Archivo del Autor: Julio César Soria Ramírez

Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.

Por Julio César Soria Ramírez

Introducción

La multiplicación de matrices es una operación que se define para dos matrices $A$ y $B$, donde el número de columnas de $A$ es igual al número de filas de $B$. El resultado de la multiplicación de matrices $AB$ es una matriz $C$, donde el elemento en la fila $i$ y columna $j$ de $C$ es igual a la suma de los productos de los elementos de la fila $i$ de $A$ y los elementos de la columna $j$ de $B.$

La matriz identidad es una matriz cuadrada que tiene unos en su diagonal principal y ceros en todas las demás posiciones. La multiplicación de cualquier matriz por la matriz identidad da como resultado la misma matriz.

La matriz inversa de una matriz cuadrada $A$ es una matriz que, cuando se multiplica por $A$, da como resultado la matriz identidad. No todas las matrices tienen una matriz inversa, y una matriz solo tiene una matriz inversa si su determinante es distinto de cero.

La transpuesta de una matriz $A$ se obtiene intercambiando sus filas por columnas. La matriz transpuesta se denota por $A^T$. Si $A$ tiene dimensiones $m \times n$, entonces $A^T$ tiene dimensiones $n \times m$. La transpuesta se utiliza en cálculos como la inversión de matrices, la resolución de sistemas de ecuaciones lineales y la multiplicación de matrices.

En la presente nota usaremos las propiedades del producto punto para las pruebas, puedes consultarlas en el siguiente enlace: Propiedades del producto punto

Definición

Sean $A\in \mathscr M_{m\times n}(\mathbb R),\,\, B\in \mathscr M_{n\times r}(\mathbb R)$.

El producto de $A$ con $B$ es $AB\in \mathscr M_{m\times r}(\mathbb R)$ tal que:

$(AB)_{ij}=a_{i1}b_{1j}+\cdots+a_{in}b_{nj}$

Notación:

$ren_i A=(a_{i1},\dotsc,a_{in})$

$col_j B=(b_{1j},\dotsc,b_{nj}).$

Con esta notación $(AB)_{ij}=ren_i A\cdot col_j B,$ es decir, la entrada $ij$ de $AB$ es el producto punto del renglón $i$ de $A$ con la columna $j$ de $B$.

Ejemplos

$1.$ $A=\begin{equation*} \begin{pmatrix} 2 & -1 & 3 \\ 0 & 1 & 4 \\ \end{pmatrix} \end{equation*}$, $ B=\begin{equation*} \begin{pmatrix} 4 \\ 5 \\6 \\ \end{pmatrix} \end{equation*}$.

$AB=\begin{equation*} \begin{pmatrix} (2)(4)+(-1)(5)+3(6)\\(0)(4)+(1)(5)+(4)(6) \\ \end{pmatrix} \end{equation*}=$ $\begin{equation*} \begin{pmatrix} 21 \\ 29 \\ \end{pmatrix} \end{equation*} $

$3.$ $A=\begin{equation*} \begin{pmatrix} 1 & 4 \\ 1 & 3\\ \end{pmatrix} \end{equation*}$, $ B=\begin{equation*} \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ \end{pmatrix} \end{equation*}$.

$AB=\begin{equation*}\begin{pmatrix} (1)(1)+(4)(2) & (1)(0)+(4)(3) \\ (1)(1)+(3)(2) & (1)(0)+(3)(3) \\ \end{pmatrix} =\begin{pmatrix} 9 & 12 \\ 7 & 9 \\ \end{pmatrix} \end{equation*}.$

Proposición

Sean $A, \overline{A} \in \mathscr M_{m\times n}(\mathbb R)$ y $B, \overline{B} \in \mathscr M_{n\times r}(\mathbb R)$, sea $C \in \mathscr M_{r\times s}(\mathbb R)$, y $\lambda \in \mathbb R.$

$a)$ $A(BC)=(AB)C.$

$b)$ $(A+\overline{A})B=AB+\overline{A}B.$

$c)$ $A(B+\overline{B})=AB+A\overline{B}.$

$d)$ $\lambda (AB)=(\lambda A)B=A(\lambda B).$

Se harán las demostraciones de $b)$ y $d)$, las dos restantes quedan de tarea moral.

Demostración

Sean $A, \overline{A} \in \mathscr M_{m\times n}(\mathbb R)$ y $B, \overline{B} \in \mathscr M_{n\times r}(\mathbb R)$, sea $C \in \mathscr M_{r\times s}(\mathbb R)$, y $\lambda \in \mathbb R.$

Demostración de $b)$

Por demostrar que $(A+\overline{A})B=AB+\overline{A}B.$

Observa que tanto $(A+\overline{A})B$ como $AB+\overline{A}B$ pertenecen a $\mathscr M_{m\times r}(\mathbb R).$

Sean $i\in \set{1,\dotsc,m}, j\in \set{1,\dotsc,r}.$

ExpresiónExplicación
$((A+\overline{A})B)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(A+\overline{A})B.$
$=ren_i (A+\overline{A})\cdot col_j B$Por definición de producto de matrices.
$=(ren_i A+ren_i \overline{A})\cdot col_j B$Por definición de suma de matrices.
$=ren_i A\cdot col_j B+ren_i \overline{A}\cdot col_j B$Por las propiedades del producto punto.
$=(AB)_{ij}+(\overline{A} B)_{ij}$Por definición de producto de matrices.
$=(AB+\overline{A} B)_{ij}$Por definición de suma de matrices.

Así, $((A+\overline{A})B)_{ij}=(AB+\overline{A}B)_{ij}$.

Concluimos que $(A+\overline{A})B$ y $AB+\overline{A}B$ son del mismo tamaño y coinciden entrada a entrada, entonces $(A+\overline{A})B=AB+\overline{A}B.$

Demostración de $b)$

Por demostrar que $\lambda (AB)=A(\lambda B).$

Tanto $(A+\overline{A})B$ como $AB+\overline{A}B$ pertenecen a $\mathscr M_{m\times r}(\mathbb R)$.

Sean $i\in \set{1,\dotsc,m}, j\in \set{1,\dotsc,r}.$

ExpresiónExplicación
$(\lambda (AB))_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $\lambda (AB)$
$=\lambda (AB)_{ij}$Por la definición de producto escalar.
$=\lambda (ren_i A\cdot col_j B)$Por la definición de producto de matrices.
$=ren_i A\cdot (\lambda col_j B)$Por las propiedades del producto punto.
$=ren_i A\cdot col_j (\lambda B)$Por la definición de producto escalar.
$=(A(\lambda B))_{ij}$Por la definición de producto de matrices.

Así, $(\lambda (AB))_{ij}=(A(\lambda B))_{ij}$.

Concluimos que $\lambda (AB)$ y $A(\lambda B)$ son del mismo tamaño y coinciden entrada a entrada, entonces $\lambda (AB)=A(\lambda B)$.

