:

\begin{align*}
b_1+2b_2+3b_3&=3\\
b_2+2b_3&=3-5+\text{rango}(A-3I)=3-5+3=1\\
b_3&=3-5+\text{rango}((A-3I)^2)=3-5+2=0.
\end{align*}

Así, $b_3=0$, y en consecuencia $b_2=1$ y entonces $b_1=1$. Concluimos que $J_3$ tiene un bloque de tamaño $1$ y uno de tamaño $3$. Por lo tanto, la forma canónica de Jordan de $A$ es:

$$\begin{pmatrix} J_1 & 0 \\ 0 & J_3 \end{pmatrix} = \begin{pmatrix} J_{1,2} & 0 & 0 \\ 0 & J_{3,1} & 0 \\ 0 & 0 & J_{3,2} \end{pmatrix} = \begin{pmatrix}1 & 1 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0\\0 & 0 & 3 & 0 & 0\\0 & 0 & 0 & 3 & 1\\0 & 0 & 0 & 0 & 3\end{pmatrix}$$

$\triangle$

Otro problema sobre forma canónica de Jordan

La receta anterior funciona en general y da la forma canónica de Jordan. Esto es algo que probablemente en la práctica en aplicaciones no tendrás que hacer manualmente nunca, pues hay herramientas computacionales que te pueden ayudar. Sin embargo, es importante entender con profundidad el teorema y la receta de manera teórica, pues hay problemas conceptuales en los que no podrás usar herramientas computacionales. A continuación veremos un ejemplo.

Problema. Sea $A$ una matriz en $M_6(\mathbb{R})$ con polinomio característico $$\chi_A(X)=X^6-2X^4+X^2.$$

  • ¿Cuántas posibilidades hay para la forma canónica de Jordan de $A$?
  • Demuestra que si el rango de $A$ es $5$, entonces $A$ no es diagonalizable.

Solución. Podemos factorizar el polinomio característico de $A$ como sigue:

$$\chi_A(X)=X^2(X+1)^2(X-1)^2.$$

Así, la forma canónica de Jordan está conformada por una matriz de bloques de Jordan $J_0$ de eigenvalor $0$ y tamaño $2$; una $J_1$ de eigenvalor $1$ y tamaño $2$; y una $J_{-1}$ de eigenvalor $-1$ y tamaño $2$.

Cada $J_i$ tiene dos chances: o es un bloque de Jordan de tamaño $2$, o son dos bloques de Jordan de tamaño $1$. Así, en total tenemos $2\cdot 2 \cdot 2=8$ posibilidades.

Si $A$ es de rango $5$, entonces tendríamos en las cuentas de cantidad de bloques $b_1$ y $b_2$ para eigenvalor $0$ que

\begin{align*}
b_1+2b_2&=2\\
b_2&=2-6+\text{rango}(A)=2-6+5=1,
\end{align*}

de donde en $J_0$ tendría $1$ bloque de tamaño $2$ y ninguno de tamaño $1$. Si $A$ fuera diagonalizable, su diagonalización sería una forma canónica de Jordan donde para eigenvalor $0$ se tendrían $2$ bloques de tamaño $1$ y ninguno de tamaño $2$. Así, $A$ tendría dos formas canónicas de Jordan distintas, lo cual es imposible.

$\square$

Más adelante…

Con esta entrada terminamos de demostrar el teorema de la forma canónica de Jordan, uno de los teoremas más bonitos de álgebra lineal. ¿Te das cuenta de todo lo que utilizamos en su demostración? Forma matricial de transformaciones lineales, el teorema de Cayley-Hamilton, polinomio característico, subespacios estables, teoría de dualidad, sistemas de ecuaciones lineales, resultados auxiliares de polinomios, etc. Es un resultado verdaderamente integrador.

En la siguiente entrada, la última del curso, hablaremos de algunas de las consecuencias del teorema de la forma canónica de Jordan. Discutiremos cómo lo podemos utilizar para clasificar a las matrices por similaridad. Veremos una aplicación con respecto a una matriz y su transpuesta. También, esbozaremos un poco de por qué en cierto sentido el resultado no sólo vale para las matrices cuyo polinomio se divide sobre el campo, sino que para cualquier matriz. Con ello terminaremos el curso.

