Cálculo Diferencial e Integral I: Conjuntos infinitos (Adicional)

Por Karen González Cárdenas

Introducción

En esta última entrada de la unidad veremos un poco sobre la cardinalidad de un conjunto, un par de definiciones para decir cuando un conjunto es infinito o finito y algunos teoremas útiles. Dado que se trata de un tema adicional varios de los teoremas y resultados sólo serán enunciados.

Cardinalidad de un conjunto

Definición (Cardinalidad): Sea $A$ un conjunto. Definimos a la cardinalidad de $|A|$ como una medida que indica el número de elementos en dicho conjunto $A$ y la denotaremos como:
$$|A|.$$

Ejemplo: Sea $A= \left\{ 1,2,3,g,y,b \right\}$ así tenemos que su cardinalidad sería:
$$|A|=6.$$

Definición: Decimos que $|A| \leq |B|$ si existe una función $f: A \rightarrow B$ inyectiva.

Misma cardinalidad

Definición: Sean $A,B$ conjuntos. Decimos que $A$ y $B$ tienen la misma cardinalidad $$|A|=|B|,$$ si existe una función $f: A \leftrightarrow B$ biyectiva.

Para los fines de esta entrada, daremos la definición de función biyectiva. Revisaremos esta definición con mayor detenimiento en la unidad 3, dedicada a las funciones, como parte de este curso.

Definición: Sea $f: A \rightarrow B$ una función. Decimos que $f$ es biyectiva si cumple con ser inyectiva y sobreyectiva.

Ejemplo: Si consideramos los intervalos $[0,1]$ y $(0,1)$. Vemos que:
$$|[0,1]| = |(0,1)|.$$
Primero tomamos los valores $0$ y $1$ en el intervalo $[0,1]$ y los enviamos a los valores $\frac{1}{3}$ y $\frac{1}{2}$ respectivamente en el intervalo $(0,1)$.

Ahora consideramos los valores de la forma $\frac{1}{n}$ con $n \in \mathbb{N}\setminus \left\{0\right\}$ y $n \geq 2$. A estos valores los enviaremos a los de la forma $\frac{1}{n+2}$. De este modo lo que haremos será enviarlos al $(0,1)$ como en el ejemplo de la siguiente imagen:

Y por último, a los valores restantes los enviamos a ellos mismos en el intervalo $(0,1)$.

Así la función biyectiva sería $f: [0,1] \leftrightarrow (0,1)$:
\begin{equation*}
f(x)=
\begin{cases}
x &\text{si $x \neq 0,1,\frac{1}{n}$ con $n\geq 2$}\\
\frac{1}{2} & \text{si $x= 1$}\\
\frac{1}{3} &\text{si $x=0$}\\
\frac{1}{x+2} &\text{si $x = \frac{1}{n}$ con $n\geq 2$}\\
\end{cases}
\end{equation*}

Conjuntos finitos e infinitos

Definición (1): Sea $A$ un conjunto.

  • $A$ es finito si existe una función biyectiva $f: A \leftrightarrow \left\{1,2, \cdots , N \right\}$ para algún $N \in \mathbb{N}\setminus \left\{0\right\}$.
  • $A$ es infinito si no es finito.

Definición (2): Sea $A$ un conjunto.

  • $A$ es infinito si existe $A’ \subset A$ subconjunto propio de A y una función biyectiva $f: A’ \leftrightarrow A$.
  • $A$ es finito si no es infinito.

Teorema: Sean $A,B$ conjuntos no vacíos. Si $A \subseteq B$ entonces
$$|A| \leq |B|.$$
Demostración: Proponemos a la función $f: A \rightarrow B$ como $f(x)=x$. Observamos que $f$ es inyectiva y cumple que para todo $x \in A$ se sigue que $x \in B$. Por definición se sigue que $|A| \leq |B|.$

$\square$

Observación: Si $A,B$ son conjuntos infinitos puede ocurrir que $A \subset B$ y que $|A|=|B|.$

Teorema: Sean $A,B$ conjuntos finitos.

  • Si $A \cap B = \emptyset$ entonces:
    $|A \cup B|= |A|+|B|.$
  • Si $A \cap B \neq \emptyset$ entonces:
    $|A \cup B|= |A|+|B|-|A \cap B|.$

Definición (3): Un conjunto $A$ es infinito si existe $B \subseteq A$ tal que
$$|B|=|\mathbb{N}|.$$

Conjuntos numerables

Definición: Sea $A$ un conjunto no vacío. Decimos que $A$ es numerable si $|A|=|\mathbb{N}|$ es decir si existe una función biyectiva:
$$f: A \rightarrow \mathbb{N}.$$

Teorema: Sean $A,B$ conjuntos. Si $A$ es finito y $B$ es infinito numerable entonces $A \cup B$ es numerable.
Demostración: Como $A$ es finito consideremos que tiene $m$ elementos.
$$A = \left\{ a_{1}, a_{2}, \cdots , a_{m} \right\}.$$
Y como $B$ es infinito y numerable entonces es de la forma:
$$B = \left\{ b_{1}, b_{2}, \cdots , b_{n}, \cdots \right\}.$$
Así al considerar la unión $A \cup B$ tendríamos:
$$A \cup B = \left\{ a_{1}, a_{2}, \cdots , a_{m}, b_{1}, b_{2}, \cdots , b_{n}, \cdots \right\}.$$
Tenemos los siguientes dos casos:

  • Si $A\cap B = \emptyset$ y consideramos la siguiente indización:
    $$A \cup B = \left\{ a_{1}, a_{2}, \cdots , a_{m}, b_{m+1}, b_{m+2}, \cdots , b_{m+n}, b_{m+n+1}, \cdots \right\}.$$
    Vemos $|A \cup B|=|\mathbb{N}|.$
  • Si $A\cap B \neq \emptyset$. Supongamos que tenemos $k$ elementos en la intersección, es decir:
    $$a_{1}= b_{1}, a_{2}= b_{2}, \cdots , a_{k}= b_{k}$$
    $$A = \left\{ a_{1}, a_{2}, \cdots ,a_{k}, a_{k+1}, \cdots, a_{m} \right\}.$$
    Así consideramos la siguiente indización para la unión:
    $$A \cup B = \left\{ a_{k+1}, a_{k+2}, \cdots , a_{m}, b_{1}, b_{2}, \cdots , b_{n}, \cdots \right\}.$$
    Observamos que $|A \cup B|=|\mathbb{N}|.$

$\square$

Teorema: Si $A$ y $B$ son conjuntos infinitos y numerables entonces $A \cup B$ es infinito y numerable.
Demostración: Primero vemos que $A \cup B$ es infinito ya que al ocurrir que:

  • $A \subseteq A \cup B$ con $A$ infinito y numerable.
  • $B \subseteq A \cup B$ con $B$ infinito y numerable.

por definición (3) concluimos que $A \cup B$ es infinito.

