Álgebra Superior I: Operaciones de suma y producto escalar con vectores y matrices

Por Eduardo García Caballero

Introducción

Anteriormente definimos qué son los vectores y las matrices con entradas reales. Así mismo, mencionamos que existen distintas operaciones que los involucran. En esta entrada conocerás dos de estas operaciones: la suma de vectores/matrices y el producto escalar.

Suma de vectores

Una de las operaciones más sencillas que involucra a los vectores es su suma. Para sumar dos vectores con entradas reales, debemos asegurarnos de que ambos tengan la misma cantidad de entradas. De este modo, podemos ver que los vectores $(1,0,3)$ y $(-2,\sqrt{5})$ no pueden ser sumados, pero los vectores $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ sí.

Para denotar la suma de dos vectores utilizaremos el símbolo $+$ en medio de ellos. Por ejemplo, la suma de $(7,\frac{1}{2},-5)$ y $(\pi,4,3)$ la escribimos como
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3).
\]

El resultado de esta operación lo obtendremos sumando entrada a entrada los dos vectores originales. Es decir, la primera entrada del nuevo vector será igual a la suma de las primeras entradas de los vectores originales; su segunda entrada será igual a la suma de las segundas entradas de los vectores originales; y así sucesivamente (observemos que, de este modo, el vector resultante tiene el mismo tamaño que los vectores originales). Así, el resultado de sumar $(7,\tfrac{1}{2},-5)$ y $(\pi,4,3)$ es
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{1}{2}+4,-5+3).
\]

Además, ya te habrás dado cuenta de que podemos reducir algunas operaciones de cada entrada del vector (esto por la definición de igualdad de vectores que vimos en la entrada anterior). Así, obtenemos que
\[
(7+\pi,\tfrac{1}{2}+4,-5+3) = (7+\pi, \tfrac{9}{2},-2),
\]
y, al ser la igualdad transitiva, llegamos a que
\[
(7,\tfrac{1}{2},-5)+(\pi,4,3) = (7+\pi, \tfrac{9}{2},-2).
\]

El ejemplo que discutimos aquí es para vectores con tres entradas, pero pudimos hacer exactamente lo mismo con vectores de dos entradas, de cuatro o de más.

Producto escalar de vectores

Otra operación que realizaremos de manera frecuente es el producto escalar. Para efectuar esta operación, requeriremos un número real y un vector, y los denotamos escribiendo primero el número y de manera seguida al vector. De este modo, el producto escalar del número real $4$ y el vector $(3,\sqrt{2},5)$ lo denotaremos por
\[
4(3,\sqrt{2},5).
\]

El resultado es esta operación consiste consiste en multiplicar cada una de las entradas de nuestro vector por el número real escogido. Así, podemos ver que
\[
4(3,\sqrt{2},5) = (4(3), 4(\sqrt{2}), 4(5)),
\]
y, al igual que pasa con la suma, en cada entrada tenemos ahora operaciones en los números reales que podemos simplificar, de modo que
\[
(4(3), 4(\sqrt{2}), 4(5)) = (12,4\sqrt{2},20),
\]
y, por lo tanto,
\[
4(3,\sqrt{2},5) = (12,4\sqrt{2},20).
\]

Al número real por el cual multiplicamos el vector lo denominaremos escalar.

Repaso de propiedades de la suma y producto de números reales

Antes de pasar a ver algunas de las propiedades que cumplen las operaciones vistas anteriormente, será conveniente que repasemos algunas de las propiedades que cumplen los números reales (seguramente estas propiedades las recuerdas de tu curso de Cálculo Diferencial e Integral I). Recordemos que si $a$, $b$ y $c$ son números reales, entonces se cumplen las siguientes propiedades:

Suma:

  • Es asociativa: $(a+b)+c = a+(b+c)$.
  • Es conmutativa: $a+b = b+a$.
  • Tiene neutro: el $0$ es un número real y cumple que $a+0 = 0+a = a$.
  • Tiene inversos: para cada $a$ existe un número real, denotado $-a$, es cual cumple que $a+(-a) = (-a)+a = 0$.

Producto:

  • Es asociativo: $(ab)c = a(bc)$.
  • Es conmutativo: $ab = ba$.
  • Tiene neutro: el $1$ es un número real y cumple que $a(1) = (1)a = a$.
  • Tiene inversos: si $a$ es distinto a $0$, entonces existe un número real, denotado $a^{-1}$, el cual cumple que $a(a^{-1}) = (a^{-1})a = 1$.

Suma y producto:

  • El producto se distribuye sobre la suma: $a(b+c) = ab + ac$ y también $(a+b)c = ac + bc$.