Definición

La matriz identidad de tamaño $n\times n$ es:

$I_n=\begin{equation*} \begin{pmatrix} 1 & 0 & \cdots & 0\\ 0 & 1 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\0 & 0 & \cdots & 1 \end{pmatrix} \end{equation*}$

es decir, la matriz $n\times n$ con unos en la diagonal y ceros fuera de la diagonal.

Proposición.

Sea $A\in \mathscr M_{m\times n}(\mathbb R).$

$1.$ $A\,I_n=A.$

$2.$ $I_mA=A.$

La demostración se deja como tarea moral.

Definición

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$. Decimos que $A$ es una matriz invertible si existe $B\in \mathscr M_{n\times n}(\mathbb R)$ tal que:

$AB=BA=I_n.$

En este caso decimos que $B$ es una inversa de $A.$

Observación

Si $A$ es invertible su inversa es única.

Demostración

Sea $A\in \mathscr M_{n\times n}(\mathbb R)$ invertible, $B,\,C\in \mathscr M_{n\times n}(\mathbb R)$ inversas de $A$. Entonces $AB=BA=I_n=AC=CA$. Así, tenemos que $AB=AC$, y multiplicando por la izquierda por $B$ a ambos lados de la igualdad tenemos que $B(AB)=B(AC)$. En virtud de la asociatividad de la multiplicación de matrices obtenemos que $(BA)B=(BA)C$, y como $BA=I_n$ se tiene que $I_nB=I_nC$. Así, $B=C$ y por lo tanto la inversa es única.

Notación: Si $A$ es invertible denotaremos por $A^{-1}$ a la matriz inversa de $A$.

Definición

Sea $A\in \mathscr M_{m\times n}(\mathbb R)$. La transpuesta de $A$ es la matriz $A^t\in \mathscr M_{n\times m}(\mathbb R)$ tal que:

$(A^t)_{ij}=A_{ji}$

Ejemplos

$1.$ $A=\begin{equation*} \left(\begin{array}{rrrr} 1 & 3 & \pi &\frac{1}{4} \\ 0 & 2 & -1 & 8\\ \end{array}\right) \end{equation*}$, $ A^t =\begin{equation*} \left(\begin{array}{cr} 1 &0 \\ 3 &2 \\ \pi & -1 \\ \frac{1}{4} & 8 \\ \end{array}\right)\end{equation*}$.

$2.$ $A=\begin{equation*} \left(\begin{array}{r} 0.7 \\ -1\\ 10 \\ \end{array}\right) \end{equation*}$, $ A^t =\begin{equation*} \begin{pmatrix} 0.7 &-1 & 10 \\ \end{pmatrix} \end{equation*}$.

$3.$ $A=\begin{equation*} \left(\begin{array}{rr} 2 & -3 \\ 3 &1 \\ \end{array}\right) \end{equation*}$, $ A^t =\begin{equation*} \left(\begin{array}{rr} 2 &3 \\ -3 &1 \\ \end{array}\right) \end{equation*}.$

Proposición

Sean $A, B\in \mathscr M_{m\times n}(\mathbb R)$, $C\in \mathscr M_{n\times r}(\mathbb R)$, y $\lambda \in \mathbb R$.

$a)$ $(A^t)^t=A.$

$b)$ $ (A+B)^t=A^t+B^t.$

$c)$ $(\lambda A)^t=\lambda(A^t).$

$d)$ $(AC)^t=C^tA^t.$

Se hará la demostración de $a)$, $b)$ y $d)$, el inciso $c)$ queda como tarea moral.

Demostración de $a)$

Observemos que $(A^t)^t,\,A\in \mathscr M_{m\times n}(\mathbb R)$.

Sean $i\in \set{1,\dotsc,m}, j\in \set{1,\dotsc,n}.$

ExpresiónExplicación
$((A^t)^t)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(A^t)^t.$
$=(A^t)_{ji}$Por la definición de transpuesta.
$=A_{ij}$Por la definición de transpuesta.

Así, $((A^t)^t)_{ij}=A_{ij}$.

Concluimos que $(A^t)^t$ y $A$ son del mismo tamaño y coinciden entrada a entrada, entonces $(A^t)^t=A.$

Demostración de $b)$

Observemos que $(A+B)^t,\,A^t+B^t \in \mathscr M_{n\times m}(\mathbb R)$.

Sean $i\in \set{1,\dotsc,n}, j\in \set{1,\dotsc,m}.$

ExpresiónExplicación
$((A+B)^t))_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(A+B)^t.$
$=(A+B)_{ji}$Por la definición de transpuesta.
$=A_{ji}+B_{ji}$Por la definición de la suma de matrices.
$=(A^t)_{ij}+(B^t)_{ij}$Por la definición de transpuesta.
$=(A^t+B^t)_{ij}$Por la definición de la suma de matrices.

Así, $((A+B)^t)_{ij}=(A^t+B^t)_{ij}$.

Concluimos que $(A+B)^t$ y $A^t+B^t$ son del mismo tamaño y coinciden entrada a entrada, entonces $(A+B)^t=A^t+B^t.$

Demostración de $d).$

Notemos que $(AC)^t,\,C^tA^t \in \mathscr M_{r\times m}(\mathbb R).$

Sean $i\in \set{1,\dotsc,r}, j\in \set{1,\dotsc,m}.$

ExpresiónExplicación
$((AC)^t)_{ij}=$Partimos de un elemento arbitrario $ij$
de la matriz $(AC)^t).$
$=(AC)_{ji}$Por la definición de transpuesta.
$=ren_j A\cdot col_i C$Por la definición del producto de matrices.
$=col_j A^t\cdot ren_j C^t$Por la definición de transpuesta.
$=ren_i C^t\cdot col_jA^t$Conmutatividad del producto punto.
$=(C^tA^t)_{ij}$Por la definición del producto de matrices.

Así, $((AC)^t)_{ij}=(C^tA^t)_{ij}$.

Concluimos que $(AC)^t$ y $C^tA^t$ son del mismo tamaño y coinciden entrada a entrada, entonces $(AC)^t=C^tA^t.$

$\square$

Tarea Moral

$1.$ Considera las siguientes matrices:

$A=\begin{equation*} \left(\begin{array}{rr} 3 & 0 \\ -1 & 2\\ 1 & 1 \end{array}\right) \end{equation*}$, $B=\begin{equation*} \left(\begin{array}{rr} 4 & -1 \\ 0 & 2 \end{array}\right) \end{equation*}$, $C=\begin{equation*} \left(\begin{array}{rrr} 1 & 4 & 2 \\ 3 & 1 & 5 \end{array}\right) \end{equation*}$, $D=\begin{equation*} \left(\begin{array}{rrR} 1 & 5 & 2 \\ -1 & 0 & 1\\ 3 & 2 & 4 \end{array}\right) \end{equation*}$, $E=\begin{equation*} \left(\begin{array}{rrr} 6 & 1 & 3 \\ -1 & 1 & 2\\ 4 & 1 & 3 \end{array}\right) \end{equation*}.$

Calcula, si es posible: $DA-A$, $-7E$, $A(BC)$, $(4B)C+2B.$

$2.$ Una matriz cuadrada $A$ es diagonal si todos los elementos que están fuera de la diagonal principal son cero ($A_{ij}=0$ si $i\neq j$). ¿Qué ocurre al multiplicar dos matrices diagonales?