Nos falta ver qué $A \cup B$ es numerable, ya que $A$ es numerable podemos escribirlo de la siguiente manera:
$$A = \left\{ a_{1}, a_{2}, \cdots \right\}.$$
Análogamente para $B$:
$$B = \left\{ b_{1}, b_{2}, \cdots \right\},$$
por lo que la unión se vería como:
$$A \cup B= \left\{ a_{1}, b_{1},a_{2}, b_{2},a_{3},b_{3} \cdots, a_{n}, b_{n}, \cdots \right\}.$$
Observemos que si consideramos la siguiente indización:
$$A \cup B= \left\{ a_{1}, b_{2},a_{3}, b_{4},a_{5},b_{6} \cdots, a_{2n-1}, b_{2n}, \cdots \right\},$$

el conjunto tiene una relación biunívoca con el conjunto de los naturales.
Veamos qué sucede en los siguientes casos:

  • Si $A \cap B = \emptyset \Rightarrow |A \cup B|=|\mathbb{N}|.$
  • Si $A \cap B \neq \emptyset$. Consideremos que existen k elementos en la intersección, por lo que serían de la forma:
    $$a_{1}= b_{1}, a_{2}= b_{2}, \cdots , a_{k}= b_{k}.$$
    Por lo que ahora la unión se vería como:
    $$A \cup B= \left\{ a_{1}, a_{2}, a_{3}, \cdots,a_{k}, a_{k+1}, b_{k+1},a_{k+2}, b_{k+2} \cdots, a_{k+n}, b_{k+n}, \cdots \right\}$$
    y si consideramos la siguiente nueva indización:
    $$A \cup B= \left\{ a_{1}, a_{2}, a_{3}, \cdots,a_{k}, a_{k+1}, b_{k+2},a_{k+3}, b_{k+4} \cdots, a_{k+(2n-1)}, b_{k+2n}, \cdots \right\},$$
    tenemos que tiene una relación biunívoca con $\mathbb{N}$ por lo que también se cumple que $|A \cup B|=|\mathbb{N}|$.

$\square$

A continuación enunciaremos un teorema que generaliza el resultado sobre conjuntos numerables ya visto.

Teorema: Sean $A_{1}, A_{2}, \cdots, A_{N}, \cdots $ conjuntos no vacíos.

  • Si $A_{1}, A_{2}, \cdots, A_{N}$ son numerables $\Rightarrow \begin{multline*} \bigcup_{i=1}^{N} A_{i} \end{multline*}$ es numerable.
  • Si $A_{1}, A_{2}, \cdots$ son numerables $\Rightarrow \begin{multline*} \bigcup_{i=1}^{\infty} A_{i} \end{multline*}$ es numerable.

Más adelante

Ahora que hemos concluido con la unidad relacionada a los Números reales, en la próxima iniciaremos el tema de funciones definiendo qué es el dominio, rango y regla de correspondencia de una función.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I – Videos: Ecuaciones lineales no homogéneas de segundo orden. Solución por coeficientes indeterminados

Por Eduardo Vera Rosales

Introducción

En la entrada anterior resolvimos ecuaciones lineales no homogéneas de segundo orden por el método de variación de parámetros. Como pudiste advertir después de resolver algunas ecuaciones por dicho método, las integrales que se deben resolver para encontrar la solución particular $y_{P}$ a la ecuación diferencial no homogénea son, en muchos casos, bastante complicadas. Es por eso que debemos hallar otros métodos para solucionar este problema.

El método que presentaremos en esta entrada recurre a la forma que presenta la función $g(t)$ en la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$$ donde $a$, $b$ y $c$ son constantes y $a\neq0$. Si $g(t)$ es el producto de funciones polinómicas, exponenciales, $\cos{\beta t}$ o $\sin{\beta t}$, entonces podremos conjeturar la forma de la solución particular gracias a que las derivadas de dichas funciones tienen la misma forma. A este método lo llamaremos coeficientes indeterminados.

Vamos a comenzar!

Consideraciones generales y caso cuando $g$ es un polinomio

En el video describimos de manera general el método de coeficientes indeterminados, y revisamos el caso cuando $g(t)$ es un polinomio de grado $n$. Finalizamos el video con un ejemplo.

Caso cuando $g$ es producto de un polinomio y una función exponencial

En el video encontramos una solución particular a la ecuación diferencial $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, \,\,\,\,\, r\neq0$$ y resolvemos un ejemplo referente al caso.

Caso cuando $g$ es producto de un polinomio y una función seno o coseno

Finalizamos el tema considerando el caso cuando la función $g(t)$ es el producto de un polinomio y una función $\sin{\beta t}$ o una función $\cos{\beta t}$. En el segundo video aplicamos el método de coeficientes indeterminados para resolver la ecuación diferencial $$m\frac{d^{2}y}{dt^{2}}+ky=F_{0}\cos{\omega t}$$ donde $\omega=\sqrt{\frac{k}{m}}$.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero te servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  • Muestra que si $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}=\sum_{k=0}^{n} a_{k}t^{k}$$ entonces $$y_{P}(t)=t[\sum_{k=0}^{n} A_{k}t^{k}]$$ es solución particular a la ecuación diferencial, mostrando también que se pueden encontrar expresiones para cada $A_{k}$.
  • Encuentra una solución particular $y_{P}(t)$ para la ecuación $$\frac{d^{2}y}{dt^{2}}-5\frac{dy}{dt}=2t^{3}-4t^{2}-t+6$$ por el método de coeficientes indeterminados.

Considera la ecuación $$a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=(\sum_{k=0}^{n} a_{k}t^{k})e^{rt}, r\neq0.$$ Muestra lo siguiente:

  • Si $$ar^{2}+br+c\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
  • Cuando $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b\neq0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$
  • Si $$ar^{2}+br+c=0, \,\,\,\,\, 2ar+b=0$$ entonces una solución particular a la ecuación es $$y_{P}(t)=t^{2}(\sum_{k=0}^{n} A_{k}t^{k})e^{rt}.$$

Hint: Supón que $y_{P}(t)=e^{rt}u(t)$ es solución particular, y considera la ecuación $$a\frac{d^{2}u}{dt^{2}}+(2ar+b)\frac{du}{dt}+(ar^{2}+br+c)u=\sum_{k=0}^{n} a_{k}t^{k}$$ (revisa el segundo video para mayor detalle). Posteriormente recuerda cómo son las soluciones a la ecuación homogénea asociada (te sugiero revisar la siguiente entrada en caso necesario) y concluye la forma de $y_{P}$.

  • Encuentra una solución particular a la ecuación $$\frac{d^{2}y}{dt^{2}}-y=t^{2}e^{t}.$$
  • Encuentra la solución general a la ecuación diferencial $$4\frac{d^{2}y}{dt^{2}}+16y=10\cos{2t}.$$

Más adelante

Hemos concluido el estudio a las ecuaciones lineales con coeficientes constantes, tanto homogéneas como no homogéneas. Es momento de revisar el caso cuando las funciones $a_{0}$, $a_{1}$ y $a_{2}$ de la ecuación $$a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t)$$ son no constantes. A este tipo de ecuaciones les llamaremos ecuaciones lineales de segundo orden con coeficientes variables.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Ecuaciones Diferenciales I: Teorema de Existencia y Unicidad – Ecuación Integral, Funciones Lipschitzianas y Lema de Gronwall

Por Omar González Franco

Estudié matemáticas, la locura de la razón.
– Benjamin Moser

Introducción

A lo largo de esta primera unidad hemos estudiado una variedad de ecuaciones diferenciales ordinarias de primer orden y hemos desarrollado distintas técnicas para resolver cada tipo de ecuación. Vimos que una sola ecuación puede tener infinitas soluciones y sólo cuando le imponemos una condición inicial es como podremos obtener una solución particular de esa ecuación diferencial. Ahora bien, si la solución existe, entonces debe ser única pero, ¿es siempre cierto esto?.

Ya presentamos el teorema de existencia y unicidad para ecuaciones diferenciales de primer orden y el teorema de existencia y unicidad para el caso de ecuaciones diferenciales lineales de primer orden, nuestro objetivo ahora es tener un teorema de existencia y unicidad general que pueda aplicarse a cualquier ecuación diferencial ordinaria de primer orden.

Este teorema, conocido como teorema de existencia y unicidad de Picard – Lindelöf contiene las hipótesis suficientes para garantizar que si existe una solución a un problema de valor inicial (PVI), entonces dicha solución es única.