Tarea moral

  1. Calcula la forma canónica de Jordan $J$ de la matriz $$A=\begin{pmatrix} 1 & 0 & -3 \\ 1 & -1 & -6 \\ -1 & 2 & 5 \end{pmatrix}.$$ Además de encontrar $J$, encuentra de manera explícita una matriz invertible $P$ tal que $A=P^{-1}JP$.
  2. Calcula la forma canónica de Jordan de la matriz $$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
  3. Explica y demuestra cómo obtener lo siguiente para una matriz de bloques de Jordan:
    • Su polinomio característico.
    • Su polinomio mínimo.
    • Su determinante.
    • Su traza.
    • Sus eigenespacios.
  4. Justifica con más detalle por qué la receta que se propone para calcular la forma canónica de Jordan en efecto funciona. Necesitarás varios de los argumentos que dimos en la entrada anterior.
  5. Demuestra que una matriz $A\in M_n(F)$ para la cual su polinomio característico se divide en $F$ es diagonalizable si y sólo si cada bloque de cada matriz de bloques de la forma canónica de Jordan tiene tamaño $1$.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»

Álgebra Lineal II: Existencia de la forma canónica de Jordan

Por Leonardo Ignacio Martínez Sandoval

Introducción

En las entradas anteriores demostramos que para cualquier matriz nilpotente existe (y es única) una matriz similar muy sencilla, hecha por lo que llamamos bloques de Jordan de eigenvalor cero. Lo que haremos ahora es mostrar una versión análoga de este resultado para una familia mucho más grande de matrices. De hecho, en cierto sentido tendremos un resultado análogo para todas las matrices.

Pensando en ello, lo que haremos en esta entrada es lo siguiente. Primero, generalizaremos nuestra noción de bloques de Jordan para contemplar cualquier eigenvalor. Estudiaremos un poco de los bloques de Jordan. Luego, enunciaremos el teorema que esperamos probar. Finalmente, daremos el primer paso hacia su demostración. En la siguiente entrada terminaremos la demostración y hablaremos de aspectos prácticos para encontrar formas canónicas de Jordan.

Enunciado del teorema de la forma canónica de Jordan

A continuación definimos a los bloques de Jordan para cualquier eigenvalor y tamaño.

Definición. Sea $F$ un campo. El bloque de Jordan de eigenvalor $\lambda$ y tamaño $k$ es la matriz $J_{\lambda,k}$ en $M_k(F)$ cuyas entradas son todas $\lambda$, a excepción de las que están inmediatamente arriba de la diagonal superior, las cuales son unos. En símbolos, $J_{\lambda,k}=[a_{ij}]$ con $$a_{ij}=\begin{cases} 1 & \text{si $j=i+1$}\\ \lambda & \text{si $i=j$} \\ 0 & \text{en otro caso.} \end{cases}$$

También podemos expresarlo de la siguiente manera:

$$J_{\lambda,k}=\begin{pmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ & \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{pmatrix},$$ en donde estamos pensando que la matriz es de $k\times k$.

Una última manera en la que nos convendrá pensar a $J_{\lambda,k}$ es en términos de los bloques de Jordan de eigenvalor cero: $J_{\lambda,k}=\lambda I_k + J_{0,k}$.

Definición. Una matriz de bloques de Jordan en $M_n(F)$ es una matriz diagonal por bloques en la que cada bloque en la diagonal es un bloque de Jordan.

Lo que nos gustaría demostrar es el siguiente resultado. En él, piensa en $\leq$ como algún orden total fijo de $F$ (para $\mathbb{R}$ es el orden usual, pero otros campos no necesariamente tienen un orden natural asociado).

Teorema. Sea $V$ un espacio vectorial de dimensión finita $n$ sobre el campo $F$ y $T:V\to V$ una transformación lineal tal que $\chi_T(X)$ se divide sobre $F$. Entonces, existen únicos valores $\lambda_1\leq \ldots \leq \lambda_n$ en $F$ y únicos enteros $k_1,\ldots,k_d$ tales que \begin{align*} &k_1+k_2+\ldots+k_d = n,\\ &k_1\leq k_2 \leq \ldots \leq k_d,\end{align*} para los cuales existe una base de $V$ en la cual $T$ tiene como forma matricial a la siguiente matriz de bloques de Jordan:

$$\begin{pmatrix} J_{\lambda_1,k_1} & 0 & \cdots & 0 \\ 0 & J_{\lambda_2,k_2} & \cdots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & J_{\lambda_d,k_d}\end{pmatrix}.$$

Por supuesto, este teorema también tiene una versión matricial, la cuál tendrás que pensar cómo escribir.