$3.$ Sea $A \in \mathscr M_{n\times n}(\mathbb R)$, dado $n\in \mathbb N^+$ definimos $A^n$ como el producto de $A$ consigo misma $n$ veces. Demuestra o da un contraejemplo para las siguientes afirmaciones:

$i)$ $(AB)^2=A^2B^2$

$ii)$ $(A+B)^2=A^2+2AB+B^2$

$4.$ La traza de una matriz cuadrada $A$ es la suma de los elementos de su diagonal y se denota por $tr(A)$. Calcula la traza de las matrices cuadradas del ejercicio $1.$

$5.$ Sean $A,B \in \mathscr M_{m\times n}(\mathbb R)$ invertibles. ¿Puedes construir una matriz inversa para $AB$ usando $A^{-1}$ y $B^{-1}$?.

$6.$ Sea $A=\begin{equation*} \left(\begin{array}{rr} a & b \\ c & d \end{array}\right) \end{equation*}$. Demuestra que si $ad-bc\neq 0$, entonces $A=\frac{1}{ad-bc}\begin{equation*} \left(\begin{array}{rr} d & -b \\- c & a \end{array}\right) \end{equation*}$ es la matriz inversa de $A$.

Más adelante

En la siguiente nota veremos las operaciones elementales por renglones para matrices, definiremos una equivalencia por renglones en las matrices y notaremos que las operaciones elementales por matrices pueden expresarse como multiplicaciones por matrices adecuadas.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 33. Matrices.

Enlace a la nota siguiente. Nota 35. Operaciones elementales, matrices equivalentes y matrices elementales.

Nota 35. Operaciones elementales, matrices equivalentes y matrices elementales.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Las operaciones elementales son transformaciones que se pueden aplicar a las filas de una matriz con el objetivo de simplificarla o resolver sistemas de ecuaciones lineales. Estas operaciones incluyen intercambiar dos filas, multiplicar una fila por un número distinto de cero y sumar un múltiplo de una fila a otra fila.

Dos matrices se consideran equivalentes si se pueden obtener una a partir de la otra mediante la aplicación de un conjunto finito de operaciones elementales. Las matrices equivalentes tienen propiedades algebraicas y geométricas similares.

Las matrices elementales son matrices cuadradas que se pueden obtener mediante la aplicación de una sola operación elemental a una matriz identidad. Existen tres tipos de matrices elementales: de intercambio de filas, de multiplicación por un escalar y de suma de un múltiplo de una fila a otra fila. Las matrices elementales se utilizan en la eliminación gaussiana y en la resolución de sistemas de ecuaciones lineales.

Operaciones elementales de renglones

Sean $A\in \mathscr M_{m\times n}(\mathbb R),$ $\lambda \in\mathbb{R}$ con $\lambda\neq 0$, $r,s\in\{1,\dots , m\}$. Las operaciones elementales por renglones que podemos realizar en $A$ son:

$1.$ Intercambiar dos renglones $r$ y $s$.

$2.$ Multiplicar el renglón $r$ por el escalar $\lambda \in \mathbb R,\,\,\lambda\neq 0.$

$3.$ Sumar al renglón $r$, $\lambda$ veces el renglón $s$, con $\lambda \in \mathbb R.$

Observación

Cada operación elemental tiene una operación elemental inversa del mismo tipo.

Ejemplos

$1.$ Considera la matriz:

$A=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 4 & 5 & 6 \end{array} \right) \end{equation*}$.

Sea $e$ la operación elemental de sumar al primer renglón $3$ veces el segundo.

$e(A)= \begin{equation*} \left(\begin{array}{rrr} 13 & 17 & 21\\ 4 & 5 & 6 \end{array} \right) \end{equation*}.$

$2.$ Considera la matriz:

$B=\begin{equation*} \left(\begin{array}{rr} -1 & 0\\ 2 & 4 \\ 3 & 5 \end{array} \right) \end{equation*}$.

Sea $e$ la operación elemental que intercambia los renglones $1$ y $3.$

$e(B)=\begin{equation*} \left(\begin{array}{rr} 3 & 5\\ 2 & 4 \\ -1 & 0 \end{array} \right) \end{equation*}$.

$3.$ Considera la matriz:

$C=\begin{equation*} \left(\begin{array}{rrrr} 3 & -6 & 12 & 9\\ 1 & 3 & -2 & 4 \end{array} \right) \end{equation*}$.

Sea $e$ la operación elemental que multiplica al primer renglón por $\frac{1}{3}.$

$e(C)=\begin{equation*} \left(\begin{array}{rrrr} 1 & -2 & 4 & 3\\ 1 & 3 & -2 & 4 \end{array} \right) \end{equation*}$.

Definición

Sean $A,B\in \mathscr M_{m\times n}(\mathbb R).$ Decimos que $B$ es equivalente por renglones a $A$ si $B$ se obtiene de $A$ mediante una sucesión finita de operaciones elementales.

Notación

$A\sim B$ denota que $B$ es equivalente a $A.$

Para ser más precisos, si $B$ se obtiene de $A$ intercambiando los renglones $r$ y $s$, lo denotaremos por ${\Large{A}} \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_r\leftrightarrow R_s} \end{array} \Large{B},$ si $B$ se obtiene de $A$ multiplicando el renglón $r$ por el escalar $\lambda$, lo denotaremos por ${\Large{A}} \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{\lambda R_r} \end{array} \Large{B},$ y si $B$ se obtiene de $A$ sumando al renglón $r$, $\lambda$ veces el renglón $s$, lo denotaremos por ${\Large{A}} \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_r\rightarrow R_r+\lambda R_s} \end{array} \Large{B}$.

Definición

Sea $E\in \mathscr M_{n\times n}(\mathbb R)$. Decimos que $E$ es una matriz elemental si se obtiene de la matriz identidad $I_n$ aplicando una sola operación elemental.

Ejemplos

$1.$ Las siguientes matrices son equivalentes

$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 1 \end{array} \right) \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_1\leftrightarrow R_2} \end{array} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \end{equation*}$.

La matriz $\begin{equation*} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \end{equation*}$ es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.

Considera la matriz $\begin{equation*} A=\left(\begin{array}{rr} a & b\\ c & d \end{array} \right) \end{equation*}$.

Si intercambiamos sus renglones obtenemos la matriz equivalente $\begin{equation*} \left(\begin{array}{rr} c & d\\ a & b \end{array} \right) \end{equation*}$.