Cabe mencionar que es posible enunciar un teorema de existencia y unicidad de tipo global y uno de tipo local. En el caso de tipo global el intervalo de existencia de la solución se conoce a priori, mientras que en uno de tipo local se asegura que existe un intervalo, en un principio desconocido, donde el PVI tiene solución única. En este curso demostraremos el resultado de tipo global y veremos que el de tipo local es consecuencia del global, además de que puedes encontrar la demostración al teorema de tipo local en la sección de videos.

Demostrar el teorema de existencia y unicidad de Picard – Lindelöf no es tarea fácil, primero será necesario desarrollar una teoría preliminar en la que estableceremos algunos conceptos nuevos y, así mismo, haremos un breve repaso sobre conceptos que conocemos y que nos serán de utilidad para demostrar dicho teorema. Esta teoría preliminar la desarrollaremos a lo largo de esta y la siguiente entrada para finalmente demostrar el teorema en la última entrada de esta primera unidad.

Comenzaremos enunciando el teorema de existencia y unicidad de Picard – Lindelöf para tenerlo presente, a pesar de que quizá algunas cosas no queden claras, el objetivo de esta teoría preliminar será comprender lo que nos quiere decir este teorema, además de brindarnos las herramientas necesarias para demostrarlo.

Bien, ¡comencemos!.

Teorema de Existencia y Unicidad de Picard-Lindelöf

El teorema global de existencia y unicidad para ecuaciones diferenciales ordinarias de primer orden es el siguiente.

Una observación importante es que el punto $(x_{0}, y_{0})$ puede estar en la frontera de la banda vertical $U = [a, b] \times \mathbb{R}$, es decir, puede ser de la forma $(a, y_{0})$ o $(b, y_{0}).$

Podemos notar que en el enunciado se hace mención de términos que aún no conocemos, como lo son función lipschitziana e Iterantes de Picard, así que necesitamos definirlos.

Este teorema corresponde al resultado global en el que el intervalo es una banda vertical $U = [a, b] \times \mathbb{R}$, en el caso local se considera una región limitada definida como

$$R = \{ (x, y) \in \mathbb{R}^{2}:|x -x_{1}| \leq a, |y -y_{1}| \leq b, \hspace{0.3cm} a, b \in \mathbb{R} \}$$

y la solución esta definida en el intervalo $\delta = [x_{0} -h, x_{0} + h]$ para cierta $h \in \mathbb{R}$. Una vez demostrado el resultado global retomaremos el caso local.

En esta teoría preliminar veremos que el PVI (\ref{1}) puede ser equivalente a resolver una ecuación integral, estudiaremos las funciones lipschitzianas de una y dos variables, demostraremos algunas proposiciones al respecto, demostraremos el lema de Gronwall, repasaremos algunos conceptos importantes sobre sucesiones, series y convergencia, definiremos las iteraciones de Picard y veremos algunos ejemplos. Una vez desarrollada esta teoría pasaremos a la demostración del teorema de existencia y unicidad.

Para comenzar, veamos que el PVI (\ref{1}) se puede escribir de forma equivalente como una ecuación integral cuando la función $f$ es continua.

Ecuación integral equivalente a un PVI

Un PVI como (\ref{1}) se puede escribir de forma equivalente como una ecuación integral en el caso en el que la función $f$ sea continua. Evidentemente este no es un curso ecuaciones integrales, pero para entender esta equivalencia definiremos lo que es una ecuación integral.

Teniendo en cuenta esta definición demostremos nuestro primer teorema de esta teoría preliminar el cual refleja el hecho de que un PVI como (\ref{1}) es equivalente a resolver una ecuación integral.

Demostración:

$\Rightarrow$ Supongamos que $y: \delta \rightarrow \mathbb{R},$ con gráfica contenida en $U$, es solución del PVI, entonces cumple que

$$\dfrac{dy}{dx} = f(x, y); \hspace{1cm} y(x_{0}) = y_{0}$$

Como $y$ es solución de la ecuación diferencial en el intervalo $\delta$, entonces debe ser continua en el mismo intervalo, así tenemos que $f$ y $y$ son continuas y por tanto $\dfrac{dy}{dx}$ y la función

$$g: \delta \rightarrow \mathbb{R}, \hspace{1cm} t \rightarrow g(t) = f(t, y(t))$$

también son continuas, de esta manera podemos integrar la ecuación $\dfrac{dy}{dx} = f(x, y)$ para cualquier $x \in \delta$.

\begin{align*}
\int_{x_{0}}^{x}\dfrac{dy}{dx}(t)dt &= \int_{x_{0}}^{x} f(t, y(t)) dt \\
\end{align*}

Aplicando el teorema fundamental del cálculo (regla de Barrow) en el lado izquierdo de la ecuación, tenemos

\begin{align*}
y(x) -y(x_{0}) &= \int_{x_{0}}^{x} f(t, y(t))dt \\
y(x) &= y(x_{0}) + \int_{x_{0}}^{x} f(t, y(t)) dt \\
y(x) &= y_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt
\end{align*}

obteniendo así que $y(x)$ verifica la ecuación integral (\ref{3}).

$\Leftarrow$ Ahora supongamos que $y(x)$ es una función continua en $\delta$ y que satisface la ecuación integral

$$y(x) = y_{0} + \int_{x_{0}}^{x} f(t, y(t)) dt$$

Derivemos esta expresión.

\begin{align*}
\dfrac{dy}{dx} &= \dfrac{d}{dx} \left( y_{0} + \int_{x_{0}}^{x} f(t, y(t))dt \right) \\
&= \dfrac{dy_{0}}{dx} + \dfrac{d}{dx} \left( \int_{x_{0}}^{x} f(t, y(t))dt \right) \\
&= 0 + f(x, y) \\
&= f(x, y)
\end{align*}

Donde se ha aplicado el teorema fundamental del cálculo. Con este resultado vemos que se ha recuperado la ecuación diferencial $\dfrac{dy}{dx} = f(x, y)$, mostrando así que $y(x)$ es solución a la ecuación diferencial y además

\begin{align*}
y(x_{0}) = y_{0} + \int_{x_{0}}^{x_{0}} f(t, y(t)) dt = y_{0} + 0 = y_{0}
\end{align*}

es decir, se satisface la condición inicial $y(x_{0}) = y_{0}$, de esta manera queda demostrado que $y(x)$ es solución del PVI.

$\square$

Este resultado es muy útil en muchos resultados sobre ecuaciones diferenciales y nos será de utilidad para motivar, más adelante, la introducción a las llamadas iterantes de Picard.

Continuando con nuestra teoría preliminar, un concepto sumamente importante que estudiaremos a continuación es el de funciones lipschitzianas.

Funciones Lipschitzianas

Como estamos trabajando con la ecuación diferencial

$$\dfrac{dy}{dx} = f(x, y)$$

la función $f$ es una función de dos variables, así que nos interesa estudiar las funciones lipschitzianas de dos variables, sin embargo es probable que este sea un concepto nuevo y para que sea más intuitivo entenderlo presentaremos la definición de función lipschitziana para el caso de una función de una variable y realizaremos algunos ejemplos sencillos para posteriormente definir la función lipschitziana en el caso de dos variables.

Con esta definición observamos que si $x_{1} \neq x_{2}$ el cociente

$$\dfrac{f(x_{1}) -f(x_{2})}{x_{1} -x_{2}}$$

corresponde a la pendiente de la recta secante a la gráfica de $f$ que pasa por los puntos $(x_{1}, f(x_{1}))$ y $(x_{2}, f(x_{2}))$, de esta forma la condición de Lipschitz indica que todas estas pendientes están acotadas, es decir, existe una constante $L > 0$, tal que

$$\left|\dfrac{f(x_{1}) -f(x_{2})}{x_{1} -x_{2}} \right|\leq L$$

para cada $x_{1}, x_{2} \in I$, con $x_{1} \neq x_{2}$.

