Ecuaciones Diferenciales I – Videos: Ecuaciones lineales de segundo orden con coeficientes variables. Solución por series de potencias cerca de un punto ordinario

Introducción

A lo largo de las entradas anteriores que forman parte de la segunda unidad hemos estudiado a detalle ecuaciones lineales de segundo orden con coeficientes constantes, es decir, ecuaciones de la forma $a\frac{d^{2}y}{dt^{2}}+b\frac{dy}{dt}+cy=g(t)$, con $a\neq 0$, y hemos desarrollado diversos métodos para resolverlas. Es momento de revisar ecuaciones lineales de segundo orden, pero ahora con coeficientes variables, es decir, del tipo $a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=g(t)$.

Hallar soluciones para este tipo de ecuaciones no resulta tan sencillo como para el caso con coeficientes constantes, y en ocasiones no podremos encontrar soluciones en términos de funciones elementales como polinomios, exponenciales, trigonométricas, etc., por lo que una manera de hallar soluciones es suponiendo que la solución puede escribirse como una serie de potencias alrededor de un punto dado.

Estudiaremos entonces soluciones por series de potencias en dos tipos de puntos: cuando los coeficientes tienen desarrollo en series de Taylor alrededor del punto dado, y cuando lo anterior no ocurre. En particular, en esta entrada revisaremos el primer caso. Definiremos los conceptos de puntos ordinarios y singulares, y demostraremos la existencia de soluciones en series de potencias cerca de un punto ordinario,.

Manos a la obra!

Soluciones en series de potencias cerca de un punto ordinario

En el primer video ofrecemos la definición de puntos ordinarios y puntos singulares, y probamos la existencia de soluciones en series de potencias cerca de un punto ordinario, a la ecuación diferencial $a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0$. La solución encontrada será, además, la solución general a la ecuación diferencial.

Radio de convergencia de la solución en serie de potencias cerca de un punto ordinario

En el segundo video de la entrada encontramos el radio de convergencia para la solución en serie de potencias cerca de un punto ordinario.

Ejemplos

En el último video de la entrada resolvemos un par de ejemplos de ecuaciones diferenciales con coeficientes variables, con el método desarrollado a lo largo de esta misma entrada.

Tarea moral

  • ¿Qué sucede si suponemos que $a_{0}=0$ en la demostración del primer video?
  • ¿Qué pasa si suponemos que $c=1$ en la demostración del primer video?
  • Prueba que las series de potencias que aparecen en la solución general a la ecuación diferencial $$\frac{d^{2}y}{dt^{2}}-ty=0$$ son soluciones particulares a la misma ecuación, y que estas son linealmente independientes. Por tanto, la solución general efectivamente lo es para la ecuación diferencial.
  • Encuentra la solución general a la ecuación $$\frac{d^{2}y}{dt^{2}}-y=0$$ usando series de potencias alrededor de $t_{0}=0$.
  • Encuentra la solución al problema de valor inicial $$\frac{d^{2}y}{dt^{2}}-ty=0$$ $$y(1)=0; \frac{dy}{dt}(1)=2$$ calculando una solución por serie de potencias alrededor de $t_{0}=1$.

Más adelante

Terminamos de estudiar las soluciones cerca de un punto ordinario. Lo siguientes será revisar el caso cuando el punto en cuestión no es un punto ordinario, es decir, es un punto singular de nuestra ecuación diferencial $a_{0}(t)\frac{d^{2}y}{dt^{2}}+a_{1}(t)\frac{dy}{dt}+a_{2}(t)y=0$.

Pero antes analizaremos un caso particular sencillo de resolver: la ecuación de Euler que tiene la forma $$t^{2}\frac{d^{2}y}{dt^{2}}+\alpha t\frac{dy}{dt}+\beta y=0$$

A partir de la solución para esta ecuación podremos generalizar más adelante el método a una clase más general de ecuaciones diferenciales con puntos singulares.

No se lo pierdan!

Entradas relacionadas

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.