Observa que ésta se obtiene multiplicando la matriz elemental $\begin{equation*} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \end{equation*}$ por la matriz $A$:

$\begin{equation*} \left(\begin{array}{rr} 0 & 1\\ 1 & 0 \end{array} \right) \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) =\left(\begin{array}{rr} c & d\\ a & b \end{array} \right) \end{equation*}$.

$2.$ Las siguientes matrices son equivalentes

$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 1 \end{array} \right) \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{5 R_2} \end{array} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \end{equation*}$.

La matriz $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \end{equation*}$ es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.

Considera la matriz $\begin{equation*} A= \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) \end{equation*}$.

Si multiplicamos el segundo renglón por $5$ obtenemos la matriz equivalente $\begin{equation*} \left(\begin{array}{rr} a & b\\ 5c & 5d \end{array} \right) \end{equation*}$.

Observa que ésta se obtiene multiplicando la matriz elemental $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \end{equation*}$ por la matriz $A$:

$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 5 \end{array} \right) \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) = \left(\begin{array}{rr} a & b\\ 5c & 5d \end{array} \right) \end{equation*}$.

$3.$ Las siguientes matrices son equivalentes

$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ 0 & 1 \end{array} \right) \begin{array}{c} \phantom{nnn}\\ \sim\\ \small{R_2 \rightarrow R_2+(-2)R_1} \end{array} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \end{equation*}$.

La matriz $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \end{equation*}$ es una matriz elemental, pues se obtiene de la identidad aplicando una sola operación elemental.

Considera la matriz $\begin{equation*} A= \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) .\end{equation*}$

Si sumamos al segundo renglón $-2$ veces el primero obtenemos la matriz equivalente $\begin{equation*} \left(\begin{array}{rr} a & b\\ -2a+c & -2b+d \end{array} \right) \end{equation*}$.

Observa que ésta se obtiene multiplicando la matriz elemental $\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \end{equation*}$ por la matriz $A$:

$\begin{equation*} \left(\begin{array}{rr} 1 & 0\\ -2 & 1 \end{array} \right) \left(\begin{array}{rr} a & b\\ c & d \end{array} \right) =\left(\begin{array}{rr} a & b\\ -2a+c & -2b+d \end{array} \right) \end{equation*}$.

Observación 1

Sea $A \in \mathscr M_{m\times n}(\mathbb R)$ y $e$ una operación elemental, consideremos la matriz elemental $e(I_m)$ que se obtiene de $I_m$ aplicando $e$. Entonces:

$e(I_m)A=e(A)$.

Observación 2

Sean $A,B\in \mathscr M_{m\times n}(\mathbb R)$ tales que $A\sim B.$ Entonces existen $E_1,\dotsc,E_t$ matrices elementales, $t\in \mathbb N^+$, tales que:

$B=E_t\cdots E_2 E_1 A$.

Ejemplo

Matrices
equivalentes
Operación
elemental
$A=\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 2 & -1 & -7\\ -5 & 6 & 26 \end{array} \right) \end{equation*}\sim$$e_1: R_2\rightarrow R_2+(-2)R_1$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & -7 & -17\\ -5 & 6 & 26 \end{array} \right) \end{equation*}\sim$$e_2: R_3\rightarrow R_3+5R_1$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & -7 & -17\\ 0 & 21 & 51 \end{array} \right) \end{equation*}\sim$$e_3: R_3\rightarrow R_3+3R_2$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & -7 & -17\\ 0 & 0 & 0 \phantom{.}\end{array} \right) \end{equation*}\sim$$e_4: (-\frac{1}{7})R_2$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 0 & 1 & \frac{17}{7}\\ 0 & 0 & 0 \phantom{.}\end{array} \right) \end{equation*}\sim$$e_5: R_1\rightarrow R_1+(-3)R_2$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & -\frac{16}{7}\\ 0 & 1 & \frac{17}{7}\\ 0 & 0 & 0 \phantom{.}\end{array} \right) \end{equation*}=B$

Por la observación 2 tenemos que:

$\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & -\frac{16}{7}\\ 0 & 1 & \frac{17}{7}\\ 0 & 0 & 0\phantom{.} \end{array} \right) \end{equation*}=$ $\begin{equation*} \left(\begin{array}{rrr} 1 & -3 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & -\frac{1}{7} & 0\\ 0 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 3 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ 0 & 1 & 0\\ 5 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & 0\\ -2 & 1 & 0\\ 0 & 0 & 1 \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{rrr} 1 & 3 & 5\\ 2 & -1 & -7\\ -5 & 6 & 26 \end{array} \right) \end{equation*}.$

De esta forma, si $E_t=e_t(I_3)$ para cada $t\in\{1,2,3,4,5\}$:

$B=E_5 E_4 E_3 E_2 E_1 A$.

Tarea Moral

$1.$ Para cada operación elemental describe cuál es su operación inversa, analiza si es una operación elemental y en su caso de qué tipo es.

$2.$ Escribe un ejemplo de una matriz elemental de tamaño $2\times 2$, una de tamaño $3\times 3$ y una de tamaño $4\times 4.$

$3.$ Sea $E$ una matriz elemental:

$i)$ ¿Es $E$ invertible?

$ii)$ En caso que lo sea ¿Cuál será su inversa?

$4.$ Sea $A\in \mathscr M_{m\times n}(\mathbb R)$ y $e$ una operación elemental de matrices. Demuestra que $e(I_m)A=e(A).$

$5.$ Sea $A\in \mathscr M_{n\times n}(\mathbb R)$ si $A\sim I_n$:

$i)$ ¿Cómo queda expresada $A$ en términos de $I_n$ y de matrices elementales?

$ii)$ ¿Cómo queda expresada $I_n$ en términos de $A$ y de matrices elementales?

Más adelante

En la siguiente nota daremos la definición de lo que es una matriz escalonada reducida por renglones, y veremos cualquier matriz $A$ es equivalente a una de estas matrices escalonadas reducida por renglones.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 34. Multiplicación de matrices, identidad, inversas y transpuesta.

Enlace a la nota siguiente. Nota 36. Matriz escalonada reducida por renglones.

Nota 36. Matriz escalonada reducida por renglones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Recordemos que las matrices pueden ser pensadas como tablas de datos, así que es conveniente encontrar la forma de guardar información en ellas pero procurando que las matrices que usemos sean lo más sencillas posibles. Con esa idea en mente, en esta nota daremos la definición de lo que es una matriz escalonada reducida por renglones, y veremos que toda matriz es equivalente a uno de estos tipos particulares de matrices.

Definición

Sea $A\in \mathscr M_{m\times n}(\mathbb R).$ Decimos que $A$ es una matriz escalonada reducida por renglones si $A$ es la matriz de ceros o existe $r\in \set{1,\dotsc, m}$ tal que:

$i)$ Los primeros $r$ renglones de $A$ son los renglones no nulos, debajo de ellos sólo hay ceros.