Recta secante que une a los puntos $(x_{1}, f(x_{1}))$ y $(x_{2}, f(x_{2}))$.

No entraremos es muchos detalles para el caso de una función de una variable, pero cabe mencionar que cualquier función lipschitziana es uniformemente continua, ya que dado $\varepsilon > 0$ basta tomar $\delta = \dfrac{\varepsilon}{L}$ y la condición de Lipschitz (\ref{4}) para que se verifique que

$$|x_{1} -x_{2}| < \delta \Rightarrow |f(x_{1}) -f(x_{2})| < \varepsilon$$

Como ejemplo mostremos que toda recta es una función lipschitziana.

Ejemplo: Mostrar que la función

$$f(x) = mx + b$$

es una función lipschitziana, con $L = |m|$.

Solución: Queremos probar que se cumple (\ref{4}). Vemos que

\begin{align*}
|f(x_{1}) -f(x_{2})| &= |mx_{1} + b -(mx_{2} + b)| \\
&= |mx_{1} + b -mx_{2} -b| \\
&= |mx_{1} -mx_{2}| \\
&= |m||x_{1} -x_{2}|\\
&= L|x_{1} -x_{2}|
\end{align*}

En donde consideramos que $L = |m|$. En este caso se da la igualdad

$$|f(x_{1}) -f(x_{2})| = L |x_{1} -x_{2}|$$

probando así que la función $f(x) = mx + b$ es una función Lipschitziana.

$\square$

Hay funciones uniformemente continuas que no son lipschitzianas, un ejemplo puede ser la función $f:[0, 1] \rightarrow \mathbb{R}$ definida como $f(x) = \sqrt{x}$, esta función es uniformemente continua pero no lipschitziana. Mostremos este hecho.

Ejemplo: Mostrar que la función $f:[0, 1] \rightarrow \mathbb{R}$, definida como $f(x) = \sqrt{x}$ no es lipschitziana.

Solución: Vamos a suponer que la función $f(x) = \sqrt{x}$ es lipschitziana y lleguemos a una contradicción. Si $f(x) = \sqrt{x}$ fuera lipschitziana debería satisfacer que

$$|f(x_{1}) -f(x_{2})| \leq L |x_{1} -x_{2}|$$

$\forall x_{1}, x_{2} \in [0, 1]$ y para alguna $L \geq 0$. Vemos que

$$|f(x) -f(0)| = |\sqrt{x} -\sqrt{0}| \leq L |x -0|$$

es decir, $\forall x \in [0, 1]$ ($x$ es positiva),

$$\sqrt{x} \leq L x$$

Si $x \in (0, 1]$ ($x \neq 0$), entonces

$$\dfrac{\sqrt{x}}{x} \leq L \Rightarrow \dfrac{1}{\sqrt{x}} \leq L$$

Este último resultado nos dice que la función $\dfrac{1}{\sqrt{x}}$ esta acotada por $L$ para $x \in (0, 1]$, sin embargo si tomamos el límite $x \rightarrow 0$ por la derecha obtenemos

$$\lim_{x \to 0^{+}}\frac{1}{\sqrt{x}} = \infty \hspace{1cm} !$$

Hemos llegado a una contradicción y todo ocurrió de suponer que la función $f(x) = \sqrt{x}$ era lipschitziana. Por lo tanto, a pesar de ser uniformemente continua, $f(x) = \sqrt{x}$ no es lipschitziana.

$\square$

Un resultado más que no demostraremos es el siguiente teorema.

Hay funciones lipschitzianas que no son derivables, por ejemplo la función $f: \mathbb{R} \rightarrow \mathbb{R}$ definida por $f(x) = |x|$.

Podemos decir, entonces, que la condición de Lipschitz es una condición intermedia entre continuidad uniforme y la existencia de derivada acotada.

Con esto en mente, ahora definamos lo que es una función lipschitziana para el caso en el que la función $f$ es de dos variables. Para este caso, la condición de Lipschitz sólo afectará a una de las variables, concretamente a la segunda, importante considerar este hecho.

La relación (\ref{5}) es lo que se pide que se cumpla en la tercer hipótesis del teorema de Picard – Lindelöf.

Enunciemos dos proposiciones importantes con respecto a las funciones lipschitzianas de dos variables que nos serán de utilidad a la hora de demostrar el teorema de Picard – Lindelöf.

Demostración: Sea $f(x, y)$ una función lipschitziana respecto de la variable $y$ y supongamos que existe su derivada parcial con respecto a dicha variable $\dfrac{\partial f}{\partial y}$. Por definición, para $(x, y) \in U$ se tiene que

$$\dfrac{\partial f}{\partial y}(x, y) \doteq \lim_{h \to 0}\dfrac{f(x, y + h) -f(x, y)}{h} \label{7} \tag{7}$$

Dado un $\delta > 0$ y para $h$ suficientemente pequeño $|h|< \delta$, el punto $(x, y + h)$ pertenece a $U$. Sea $L$ una constante de Lipschitz de $f$ respecto de $y$ en $U$. De acuerdo a la definición de la condición de Lipschitz se verifica que

$$|f(x, y + h) -f(x, y)| \leq L |y + h -y| = L|h| \label{8} \tag{8}$$

Usando (\ref{7}) y (\ref{8}) tenemos lo siguiente.

\begin{align*}
\left|\dfrac{\partial f}{\partial y}(x, y) \right| &= \left|\lim_{h \to 0} \dfrac{f(x, y + h) -f(x, y)}{h}\right| \\
&= \lim_{h \to 0}\left|\dfrac{f(x, y + h) -f(x, y)}{h} \right| \\
&\leq \lim_{h \to 0} \dfrac{L|h|}{|h|} = L
\end{align*}

Esto es,

$$\left| \dfrac{\partial f}{\partial y}(x, y) \right| \leq L$$

lo que significa que $\dfrac{\partial f}{\partial y}$ esta acotada en $U$ por la constante de Lipschitz $L$.

$\square$

Ahora revisemos el resultado recíproco de la proposición anterior en donde es necesario que $U$ sea un conjunto convexo.

Demostración: Para demostrar esta proposición haremos uso del teorema del valor medio para funciones de una variable, de aquí la necesidad de que $U$ sea convexo.

Por hipótesis, $\dfrac{\partial f}{\partial y}$ esta acotada en $U$, sea $L > 0$, tal que

$$ \left| \dfrac{\partial f}{\partial y}(x, y)\right|\leq L \label{9} \tag{9}$$

para cada $(x, y) \in U$, y sean $(x, y_{1}), (x, y_{2}) \in U$ con $y_{1} < y_{2}$. Como $U$ es convexo tenemos garantizado que para cada $y$ tal que $y_{1} < y < y_{2}$ el punto $(x, y)$ pertenece a $U$, pues dicho punto pertenece al segmento que une los puntos $(x, y_{1})$ y $(x, y_{2})$, con estos resultados la función

$g_{x}:[y_{1}, y_{2}] \rightarrow \mathbb{R}, \hspace{1cm} g_{x}(y) = f(x, y)$

está bien definida y es derivable

$$g_{x}^{\prime}(y) = \dfrac{\partial f}{\partial y}(x, y)$$

para cada $y \in [y_{1}, y_{2}]$. Por el teorema del valor medio, existe $y$ tal que $y_{1} < y < y_{2}$ y tal que

$g_{x}(y_{1}) -g_{x}(y_{2}) = g_{x}^{\prime}(y) (y_{1} -y_{2})$

es decir,

$f(x, y_{1}) -f(x, y_{2}) = \dfrac{\partial f}{\partial y}(x, y)(y_{1} -y_{2})$

Esta igualdad también la podemos escribir como

$$|f(x, y_{1}) -f(x, y_{2})| = \left|\dfrac{\partial f}{\partial y}(x, y)\right||y_{1} -y_{2}| \label{10} \tag{10}$$

Por la desigualdad (\ref{9}), tenemos

$$\left|\dfrac{\partial f}{\partial y}(x, y)\right||y_{1} -y_{2}| \leq L|y_{1} -y_{2} | \label{11} \tag{11}$$

De los resultados (\ref{10}) y (\ref{11}) concluimos que

$$|f(x, y_{1}) -f(x, y_{2})| \leq L|y_{1} -y_{2} |$$

lo que prueba que $f$ es una función lipschitziana con respecto de la segunda variable.

