Archivo de la etiqueta: Binomial

Probabilidad I-Videos: Distribución binomial

Introducción

Esta vez, nos enfocaremos en el estudio de la distribución discreta: asociada a las variables aleatorias que surgen, al tratar con repeticiones de ensayos Bernoulli independientes y que consisten en determinar el número total de éxitos sin importar su orden. Esta distribución se conoce como distribución binomial.

Distribución binomial

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

  • Demuestra que la función de probabilidad asociada a la distribución binomial es efectivamente una función de probabilidad.
  • Sea $X$ una variable aleatoria tal que $X\sim binomial\left ( n,p\right ) $, demuestra que cuando $k$ pasa de 0 a n.$\ P(X=k)$ primero aumenta monótonamente y luego disminuye monótonamente alcanzando su valor más grande cuando $k$ es el entero más grande menor o igual que $(n+1)p$.
  • Basándote en la demostración del inciso anterior, da una relación recursiva entre las probabilidades asociadas con valores sucesivos de $X$ y con ella encuentra $P(X<4)$ cuando $X\sim binomial\left ( 50,.4\right ) $.
  • Demuestra que si $X$ es una variable aleatoria tal que $X\sim binomial\left ( n,p\right ) $, entonces la función de masa de probabilidad $f_X\left ( k\right ) $ tiene la siguiente propiedad: $f\left ( k-1\right ) f\left ( k+1\right ) \le f\left ( k\right ) ^2$.
  • Sea $X$ una variable aleatoria tal que $X\sim binomial\left ( n,p\right ) $, encuentra la distribución de probabilidad de $n-X$.

Más adelante…

La distribución binomial, es utiliza para la Estimación de probabilidades: asociadas a resultados, en cualquier subconjunto de ensayos que impliquen éxitos o fracasos. Así, como para estimar probabilidades asociadas a juegos de azar.

Por sus aplicaciones en la teoría de probabilidad y estadística, la distribución binomial es probablemente la de uso más frecuente entre las distribuciones discretas,

Entradas relacionadas

Probabilidad I-Videos: Distribución Bernoulli

Introducción

En esta ocasión estudiaremos una distribución de probabilidad discreta que resulta ser un bloque de construcción básico para otras distribuciones del mismo tipo. Se trata de la distribución Bernoulli, la cual obtiene su nombre por el matemático suizo Jacob Bernoulli (1654-1705), quien fue el primero en formalizar este modelo.

Distribución Bernoulli

Trabajo realizado con el apoyo del Programa UNAM-DGAPA-PAPIME PE 104721: “Hacia una modalidad a distancia de la Licenciatura en Matemáticas de la FC-UNAM”. Sitio web del proyecto: https://www.matematicasadistancia.com.

Tarea moral

  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( p\right ) $. Encuentra la distribución de probabilidad de la variable $1-X$.
  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( \theta\right ) $. Encuentra la distribución de probabilidad de la variable $$\begin{array}{ll} a) & X^{n} \\ b) & \left ( 1-X\right ) ^{n} \end{array}$$
  • Sea $X$ una variable aleatoria tal que $X\sim Bernoulli\left ( p\right ) $  y sean $a$ y $b$ constantes con $a\neq 0$. Sea $Y$ la variable aleatoria definida como $Y=aX+ b$. Encuentra la distribución de probabilidad de $Y$.
  • Considera el experimento en el que se prueba un medicamento en personas que contraen cierta enfermedad para ver si funciona y se recuperan. La probabilidad de que un paciente se recupere es .7. Si se sabe tres personas han contraído dicha enfermedad, ¿Cuál sería la función de masa de probabilidad asociada a este experimento?
  • Tomando en cuenta el ejercicio anterior, ¿Cuál sería la función de masa de probabilidad si son $n$ las personas que se han enfermado?, explica tu respuesta.

Más adelante…

Los ensayos Bernoulli conforman un modelo teórico que solo con experiencia se puede determinar si es apropiado para describir observaciones específicas. Asegurar que un experimento, se ajusta a un ensayo Bernoulli se deriva casi siempre de evidencia experimental y en muchas ocasiones puede servir como un indicador de problemas que en cierto proceso pudieran presentarse.

Entradas relacionadas

L