$ii)$ Si un renglón es no nulo, su primer elemento distinto de cero es $1$, y en la columna donde se encuentra este $1$ todos los otros elementos son cero.

$iii)$ Para cada $i\in \set{1,\dotsc, r}$ sea $k_i$ la columna donde se encuentra el primer elemento no nulo del renglón $i$, entonces $k_1< k_2<\cdots <k_r$.

Ejemplo

$R=\begin{equation*} \left(\begin{array}{rrrrrrrr} \colorbox{cyan}{1} & \colorbox{cyan}{7} &\colorbox{cyan}{0} & \colorbox{cyan}{0} &\colorbox{cyan}{ $-1$}& \colorbox{cyan}{0} & \colorbox{cyan}{2} & \colorbox{cyan}{4}\\ 0 & 0 & \colorbox{cyan}{1} & \colorbox{cyan}{0} & \colorbox{cyan}{3} & \colorbox{cyan}{3} & \colorbox{cyan}{1} & \colorbox{cyan}{2} \\0 & 0 & 0 & \colorbox{cyan}{1} & \colorbox{cyan}{7} & \colorbox{cyan}{5} & \colorbox{cyan}{3} & \colorbox{cyan}{4} \\ 0 & 0 & 0 & 0 & 0& 0 & 0 & 0 \end{array} \right) \end{equation*}.$

Hemos marcado en azul el primer elemento no nulo de cada renglón y los elementos que se encuentran a su derecha, para observar como éstos dan lugar a una forma escalonada. De ahí el nombre dado a las matrices que acabamos de definir.

Veamos que $R$ cumple la definición de ser escalonada reducida por renglones:

$i)$ Los primeros $3$ renglones de $A$ son los renglones no nulos, debajo de ellos sólo hay ceros, así, en este caso $r=3$.

$ii)$ Todo renglón no nulo tiene como primer elemento distinto de cero al $1$, y en la columna donde se encuentra este $1$ todos los otros elementos son cero.

$iii)$ Para cada $i\in \set{1,2, 3}$ sea $k_i$ la columna donde se encuentra el primer elemento no nulo del renglón $i$, entonces

$k_1$ es la columna donde se encuentra el primer elemento no nulo del renglón $1$, $k_1=1$.

$k_2$ es la columna donde se encuentra el primer elemento no nulo del renglón $2$, $k_2=3$.

$k_3$ es la columna donde se encuentra el primer elemento no nulo del renglón $3$, $k_3=4$.

Así, $k_1<k_2<k_3$.

Teorema

Toda matriz $A\in \mathscr M_{m\times n}(\mathbb R)$ es equivalente por renglones a una matriz escalonada reducida por renglones.

Observación

Sea $A\in \mathscr M_{m\times n}(\mathbb R).$ Toda columna no nula de $A$ se puede transformar en cualquier vector canónico de $\mathbb R^m$ con operaciones elementales.

Demostración del teorema

Dado que por definición la matriz nula es escalonada reducida por renglones, basta probar el resultado para las matrices no nulas. La prueba sea hará por inducción sobre $n.$

Base de inducción

$n=1$ se cumple por la observación.

Hipótesis de inducción

Supongamos que toda matriz $m\times n$ es equivalente a una matriz escalonada reducida por renglones.

Sea $A\in \mathscr M_{m\times (n+1)}(\mathbb R)$, consideremos la matriz $\tilde {A}$, que se obtiene de $A$ quitando la última columna. Como $\tilde{A} \in \mathscr M_{m\times n}(\mathbb R)$, por hipotesis de inducción $\tilde{A}$ es equivalente a una matriz $\tilde {R}$ escalonada reducida por renglones.

Sea $B$ la matriz que se obtiene de $A$ aplicando las operaciones que llevan a $\tilde {A}$ en $\tilde{R}$. Veamos cómo es $B$:

Si $\tilde{R}$ es nula, en $B$ sólo la ultima columna es no nula, entonces como consecuencia de la observación $B$ es equivalente a una matriz escalonada reducida por renglones.

Si $\tilde {R}$ es no nula, sea $r$ el número de renglones no nulos de $\tilde{R}$. En el caso en que $b_{r+1\,n+1}=\cdots =b_{m\,n+1}=0$, $B$ es escalonada reducida por renglones. En caso contrario, por la observación, la última columna de $B$ se puede transformar mediante operaciones elementales en el $(r+1)-ésimo$ vector canónico, y aplicando dichas operaciones elementales a $B$ obtenemos una matriz $R$. Además, observemos que estas últimas operaciones elementales no modifican las primeras $n$ columnas, por lo que $R$ es una matriz escalonada reducida por renglones. Así $A\sim B$ y $B\sim R$, entonces $A\sim R$, con $R$ una matriz escalonada reducida por renglones.

Ejemplo

Matrices equivalentes Operaciones elementales
$\begin{equation*} \left(\begin{array}{rrrrr} 0 & 2 & 8 & 1 & 3\\0 & 1 & 4 & 1 & 1\\ 0 & -3 & -12 & 0 & -3\\ 0 & 2 & 8 & -1 & 2 \\ \end{array} \right) \end{equation*}\sim$$R_1\leftrightarrow R_2$
$\begin{equation*} \left(\begin{array}{rrrrr} 0 & 1 & 4 & 1 & 1\\0 & 2 & 8 & 1 & 3\\ 0 & -3 & -12 & 0 & -3\\ 0 & 2 & 8 & -1 & 2 \\ \end{array} \right) \end{equation*}\sim$$R_2\rightarrow R_2+(-2)R_1$
$R_3\rightarrow R_3+(3)R_1$
$R_4\rightarrow R_4+(-2)R_1$
$\begin{equation*} \left(\begin{array}{rrrrr} 0 & 1 & 4 & 1 & 1\\0 & 0 & 0 & -1 & 1\\ 0 & 0 & 0 & 3 & 0\\ 0 & 0 & 0 & -3 & 0 \\ \end{array} \right) \end{equation*}\sim$$R_2\leftrightarrow R_3$
$\begin{equation*} \left(\begin{array}{rrrrr} 0 & 1 & 4 & 1 & 1\\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -1 & 1\\ 0 & 0 & 0 & -3 & 0 \\ \end{array} \right) \end{equation*}\sim$$\frac{1}{3}R_2$
$\frac{1}{3}R_4$
$\begin{equation*} \left(\begin{array}{rrrrr} 0 & 1 & 4 & 1 & 1\\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1\\ 0 & 0 & 0 & -1 & 0 \\ \end{array} \right) \end{equation*}\sim$$R_3\rightarrow R_3+R_2$
$R_4\rightarrow R_4+R_2$
$\begin{equation*} \left(\begin{array}{rrrrr} 0 & 1 & 4 & 1 & 1\\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 \\ \end{array} \right) \end{equation*}\sim$$R_1\rightarrow R_1-R_2$
$R_1\rightarrow R_1-R_3$
$\begin{equation*} \left(\begin{array}{rrrrr} 0 & 1 & 4 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & 0 & 0 & 0 \\ \end{array} \right) \end{equation*}$Que es una matriz escalonada reducida por renglones.