Propiedades de suma y el producto escalar de vectores

En esta sección trabajaremos con vectores en $\mathbb{R}^3$, pero las deducciones son muy parecidas para vectores de cualquier otro tamaño (¿podrías intentarlas para vectores de $\mathbb{R}^4?$).

Primeramente, veamos un ejemplo. Observemos que si $u = (4,6,-2)$ y $v = (1,\tfrac{1}{3},2)$, entonces
\begin{align*}
(4,6,-2) + (1,\tfrac{1}{3}, 2)
&= (4+1,6+\tfrac{1}{3}, -2+2) \\
&= (1+4, \tfrac{1}{3}+6, 2+(-2)) \\
&= (1,\tfrac{1}{3}, 2) + (4,6,-2),
\end{align*}
es decir, $u + v = v+u$. La razón por la cual podemos intercambiar los sumandos en la segunda igualdad es porque las sumas en cada una de las entradas ya son sumas de números reales. Así, la conmutatividad de la suma de reales nos ayudó a ver la conmutatividad de una suma de vectores.

Como puedes ver, para llegar al resultado anterior no nos basamos en ningún valor de $u$ o $v$ en particular. ¡De hecho ni siquiera fue necesario hacer las operaciones! Nos basamos únicamente en las definiciones de igualdad y suma, y en las propiedades de los números reales. Por esta razón, este argumento lo podemos hacer general.

Observemos que cualesquiera vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ cumplen que
\begin{align*}
u+v
&= (u_1,u_2,u_3)+(v_1,v_2,v_3) \\
&= (u_1+v_1,u_2+v_2,u_3+v_3) \\
&= (v_1+u_1,v_2+u_2,v_3+u_3) \\
&= (v_1,v_2,v_3)+(u_1,u_2,u_3) \\
&= v+u.
\end{align*}

Otra propiedad bastante interesante tiene que ver con un vector especial que conocimos anteriormente. Recordarás que en la entrada anterior definimos al vector cero. Como su nombre lo sugiere, este vector juega el papel de elemento neutro de la suma. Recordemos que el vector cero en $\mathbb{R}^3$ es $0=(0,0,0)$. Observemos que si $u = (8,\pi,-10)$, entonces
\[
u+0 = (8,\pi,-10) + (0,0,0) = (8+0,\pi+0,-10+0) = (8,\pi,-10) = u.
\]
Aunque pudiera parecer que en este caso sí simplificamos el resultado de la operación, en realidad otra vez hicimos únicamente uso de las definiciones de igualdad y suma de vectores, y esta vez la propiedad de que el $0$ (número real) es neutro para la suma de números reales.

Entonces, podemos ver que para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que
\[
u+0 = (u_1,u_2,u_3) + (0,0,0) = (u_1+0,u_2+0,u_3+0) = (u_1,u_2,u_3) = u.
\]

Otras dos propiedades que cumple la suma de vectores, y que cuya deducción se deja como ejercicio al lector, son las siguientes:

  • Para cualesquiera vectores $u = (u_1,u_2,u_3)$, $v=(v_1,v_2,v_3)$ y $w=(w_1,w_2,w_3)$ se cumple que $(u+v)+w = u+(v+w)$.
  • Para cualquier vector $u = (u_1,u_2,u_3)$ existe un vector $v$ que cumple $u+v = 0$ (Recuerda que aquí $0$ denota al vector $(0,0,0)$. Basta con decir cuál es el vector $v$ que cumple esa propiedad). Más aún, podemos demostrar que $v$ es único para cada $u$. Por esta razón, al único vector $v$ que cumple esta propiedad lo denotaremos $-u$.

Por otra parte, revisemos algunas de las propiedades que cumplen en conjunto la suma de vectores y el producto escalar de vectores.

Veamos que para el escalar (número real) $r$ y para los vectores $u = (u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ se cumple que
\begin{align*}
r(u+v)
&= r((u_1,u_2,u_3) + (v_1,v_2,v_3)) \\
&= r(u_1+v_1, u_2+v_2, u_3+v_3) \\
&= (r(u_1+v_1), r(u_2+v_2), r(u_3+v_3)) \\
&= (ru_1+rv_1, ru_2+rv_2, ru_3+rv_3) \\
&= (ru_1,ru_2+ru_3) + (rv_1,rv_2,rv_3) \\
&= r(u_1,u_2,u_3) + r(v_1,v_2,v_3) \\
&= ru + rv.
\end{align*}

(¿Qué se está usando en cada igualdad? ¿Una definición? ¿Una propiedad de los números reales?)

Asimismo, para cuales quiera $r$ y $s$ escalares, y para cualquier vector $u = (u_1,u_2,u_3)$ se cumple que $(r+s)u = ru + su$. ¿Puedes ver cómo se deduce esta propiedad?