Un teorema de descomposición de kernels

Ya tenemos uno de los ingredientes que necesitamos para dar la demostración de la existencia de la forma canónica de Jordan: su existencia para las transformaciones nilpotentes. Otro de los ingredientes que usaremos es el teorema de Cayley-Hamilton. El tercer ingrediente es un resultado de descoposición de kernels de transformaciones evaluadas en polinomios.

Proposición. Sea $V$ un espacio vectorial sobre $F$. Sea $T:V\to V$ una transformación lineal. Y sean $P_1(X),\ldots,P_r(X)$ polinomios en $F[x]$ cuyo máximo común divisor de cualesquiera dos de ellos es el polinomio $1$. Entonces, $$\ker((P_1P_2\cdots P_r)(T))=\bigoplus_{i=1}^r \ker(P_i(T)).$$

Demostración. Para cada $i\in \{1,2,\ldots,r\}$ consideraremos a $Q_i(X)$ como el polinomio que se obtiene de multiplicar a todos los polinomios dados, excepto $P_i(X)$. Y por comodidad, escribiremos $P(X)=(P_1\cdots P_r)(X)$. Notemos que entonces $P(X)=(Q_iP_i)(X)$ para cualquier $i\in\{1,2,\ldots,r\}$.

Primero probaremos un resultado polinomial auxiliar. Veremos que $Q_1(X),\ldots,Q_r(X)$ tienen como máximo común divisor al polinomio $1$. En caso de no ser así, un polinomio $D(X)$ no constante dividiría a todos ellos. Sin pérdida de generalidad, $D$ es irreducible (tomando, por ejemplo $D(X)$ de grado mínimo con esta propiedad). Como $D(X)$ es irreducible y divide a $Q_r(X)$, entonces debe dividir a alguno de los factores de $Q_r(X)$, que sin pérdida de generalidad (por ejemplo, reetiquetando), es $P_1(X)$. Pero $D(X)$ también divide a $Q_1(X)$, así que debe dividir a alguno de sus factores $P_2(X),\ldots,P_r(X)$, sin pérdida de generalidad a $P_2(X)$. Pero entonces $D(X)$ divide a $P_1(X)$ y $P_2(X)$, lo cual contradice las hipótesis. Así, $Q_1(X),\ldots,Q_r(X)$ tienen como máximo común divisor al polinomio $1$. Por el lema de Bézout para polinomios (ver tarea moral), existen entonces polinomios $R_1(X),\ldots,R_r(X)$ tales que

\begin{equation}
\label{eq:bezout}(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(X)=1.
\end{equation}

Estamos listos para pasar a los argumentos de álgebra lineal. Veamos primero que cualquier elemento en la suma de la derecha está en el kernel de $P(T)$. Tomemos $v=v_1+\ldots+v_r$ con $v_i\in \ker(P_i(T))$. Al aplicar $P$ obtenemos

\begin{align*}
P(v)&=P(v_1)+\ldots+P(v_r)\\
&=Q_1(P_1(v_1))+\ldots+Q_r(P_r(v_r))\\
&=0+\ldots+0=0.
\end{align*}

Esto muestra que $v\in \ker(P(T))$, de donde se obtiene la primera contención que nos interesa.

Veamos ahora la segunda contención, que $\ker(P(T))=\bigoplus_{i=1}^r \ker(P_i(T))$. Tomemos $v\in \ker(P(T))$. Al aplicar \eqref{eq:bezout} en $T$ y evaluar en $v$ obtenemos que

\begin{align*}
v&=\text{Id}(v)=(1)(T)(v)\\
&=(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(T)(v)\\
&=(R_1Q_1)(T)(v)+\ldots+(R_rQ_r)(T)(v).
\end{align*}

Pero esto justo expresa a $v$ como elemento de $\ker(P_i(T))$ pues para cada $i$ tenemos

\begin{align*}
P_i(T)((R_iQ_i)(T)(v))&=(P_iR_i Q_i )(T)(v)\\
&=(R_i Q_i P_i)(T)(v)\\
&=R_i(T)P(T)(v)\\
&=R_i(0)=0,
\end{align*}

de modo que expresamos a $v$ como suma de vectores en $\ker(P_1(T)),\ldots,\ker(P_r(T))$.