$\square$

Esta proposición es bastante útil, pues basta verificar que la derivada $\dfrac{\partial f}{\partial y}$ de $f = f(x, y)$ esta acotada en un conjunto convexo $U$ para concluir que $f$ es una función lipschitziana respecto de la segunda variable. Realicemos un ejemplo.

Ejemplo: Sea $U = [-1, 1] \times \mathbb{R}$. Mostrar que la función $f: U \rightarrow \mathbb{R}$ definida como

$$f(x, y) = |x|\sin^{2}(y)$$

es una función lipschitziana respecto de la segunda variable.

Solución: Es claro que el conjunto $U$ es convexo y que existe la derivada de $f$ con respecto a $y$ dada por

$$\dfrac{\partial f}{\partial y} = 2|x|\sin(y)\cos(y)$$

Como

$$|\sin(y) \cos(y)| \leq 1$$

$\forall y \in \mathbb{R}$ y $|x| < 1, \forall x \in [-1, 1]$, notamos que

$$2|x||\sin(y)\cos(y)| \leq 2$$

Esto es,

$$\left|\dfrac{\partial f}{\partial y}\right| \leq 2$$

esto muestra que la derivada de $f$ esta acotada, por la proposición anterior concluimos que la función $f$ es lipschitziana y podemos tomar como constante de Lipchitz el valor $L = 2$.

$\square$

En este ejemplo vimos que el valor $L = 2$ es una cota de $\left|\dfrac{\partial f}{\partial y}\right|$, sin embargo cualquier número mayor a $2$ cumple también la desigualdad y por tanto también puede ser una constante de Lipschitz en $U$. En general, una buena constante de Lipschitz puede ser

$$L= \sup_{(x, y) \in U}\left|\dfrac{\partial f}{\partial y}(x, y)\right| \label{12} \tag{12}$$

De ambas proposiciones podemos realizar la siguiente caracterización de Lipschitz, bastante útil en la práctica.

En este corolario unimos los resultados de las dos proposiciones anteriores.

Con esto concluimos el estudio de las funciones lipschitzianas, es importante tener presente este último corolario ya que será de suma relevancia en la demostración del teorema de Picard.

Para concluir con esta entrada presentaremos una herramienta más que nos será de mucha utilidad a la hora de demostrar el teorema de Picard – Lindelöf, en particular nos ayudará a probar la unicidad de la solución al PVI (\ref{1}). Revisemos el Lema de Gronwall.

Lema de Gronwall

Este resultado fue desarrollado por Thomas Hakon Grönwall en 1919.

Demostración: Definamos la función

$$g(x) = \int_{x_{0}}^{x}f(t)dt \label{15} \tag{15}$$

Notemos que

$$g(x_{0}) = 0 \hspace{1cm} y \hspace{1cm} \dfrac{dg}{dx} = f(x)$$

En términos de $g(x)$ y $\dfrac{dg}{dx}$ la desigualdad (\ref{13}) se puede escribir de la siguiente forma.

$$0 \leq \dfrac{dg}{dx} \leq \alpha + \beta g(x)$$

de donde,

$$\dfrac{dg}{dx}-\beta g(x) \leq \alpha \label{16} \tag{16}$$

Multipliquemos ambos lados de la desigualdad por $e^{-\beta (x -x_{0})}$.

\begin{align*}
e^{-\beta (x -x_{0})} \left( \dfrac{dg}{dx} -\beta g(x) \right) \leq e^{-\beta (x-x_{0})} \alpha \\
e^{-\beta (x -x_{0})}\dfrac{dg}{dx}-\beta e^{-\beta (x -x_{0})} g(x) \leq \alpha e^{-\beta (x -x_{0})} \label{17} \tag{17}
\end{align*}

Identificamos que el lado izquierdo de la última desigualdad corresponde a la derivada del producto de las funciones $e^{-\beta(x -x_{0})}$ y $g(x)$, en efecto

\begin{align*}
\dfrac{d}{dx} \left( g(x) e^{-\beta (x -x_{0})} \right ) &= \dfrac{dg}{dx} e^{-\beta (x -x_{0})} + g(x) \left( -\beta e^{-\beta (x -x_{0})} \right ) \\
&= e^{-\beta (x -x_{0})} \dfrac{dg}{dx} -\beta e^{-\beta (x -x_{0})} g(x)
\end{align*}

Sustituimos en la desigualdad (\ref{17}).

$$\dfrac{d}{dx} \left( g(x)e^{-\beta (x -x_{0})} \right ) \leq \alpha e^{-\beta (x -x_{0})} \label{18} \tag{18}$$

Integremos de $x_{0}$ a $x$.

\begin{align*}
\int_{x_{0}}^{x} \dfrac{d}{dt} \left( g(t) e^{-\beta (t -x_{0})} \right ) dt &\leq \alpha \int_{x_{0}}^{x} e^{-\beta (t -x_{0})}dt \\
g(x)e^{-\beta (x -x_{0})} -g(x_{0})e^{-\beta (x_{0} -x_{0})} &\leq \alpha \left[ -\dfrac{1}{\beta} \left( e^{-\beta(x -x_{0})} -e^{-\beta(x_{0} -x_{0})} \right) \right]
\end{align*}

pero

$$g(x_{0}) = \int_{x_{0}}^{x_{0}}f(t)dt = 0 \hspace{1cm} y \hspace{1cm} e^{-\beta (x_{0} -x_{0})} = 1$$

Así,

$$g(x)e^{-\beta (x -x_{0})} \leq -\dfrac{\alpha}{\beta} \left ( e^{-\beta (x -x_{0})} -1 \right) \label{19} \tag{19}$$

Multipliquemos ambos lados de la desigualdad por $e^{\beta (x -x_{0})}$.

\begin{align*}
g(x) &\leq -\dfrac{\alpha}{\beta}e^{\beta (x -x_{0})} \left( e^{-\beta (x -x_{0})} -1 \right) \\
&= -\dfrac{\alpha}{\beta}\left( 1 -e^{\beta (x -x_{0})} \right) \\
&= \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right )
\end{align*}

es decir,

$$g(x) \leq \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right ) \label{20} \tag{20}$$

De la desigualdad original (\ref{13}) sabemos que

\begin{align*}
0 \leq f(x) &\leq \alpha +\beta \int_{x_{0}}^{x} f(t)dt \\
0 \leq f(x) &\leq \alpha + \beta g(x)
\end{align*}

de donde,

$$\dfrac{f(x) -\alpha}{\beta} \leq g(x) \label{21} \tag{21} $$

De los resultados (\ref{20}) y (\ref{21}), tenemos

$$\dfrac{f(x) -\alpha}{\beta} \leq g(x) \leq \dfrac{\alpha}{\beta}\left( e^{\beta (x -x_{0})} -1 \right)$$

lo que nos interesa es la desigualdad

$$\dfrac{f(x) -\alpha}{\beta} \leq \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right)$$

haciendo un poco de álgebra obtenemos lo siguiente.

\begin{align*}
\dfrac{f(x) -\alpha}{\beta} &\leq \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) -\alpha &\leq \beta \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) &\leq \alpha + \beta \dfrac{\alpha}{\beta} \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) &\leq \alpha + \alpha \left( e^{\beta (x -x_{0})} -1 \right) \\
f(x) &\leq \alpha + \alpha e^{\beta (x -x_{0})} -\alpha \\
f(x) &\leq \alpha e^{\beta (x-x_{0})}
\end{align*}

Por lo tanto,

$$f(x) \leq \alpha e^{\beta (x-x_{0})}$$

Con esto queda demostrado que si se cumple la desigualdad (\ref{13}), entonces $f(x) \leq \alpha e^{\beta (x -x_{0})}$, $\forall x \in I$.