Aunque estas dos propiedades son muy parecidas, realmente dicen cosas distintas: $r(u+v)$ indica que el producto escalar se distribuye sobre la suma de vectores, mientras que $(r+s)u$ indica que el producto escalar se distribuye sobre la suma de escalares (números reales).

Una última propiedad de la suma de vectores y producto de vectores es la siguiente: si $r$ y $s$ son escalares, y $u=(u_1,u_2,u_3)$ es un vector, entonces
\begin{align*}
r(s(u))
&= r(s(u_1,u_2,u_3)) \\
&= r(su_1, su_2, su_3) \\
&= (r(su_1), r(su_2), r(su_3)) \\
&= ((rs)u_1, (rs)u_2, (rs)u_3) \\
&= (rs)(u_1,u_2,u_3) \\
&= (rs)u.
\end{align*}
Aún cuando pudiera parecer trivial, esta última propiedad es muy interesante, pues observemos que $r(su)$ involucra únicamente productos escalares, mientras que en $(rs)u$ aparecen tanto el producto de números reales como el producto escalar.

Conocer estas propiedades nos permitirá manipular con facilidad las operaciones entre vectores. Así, por ejemplo, para saber cuál es el resultado de $((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)$, no tendremos que recurrir a efectuar cada operación por definición: podemos optar por manipular la expresión para obtener
\begin{align*}
((1,4,-1) + 5(0,3,4)) + 5(1,1,-5)
&= (1,4,-1) + (5(0,3,4) + 5(1,1,-5)) \\
&= (1,4,-1) + 5((0,3,4) + (1,1,-5)) \\
&= (1,4,-1) + 5(1,4,-1) \\
&= 1(1,4,-1) + 5(1,4,-1) \\
&= (1+5)(1,4,-1) \\
&= 6(1,4,-1) \\
&= (6,24,-6).
\end{align*}

¿Puedes ver qué propiedad(es) usamos en cada paso?

Suma de matrices

La suma de matrices con entradas reales es muy parecida a la suma de vectores. Al igual que con los vectores, tenemos que asegurarnos que las dos matrices que deseamos sumar tengan el mismo tamaño, es decir, que tengan el mismo número de filas y el mismo de columnas. La suma de matrices también la denotaremos utilizando el símbolo $+$ y de igual manera la realizaremos entrada a entrada, según la fila y columna que estemos calculando.

Así, por ejemplo, la suma de
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
\qquad
\text{y}
\qquad
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
\]
es
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
8+(-3) & 0+1 & \sqrt{5}+\sqrt{5} \\
-2+4 & 10+\pi & 0+(-2)
\end{pmatrix},
\]
lo cual queda simplificado como,
\[
\begin{pmatrix}
8 & 0 & \sqrt{5} \\
-2 & 10 & 0
\end{pmatrix}
+
\begin{pmatrix}
-3 & 1 & \sqrt{5} \\
4 & \pi & -2
\end{pmatrix}
=
\begin{pmatrix}
5 & 1 & 2\sqrt{5} \\
2 & 10+\pi & -2
\end{pmatrix}.
\]

Producto escalar de matrices

A igual que pasa con la suma, también podemos definir el producto escalar de matrices. Como seguramente ya lo habrás imaginado, esta operación se parece mucho al producto escalar de vectores.

Esta operación involucra a un número real y a una matriz. La denotamos colocando al número real seguido de la matriz, y consiste en multiplicar cada entrada de la matriz por dicho número real.

Por ejemplo, el producto escalar de $-3$ y la matriz
\[
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
\]
es
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
(-3)(8) & (-3)3 \\
(-3)(\frac{1}{2}) & (-3)(\pi) \\
(-3)(\frac{1}{3}) & (-3)4
\end{pmatrix},
\]
es decir,
\[
(-3)
\begin{pmatrix}
8 & 3 \\
\frac{1}{2} & \pi \\
\frac{1}{3} & 4
\end{pmatrix}
=
\begin{pmatrix}
-24 & -9 \\
-\tfrac{3}{2} & -3\pi \\
-1 & -12
\end{pmatrix}.
\]

Propiedades de suma y producto escalar de matrices

Veamos algunas propiedades que cumplen la suma y el producto escalar de matrices. Para esto, trabajaremos con matrices con tamaño $2 \times 3$, pero verás que las deducciones para matrices de cualquier otro tamaño son muy parecidas.