Tarea Moral

$1.$ Escalona la matriz $A=\begin{equation*} \left(\begin{array}{rrrr} 1 & 2 & 5 & 13\\ -2 & -4 & -9 & 23 \\ 5 & 10 & 24 & 62 \end{array} \right) \end{equation*}$ y expresa el resultado como producto de matrices elementales.

$2.$ Describe la forma de todas las posibles matrices $2\times 2$ escalonadas reducida por renglones. ¿Y si ahora consideramos el mismo problema para matrices $3\times 3$.

$3.$ Sea $A\in \mathscr M_{m\times n}(\mathbb R)$. ¿Cómo puedes transformar una columna no nula de $A$ en cualquier vector canónico de $\mathbb R^m$ con operaciones elementales?

$4.$ Escalona la matriz hasta llevarla a una matriz escalonada reducida por renglones.

$A= \begin{equation*} \left(\begin{array}{rrr} 2 & 2 & -10\\ 3 & -1 & -1 \\ 4 & -1 & -1\\ -2 & 1 & 2 \end{array} \right) \end{equation*}$

$5.$ Encuentra el rango de las matrices del ejercicio $1$y $4$.

Mas adelante

En la siguiente nota daremos la definición de lo que es el rango de una matriz, y veremos que los rangos de una matriz $A$ y de una equivalente $B$ a $A$ que sea escalonada reducida por renglones es el mismo.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 35. Operaciones elementales, matrices equivalentes y matrices elementales.

Enlace a la nota siguiente. Nota 37. El rango de una matriz.

Nota 37. El rango de una matriz.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

El rango de una matriz es una medida de la «cantidad» de información que contiene la matriz. Formalmente, el rango de una matriz es la dimensión del espacio generado por sus renglones (o, equivalentemente, por sus columnas).

En términos más simples, el rango de una matriz se refiere al número de renglones o columnas que son linealmente independientes entre sí. En otras palabras, si se tiene una matriz $A$, su rango es el mayor número de vectores linealmente independientes que podemos encontrar entre sus renglones, o bien entre sus columnas.

El rango de una matriz es importante en muchas áreas de las matemáticas y la ciencia, incluyendo la teoría de sistemas lineales y la estadística multivariante. Por ejemplo, el rango de una matriz puede ser utilizado para determinar si un conjunto de ecuaciones lineales tiene una solución única, y también puede ser utilizado para identificar patrones en conjuntos de datos multivariados.

Es importante tener en cuenta que el rango de una matriz no cambia si se realiza una operación elemental de renglón o columna, por ejemplo, multiplicar un renglón por una constante no nula, intercambiar dos filas, o sumar $\lambda$ veces un renglón a otro.

Definición

Sea $A\in \mathscr M_{m\times n}(\mathbb R).$ Si $R_1,\dotsc,R_m\in \mathbb R^n$ son los renglones de $A$, entonces el rango de $A$ es:

$rk\,A=dim \langle R_1,\dotsc,R_m \rangle .$

Lema

Sea $A,B \in \mathscr M_{m\times n}(\mathbb R).$ Si $A\sim B$ entonces $rk\,A=rk\,B.$

Demostración

Sea $A\in \mathscr M_{m\times n}(\mathbb R).$ Basta ver que si $e$ es una operación elemental entonces $rk\,A=rk\,e(A).$

$1.$ Sea $e$ el intercambio de renglones $r$ y $s$. Si $R_1,\dotsc,R_r,\dotsc,R_s,\dotsc,R_m$ son los renglones de $A$ entonces los renglones de $e(A)$ son los mismos sólo que $R_r$ y $R_s$ cambian de lugar, así:

$rk\,e(A)=dim\langle R_1,\dotsc,R_r,\dotsc,R_s,\dotsc,R_m \rangle =rk\,A$

$2.$ Sea $e$ la operación elemental que multiplica el renglón $r$ por un real $\lambda$ no nulo. Si $R_1,\dotsc,R_r,\dotsc,R_m$ son los renglones de $A$ entonces $R_1,\dotsc,\lambda R_r,\dotsc,R_m$ son los renglones de $e(A)$. Como $\lambda R_r\in \langle R_1,\dotsc, R_r,\dotsc,R_m \rangle$, entonces:

$\langle R_1,\dotsc,\lambda R_r,\dotsc,R_m \rangle \subseteq \langle R_1,\dotsc, R_r,\dotsc,R_m \rangle$

Como $\lambda \neq 0$ tenemos que $R_r=\lambda^{-1}(\lambda R_r)\in \langle R_1,\dotsc,\lambda R_r,\dotsc,R_m \rangle$ y así:

$\langle R_1,\dotsc,R_r,\dotsc,R_m \rangle \subseteq \langle R_1,\dotsc,\lambda R_r,\dotsc,R_m \rangle$

Por lo que $\langle R_1,\dotsc,R_r,\dotsc,R_m \rangle = \langle R_1,\dotsc,\lambda R_r,\dotsc,R_m \rangle$ y entonces

$rk\,A=dim \langle R_1,\dotsc,R_r,\dotsc,R_m \rangle = dim \langle R_1,\dotsc,\lambda R_r,\dotsc,R_m \rangle=rk\,e(A) .$

$3.$ Sea $e$ la operación elemental que suma al renglón $r$, $\lambda$ veces el $s$, con $\lambda \in \mathbb R.$

Si $R_1,\dotsc,R_r,\dotsc,R_s,\dotsc,R_m$ son los renglones de $A$, entonces $R_1,\dotsc,R_r+\lambda R_s,\dotsc,R_s,\dotsc,R_m$ son los renglones de $e(A)$

Como $R_r+\lambda R_s\in \langle R_1,\dotsc,R_r,\dotsc,R_s,\dotsc,R_m \rangle $ tenemos que:

$\langle R_1,\dotsc,R_r+\lambda R_s,\dotsc,R_s,\dotsc,R_m \rangle \subseteq \langle R_1,\dotsc,R_r,\dotsc,R_s,\dotsc,R_m \rangle$

Además $R_r=(R_r+\lambda R_s)+(-\lambda)R_s \in \langle R_1,\dotsc,R_r+\lambda R_s ,\dotsc,R_s,\dotsc,R_m \rangle$ y así:

$\langle R_1,\dotsc,R_r,\dotsc,R_s,\dotsc,R_m \rangle \subseteq \langle R_1,\dotsc,R_r+\lambda R_s,\dotsc,R_s,\dotsc,R_m \rangle$

Concluimos que:

\begin{align*}rk\,A&=dim \langle R_1,\dotsc,R_r,\dotsc,R_s,\dotsc,R_m \rangle \\ &= dim \langle R_1,\dotsc,R_r+\lambda R_s,\dotsc,R_s,\dotsc,R_m \rangle =rk\,e(A)\end{align*}

$\square$

Corolario

Sea $A\in \mathscr M_{m\times n}(\mathbb R).$ Si $A$ es equivalente a una matriz $R$ escalonada reducida por renglones, entonces $rk\,A=rk\,R.$

Observación: Si $R\in \mathscr M_{m\times n}(\mathbb R)$ es escalonada reducida por renglones y tiene $r$ renglones no nulos, entonces éstos forman una base para el espacio generado por los renglones de $R$ y en consecuencia $rk\,R=r.$

Así, el rango de una matriz $A\in \mathscr M_{m\times n}(\mathbb R)$, denotado por $rk\,A$, es el número de renglones no nulos que quedan al escalonar la matriz $A$.