$\square$

Usando el lema de Gronwall podemos demostrar el siguiente corolario de manera inmediata.

Demostración: Debido a que se cumplen todas las hipótesis del lema de Gronwall sabemos que $\forall x \in I$

$0 \leq f(x) \leq \alpha e^{\beta (x -x_{0})}$

Pero si $\alpha = 0$, entonces

$$0 \leq f(x) \leq 0$$

de donde se deduce que $f(x) = 0$, $\forall x \in I$.

$\square$

Con esto concluimos la primer entrada sobre la teoría preliminar que necesitamos conocer para poder demostrar el teorema de existencia y unicidad de Picard – Lindelöf.

Tarea moral

Los siguientes ejercicios no forman parte de la evaluación del curso, pero servirán para entender mucho mejor los conceptos vistos en esta entrada, así como temas posteriores.

  1. Probar que la función $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = c$ es una función lipschitziana
  1. Probar que la función $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) =|x|$ es lipschitziana, con $L = 1$
  1. Probar que la función $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^{2}$ no es una función lipschitziana.
    Hint: Suponer que lo es, es decir $$|f(x_{2}) -f(x_{1})| \leq L |x_{2} -x_{1}|$$ y considerar la definición de derivada $$\lim_{x_{2} \to x_{1}} \dfrac{|f(x_{2}) -f(x_{1})|}{|x_{2} -x_{1}|} = | f^{\prime}(x_{1})|$$ para llegar a una contradicción.

En los siguientes ejercicios se puede usar la definición de función lipschitziana respecto de la segunda variable o las proposiciones vistas.

  1. Probar que la función $f: U \rightarrow \mathbb{R}$ con $$U = \{(x, y): 0 \leq x \leq 1, y \in \mathbb{R} \}$$ definida como $$f(x, y) = y \cos (x)$$ es una función lipschitziana respecto de la segunda variable, con $L = 1$.
  1. Probar que la función $f: U \rightarrow \mathbb{R}$ con $$U = \{(x, y): 1 \leq x \leq 2, y \in \mathbb{R} \}$$ definida como $$f(x, y) = -\dfrac{2}{x} y + e^{x} \sin (x)$$ es una función lipschitziana respecto de la segunda variable, con $L = 2$.

Más adelante…

En esta entrada conocimos el teorema de existencia y unicidad de Picard – Lindelöf para ecuaciones diferenciales ordinarias de primer orden. Vimos que el PVI (\ref{1}) es equivalente a resolver la ecuación integral (\ref{3}), definimos a las funciones lipschitzianas de dos variables, demostramos algunos resultados al respecto y concluimos con la demostración del lema de Gronwall. Todos estos resultados los aplicaremos más adelante en la demostración del teorema de Picard – Lindelöf.

En la siguiente entrada continuaremos desarrollando esta teoría preliminar. Definiremos el concepto de aproximaciones sucesivas, mejor conocidas como iterantes de Picard, haremos un breve repaso sobre convergencia de series y sucesiones de funciones, presentaremos el resultado local del teorema de existencia y unicidad y resolveremos un ejercicio al respecto.

Entradas relacionadas

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Geometría Moderna I: Trigonometría

Por Rubén Alexander Ocampo Arellano

Introducción

En esta entrada presentaremos las razones trigonométricas respecto de un ángulo agudo en un triángulo rectángulo, estas pueden ser vistas como funciones si consideramos el ángulo como una variable, veremos como extender estas funciones a ángulos de cualquier magnitud y algunas identidades trigonométricas.

Razones trigonométricas

Definiciones. Consideremos un triángulo rectángulo $\triangle ABC$ donde $AB$ es la hipotenusa y sea $\alpha =  \angle BAC$, decimos que $BC$ es el cateto opuesto a $\alpha$ y $AC$ es el cateto adyacente a $\alpha$.

Definimos las razones trigonométricas respecto del ángulo $\alpha$ como sigue:

El seno del ángulo $\alpha$ como $\dfrac{c.opuesto}{hipotenusa}$ y lo denotamos como $\sin \alpha = \dfrac{BC}{AB}$.
El coseno del ángulo $\alpha$ como $\dfrac{c.adyacente}{hipotenusa}$ y lo denotamos como $\cos \alpha = \dfrac{AC}{AB}$.
La tangente del ángulo $\alpha$ como $\dfrac{c.opuesto}{c.adyacente}$ y lo denotamos como $\tan \alpha = \dfrac{BC}{AC}$.
La cosecante del ángulo $\alpha$ como como $\dfrac{hipotenusa}{c.opuesto}$ y lo denotamos como $\csc \alpha = \dfrac{AB}{BC}$.
La secante del ángulo $\alpha$ como $\dfrac{hipotenusa}{c.adyacente}$  y lo denotamos como $\sec \alpha = \dfrac{AB}{AC}$.
La cotangente del ángulo $\alpha$ como $\dfrac{c.adyacente}{c.opuesto}$ y lo denotamos como $\cot \alpha = \dfrac{AC}{BC}$.

Figura 1

Si consideramos el ángulo complementario a $\alpha$, $\beta = \angle CBA$, entonces de las definiciones se siguen las siguientes relaciones:

$\sin \alpha = \cos \beta$, $\cos \alpha = \sin \beta$, $\tan \alpha = \dfrac{\sin \alpha}{\cos \alpha}$, $\tan \alpha \tan \beta = 1$.

$\csc \alpha = \sec \beta$, $\sec \alpha = \csc \beta$, $\cot \alpha = \dfrac{\cos \alpha}{\sin \alpha}$, $\cot \alpha \cot \beta = 1$.

Círculo trigonométrico

Consideremos $(O, 1)$ un círculo con centro en $O$ de radio $1$, por $O$ trazamos dos rectas perpendiculares $x$ e $y$, tomamos un punto $P \in (O, 1)$ en el cuadrante formado por el rayo derecho $Ox$ y el rayo superior $Oy$ y trazamos las proyecciones $X$, $Y$ de $O$ a las rectas $x$, $y$ respectivamente.

El triángulo $\triangle OPX$ es rectángulo y su hipotenusa $OP = 1$, si consideramos el ángulo $\angle XOP = \gamma$ entonces
$\sin \gamma = PX$ y
$\cos \gamma = OX$.

Figura 2

Tracemos la tangente a $(O, 1)$ por $Q$, la intersección entre $x$ y $(O, 1)$, tomemos $R$ como la intersección entre la tangente y $OP$ entonces $RQ \parallel PX$ y los triángulos $\triangle OPX$ y $\triangle ORQ$ son semejantes por lo tanto
$\tan \gamma = \dfrac{PX}{OX} = \dfrac{RQ}{OQ} = RQ$ y
$\sec \gamma = \dfrac{OP}{OX} = \dfrac{OR}{OQ} = OR$.