Ya demostramos la igualdad de conjuntos, pero recordemos que en la igualdad de suma directa hay otra cosa que hay que probar: que el cero tiene una forma única de expresarse como suma de elementos de cada subespacio (aquella en donde cada elemento es cero). Supongamos entonces que $$0=v_1+\ldots+v_r$$ con $v_i\in \ker(P_i(T))$ para cada $i$. Si aplicamos $Q_i$ en esta igualdad, como tiene todos los factores $P_j$ con $j\neq i$ obtenemos $$0=Q_i(0)=Q_i(v_i).$$

Por otro lado, al aplicar nuevamente \eqref{eq:bezout} en $T$ y evaluar en $v_i$

\begin{align*}
v_i&=\text{Id}(v_i)=(1)(T)(v_i)\\
&=(R_1Q_1 + R_2Q_2 + \ldots + R_rQ_r)(T)(v_i)\\
&=(R_1Q_1)(T)(v_1)+\ldots+(R_rQ_r)(T)(v_i)\\
&=(R_iQ_i)(T)(v_i)\\
&=0.
\end{align*}

De esta forma, en efecto tenemos que los espacios están en posición de suma directa, que era lo último que nos faltaba verificar.

$\square$

Existencia de la forma canónica de Jordan

Estamos listos para demostrar la existencia de la forma canónica de Jordan. Supongamos que $V$ es un espacio vectorial de dimensión finita $n$ sobre $F$ y que $T:V\to V$ es una transformación lineal cuyo polinomio característico se divide en $F[x]$. Sabemos entonces que es de la siguiente forma:

$$\chi_T(X)=(X-\lambda_1)^{m_1}(X-\lambda_2)^{m_2}\cdots(X-\lambda_r)^{m_r},$$

donde $\lambda_1,\ldots,\lambda_r$ son eigenvalores distintos de $T$ y $m_1,\ldots,m_r$ son las multiplicidades algebraicas respectivas de estos eigenvalores como raíces de $\chi_T(X)$.

Por el teorema de Cayley-Hamilton, sabemos que $\chi_T(T)=0$, de modo que $\ker(\chi_T(T))=V$. Por la proposición de descomposición de la sección anterior aplicada a los polinomios $P_i(X)=(X-\lambda_i)^{m_i}$ (verifica que son primos relativos dos a dos) para $i\in\{1,\ldots,r\}$ tenemos entonces que $$V=\bigoplus_{i=1}^r \ker((T-\lambda_i \text{id})^{m_i}).$$

Pero, ¿cómo es la transformación $T-\lambda_i \text{id}$ restringida a cada $\ker((T-\lambda_i \text{id})^{m_i})$? ¡Es nilpotente! Precisamente por construcción, $(T-\lambda_i \text{id})^{m_i}$ se anula totalmente en este kernel. Así, por la existencia de la forma canónica de Jordan para matrices nilpotentes, hay una base $\beta_i$ para cada $\ker((T-\lambda_i \text{id})^{m_i})$ tal que $T-\lambda_i \text{id}$ restringida a ese kernel tiene como forma matricial una matriz $J_i$ de bloques de Jordan de eigenvalor cero. Pero entonces $T$ (restringida a dicho kernel) tiene como forma matricial a $J_i+\lambda_i I_{m_i}$, que es una matriz de bloques de Jordan de eigenvalor $\lambda$.

Con esto terminamos: como $V$ es la suma directa de todos esos kernel, la unión de bases $\beta_1,\ldots,\beta_r$ es una base para la cual $T$ tiene como forma matricial a una matriz de bloques de Jordan.

$\square$

Más adelante…

Hemos demostrado la existencia de la forma canónica de Jordan, pero aún nos falta demostrar su unicidad. Además de esto, también necesitaremos un mejor procedimiento para encontrarla. Haremos eso en la siguiente entrada.

Tarea moral

  1. Enuncia el teorema de la forma canónica de Jordan versión matrices.
  2. Investiga más sobre el lema de Bézout para polinomios y cómo se demuestra. Después de esto, expresa al polinomio $1$ como combinación lineal de los polinomios $x^2-1, x^3+1, x^2+5x+4$.
  3. Verifica que los polinomios $P_i(X)=(X-\lambda_i)^{k_i}$ de la demostración de la existencia de la forma canónica de Jordan cumplen las hipótesis de la proposición de descomposición de kernels.
  4. Sea $F$ un campo y $r,s$ elementos en $F$. Sea $n$ un entero. Demuestra que los bloques de Jordan $J_{r,n}$ y $J_{s,n}$ en $M_n(F)$ conmutan.
  5. Siguiendo las ideas de la demostración de existencia, encuentra la forma canónica de Jordan de la matriz $$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE109323 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 3»