Ejemplos

$1.$

Matrices equivalentesExplicación
$A=\begin{equation*} \left(\begin{array}{rr} 1 & 3\\ -2 & -6\\ 3 & 9 \end{array} \right) \end{equation*}\sim$$R_2\to R_2+2R_1$
$R_3\to R_3+(-3)R_1$
$\begin{equation*} \left(\begin{array}{rr} 1 & 3\\ 0 & 0\\ 0 & 0 \end{array} \right) \end{equation*}$.$rk\,A=1$

$2$

Matrices equivalentesExplicación
$A=\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 4 & -1 & 5\\ 5 & 1 & 8 \end{array} \right) \end{equation*}\sim$$R_2\to R_2+(-4)R_1$
$R_3\to R_3+(-5)R_1$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 0 & -9 & -7\\ 0 & -9 & -7 \end{array} \right) \end{equation*}\sim$$R_3\to R_3+(-1)R_1$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 0 & -9 & -7\\ 0 & 0 & 0 \end{array} \right) \end{equation*}\sim$$-\frac{1}{9}R_2$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 2 & 3\\ 0 & 1 & \frac{7}{9}\\ 0 & 0 & 0 \end{array} \right) \end{equation*}\sim$$R_1\to R_1+(-2)R_2$
$\begin{equation*} \left(\begin{array}{rrr} 1 & 0 & \frac{13}{9}\\ 0 & 1 & \frac{7}{9}\\ 0 & 0 & 0 \end{array} \right) \end{equation*}\sim$$rk\, B=2$

Nota

El rango por columnas se define de forma análoga como la dimensión del espacio generado por las columnas de una matriz $A$. Aunque el espacio de renglones de $A$ y el espacio de columnas de $A$ son en general distintos, incluso los renglones y las columnas de $A$ no tienen siempre el mismo número de entradas, se puede probar que la dimensión del espacio que generan los renglones de una matriz coincide con la dimensión del espacio que generan sus columnas, es decir el rango por renglones coincide con el rango por columnas.

Tarea Moral

$1.$ Obtén el rango de las siguientes matrices.

$a.$

$A=\begin{equation*} \left(\begin{array}{rrrr} 1 & 2 & 5 & 13\\ -2 & -4 & -9 & 23 \\ 5 & 10 & 24 & 62 \end{array} \right) \end{equation*}$

$b.$

$B= \begin{equation*} \left(\begin{array}{rrr} 2 & 2 & -10\\ 3 & -1 & -1 \\ 4 & -1 & -1\\ -2 & 1 & 2 \end{array} \right) \end{equation*}$

$2.$

En los ejemplos 1 y 2 analiza geométricamente cómo es el espacio generado por los renglones de $A$ y cómo es el espacio generado por las columnas de $A$.

Más adelante

En las siguientes dos notas veremos la teoría y los ejemplos para resolver sistemas de ecuaciones lineales.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 36. Matriz escalonada reducida por renglones.

Enlace a la nota siguiente. Nota 38. Sistemas de ecuaciones.

Nota 38. Sistemas de ecuaciones.

Por Julio César Soria Ramírez

(Trabajo de titulación asesorado por la Dra. Diana Avella Alaminos)

Introducción

Un sistema de $m$ ecuaciones lineales con $n$ incógnitas es un conjunto de $m$ ecuaciones lineales que involucran $n$ variables desconocidas. El objetivo de este tipo de sistemas es encontrar los valores de las incógnitas que satisfagan simultáneamente todas las ecuaciones del sistema.

Cada una de las ecuaciones en el sistema representa una restricción en las posibles soluciones del mismo, por lo que la solución del sistema debe cumplir con todas las restricciones impuestas por las ecuaciones. Las soluciones de este tipo de sistemas pueden ser únicas, no existir, o puede haber múltiples soluciones.

Resolver un sistema de ecuaciones lineales puede ser útil en diferentes áreas, como en la física, la ingeniería, la economía, entre otras. Existen diferentes métodos para resolver este tipo de sistemas, como el método de eliminación de Gauss, el método de eliminación de Gauss-Jordan, y el método de la matriz inversa, entre otros.

Definición

Un sistema de $m$ ecuaciones lineales con $n$ incógnitas es:

$\begin{array}{cccc} &a_{11}x_1+ a_{12}x_2+\dotsc +a_{1n}x_n &=&b_1 \\ && \vdots& \\ &a_{m1}x_1+ a_{m2}x_2+\dotsc+a_{mn}x_n &=&b_n \end{array}$

con $a_{ij}\in \mathbb R$ para todo $i\in \set{1,\dotsc,m}$ y para todo $j\in \set{1,\dotsc,n}$. Estos números son llamados los coeficientes.

Si $b_1=b_2=\cdots=b_m=0$ decimos que es un sistema homogéneo.

Ejemplo

$\begin{array}{ccccc} 3x_1&-2x_2&+\frac{1}{4}x_3&+x_4 &=0 \\-2x_1&+x_2&&+5x_4 &=0 \\ 7x_1&+8x_2&& &=0 \end{array}$

Éste es un sistema de $3$ ecuaciones lineales con $4$ incógnitas.

Podemos reescribir el sistema en forma matricial:

$\begin{equation*} \left(\begin{array}{c} a_{11}x_1+\dotsc+a_{1n}x_n \\ \vdots \\a_{m1}x_1+\dotsc+a_{mn}x_n \end{array} \right) \end{equation*}$ $=\begin{equation*} \left(\begin{array}{c} b_1\\ \vdots \\ b_m \end{array} \right) \end{equation*}$

$\begin{equation*} \left(\begin{array}{ccc} a_{11} & \dotsc & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dotsc & a_{mn} \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{c} x_1\\ \vdots \\ x_n \end{array} \right) \end{equation*} $ $=\begin{equation*} \left(\begin{array}{c} b_1\\ \vdots \\ b_m \end{array} \right) \end{equation*}$

Si $A=\begin{equation*} \left(\begin{array}{ccc} a_{11} & \dotsc & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dotsc & a_{mn} \end{array} \right) \end{equation*}$, $X=\begin{equation*} \left(\begin{array}{c} x_1\\ \vdots \\ x_n \end{array} \right) \end{equation*} $ y $B=\begin{equation*} \left(\begin{array}{c} b_1\\ \vdots \\ b_m \end{array} \right) \end{equation*}$. El sistema quedaria como:

$AX=B.$

A la matriz $A$ se le llama la matriz de coeficientes del sistema.