Ahora trazamos la tangente a $(O, 1)$ por $S$, la intersección de $y$ con $(O, 1)$, tomamos $T$ como la intersección de la tangente con $OP$ entonces $ST \parallel x$, por lo tanto $\gamma = \angle STO$ y así $\triangle OPX$ y $\triangle TOS$ son semejantes, por lo tanto,
$\csc \gamma = \dfrac{OP}{PX} = \dfrac{OT}{OS} = OT$ y 
$\cot \alpha = \dfrac{OX}{PX} = \dfrac{ST}{OS} = ST$.

Con esta construcción podemos extender las definiciones de función trigonométrica para ángulos agudos a ángulos de cualquier magnitud trasladando el punto $P$ alrededor de la circunferencia $(O, 1)$ y tomando las proyecciones de $P$, $X$ e $Y$ a las rectas $x$ e $y$ respectivamente que tomaremos como positivas si se encuentran en los rayos derecho y superior o negativas si se encuentran en los rayos izquierdos e inferior de las rectas $x$, $y$ respectivamente.

De esta manera todas las razones trigonométricas quedan determinadas por el valor de $\sin \gamma = PX$ y $\cos \gamma = OX$.

Teorema 1, identidad pitagórica. Sea $0 \leq \gamma < 2\pi$ entonces, $\sin^2 \gamma + \cos^2 \gamma = 1$.

Demostración. Aplicamos el teorema de Pitágoras al triángulo rectángulo $\triangle OPX$, (figura 2).

$1 = PX^2 + OX^2 = \sin^2 \gamma + \cos^2 \gamma$.

$\blacksquare$

Ley extendida de senos

Teorema 2, ley extendida de los senos. Sean $\triangle ABC$ y $(O, R)$ su circuncírculo, etiquetemos $\angle BAC = \alpha$, $\angle CBA = \beta$, $\angle ACB = \gamma$ y $a = BC$, $b = AC$, $c = AB$ las longitudes de sus lados, entonces
$\dfrac{\sin \alpha}{a} = \dfrac{\sin \beta}{b} = \dfrac{\sin \gamma}{c} = \dfrac{1}{2R}$.

Demostración. Tracemos $D$ el punto diametralmente opuesto a $C$, entonces $\angle BDC = \alpha$, pues subtienden el mismo arco.

$\angle CBD$ es un ángulo recto, pues $CD$ es diámetro, por lo tanto $\sin \alpha = \sin \angle BDC = \dfrac{a}{CD}$.

Por lo tanto, $\dfrac{\sin \alpha}{a} = \dfrac{1}{2R}$.

Figura 3

De manera análoga podemos ver que
$\sin \beta = \dfrac{b}{2R}$ y
$\sin \gamma = \dfrac{c}{2R}$.

Por lo tanto, $\dfrac{\sin \alpha}{a} = \dfrac{\sin \beta}{b} = \dfrac{\sin \gamma}{c} = \dfrac{1}{2R}$.

$\blacksquare$

Corolario. El seno de un ángulo inscrito en una circunferencia de diámetro $1$ es igual a la cuerda que abarca dicho ángulo.

Demostración. Se sigue de sustituir $2R = 1$ en el teorema anterior.

$\blacksquare$

Ley de cosenos

Teorema 3, ley de cosenos. Sean $\triangle ABC$, $\angle BAC = \alpha$, $\angle CBA = \beta$, $\angle ACB = \gamma$ y $a = BC$, $b = AC$, $c = AB$ las longitudes de sus lados, entonces se da la siguiente igualdad:
$c^2 = a^2 + b^2 – 2ab \cos \gamma$.

Demostración. Trazamos $D$ el pie de la perpendicular a $BC$ desde $A$ y aplicamos el teorema de Pitágoras a $\triangle ABD$ y $\triangle ADC,$ de donde obtenemos

$\begin{equation} c^2 = AD^2 + (a – DC)^2 = AD^2 + a^2 – 2a(DC) + DC^2, \end{equation}$
$b^2 = AD^2 + DC^2$
$\Leftrightarrow$ $\begin{equation} AD^2 = b^2 – DC^2. \end{equation}$

Figura 4

Sustituimos $(2)$ en $(1)$ y obtenemos $c^2 = b^2 + a^2 – 2a(DC)$.

Por otro lado $\cos \gamma = \dfrac{DC}{b}$ $\Leftrightarrow$ $b \cos \gamma = DC$.

Así que $c^2 = a^2 + b^2 – 2ab \cos \gamma$.

De manera similar se puede ver que
$a^2 = b^2 + c^2 – 2bc \cos \alpha$ y
$b^2 = a^2 + c^2 – 2ac \cos \beta$.

$\blacksquare$

El seno de la suma

Teorema 4, el seno de la suma de dos ángulos. Sean $\alpha$ y $\beta$ ángulos agudos entonces $\sin (\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$.

Demostración. Sea $\square ABCD$ cíclico tal que $BD = 1$ es diámetro del circuncírculo, $\angle DBA = \alpha$ y $\angle CBD =\beta$.

Figura 5

Como consecuencia del corolario tenemos que $AC = \sin (\alpha + \beta)$, ademas $\triangle BAD$ y $\triangle DCB$ son triángulos rectángulos pues $DB$ es diámetro.

Se sigue que
$AB = \cos \alpha$,
$CD = \sin \beta$,
$AD = \sin \alpha$ y
$BC = \cos \beta$.

El teorema de Ptolomeo nos dice que
$\begin{equation} AC \times BD = AB \times CD + BC \times AD. \end{equation}$

Por lo tanto, $\sin (\alpha + \beta) = \cos \alpha \sin \beta +\sin \alpha \cos \beta$.

$\blacksquare$

El coseno de la suma

Teorema 5, el coseno de la suma de dos ángulos. Sean $\alpha \ne 0$ y $\beta$ ángulos agudos tales que $\alpha + \beta < \dfrac{\pi}{2}$ entonces $\cos (\alpha + \beta) = \cos \alpha \cos \beta – \sin \alpha \sin \beta$.

Demostración. Sea $\square ABCD$ cíclico tal que $BC = 1$ es diámetro del circuncírculo, $\angle CBD = \alpha$ y $\angle DBA = \beta$.

Figura 6

Como $\triangle BAC$ y $\triangle BDC$ son triángulos rectángulos y $BC = 1$ tenemos que
$AC = \sin (\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$ (teorema 4),
$BD = \cos \alpha$,
$AB = \cos (\alpha + \beta)$,
$CD = \sin \alpha$,
$AD = \sin \angle DCA = \sin \beta$ (corolario).

Por el teorema de Ptolomeo $(3)$, aplicado a $\square ABCD$ obtenemos:
$\cos (\alpha + \beta) \sin \alpha + \sin \beta$
$= (\sin \alpha \cos \beta + \sin \beta \cos \alpha) \cos \alpha$
$= \sin \alpha \cos \beta \cos \alpha + \sin \beta \cos^2 \alpha$
$ = \sin \alpha \cos \beta \cos \alpha + (\sin \beta)(1 – \sin^2 \alpha)$ (teorema 1)
$= \sin \alpha \cos \beta \cos \alpha – \sin \beta \sin^2 \alpha + \sin \beta$.

$\Leftrightarrow$$\cos (\alpha + \beta) \sin \alpha = \sin \alpha \cos \beta \cos \alpha – \sin \beta \sin^2 \alpha$.

Por lo tanto, $\cos (\alpha + \beta) = \cos \beta \cos \alpha -\sin \beta \sin \alpha$.

$\blacksquare$

Seno y coseno del ángulo medio

Teorema 6, el seno y el coseno del ángulo medio. Sea $\alpha \ne 0$ un ángulo agudo entonces
$\sin \dfrac{\alpha}{2} = \sqrt{\dfrac{1 – \cos \alpha}{2}}$ y $\cos \dfrac{\alpha}{2} = \sqrt{\dfrac{1 + \cos \alpha}{2}}$.