Recordemos que la matriz cero de tamaño $2 \times 3$ es
\[
\mathcal{O} = \mathcal{O}_{2 \times 3} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.
\]

Observemos que para cualquier matriz
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\]
se cumple que
\begin{align*}
A + \mathcal{O}
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+0 & a_{12}+0 & a_{13}+0 \\
a_{21}+0 & a_{22}+0 & a_{23}+0
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&= A.
\end{align*}

Por otra parte, dada una matriz $A$, como cada entrada $a_{ij}$ de la matriz es un número real, entonces tienen un respectivo inverso aditivo, es decir, un número $(-a_{ij})$ que cumple que $a_{ij}+(-a_{ij}) = 0$. Así, si definimos
\[
B=
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}.
\]
Entonces, observemos que
\begin{align*}
A + B
&=
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{2_3}
\end{pmatrix}
+
\begin{pmatrix}
(-a_{11}) & (-a_{12}) & (-a_{13}) \\
(-a_{21}) & (-a_{22}) & (-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
a_{11}+(-a_{11}) & a_{12}+(-a_{12}) & a_{13}+(-a_{13}) \\
a_{21}+(-a_{21}) & a_{22}+(-a_{22}) & a_{23}+(-a_{23})
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
\\[5pt]
&=
\mathcal{O}.
\end{align*}

La matriz $B$ la definimos basándonos en la matriz $A$. Entonces, para cada matriz existe una matriz $B$ que cumple que $A + B = \mathcal{O}$. Como te podrás dar cuenta, la matriz $B$ que cumple esta propiedad es única (¿por qué se cumple esto?); por esta razón, a la $B$ que cumple esta propiedad la denotamos como $-A$.

Seguramente notarás que estas dos propiedades se parecen mucho a las que cumple la suma de vectores. ¿Podrías también probar las siguientes propiedades?

Para cuales quiera matrices $A$, $B$ y $C$ de tamaño $2\times 3$ se cumple que

  • $(A+B)+C = A+(B+C)$.
  • $A+B = B+A$.

Por otra parte, el producto escalar de matrices también se comporta de manera similar al producto escalar de vectores.

Si $r$ y $s$ son escalares y
\[
A =
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix},
\]
entonces
\begin{align*}
(r+s)A
&=
(r+s)
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
(r+s)a_{11} & (r+s)a_{12} & (r+s)a_{13} \\
(r+s)a_{21} & (r+s)a_{22} & (r+s)a_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11}+sa_{11} & ra_{12}+sa_{12} & ra_{13}+sa_{13} \\
ra_{21}+sa_{21} & ra_{22}+sa_{12} & ra_{23}+sa_{23}
\end{pmatrix}
\\[5pt]
&=
\begin{pmatrix}
ra_{11} & ra_{12} & ra_{13} \\
ra_{21} & ra_{22} & ra_{23}
\end{pmatrix}
+
\begin{pmatrix}
sa_{11} & sa_{12} & sa_{13} \\
sa_{21} & sa_{22} & sa_{23}
\end{pmatrix}
\\[5pt]
&=
r
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
+
s
\begin{pmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{pmatrix}
\\[5pt]
&=
rA + sA.

\end{align*}

Dejamos como ejercicio para el lector probar también las siguientes propiedades:

Para cualquiesquiera escalares $r$ y $s$, y cualesquiera matrices $A$ y $B$ de tamaño $2\times 3$, se cumple que

  • $r(A+B) = rA + rB$.
  • $r(sA) = (rs)A$.

Más adelante…

En esta entrada conocimos las suma y el producto escalar de vectores/matrices, y revisamos algunas propiedades que estas operaciones cumple. Emplear sus propiedades nos permitirá calcular de manera más sencilla sus resultados, además de que se integrarán con operaciones que definiremos en entradas futuras.

En la siguiente entrada conoceremos una nueva operación, la cual involucra al mismo tiempo matrices y vectores.

Tarea moral

  1. Sea $A=\begin{pmatrix} 1 & 2 \\ 3 & 4\end{pmatrix}$. Encuentra explícitamente el resultado de la operación $A+2A+3A+4A+5A+6A+7A$. Como sugerencia, si usas apropiadamente las propiedades que hemos discutido, sólo tendrás que hacer un producto escalar.
  2. ¿Podrías desarrollar las pruebas de las propiedades de suma y producto escalar para vectores en $\mathbb{R}^4$? ¿Podrías hacerlo para suma y producto escalar de matrices de $3 \times 2$?
  3. Como vimos en esta entrada, para cada vector $u$ existe un vector $v$ que cumple que $u+v = 0$. ¿Puedes ver por qué $v$ es único?
  4. En los reales está el escalar $-1$. Demuestra que el producto escalar $(-1)v$ es precisamente el inverso aditivo $-v$ de $v$. Enuncia y demuestra un resultado similar para matrices.
  5. Podemos definir la resta de vectores (o de matrices) de la siguiente manera: $u-v=u+(-v)$. Determina si esta operación es asociativa, conmutativa, si tiene neutro y/o inversos.

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.