La matriz aumentada del sistema es:

$\begin{equation*} \left(\begin{array}{ccc|c} a_{11} & \cdots & a_{1n} & b_1 \\ \vdots & \ddots & \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} & b_m \end{array}\right) \end{equation*}$$=\left( A|B \right)_{m\times (n+1)}$

Decimos que un vector $S=(s_1\dotsc,s_n)\in \mathbb R^n$ es solución del sistema si $AS=B$.

Observación 1

Si $A^1,\dotsc, A^n\in \mathbb R^m$ son las columnas de $A$, entonces $S\in \mathbb R^n$ es una solución del sistema si y sólo si $s_1 A^1+s_2 A^2+\cdots+s_n A^n=B.$

Demostración

$S=(s_1,\dotsc,s_n)\in \mathbb R^n$ es solución de $AX=B\Longleftrightarrow AS=B$

$\Longleftrightarrow$ $\begin{equation*} \left(\begin{array}{c} a_{11}s_1+\dotsc+a_{1n}s_n \\ \vdots \\a_{m1}s_1+\dotsc+a_{mn}s_n \end{array} \right) \end{equation*}$ $\begin{equation*} \left(\begin{array}{c} b_1\\ \vdots \\ b_m \end{array} \right) \end{equation*}$

$\Longleftrightarrow$ $s_1 \begin{equation*} \left(\begin{array}{c} a_{11}\\ \vdots \\ a_{m1} \end{array} \right) \end{equation*}$ $+$ $\cdots$ $+$ $s_n\begin{equation*} \left(\begin{array}{r} a_{1n}\\ \vdots \\ a_{mn} \end{array} \right) \end{equation*}$$=\begin{equation*} \left(\begin{array}{c} b_1\\ \vdots \\ b_m \end{array} \right) \end{equation*}$

$\Longleftrightarrow$ $s_1 A^1+s_2 A^2+\cdots+s_n A^n=B.$

Observación 2

Todo sistema homogéneo tiene al menos la solución $S=(0,\dotsc,0)\in \mathbb R^n$, llamada la solución trivial.

Teorema.

Al realizar operaciones elementales en la matriz aumentada de un sistema, el sistema asociado cambia pero las soluciones son las mismas.

Demostración

Sean $A\in \mathscr M_{m\times n}(\mathbb R),\, B\in \mathscr M_{m\times 1}(\mathbb R).$

Consideremos el sistema $AX=B$ y $\left( A|B \right)$ su matriz aumentada. Basta probar que al aplicar una operación elemental $e$ a $\left( A|B \right)$ el sistema asociado tiene las mismas soluciones.

$1)$ Sea $e$ la operación que intercambia los renglones $r$ y $t$. Las ecuaciones del sistema obtenido son las mismas que las del sistema original sólo que en otro orden, así que las soluciones son las mismas.

$2)$ Sea $e$ la operación que multipica el renglón $r$ por $\lambda$ con $\lambda\neq 0.$

Las ecuaciones del sistema obtenido son las mismas que las del sistema original salvo por la ecuación $r$ que queda multiplicada por $\lambda$. Pero $S=(s_1,\dotsc,s_n)\in \mathbb R^n$ cumple que

$\begin{array}{rrr}a_{r1}s_1+\cdots+a_{rn}s_n=b_r & \Longleftrightarrow & \lambda (a_{r1}s_1+\cdots+a_{rn}s_n)=\lambda b_r \\ &\Longleftrightarrow & (\lambda a_{r1})s_1+\cdots+(\lambda a_{rn})s_n=\lambda b_r.\end{array}$

Así, las soluciones de ambos sistemas coinciden.

$3)$ Sea $e$ la operación que suma al renglón $r$, $\lambda$ veces el renglón $t$, con $\lambda \in \mathbb R.$

Las ecuaciones del sistema obtenido son las mismas que las del sistema original salvo por la ecuación $r.$ Pero $S=(s_1,\dotsc,s_n)\in \mathbb R^n$ cumple que:

$\begin{array}{ll}a_{r1}s_1+\cdots+a_{rn}s_n&=b_r\\ a_{t1}s_1+\cdots+a_{tn}s_n&= b_t\end{array}$

si y sólo si

$\begin{array}{ll}(a_{r1}s_1+\cdots+a_{rn}s_n)+\lambda (a_{t1}s_1+\cdots+a_{tn}s_n)&=b_r + \lambda b_t\\ a_{t1}s_1+\cdots+a_{tn}s_n&= b_t\end{array}$

si y sólo si

$\begin{array}{ll}(a_{r1}+\lambda a_{t1})s_1+\cdots+(a_{rn}+\lambda a_{tn})s_n&=b_r + \lambda b_t\\ a_{t1}s_1+\cdots+a_{tn}s_n&= b_t\end{array}$

y por lo tanto las soluciones son las mismas.

Tarea Moral

$1.$ Determina si los siguientes sistemas son lineales. Para aquellos que lo sean expresa al sistema en forma matricial $AX=B$, encuentra una solución y expresa a $B$ como combinación lineal de las columnas de $A$.

$i)$

$\begin{align*} 3x+y &=1\\ -5x+y &=0 \end{align*}$

$ii)$

$\begin{align*} -7\frac{1}{x}-\frac{1}{y} &=1\\ -\frac{1}{x}+6\frac{1}{y} &=0\end{align*}$

$iii)$

$\begin{align*} x-3yz-2xz &=8 \end{align*}$

$iv)$

$\begin{align*} 2x+3y-4z+w &=9\\ y+5z &=1 \end{align*}$

$2.$ ¿Qué ocurre con la última columna de la matriz aumentada de un sistema homogéneo al escalonar la matriz? ¿Es necesario escribir esa última columna al realizar el procedimiento que estudiamos para resolver un sistema homogéneo?

$3.$ Considera a un sistema de ecuaciones en forma matricial $AX=B$. Sea $S_p$ una solución particular del sistema y $S_o$ una solución al sistema $AX=0$.

$i)$ ¿Qué puedes decir de $S_o+S_p$?

$ii)$ ¿Cualquier solución de $AX=B$ será la suma de $S_p$ con alguna solución del sistema $AX=0$?

Más adelante

En la siguiente nota veremos ejemplos de resolución de sistemas de ecuaciones, los caracterizaremos de acuerdo a si tiene o no solución y al número de soluciones.

Enlaces relacionados

Página principal del curso.

Enlace a la nota anterior. Nota 37. El rango de una matriz.

Enlace a la nota siguiente. Nota 39. Ejemplos de sistemas de ecuaciones