Demostración. Sea $\square ABCD$ cíclico tal que $BC = 1$ es diámetro y $\angle CBD = \angle DBA = \dfrac{\alpha}{2}$.

Figura 7

Ya que $\triangle BAC$ y $\triangle BDC$ son triángulos rectángulos podemos ver que
$AC = \sin \alpha$,
$BD = \cos \dfrac{\alpha}{2}$,
$AB = \cos \alpha$,
$CD = \sin \dfrac{\alpha}{2}$,
$AD = \sin \angle DCA = \sin \dfrac{\alpha}{2}$ (corolario).

Aplicando Ptolomeo $(3)$ y el teorema 4 obtenemos:
$\cos \alpha \sin \dfrac{\alpha}{2} + \sin \dfrac{\alpha}{2} = \sin \alpha \cos \dfrac{\alpha}{2} $
$= \sin (\dfrac{\alpha}{2} +\dfrac{\alpha}{2}) \cos \dfrac{\alpha}{2} = 2 \sin \dfrac{\alpha}{2} \cos^2 \dfrac{\alpha}{2}$.

Por lo tanto, $2 \sin \dfrac{\alpha}{2} \cos^2 \dfrac{\alpha}{2} = \sin \dfrac{\alpha}{2} (\cos \alpha + 1)$ $\Rightarrow$  
$\begin{equation} \cos^2 \dfrac{\alpha}{2} = \dfrac{\cos \alpha + 1}{2}. \end{equation}$

De donde se sigue que $\cos \dfrac{\alpha}{2} = \sqrt{\dfrac{\cos \alpha + 1}{2}}$.

Ahora sustituimos la identidad pitagórica en la ecuación $(4)$ y obtenemos:
$1 – \sin^2 \dfrac{\alpha}{2} = \dfrac{\cos \alpha + 1}{2}$
$\Leftrightarrow$
$\sin \dfrac{\alpha}{2} = \sqrt{\dfrac{1 – \cos \alpha}{2}}$.

$\blacksquare$

Más adelante…

En la siguiente entrada estudiaremos algunas propiedades relacionadas con el incírculo y los excÍrculos de un triángulo, así como también sobre sus centros y radios.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  1. $i)$ A partir de un triangulo equilátero deriva los valores de las seis razones trigonométricas para los ángulos $\dfrac{\pi}{3}$ y $\dfrac{\pi}{6}$,
    $ii)$ A partir de un triángulo rectángulo isósceles deduce los valores de las seis razones trigonométricas para el ángulo $\dfrac{\pi}{4}$.
  2. Recordemos que consideramos la magnitud de un ángulo central como positiva, si recorremos el arco de circunferencia que subtiende dicho ángulo en el sentido contrario al de las manecillas del reloj y negativa en caso contraio, muestra que para cualquier valor de $\alpha$ se cumple que:
    $i)$ $\sin (-\alpha) = -\sin \alpha$,
    $ii)$ $\cos (-\alpha) = \cos \alpha$,
    $iii)$ $\sin (\pi – \alpha) = \sin \alpha$,
    $iv)$ $\cos (\pi – \alpha) = -\cos \alpha$,
    $v)$ $\sec^2 \alpha = 1 + \tan^2 \alpha$.
  3. Sean $\alpha$ y $\beta$ ángulos agudos tales que $\alpha \geq \beta$, muestra geométricamente:
    $i)$ el seno de la diferencia de dos ángulos, $\sin (\alpha – \beta) = \sin \alpha \cos \beta – \sin \beta \cos \alpha$,
    $ii)$ el coseno de la diferencia de dos ángulos, $\cos (\alpha – \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$.
  4.  Sean $\alpha$ y $\beta$ ángulos agudos prueba que:
    $i)$ $\sin \alpha \cos \beta = \dfrac{\sin (\alpha + \beta) + \sin (\alpha – \beta)}{2}$,
    $ii)$ $\cos \alpha \sin \beta = \dfrac{\sin (\alpha + \beta) – \sin (\alpha – \beta)}{2}$.
  5. Sea $\triangle ABC$, por $A$ traza cualquier recta que corte a $BC$ en $L$, muestra que $\dfrac{BL}{LC} = \dfrac{AB \sin \angle BAL}{AC \sin \angle LAC}$.
Figura 8
  1. Demuestra que si $\dfrac{\sin \alpha}{\sin \beta} = \dfrac{\sin \delta}{\sin \gamma}$ y $\alpha + \beta = \delta + \gamma < \pi$ entonces $\alpha = \delta$ y $\beta = \gamma$.
  2. Sea $\triangle ABC$ con $a = BC$, $b = AC$, $c = AB$, $\alpha = \angle BAC$, $\beta = \angle CBA$, $\gamma = \angle ACB$, demuestra las siguientes formulas para calcular el área de $\triangle ABC$:
    $i)$ $(\triangle ABC) = \dfrac{ac \sin \beta}{2} = \dfrac{ab \sin \gamma}{2} = \dfrac{bc \sin \alpha}{2}$,
    $ii)$ $(\triangle ABC) = \dfrac{a^2 \sin \beta \sin \gamma}{2 \sin (\beta + \gamma)} = \dfrac{b^2 \sin \alpha \sin \gamma}{2 \sin (\alpha + \gamma)} = \dfrac{c^2 \sin \alpha \sin \beta}{2 \sin (\alpha + \beta)}$.

Entradas relacionadas

Fuentes

  • Santos, J., Tesis Geometría del Cuadrilátero. 2010, pp 69-78.
  • Cárdenas, S., Notas de Geometría. México: Ed. Prensas de Ciencias, 2013, pp 55-62.
  • Gomez, A. y Bulajich, R., Geometría. México: Instituto de Matemáticas, 2002, pp 89-95.

Agradecimientos

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE104522 «Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM – Etapa 2»

Probabilidad I-Videos: Distribución Bernoulli

Por Aurora Martínez Rivas

Introducción

En esta ocasión estudiaremos una distribución de probabilidad discreta que resulta ser un bloque de construcción básico para otras distribuciones del mismo tipo. Se trata de la distribución Bernoulli, la cual obtiene su nombre por el matemático suizo Jacob Bernoulli (1654-1705), quien fue el primero en formalizar este modelo.

Distribución Bernoulli

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

A continuación hay algunos ejercicios para que practiques los conceptos vistos en esta entrada. Te será de mucha utilidad intentarlos para entender más la teoría vista.

  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( p\right ) $. Encuentra la distribución de probabilidad de la variable $1-X$.
  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( \theta\right ) $. Encuentra la distribución de probabilidad de la variable $$\begin{array}{ll} a) & X^{n} \\ b) & \left ( 1-X\right ) ^{n} \end{array}$$
  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( p\right ) $  y sean $a$ y $b$ constantes con $a\neq 0$. Sea $Y$ la variable aleatoria definida como $Y=aX+ b$. Encuentra la distribución de probabilidad de $Y$.
  • Considera el experimento en el que se prueba un medicamento en personas que contraen cierta enfermedad para ver si funciona y se recuperan. La probabilidad de que un paciente se recupere es .7. Si se sabe tres personas han contraído dicha enfermedad, ¿Cuál sería la función de masa de probabilidad asociada a este experimento?
  • Tomando en cuenta el ejercicio anterior, ¿Cuál sería la función de masa de probabilidad si son $n$ las personas que se han enfermado?, explica tu respuesta.

Más adelante…

Los ensayos Bernoulli conforman un modelo teórico que solo con experiencia se puede determinar si es apropiado para describir observaciones específicas. Asegurar que un experimento, se ajusta a un ensayo Bernoulli se deriva casi siempre de evidencia experimental y en muchas ocasiones puede servir como un indicador de problemas que en cierto proceso pudieran presentarse.

Entradas relacionadas

L